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Summary

Multivariate dependence structures play an important role in finance. The modelling and

accurate prediction of multivariate financial time series is an important component of asset

pricing and portfolio management. This doctoral thesis comprises three essays that address

the question of multivariate dependencies using high-frequency data and innovative sources

of information such as news analytics. These essays make complementary contributions to

the field of financial econometrics and can be read independently of each other.

The first essay focuses on the improvement of Value at Risk prediction based on high-

frequency data. The novel concept of the realized hierarchical Archimedean copula is

introduced. It is proposed estimating the structure and the parameters of the hierarchical

Archimedean copula using the realized correlation matrix only. This approach allows one

to estimate the multivariate distribution of daily returns based on intraday information.

Moreover, the proposed estimator does not suffer from the curse of dimensionality. In

this essay, the realized hierarchical Archimedean copula is applied to manage the risk

of high-dimensional portfolios. The evidence of the superior forecasting power of our

approach, compared to a set of existing models, is provided.

The second essay investigates the role of news sentiment data in improving forecasts

in financial econometrics. The objective of this paper is to answer the question regarding

whether the class of stock-price-relevant news is wider than firm-specific announcements.

For this purpose, causal links between news sentiments and excess returns are studied by

means of an adaptive lasso. It is concluded that unexpected returns in the whole economy

can be explained by news originating from the financial and energy sectors. In other words,

the news spillover effects are dominating the direct effects of sectoral news. Therefore,

including exogenous financial or energy sentiment variables in econometric models can

significantly improve forecasting properties.

The third and final essay extends the ideas presented in the second essay along several

lines. First, it analyses the mutual relationship amongst financial news at the firm level.

Second, it exploits the news data of higher granularity than weekly or daily. In this

paper, the occurrences of firm-specific news announcements are considered to follow the

Hawkes process. This approach provides a tool to identify systemically important financial

companies in terms of news. Based on this information, the novel composite news intensity

index is constructed. It is empirically demonstrated that the proposed index provides early

warning signals of market instability.



Zusammenfassung

Multivariate Abhängigkeitsstrukturen spielen eine wichtige Rolle im Finanzwesen. Die

Modellierung und genaue Vorhersage multivariater Finanzzeitreihen ist ein wichtiger Be-

standteil des Asset Pricings und des Portfoliomanagements. Diese Doktorarbeit umfasst

drei Aufsätze, die sich mit der Frage von multivariaten Abhängigkeiten befassen, indem

Hochfrequenzdaten und innovative Informationsquellen, wie zum Beispiel die Nachrichte-

nanalytik, genutzt werden. Die drei Studien leisten ergänzende Beiträge zum Gebiet der

Finanzökonometrie und können unabhängig voneinander gelesen werden.

Der erste Aufsatz konzentriert sich auf die Verbesserung der Vorhersage des Value at

Risks auf Basis von Hochfrequenzdaten. Dafür wird das neuartige Konzept der realisierten

hierarchischen archimedischen Kopula eingeführt. Es wird vorgeschlagen, die Struktur

und die Parameter der hierarchischen archimedischen Kopula nur durch den Gebrauch

der realisierten Korrelationsmatrix zu schätzen. Dieser Ansatz erlaubt es, die multivariate

Verteilung täglicher Renditen basierend auf Intraday-Daten zu ermitteln. Außerdem leidet

die vorgeschlagene Schätzfunktion nicht unter dem Fluch der Dimensionalität. In diesem

Aufsatz wird die realisierte hierarchische archimedische Kopula angewendet, um das Risiko

von hoch-dimensionalen Portfolios zu kontrollieren. Wir zeigen, dass unser Ansatz im

Vergleich zu existierenden Modellen, eine höhere Vorhersagekraft besitzt.

Jüngste Studien im Finanzwesen behaupten, dass Börsenkurse oftmals mehr von der

Stimmung der Investoren als von der Realität beinflusst werden. Der zweite Aufsatz

untersucht die Rolle des auf Nachrichten basierenden Sentiments bei der Verbesserung

der Vorhersagen in der Finanzökonometrie. Das Ziel dieses Artikels ist es, die Frage zu

beantworten, ob die Klasse der börsenkursrelevanten Nachrichten umfangreicher ist als

firmenspezifische Meldungen. Zu diesem Zweck werden kausale Verbindungen zwischen

den Sentiments der Nachrichten und Überschussrenditen mittels der ökonometrischen

Methode des Adaptive Lassos untersucht. Basierend auf Thomson Reuters Nachrichten-

daten kommt die Studie zum Ergebnis, dass unerwartete Renditen in der ganzen Wirtschaft

durch Nachrichten aus dem Finanz- und Energiesektor- erklärt werden können. Anders

gesagt dominieren Auswirkungen branchenfremder Nachrichten direkte Auswirkungen der

branchenspezifischen Nachrichten. Daher kann das Einbeziehen exogener Sentimentvari-

ablen aus dem Finanz- und Energiesektor- in ökonometrische Modelle die Vorhersageeigen-

schaften ökonometrischer Modelle wesentlich verbessern.

Der dritte und letzte Aufsatz erweitert die im zweiten Aufsatz vorgestellten Ideen

auf mehreren Ebenen. Zunächst analysiert er die wechselseitige Beziehung zwischen

Finanznachrichten auf Firmenebene. Zweitens werden Nachrichtendaten von höherer

Granularität als wöchentlich oder täglich ausgenutzt. In diesem Kapitel nehmen wir an,

dass das Auftreten von firmenspezifischen Nachrichtenmeldungen einem Hawkes Prozess

folgt. Genauer gesagt, wird die Granger Kausalität der Nachrichtenmeldungen mittels

multivariater Hawkes Graphen modelliert. Dieser Ansatz stellt ein Instrument zur Verfü-

gung, welches systemisch wichtige Finanzunternehmen bezüglich Nachrichten identifiziert.

Basierend auf diesen Informationen wird ein neuer zusammengesetzter Nachrichteninten-

sitätsindex konstruiert. Es wird empirisch nachgewiesen, dass der vorgeschlagene Index

frühe Warnsignale auf Marktinstabilitäten liefert.
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Preface
"Essays on Multivariate Modelling of Financial Markets Using Copula and Sentiment

Networks" is a set of three essays at the intersection of the multivariate modelling of

complex time-varying dependencies and finance. The modelling and predicting of the

dependencies of financial time series plays a prominent role in financial econometrics. This

task is of primary importance when making investment decisions, performing optimal

asset allocation and managing portfolio risk. During the last decades, the availability

of innovative sources of data and affordable computing power influenced the ways in

which multivariate modelling is addressed in finance. On the one hand, the frequency of

observations is referred to as the measure of progress in financial econometrics; nowadays,

high-frequency data and the realized measures of dependence are successfully incorporated

into econometric models with the aim of predicting the future and gaining significant

profits. On the other hand, text analytics tools have undergone substantial changes in

recent years, and they have made the news sentiment data available for econometricians.

The focus of this work is to provide the tools for the improvement of the forecasting

power of econometric models by means of high-frequency and news sentiment data. This

doctoral thesis comprises three essays (chapters) that share the feature of an application of

multivariate statistical techniques to better understand the nature of financial markets.

Chapter 1 is based on the published paper by Okhrin and Tetereva (2017), in which the

authors introduced the concept of the realized hierarchical Archimedean copula. Copula is

a flexible tool that is applied to model complex multivariate dependencies that appear in all

areas of human activities. In financial markets, copula models are helpful to manage the

risk and price financial derivatives. The flexibility of the copulae is due to the fact that the

multivariate distribution can be decomposed into marginal distributions and copula. Okhrin

and Tetereva (2017) present research at the intersection of two increasingly popular areas of

financial econometrics: copula and high-frequency data. Incorporating high-frequency data

into copula models improves their time-variability and forecasting power in short-term risk

management. This work contributes to the existing copula literature and suggests estimating

the structure and the parameters of the hierarchical Archemedean copula nonparametrically

using the realized correlation matrix only. This estimator can be applied to construct a



2

novel model of high-dimensional realized copula. The computational costs of the proposed

estimator are low, and it does not suffer from the curse of dimensionality. The properties

of the estimator, in comparison with the benchmarks, are discussed by means of Monte

Carlo simulations. It is demonstrated that this estimator is preferable in many cases

despite its parsimonious construction. The advantage of this estimator in risk modelling is

the possibility to estimate the copula of the daily returns based on high-frequency data.

It is important to mention here that, in general, the multivariate distribution of daily

returns does not coincide with the distribution of intraday returns. The introduction of the

realized hierarchical Archimedean copula allows one to estimate the copula daily and to

improve the accuracy of the forecasts. The proposed realized hierarchical Archimedean

copula outperforms many competing models, including Bauer and Vorkink (2011) and

Salvatierra and Patton (2015) in terms of the computational speed and accuracy of the

one-day-ahead Value at Risk prediction. The results of the paper demonstrate that high-

frequency observations can be successfully incorporated into copula models, allowing one

to capture time-varying high-dimensional dependencies with higher accuracy.

Chapter 2, which is co-authored by Francesco Audrino, investigates the impact of

sentiment spillover effects on the excess returns in the US and Europeanmarkets. In financial

econometrics, it is usually assumed that all the relevant information about the current price

of the asset is contained in the historical prices. However, empirical evidence during the

times of financial instability contradicts this assumption. As stated in Shiller (1999), "Stock

prices in the United States, when compared with measures of the true fundamental value or

sensible investment value, are too high, too low, or about right". For this reason, researchers

and practitioners have been exploring additional sources of information that would be able

to explain the origins of economic shocks and increasing volatility. Rapidly increasing

computational power and the development of text- and data-mining techniques made it

possible to augment financial time series models by news data. Given that these models

demonstrate superior forecasting power, research on news sentiment analysis has attracted

much attention. The majority of research on sentiment analysis is devoted to the direct

causality of the news; in other words, previous studies have primarily focused on how the

news about a particular company influences that company’s stock returns and volatility.

The main objective of the second essay is to characterise the news spillover effects and

assess whether these effects dominate the direct effects. To answer this question, adaptive

lasso testing procedure for large data sets is applied to construct a dynamic news/returns

network. New econometric characteristics are provided to infer the causality between news

that originates from one sector and the stock returns of the companies in other sectors. By
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analysing Thomson Reuters’ news sentiment data, the dynamics of these characteristics are

studied for a period of almost 10 years. This chapter finds empirical evidence of news that

originates from just a few sectors being important for the returns in the whole economy.

In addition, it is observed that the causality of the news increased just before periods of

economic turbulence. The superior performance of ARMA-GARCH models augmented

by sentiment data from the financial and energy sectors is observed in the prediction

comparison. The results of this chapter are beneficial for economists and financial risk

managers, and they have great potential for other applications.

In Chapter 3, the mutual contagion of financial news is explored. The results of Chapter

2 suggest that financial news drives the excess returns in the whole market. For this reason,

more research should be conducted on the mutual dependencies of financial announcements.

The last chapter of the thesis attempts to answer the question regarding whether the

intensity of financial news can be considered to be a self- and mutually exciting process. To

this end, the multivariate Hawkes graphs and the corresponding nonparametric estimation

procedure by Kirchner (2016) is employed. The network representation of the branching

structure of the multivariate Hawkes process offers a compact way in which to describe

the contribution of each company to the information flow. Another advantage of this

approach is the possibility of studying real-time news event data without aggregating

them and therefore more precisely identifying the causal links between announcements.

From the conducted analysis, it can be concluded that the news shocks from systemically

important companies trigger the announcements related to other companies. Moreover,

it is concluded that the mutual causality of news arrival times increases during times of

economic turbulence. The systemic importance of US and UK financial institutions, UBS

and Deutsche Bank is observed. It is empirically demonstrated that the contribution of a

company to the information flow is not always proportional to the intensity of firm-specific

news and the size of the company. Based on the results, a composite news intensity index

is constructed for the US market. The estimated Hawkes graphs suggest uniquely defining

the weights of the companies in the composite index. In contrast to the sentiment indices

discussed in the literature, the proposed measure does not involve the construction of

a sentiment score and therefore does not require bag-of-words techniques to be applied.

Compared to the existing fear index, it provides a timelier signal of uncertainty in the

market, and it Granger causes VIX, S&P 500 price and volume at a time lag of 6 months.

Therefore, policy makers and practitioners in the field can successfully use the proposed

news intensity index.
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Abstract

This paper introduces the concept of the realized hierarchical Archimedean copula (rHAC).

The proposed approach inherits the ability of the copula to capture the dependencies

among financial time series, and combines it with additional information contained in high-

frequency data. The considered model does not suffer from the curse of dimensionality, and

is able to accurately predict high-dimensional distributions. This flexibility is obtained by

using a hierarchical structure in the copula. The time variability of the model is provided

by daily forecasts of the realized correlation matrix, which is used to estimate the structure

and the parameters of the rHAC. Extensive simulation studies show the validity of the

estimator based on this realized correlation matrix, and its performance, in comparison

to the benchmark models. The application of the estimator to one-day-ahead Value at

Risk (VaR) prediction using high-frequency data exhibits good forecasting properties for a

multivariate portfolio.
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1.1 Introduction

One of the main objectives of quantitative research is the modelling and approximation of

multivariate distributions. A multivariate model should be flexible enough to capture the

stylized facts of empirical finance. Moreover, increasing interest in short-term quantitative

risk management requires the time-variability of such models. The current paper builds

on two actively developing areas of financial econometrics: copulae and high-frequency

data. On the one hand, copulae appear to be a helpful tool to analyse complex dependence

structures, evaluate the risk, and are therefore widely used to price financial derivatives,

see Embrechts et al. (2003), Rodriguez (2007), Hofert and Scherer (2011), Krämer et al.

(2013). On the other hand, models based on high-frequency data yield superior predictions

in comparison to approaches based on daily data. Among others, Andersen et al. (2002),

Barndorff-Nielsen and Shephard (2004) and Zhang et al. (2005) made it possible to compute

the daily realized covariances from high-frequency data. Many researchers have imple-

mented the obtained realized measures to model financial time series. Most of those studies,

however, employ models where the realized correlation matrix directly characterizes the

multivariate distribution, see, for example, Bauer and Vorkink (2011), Chiriac and Voev

(2011), Jin and Maheu (2012), or address GARCH type models, for example, Hansen et al.

(2014), Bauwens et al. (2012), Noureldin et al. (2012) and Bollerslev et al. (2016). There are

only a limited number of studies which discuss the implementation of high-frequency data

in copula models. Breymann et al. (2003) and Dias et al. (2004) employ copulae to study the

properties of intraday log-returns. Creal et al. (2013) consider an autoregressive updating

equation and improve the predictive power in Salvatierra and Patton (2015) by including

the lagged realized volatility in the equation.

To the best of our knowledge, the only model that parameterizes the whole Archimedean

copula (AC) by the realized variance-covariance matrix is in Fengler and Okhrin (2016), who

introduced the realized copula. The authors suggested capturing time-varying dependence

by using high-frequency intraday data to estimate the parameter of an AC daily. It has been

demonstrated empirically that the realized copula model outperforms the list of benchmark

models in one-day-ahead out-of-sample VaR prediction. The realized copula model of

Fengler and Okhrin (2016) has, however, several limitations. First, their realized copula

is driven by one single parameter, which limits the flexibility of the model. Second, the

estimation procedure is performed by applying a method of moments kind of estimator,

which suffers from the curse of dimensionality.
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We propose to extend the work of Fengler and Okhrin (2016) by introducing the realized

hierarchical Archimedean copula (rHAC), which allows more flexibility and is applicable

to managing high-dimensional portfolios. We adapt the estimation procedures described

in Segers and Uyttendaele (2014) and Górecki et al. (2016a) to high-frequency data, which

allows estimating the structure and the parameters of a copula based only on a realized

covariance matrix. As a result, the estimate does not suffer from microstructure noise or

jumps. Moreover, it can be applied to high-dimensional portfolios since the computationally

expensive optimization procedure proposed in Fengler and Okhrin (2016) is reduced to a

set of simple tasks. This result is of particular importance in many financial applications,

especially in risk management.

This paper is structured as follows. Section 1.2 contains a literature review of the

theory of the copula and introduces the concept of a realized copula. An estimator of the

structure and the parameters of an rHAC is presented in Section 1.3. Simulation studies and

a comparison with the benchmark models are provided in Section 1.4. Section 1.5 discusses

the construction of the rHAC, and gives a short summary of competing models. Section

1.6 describes an application of the proposed models to one-day-ahead VaR prediction for a

multidimensional portfolio. Finally, we summarize the main contribution of the paper.

1.2 The concept of the realized copula

The concept of the copula was introduced to the statistical literature by Sklar (1959) and

further popularized in the world of finance by Embrechts et al. (1999) in the context of risk

management. Sklar’s theorem, see Sklar (1959), states that a d-dimensional distribution

function F (x1, . . . ,xd) with marginals F1, . . . ,Fd can be represented as

F (x1, . . . ,xd) = Cd{F1(x1), . . . ,Fd(xd)}, (1.1)

where Cd (u1, . . . ,ud) is a d-dimensional copula. In addition, it states that the continuity of

the marginal distributions F1, . . . ,Fd ensures the uniqueness of the copula.

Having a huge number of classes of bivariate copulae, see Nelsen (2007), there is still a

lack of multivariate ones. The most popular classes of multivariate copulae currently are

elliptical, factor, pair-copula constructions, and HAC. The first class is often used in practice

due to its simplicity and intuitive interpretation. However, elliptical copulae are not able

to capture the stylized facts observed in financial data. The factor approach overcomes

this limitation and has attracted attention in the copula literature over the last decade,
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see, for example, Andersen and Sidenius (2004), van der Voort (2007), Krupskii and Joe

(2013), and Oh and Patton (2017). The limitation of the factor copula models is that the

likelihood function is often not known in closed form, which complicates the estimation

of the parameters. Pair-copula constructions are discussed in more detail by Joe (1996),

Bedford and Cooke (2001), Czado (2010), and Kurowicka (2011), and are increasing in

popularity. Another popular copula class is the Archimedean copulae (AC), which contains,

among others, the Clayton, Gumbel and Frank copulae. The AC parametrized by the

parameter θ is defined as Cd(u1, . . . ,ud;θ) = ψθ{ψ
[−1]
θ (u1)+ . . .+ψ

[−1]
θ (ud)}, u1, . . . ,ud ∈

[0,1] with (−1)jψ
(j)
θ (t) ≥ 0 being non-decreasing and convex on [0,∞) for t > 0, where

j ∈ . ψθ(0) = 1, ψθ(∞) = 0 and the pseudo inverse is defined as ψ
[−1]
θ (t) = ψ−1

θ (t) for
0 ≤ t ≤ ψθ(0) and 0 otherwise. The generators and the densities of some AC are given in

Appendix 1.A.

Due to the lack of flexibility of AC, caused by the fact that the whole copula is driven

by just one parameter θ, generalizations such as nested copulae have been introduced. This

paper employs a flexible multivariate copula family, the hierarchical Archimedean copulae

(HAC), a special case of which may be defined recursively in the following way:

ψθd−1

{
ψ

[−1]
θd−1

(ud)+ψ
[−1]
θd−1

◦Cd−1
(
u1, . . . ,ud−1;sd−2,(θ1, . . . ,θd−2)�)} , (1.2)

where θθθ = (θ1, . . . , θd−1)� is the parameter vector of the HAC and s is the structure of the

HAC. As is evident from (1.2), the current study assumes that all generators of the HAC be-

long to the same parametric family and each of them depends on one single parameter. For

simplicity, we compress the notation of (1.2) and denote the d-dimensional HAC with k gen-

erators which is parametrized by the structure s and the parameter vector θθθ = (θ1, . . . , θk)�

as Cd (u1, . . . ,ud;s,θθθ). The structure s is the merging ordering s = (. . .(qr)s . . .), where
q,r,s ∈ 1, . . . ,d, q �= r �= s is a reordering of the indices of the variables Xi, i = 1, . . . ,d. The

structure of a d-dimensional HAC s can be seen as a tree with k ≤ d−1 non-leaf nodes that

correspond to the generators and d leaves representing the variablesX = (X1,X2, . . . ,Xd)�.
The leaves correspond to the lowest level of the tree. The root corresponding to the variable

Cd(u1, . . . ,ud;s,θθθ) is assumed to be the highest level of the tree. The nodes, which are not

the leaves are called internal nodes, each corresponds to the generator. A node which is

directly connected to another node when moving away from the root is called the child

node. A node which is directly connected to another node when moving from the leaves to

the root is called the parent node. Descendants are the children nodes of the node, children

of these children, etc. The set of ancestors includes the parent node of the node, parents of

the parents, etc. The structure of the HAC is called binary if it corresponds to the binary
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tree, i.e. if each internal node has exactly two children. Further on, we denote the nodes

associated with the generators by DXi
, where Xi is the set of leaves (variables) that are

descendant nodes of the node DXi
, i = 1, . . . ,k. Assuming this notation, the node DXi

is an

ancestor of the node DXj
(the leave associated with the variable Xl) if Xj ⊂ Xi ( Xl ⊂ Xi),

l = 1, . . . ,d, i, j = 1, . . . ,k. Another concept that will be used later on is the concept of the

lowest common ancestor (lca). The lca of the nodes DXi
(the leave Xq) and DXj

(the leave

Xr) is the node DXl
that is the lowest node satisfying Xi ⊂ Xl ( Xq ⊂ Xl) and Xj ⊂ Xl

(Xr ⊂ Xl), q,r = 1, . . . ,d, i, j, l = 1, . . . ,k.
To clarify the above-mentioned definitions and avoid introducing the comprehensive

notation of the graph theory, we illustrate the above-named concepts by an example.

Consider the 5-dimensional copula

ψ1.5
{

ψ
[−1]
1.5

(
ψ2
[
ψ

[−1]
2 {ψ4

(
ψ

[−1]
4 (u1)+ψ

[−1]
4 (u2)

)}+ψ
[−1]
2 {ψ2.5

(
ψ

[−1]
2.5 (u3)+ψ

[−1]
2.5 (u4)

)}])+ψ
[−1]
1.5 (u5)

}
that can be written as C5

(
u1,u2,u3,u4,u5;s = ((12)(34)5),θθθ = (4,2.5,2,1.5)�), where

ui = F −1
i (xi,νi) with νi being the parameters of the marginal distributions Fi (·), i =

1, . . . ,5. The tree corresponding to this copula is presented in the Figure 1.1. This copula has

the binary structure s = ((12)(34)5). There are k = 4 non-leaf (internal) nodes. The leaves

which correspond to the lowest level of the copula tree are given by the variablesX1, X2, X3,

X4 and X5. The root DX4 which represents the highest level of the copula tree corresponds

to the variable C5 (u1,u2,u3,u4,u5;s,θθθ), where X4 = (X1,X2,X3,X4,X5)�. The root

node is the parent node for the node corresponding to the variable X5 and the node DX3

associated with the variable generated by C4
(
u1,u2,u3,u4;s = (12)(34),θθθ = (4,2.5,2)�),

where X3 = (X1,X2,X3,X4)�. The root node is the ancestor for all other nodes of the
given copula tree. The lca of the nodes associated with the variables X1 and X2 is the node

DX1 that corresponds to the variable C2 (u1,u2;s = (12),θθθ = 4), where X1 = (X1,X2)�.
The lca of the nodes corresponding to the variables X1 and X5 is the root node DX4 as it is

the lowest node satisfying X1 ⊂ Xl and X5 ⊂ Xl, l = 1, . . . ,d.

Although copula models are flexible enough to capture nonlinear dependencies, many

empirical applications require the time variability of the parameters (and the structure)

of the whole copula. For example, the empirical evidence makes it reasonable to assume

that the dependence between asset log-returns gets stronger during periods of financial

turbulence. A vast amount of literature is devoted to dynamic copula models, including

the parsimonious rolling window approach and more sophisticated models, such as, for

example, the local change point procedure of Härdle et al. (2013). Recent developments

in time-varying copula models take advantage of the rapidly growing availability of high-

frequency observations and include the realized measures (volatility and correlations) in
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correlation matrix of daily log-returns via a realized correlation matrix or similar methods,

see Barndorff-Nielsen et al. (2004), Barndorff-Nielsen and Shephard (2004), Zhang et al.

(2005), Hayashi et al. (2005), and Pooter et al. (2008). The idea of using the information

concentrated in the realized covariance matrix to estimate the parameters of a copula daily

has been employed by Fengler and Okhrin (2016), who used a combination of the results

from a lemma of Hoeffding (1940) and Sklar’s theorem (1.1) to express the covariance σij

between two random variables Xi and Xj in terms of the marginal distributions Fi(·) and
Fj(·) and the copula C2 (·, ·;θ)

σij(θ) =
∫ ∞

−∞

∫ ∞

−∞
{Fi,j(x,y;θ,νi,νj)−Fi(x;νi)Fj(y;νj)}dxdy

=
∫ ∞

−∞

∫ ∞

−∞
[
C2 {Fi(x;νi),Fj(y;νj);θ}−Fi(x;νi)Fj(y;νj)

]
dxdy; i, j = 1 . . .d,

(1.3)

where θ is the parameter of the copula and νi, νj are the parameters of the marginal

distributions Fi(·) and Fj(·). In the high-frequency framework, the covariance σij in (1.3) is

replaced by the element rij,t of the realized covariance matrix Rt computed at day t. From

now on, we denote the diagonal elements of matrix Rt by ri,t instead of rii,t, i = 1, . . . ,d.

As has been shown in Breymann et al. (2003) and discussed in more detail in Hautsch

(2011), with an increasing sampling frequency, the marginal distributions of log-returns

can be assumed to be Gaussian with zero mean and the standard deviation equal to
√

ri,t,

t = 1, . . . ,d, this leads us to assume throughout this study that margins are N(0, ri,t). Thus,
if the realized covariance matrix Rt can be computed, according to Fengler and Okhrin

(2016), it can be assumed that for the Archimedean copula driven by one single parameter

θ the integral in (1.3) depends on just the parameter of the copula which belongs to some

parametric family C = {C (·;θ) , θ ∈ Θ}. Therefore, after replacing the covariances in (1.3)

by their realized counterparts and standardizing the variables, the expression (1.3) can be

rewritten for the realized correlations as

ρij,t =f (θij,t)

=
∫ ∞

−∞

∫ ∞

−∞

[
C2 {Φ(x),Φ(y);θij,t}−Φ(x)Φ(y)

]
dxdy; i, j = 1 . . .d, i �= j,

(1.4)

where Φ(·) is the cdf of the standard normal distribution and ρij,t = rij,t√
ri,t·rj,t

is the element

of the realized correlation matrix Pt calculated at day t, t = 1, . . . ,T . According to (1.4), the

realized correlations depend solely on the copula parameter, under the assumption of some

parametric family. Based on (1.4), the parameter of the copula can be estimated based on



1.2 The concept of the realized copula 12

just the realized correlation matrix:

θ̂t = argmin
θ

g�
t (θ)Wgt (θ) , (1.5)

where gt (θ) is a vector of length d(d−1)
2 where all the gij,t (θ) = ρij,t − f(θ) are stacked

together and W is a
(

d(d−1)
2 × d(d−1)

2
)
-dimensional positive definite weighting matrix.

When the copula parameter is estimated from (1.5) and the diagonal elements of the realized

covariance matrix Rt are calculated, the multivariate distribution of X = (X1,X2, . . . ,Xd)�

is fully specified. It is important to note that Fengler and Okhrin (2016) consider the

restrictive setting of AC. Therefore, all bivariate copulae in (1.4) coincide and are driven by

one single parameter θ.

In practice, one is usually interested in predicting a multivariate distribution, rather than

just estimating it. This can be done in two ways. The parameter of the realized copula can

be estimated daily and predicted using some time-series model. Alternatively, the realized

correlation matrix can be predicted and the parameter of the copula can be estimated from

P̂t+1|t, which is one-day-ahead prediction of the realized correlation matrix Pt+1 obtained

by applying the specific time series model in the spirit of Bauer and Vorkink (2011) or

Chiriac and Voev (2011). The limitation of both approaches comes from the estimation

procedure (1.5), which suffers from the curse of dimensionality and enables the estimation

of the realized copula only in moderate dimensions. Moreover, as was mentioned earlier,

the whole realized copula in Fengler and Okhrin (2016) is driven by just one parameter θ,

which might be too restrictive for multivariate portfolios.

We propose to overcome these limitations by using the HAC instead of the simple

AC. This extension is not straightforward, as in addition to the parameter vector θθθ of

Cd(u1, . . . ,ud;s,θθθ), the structure of the copula s needs to be estimated. The estimation of

the parameter vector θθθ of a d-dimensional copula Cd(u1, . . . ,ud;s,θθθ) should be addressed as
well. The procedure of Fengler and Okhrin (2016) allows the estimation of the parameters at

the bottom level of the copula. The estimation of the parameters of the higher levels is not

trivial, as the realized correlation among the original variables and the variables determined

by the copulae of the bottom levels can not be specified. This motivates the estimation

of the structure and the parameters of the hierarchical copula based just on the realized

correlation matrix. Recent studies in the copula literature address the question of how the

structure (or the structure and the parameters) of a hierarchical copula can be estimated

based on Kendall’s τ correlation matrix, see, for example, Segers and Uyttendaele (2014)

Górecki et al. (2016a), Uyttendaele et al. (2016), and Górecki et al. (2016b). We propose
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to combine the methods discussed in Segers and Uyttendaele (2014) and Górecki et al.

(2016a) and adapt them to the realized correlation matrix with the final goal of improving

one-day-ahead VaR prediction for multivariate portfolios.

1.3 Estimating the realized hierarchical Archimedean

copula

This section discusses how the structure and the parameters of an HAC can be estimated

based on the realized correlation matrix Pt only. From now on, we refer to such a copula

as an rHAC. In this section, the subindex t is dropped to simplify the notation. We suggest

generalizing the clustering method proposed by Górecki et al. (2016a) by applying an

adaptation of the algorithm introduced in Segers and Uyttendaele (2014) in order to estimate

the structure of an HAC. Consequently, the parameters can be estimated by applying (1.4)

to the specific average of the realized correlations. We restrict ourselves to the case when

all the generators of the copula belong to the same Archimedean family and satisfy the

nesting condition. A brief discussion of this will be provided later in this section.

1.3.1 Estimating the structure

In analog to the method mentioned in Górecki et al. (2016a) for Kendall’s τ , we suggest

defining the distance between two variables Xi and Xj as

hij = 1−ρij , (1.6)

where ρij is the realized correlation betweenXi andXj , i, j = 1, . . . ,d. Next, the dependence-

based distancematrix is used as the input for an agglomerative cluster analysis. The obtained

hierarchical clustering dendrogram corresponds to the estimated structure of the HAC.

This approach is, however, valid only for HACs with binary (bivariate) structure. The

introduction of an additional merging parameter that allows collapsing a binary structure

into a general one is discussed in Uyttendaele et al. (2016). The optimal choice of such a

parameter still needs to be addressed in the literature. To reduce the computational costs,

we will adapt the method proposed in Segers and Uyttendaele (2014) to the distance (1.6) to

recover the general structure of an rHAC.

Segers’ and Uyttendaele’s algorithm According to Segers and Uyttendaele (2014), the

structure of a nested HAC s can be uniquely recovered from the structures of the set of
(

d
3
)
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triples (Xq,Xr,Xs) with distinct q,r,s = 1, . . . ,d using the concept of the lowest common

ancestor (lca). According to the definition given in Section 1.2, the lca of Xq and Xr is the

node which is the lowest node that has both Xq and Xr as descendants, q,r = 1, . . . ,d. In

the first step, the structures of the triples are estimated and the lcas of all pairs of variables

in each triple are found. For a given tree, there are d−2 lcas that correspond to all possible

pairs (Xq,Xr), q,r = 1, . . . ,d. In the second step, the pairs of variables which correspond

to the same equivalence class are merged together step by step, resulting in the tree of

the HAC. Two pairs of variables (Xq,Xr) and (Xp,Xs) are said to belong to the same

equivalence class if they share the same lca in the tree s.

D123

U3 D12

U1 U2

D124

U4 D12

U1 U2

D134

U1 D34

U3 U4

D234

U2 D34

U3 U4

Figure 1.2 A set of trivariate structures corresponding to the copula with s = ((12)(34)).

As an example, we consider the 4-dimensional HAC with the predefined structures of

the triples presented in Figure 1.2. Consider the first triple (U1,U2,U3) with the structure

((12)3). The lca of (U1,U2) is the node DU1U2 . For simplicity of notation, we write D12

instead of DU1U2 . The parent node of U1 and U2 is given by D12. The ancestor nodes of U1

and U2 are the nodes D12 and D123. Therefore, the lca of (U1,U2) in the structure ((12)3)
is the node D12 and the lca of (U1,U3) is the node D123. The lcas of each pair are:

⎛⎜⎜⎜⎜⎜⎜⎝

U1 U2 U3 U4

U1 {D12,D12} {D123,D134} {D124,D134}
U2 {D123,D234} {D124,D234}
U3 {D34,D34}
U4

⎞⎟⎟⎟⎟⎟⎟⎠
In the given example, the pairs (U1,U2) and (U3,U4) do not share lcas with any other pair.

Therefore, U1 and U2 belong to the same equivalence class and are merged together in

the first step. The same is true for the pair (U3,U4). Consequently, it is observed that the

pairs (U1,U3), (U1,U4), (U2,U3) and (U2,U4) belong to the same equivalence class and are

merged together in the second step. The final structure of the copula is s = ((12)(34)). For
further examples on how the structure of an HAC can be recovered by applying the concept

of an lca, we refer to Segers and Uyttendaele (2014).
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In this method, the structure of the individual triples should be found first. Each

triple can have a binary or a trivial structure. The structure of the triple is called trivial

if all three variables are merged together in one step, and binary otherwise. Formally

speaking, for each triple of variables (Xq,Xr,Xs), q,r,s = 1, . . . ,d we aim to test the

null hypotheses H0 : ‘the structure is trivial (q,r,s)’ against H1 : ‘the structure is binary
((q,r) , s)’. Segers and Uyttendaele (2014) suggest estimating the individual triples using a

rank-based method. Let Kqr(w) = P{C2 (Xq,Xr) w} be Kendall’s distribution between

Xq and Xr. Its empirical counterpart is then K̂qr(w) = 1
n

∑n
m=1 I(wm,qr w) , where

0 < w < 1, wm,qr = 1
n+1

∑n
l=1 I

(
xlq < xmq,xlr < xmr

)
and I(·) is the identity function.

The distance between the empirical Kendall distributions of pairs (Xs,Xq) and (Xs,Xr) is
defined as

δsq,sr =
∫ 1

0
|K̂sq(x)− K̂sr(x)|dx = 1

n

n∑
m=1

|w(m),sq −w(m),sr|, (1.7)

where w(1),ij , . . . ,w(n),ij are ordered pseudo-observations of w1,sq . . .wn,sq . Segers and

Uyttendaele (2014) point out that a trivial trivariate structure usually results in three

distances which are approximately the same, but a binary structure results in one small

distance and two larger approximately equal distances. In order to calculate the test statistic,

Segers and Uyttendaele (2014) suggest drawing K samples from the nonparametrically

estimated trivariate Archimedean copula using the work of Genest, Nešlehová and Ziegel

(2011).

As the present paper addresses the framework when the copula family is assumed to be

known, we modify the algorithm proposed in Segers and Uyttendaele (2014) and simulate

from the copula coming from a predefined class. The test statistic is simulated under

the assumption that the structure is trivial, therefore, the parameter of the copula can be

found by inversion of the average empirical counterpart of Kendall’s τ , i.e. θ̂ = v−1
(
τ̂avg

)
,

where τ̂avg = (τ̂qr + τ̂qs + τ̂rs)/3, q,r,s = 1, . . . ,d. The inverse v−1
(
τavg

)
corresponds to

the solution of the equation

τij(θ) = v (θ) = 4
∫ 1

0

∫ 1

0
C2(ui,uj ;θ)dC2(ui,uj ;θ)−1; i, j = 1 . . .d, (1.8)

where τij = 2P
{

(Xi −Xj)(Yi −Yj) > 0
}

−1, with (Xi,Yi) and (Xj ,Yj) are independent
draws from (X,Y ). For some copula functions, the integral in (1.8) is known in closed form

as a function of θ, for example, for the Gumbel and Clayton copulae θGumbel(τ) = 1
1−τ and

θClayton(τ) = 2τ
1−τ , respectively. To sum up, the modification of the algorithm of Segers and
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Uyttendaele (2014) which allows identifying the structure of an HAC based on Kendall’s

distance is summarized in Algorithm 1.

Algorithm 1 Adaptation of the algorithm of Segers and Uyttendaele (2014).

Input : sample (x1,x2, . . . ,xd)� of size n, significance level α�, parametric family of the

HAC.

for l = 1, . . . ,
(

d
3
)
do

Select a triple from (xq,xr,xs)�, q,r,s = 1, . . . ,d, q �= r �= s, call it (z1, z2, z3)�.
Compute the distances δ12,13, δ12,23 and δ13,23 according to (1.7), order them and

call the result δ(1), δ(2), δ(3).

Compute the test statistic

δ =
|δ(1) − δ(2)|+ |δ(1) − δ(3)|

2 . (1.9)

Compute τ̂avg = τ̂12+τ̂13+τ̂23
3 and estimate θ̂ = v−1

(
τ̂avg

)
according to (1.8).

for k = 1, . . . ,K do

Draw a sample of size n from (U1,U2,U3)� ∼ C3
(
u1,u2,u3; (123), θ̂

)
being a

trivial copula.

Compute δ(k) for the simulated sample k in analog to (1.9).

end for

Compute δcrit by taking the α = α� quantile of the empirical distribution of δ(k),

k = 1, . . . ,K .

if δ > δcrit then reject the H0: the true trivariate structure is the trivial structure.

end if

end for

Recover the full structure of the d-dimensional HAC from the set of
(

d
3
)
triples of

variables using the concept of the lowest common ancestor (lca).

Return : the estimated structure of the HAC ŝ.

The significance level of the individual tests α� should be selected considering the

multiple testing procedure. For the significance level of the test to be α, the significance

level of the individual tests should satisfy α = 1 − (1−α�)(
d
3). However, this approach

is not recommended for high-dimensional samples. Therefore, in the empirical part of

the paper, we use the rule of thumb proposed in Uyttendaele et al. (2016) and choose the

significance level of the individual tests to be smaller or equal than the overall significance

level. It is worth noting that the method of Segers and Uyttendaele (2014) is much more
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general as no prior specification of the copula generators is necessary and generators

might differ from level to level of the hierarchy. In contrary, our method assumes that

generators on all levels of the hierarchy belong to the same predefined family. However,

the method proposed in Segers and Uyttendaele (2014) and its modification described in

Algorithm 1 are not applicable to the case of high-frequency data because of the absence

of a high-frequency estimator of Kendall’s τ and Kendall’s distribution. The computation

of the empirical Kendall’s distribution (1.7) involves realizations of X1, . . . ,Xd. Therefore,

the estimation of a multivariate distribution of daily observations would require data of a

longer time horizon in comparison to the case when the copula is parametrized by solely the

realized correlation matrix. The structure and the parameters would have to be fixed within

some time window, resulting in the reduced time flexibility of the estimated multivariate

distribution. Moreover, Algorithm 1 employs Kendall’s distance as the test statistic, which

leads to large computational costs in higher dimensions.

Clustering estimator of the structure We propose to proceed analogously to Segers

and Uyttendaele (2014) and recover the full structure of an HAC from the set of triples of

variables. The estimation of the structure of the individual triples is made using a test that,

in contrast to Segers and Uyttendaele (2014), does not involve the observations themselves

and is based solely on pairwise correlations.

Consider the triple (Xq,Xr,Xs) and assume that the estimated distance

ĥqr = min
(
ĥqr, ĥqs, ĥrs

)
,

where ĥqr is defined in (1.6). Therefore, the variables Xq and Xr are merged together into

the variable (Xq,Xr) in the first step. The distance between the cluster (Xq,Xr) and Xs is

calculated according to the complete linkage rule:

ĥqr,s = max
{
ĥqs, ĥrs

}
. (1.10)

Preliminary simulation studies have shown that the choice of the clustering algorithm is of

minor importance. We refer to Kaufman and Rousseeuw (2005) and Hastie et al. (2009) for

more details on cluster analysis.

It can be observed that the difference between merging distances ĥqr,s and ĥqr is

generally bigger if the trivariate copula has a binary structure. Therefore, the measure

Δĥ = ĥqr,s − ĥqr (1.11)
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can be chosen as the test statistic to distinguish between trivial and binary structure of a

triple.

To sum up, the testing procedure is performed in the following way: for each triple, it

is assumed that the structure is trivial, the average correlation is computed, and inverted

to the parameter of the trivial copula f−1
(
ρavg

)
according to (1.4). The test statistic is

obtained by simulating k = 1, . . . ,K samples from the trivial copula and calculating K

distances Δĥ(k) according to (1.11). The sample size of the simulated sample corresponds

to the sample size of the original sample. Finally, the empirical difference of the merging

distances is compared to the quantile of the simulated one. The proposed procedure is

briefly summarized in Algorithm 2.

Algorithm 2 Structure determination using cluster analysis.

Input : the realized correlation matrix P of the dimension d×d calculated based on the

sample (x1,x2, . . . ,xd)� of size n, significance level α�, parametric family of the HAC.

for l = 1, . . . ,
(

d
3
)
do

Select a triple from (q,r,s)�, q,r,s = 1, . . . ,d, q �= r �= s, call it (1,2,3)�.
Compute ĥ12, ĥ13, and ĥ23 according to (1.6).

Merge the two closest variables and calculate Δĥ according to (1.11).

Compute ρavg = ρ12+ρ13+ρ23
3 and estimate θ̂ = f−1

(
ρavg

)
.

for k = 1, . . . ,K do

Draw a sample of size n from (U1,U2,U3)� ∼ C3
(
u1,u2,u3; (123)θ̂

)
being a

trivial copula.

Transform (u1,u2,u3)� to {F −1
1 (u1),F −1

2 (u2),F −1
3 (u3)}�.

Compute Δĥ(k) for the simulated sample k according to (1.11).

end for

Compute hcrit by taking the α = α� quantile of the empirical distribution of Δĥ(k),

k = 1, . . . ,K .

if Δĥ > hcrit then reject the H0: the true trivariate structure is the trivial structure.

end if

end for

Recover the full structure of the d-dimensional rHAC from the set of
(

d
3
)
triples of

variables using the concept of the lowest common ancestor (lca).

Return : the estimated structure of the HAC ŝ.
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It is important to note that the estimation of the marginal distributions Fi (·) is a trivial
task, as the distribution of the high-frequency log-returns can be assumed to be Gaussian

N(0, ri), i = 1, . . . ,d based on the results described in Hautsch (2011).

Figure 1.3 Dendrograms for the trivial Gumbel copula C3 (u1,u2,u3;s = (123);θ = 1.4),
the binary Gumbel copula C3

(
u1,u2,u3;s = ((12)3);θθθ = (1.7,1.2)�) (center) and kernel

density estimate of ĥ12,3 − ĥ12, where ĥ12,3 = max
{
ĥ13, ĥ23

}
, blue for the trivial structure

and green for the binary structure.

Note: In order to illustrate the test statistic (1.11), samples from

C3 (u1,u2,u3;s = (1,2,3);θ = 1.4)

and

C3
(
u1,u2,u3;s = ((1,2),3);θθθ = (1.7,1.2)�)

are drawn (the copulae are assumed to be Gumbel). The left plot in Figure 1.3 illustrates the

dendrogram of the hierarchical cluster analysis based on the distance (1.6) and complete

linkage merging rule for a random sample of size 100 from the trivial Gumbel copula. The

central part of Figure 1.3 shows the dendrogram for the binary trivariate Gumbel copula. It

can be observed that the difference between merging distances ĥ12,3 − ĥ12 is much smaller

for the trivial copula. We simulated k = 1, . . . ,100 random samples from each of the above

mentioned copulae, and each time calculated Δĥ(k) according to (1.11). The kernel density

estimate of the Δĥ based on 100 random samples is presented in the right part of Figure 1.3.

For the given copulae, the density estimate of Δĥ for the trivial copula is more concentrated.

This example only illustrates the validity of the proposed test statistic. The distance between

these two distributions is influenced by the values of the parameters, and more research

should be done to find the asymptotic properties of the proposed test.
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Benchmark models Many recent studies have addressed the question of the structure’s

estimation of an HAC, for example, Okhrin et al. (2013), Górecki et al. (2014), Okhrin et al.

(2015), Uyttendaele et al. (2016) and Górecki et al. (2016b). Most of the studies illustrate

the performance of the proposed methods by means of simulations. The consistency of

the structure’s estimator still has to be addressed in the literature. Some of these studies

are much more general than Algorithm 2. However, they are not applicable in the current

framework, where the observations can not be directly used, as discussed in the previous

section. Moreover, in the overwhelming majority of cases, the methods perform in a similar

way for big samples. To illustrate the validity of Algorithm 2, it will be compared, by means

of simulations, to the recursive procedure proposed in Okhrin et al. (2013) and further

improved by Górecki et al. (2014). It has been implemented in the R package HAC by

Okhrin and Ristig (2014). The idea of the method is to construct a binary tree by recursively

merging the variables with the largest values of the estimated parameter. Subsequently, the

obtained tree is collapsed using a predefined merging parameter. As is the case with many

others, this method can not be applied to high-frequency data. However, it will provide an

opportunity to evaluate the loss of precision and gain in computational speed when the

general structure is estimated based solely on the realized correlation matrix.

1.3.2 Estimating the parameters

As was mentioned in Section 1.2, the parameters of the copula can be estimated by the

inversion of the realized correlation according to (1.4). However, this is usually done

only for the correlation between two variables. Some generalizations for Kendall’s τ have

already been addressed in the literature. Nelsen (1996) discusses how the parameter of

a three-dimensional binary copula can be found by inverting the average coefficient of

agreement. Genest, Nešlehova and Ghorbal (2011) have described the average Kendall’s

τ based approach to the trivial copulae with an odd number of parameters. Górecki et al.

(2016a) mention the estimation of the parameters of a binary HAC based on Kendall’s τ

correlation matrix and discuss a trivial extension to HAC with general structures in Górecki

et al. (2016b).

We suggest following the idea of averaging the correlation coefficient ρij , i, j = 1, . . . ,d

over some given set of variables to estimate the parameters of the rHAC. The question

whether the procedure based on the average realized correlation gives a valid estimate has

not been addressed in the literature.

Suppose that k parameters of the HAC θi, i = 1, . . . ,k corresponding to k merging

nodes need to be estimated. Let ρ� (Xi) be the average correlation of the pairs of variables
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with the lca at node DXi
, i = 1, . . . ,k, where Xi is the set of descendant leaves (variables)

of the node DXi
, i = 1, . . . ,k. Thus, the parameter θi of the HAC may be estimated by

inverting the average correlation measure ρ� (Xi), i = 1, . . . ,k. For the HAC with the

structure presented in Figure 1.1, the node associated with the parameter θ3 = 2 is the

node D1234. The children nodes of the node D1234 are the nodes D12 and D34. The node

D12 is associated with the parameter θ1 = 4 and the node D34 is associated with the

parameter θ2 = 2.5. Moreover, the node D1234 is the ancestor for the nodes associated

with the variables X1, X2, X3 and X4. The lca of the pair (X1,X2) is the node D12 and

the lca of the pair (X3,X4) is the node D34. Therefore, the pairs of variables with the

lca at node D1234 are (X1,X3), (X1,X4), (X2,X3) and (X2,X4). Therefore, the average
correlation corresponding to the parameter θ3 is given by ρ� (X1,X2,X3,X4) = 1

4{ρ13 +
ρ23 +ρ14 +ρ24}. The parameter θ3 is estimated by inverting the mentioned above average

correlation, i.e. θ̂3 = f−1{ρ� (X1,X2,X3,X4)}. Analogically, ρ� (X1,X2,X3,X4,X5) =
1
4{ρ15 +ρ25 +ρ35 +ρ45}, θ̂4 = f−1{ρ� (X1,X2,X3,X4,X5)}. A summary of the estimation

procedure is given in Algorithm 3.

Algorithm 3 Average correlation estimator.

Input : the realized correlation matrix P , the estimated structure ŝ from Algorithm 2,

parametric family of the HAC.

Let θi, i = 1, . . . ,k be the set of the HAC parameters to be estimated.

Let Xi, i = 1, . . . ,k be the set of the descendants of the node DXi
; X is the set of all

variables.

for i = 1, . . .k do

ρ� (Xi) = 1
|(Xj ,Xk) ∈ X : lca(Xj ,Xk) = DXi

|
∑

ρjk

(Xj ,Xk)∈X : lca(Xj ,Xk)=DXi

(1.12)

θ̂i (Xi) = f−1{ρ� (Xi)} (1.13)

end for

Truncate the parameters according to the nesting condition, i.e. θ̂i ≤ θ̂j , if Xj ⊂ Xi,

i, j = 1, . . . ,k.

Return : estimated parameter vector θ̂θθ =
(
θ̂1, . . . , θ̂k

)�
of the HAC.

Simulation studies show that the proposed estimator is asymptotically unbiased and

follows a Gaussian distribution. In the case when the realized correlation is replaced

by Kendall’s correlation and the parameter is estimated by applying (1.8) to the average
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Kendall’s τ . Let τ̂� (Ui) be the average empirical Kendall’s τ of the pairs of variables with

the lca at node DUi
and is defined analogically to (1.12). Let Li be a set of the pairs of

variables with the lca at node DUi
, i.e. Li = (Uj ,Ul) : lca(Uj ,Ul) = DUi

, j < l, i ∈ 1, . . . ,k,

then the asymptotic variance of the average Kendall’s τ associated with the node DUi
and

the parameter θi can be estimated as

Var{τ̂�(Ui)} = 1
|Li|2

∑∑
(Uj ,Ul)∈Li,(Up,Uq)∈Li

cov{τ̂il, τ̂pq}, (1.14)

ncov{τ̂jl, τ̂pq} →
n→∞ 16cov{C2(Uj ,Ul; θ̂i) + C̄2(Uj ,Ul; θ̂i),C2(Up,Uq; θ̂i) + C̄2(Up,Uq; θ̂i)},

where C̄2(Uj ,Ul; θ̂i) = Uj +Ul −1+C2(1−Uj ,1−Ul; θ̂i) is the survival copula and |L| is
the cardinality of the set L. Combined with the expression (1.8), this implies

Var
(
θ̂i

)
=
[
v−1{τ�(Ui)}′]2 Var{τ̂�(Ui)}.

The estimator of the variance is a straightforward application of the result developed in

Genest, Nešlehova and Ghorbal (2011).

1.4 Simulation results

In this section, we show the validity of the clustering estimator (CE) presented in Algorithm

2 and Algorithm 3 and compare it to the adaptation of the method of Segers and Uyttendaele

(2014) (SU) and the approach of Okhrin et al. (2013) (OOS) which was improved by Górecki

et al. (2014) and was implemented in the R package HAC by Okhrin and Ristig (2014).

We compare the introduced estimator only to a couple of currently available studies and

leave the recent advances discussed in, for example, Górecki et al. (2014), Uyttendaele

et al. (2016), Okhrin et al. (2015) and Górecki et al. (2016b) outside the scope of this study

since the objective of the simulation studies is rather to answer the question whether the

proposed algorithm is valid in the case of linear correlation, than to find the best possible

estimator of an HAC. We are aware of the fact that the linear correlation based estimator

might be not as efficient as an ML approach or a nonlinear correlation based estimator,

as it contains information only about linear dependencies among the variables. However,

in the framework of high-frequency data, this is so far the only possible way to proceed.

Moreover, we aim to define a minimal recommended sample size.

In the current simulation study no high-frequency observations are presented. In order

to compare different methods, the clustering estimator (CE) is applied to the Kendall’s
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n 200/m E Var(E) q0.25(E) q0.5(E) q0.75(E)

CE τ

30 0.262 0.738 0.175 0.465 0.686 0.930
50 0.370 0.518 0.078 0.312 0.449 0.650
70 0.449 0.435 0.040 0.290 0.401 0.543
100 0.570 0.356 0.023 0.249 0.338 0.460
200 0.797 0.236 0.013 0.158 0.221 0.279
300 0.847 0.190 0.007 0.126 0.180 0.241
500 0.873 0.137 0.004 0.091 0.124 0.177
800 0.905 0.113 0.003 0.070 0.107 0.144
1000 0.840 0.110 0.003 0.070 0.097 0.142

CE ρ

30 0.268 1.716 3.813 0.525 0.816 1.519
50 0.439 1.104 2.468 0.355 0.556 0.725
70 0.472 0.853 1.828 0.309 0.466 0.650
100 0.592 0.483 0.645 0.242 0.342 0.461
200 0.797 0.247 0.014 0.166 0.228 0.314
300 0.866 0.198 0.008 0.128 0.181 0.255
500 0.870 0.146 0.005 0.093 0.135 0.192
800 0.917 0.115 0.004 0.067 0.110 0.155
1000 0.873 0.115 0.003 0.070 0.106 0.153

SU

30 0.203 0.727 0.136 0.469 0.679 0.934
50 0.276 0.532 0.069 0.336 0.513 0.663
70 0.349 0.449 0.051 0.292 0.401 0.562
100 0.441 0.360 0.024 0.259 0.336 0.464
200 0.645 0.250 0.015 0.164 0.231 0.301
300 0.722 0.188 0.008 0.123 0.171 0.239
500 0.847 0.138 0.005 0.093 0.124 0.178
800 0.905 0.113 0.003 0.070 0.107 0.144
1000 0.840 0.110 0.003 0.070 0.097 0.142

OOS

30 0.141 0.323 0.027 0.224 0.297 0.422
50 0.216 0.298 0.021 0.188 0.267 0.376
70 0.300 0.257 0.014 0.178 0.240 0.321
100 0.402 0.225 0.011 0.154 0.212 0.270
200 0.647 0.154 0.006 0.093 0.151 0.194
300 0.740 0.129 0.003 0.089 0.119 0.162
500 0.915 0.103 0.002 0.069 0.099 0.134
800 0.980 0.075 0.001 0.052 0.073 0.094
1000 0.983 0.071 0.001 0.049 0.065 0.092

Table 1.1 Simulation results for the Clayton copula with the structure ((123)(45)) and
θθθ = (1.33,0.67,0.22)�.
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n 200/m E Var(E) q0.25(E) q0.5(E) q0.75(E)

CE τ

30 0.288 1.095 0.551 0.664 0.954 1.268
50 0.374 0.766 0.145 0.480 0.727 0.966
70 0.407 0.659 0.188 0.443 0.566 0.772
100 0.601 0.506 0.050 0.357 0.485 0.638
200 0.858 0.336 0.026 0.223 0.315 0.431
300 0.939 0.288 0.017 0.192 0.271 0.361
500 0.995 0.213 0.007 0.151 0.206 0.262
800 1.000 0.167 0.005 0.113 0.153 0.209
1000 1.000 0.158 0.004 0.114 0.148 0.202

CE ρ

30 0.262 2.352 3.969 0.830 1.413 5.358
50 0.421 1.420 2.553 0.543 0.838 1.260
70 0.475 0.978 1.593 0.412 0.612 0.873
100 0.621 0.687 0.755 0.364 0.516 0.713
200 0.885 0.352 0.028 0.242 0.318 0.424
300 0.952 0.324 0.022 0.219 0.292 0.402
500 1.000 0.228 0.013 0.154 0.216 0.276
800 1.000 0.183 0.007 0.121 0.164 0.220
1000 1.000 0.169 0.006 0.110 0.161 0.210

SU

30 0.252 1.072 0.329 0.657 0.959 1.329
50 0.401 0.756 0.146 0.464 0.699 0.926
70 0.448 0.657 0.097 0.447 0.598 0.809
100 0.401 0.508 0.050 0.360 0.471 0.616
200 0.615 0.353 0.026 0.234 0.339 0.447
300 0.760 0.300 0.018 0.194 0.284 0.369
500 0.939 0.207 0.006 0.147 0.206 0.253
800 0.995 0.167 0.005 0.113 0.153 0.209
1000 1.000 0.158 0.004 0.114 0.148 0.202

OOS

30 0.388 0.539 0.096 0.333 0.447 0.657
50 0.536 0.420 0.046 0.278 0.376 0.508
70 0.666 0.359 0.024 0.244 0.328 0.451
100 0.774 0.305 0.017 0.212 0.291 0.364
200 0.953 0.226 0.008 0.165 0.217 0.271
300 0.985 0.198 0.007 0.135 0.183 0.246
500 0.998 0.146 0.004 0.099 0.137 0.179
800 1.000 0.112 0.002 0.081 0.108 0.141
1000 1.000 0.106 0.002 0.070 0.101 0.133

Table 1.2 Simulation results for the Clayton copula with the structure (((12)3)(45)) and
θθθ = (1.67,1.07,0.67,0.22)�.
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can be seen from the sample variance of E. This means that the full ML estimate had a

large deviation from the true value of the parameter for a few samples. The interquartile

range q0.75(E)− q0.25(E) is still smaller for the ML in small samples. The same results for

the variance are observed for the CE ρ, therefore, this estimator is not recommended for

small samples. In contrast, Table 1.2 shows that for the structure s = (((12)3)(45)), OOS is
not the best method for estimating the structure in small samples. This is due to the fact

that the performance of this estimator depends on the choice of the merging parameter.

The results for the other copulae are presented in Appendix 1.C and show that there is no

leading method in terms of estimating the structure. The method to choose depends on

the type of the copula and the values of the parameters. For a large enough sample, all

the methods perform similarly. The general conclusion to be drawn for the estimation of

the parameters is that the variance of the CE r estimator is the highest for small samples

and that the full ML has the smallest variance, however, some exceptions are observed. It

is worth noting that the simulation results are used just for comparison purposes, as the

difference in the parameters influences the proportion of the correctly estimated structures

more severely than does the type of the copula. Additionally, the dimension of the copula

should always be taken into consideration in order to select the minimal sufficient sample

size. The question of convergence of the estimator to the true structure still needs to be

addressed in the literature.

In Figure 1.5, we take a closer look at the individual components of θθθ. We compare

only CE based on Kendall’s correlation and the full ML, as the CE ρ and SU behave very

similarly in terms of the properties of θ̂θθ. It is evident that both estimators are asymptotically

unbiased, however, CE has a higher variance. In addition to the kernel density estimates of

CE and ML, we add a kernel density estimate of the Gaussian sample (blue line) with the

mean θθθ and the variance estimated from (1.14) and observe that it coincides with the kernel

density estimate of CE.

It is worth noting that the computational advantage is on the side of CE. Figure 1.6 shows

the average computational time in seconds for all the above mentioned estimators over 100
trials. The difference in the computational time becomes crucial with growing dimensions,

for example, in Segers and Uyttendaele (2014), the SU estimation of a 7-dimensional copula

needs roughly 20 minutes versus 15 seconds for the proposed clustering estimator (CE).

The main conclusion of this section is that the linear correlation based clustering esti-

mator is applicable in practice and can be applied to high-frequency data, where moderate

samples are atypical.
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to a set of simple tasks of the form (1.13). Moreover, this procedure allows avoiding the

question of the optimal choice of the weighting matrix W in (1.5).

As mentioned in Section 1.2, the combination of a lemma of Hoeffding (1940) and Sklar’s

theorem (1.1) allows to express the pairwise covariances in terms of the copula and the

corresponding marginal distributions. Under the assumption that the marginal distributions

Fi(xi, ri,t+1), i = 1, . . . ,d, are Gaussian N(0, ri,t+1), the multivariate distribution of daily

log-returns Xt+1|Ft ∼ F (·;Rt+1) is parametrized solely by a Ft-measurable covariance

matrix Rt+1. This is due to the fact that the structure st+1 and the parameters θθθt+1 of the

HAC are estimated from realized correlation matrix Pt+1 using Algorithm 2 and Algorithm

3 and the margins are fully specified by the realized volatilities ri,t+1, i = 1, . . . ,d, i.e.

FXt+1 (x,Rt+1) = Cd

{
F1(x1, r1,t+1), . . . ,Fd(xd, rd,t+1);st+1;θθθt+1

}
, (1.15)

where x = (x1,x2, . . . ,xd)�. The prediction of the multivariate distribution of daily log-

returns is based on the predicted realized covariance matrix R̂t+1|t obtained by the Hetero-

geneous Autoregressive (HAR) model introduced by Corsi (2009) and applied in the spirit

of Bauer and Vorkink (2011). First, the individual elements of the realized covariance matrix

are stacked together into a joint matrix. Then, the matrix logarithm At = logm(Rt) is
calculated to guarantee that the matrix is positive definite. In the next step, the covariances

are stacked into one vector at = vech(At) and modelled using the logarithmic version of

the HAR model:

log at+1 = β0 +βDlog aD
t +βW log aW

t +βM log aM
t + εt+1, (1.16)

where aD
t = at, aW

t = 1
5
∑4

i=0 at−i, aM
t = 1

22
∑21

i=0 at−i, and εt+1 is an error term. When

the coefficients in (1.16) are estimated using ordinary least squares, the prediction ât+1

is obtained. The prediction R̂t+1|t is obtained by applying the reverse vech-operator

to ât+1 and taking the matrix exponential R̂t+1|t = expm
(
Ât+1|t

)
. The prediction of

the realized correlation matrix P̂t+1|t is obtained by dividing the elements of R̂t+1|t by
the product of the square roots of the corresponding predicted realized volatilities, i.e.

ρ̂ij,t+1|t = r̂ij,t+1|t√
r̂i,t+1|t·r̂j,t+1|t

. Since we consider only one-day-ahead prediction, we assume

that the prediction bias caused by the nonlinear transformation is small and omit the bias

adjustment, analogously to Chiriac and Voev (2011).
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We stress once again that only the realized correlation matrix is used for the estimation

procedure. The computational costs of such an estimator are low, and the rHAC model still

shows excellent forecasting properties.

1.5.2 Competitor models

In order to show a competitive advantage of the rHAC, we apply it to one-day-ahead VaR

prediction for a multidimensional portfolio and compare the performance of the rHAC to

three classes of benchmark models:

• Rolling window copula models

• Dynamic copula models

– Copula DCC model Engle (2002)

– Dynamic copula model by Patton (2004)

– GAS, GRAS by Creal et al. (2013) and Salvatierra and Patton (2015)

• Realized covariance model by Bauer and Vorkink (2011)

The first class employs copula models with parameters fixed over the given time interval.

The second includes dynamic copula models which assume that the parameter of the copula

follows some autoregressive process. The third class, which is both popular and successful,

comprises the realized volatility models. A more detailed description of the benchmark

models is given in Appendix 1.E.

1.6 Application

This section illustrates the rHAC model using high-frequency log-returns of stocks traded

on the New York Stock Exchange. First, we give a description of the data used in the

empirical part of this section. Thereafter, we apply the rHAC and the above mentioned

competing models to one-day-ahead VaR prediction. The interpretation of the results is

provided at the end of this section.

Value at Risk prediction The selected data set consists of the tick-by-tick prices of 6

assets obtained from TickData: AA (Alcoa Inc), AXP (American Express), BAX (Baxter

International Inc.), C (Citigroup Inc.), INTC (Intel Corporation) and KO (Coca-Cola Co.).
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The selection of the number of assets was motivated by the computational intensity of

some of the competing models. A well-diversified portfolio was chosen. The selected

companies represent the following industrial sectors: consumer products, technology,

financial services, chemicals, health care, communications, and energy. The considered

time period is from January 2005 to March 2010 which corresponds to T = 1346 trading

days. This choice stems from the fact that the correlations among the log-returns increased

during the financial crisis. We are interested in testing whether the rHAC model is able

to capture the crashes appearing in 2008 and 2009. To answer this question, we compare

the VaR level α to the exceedance ratio α̂ = N
T , where the VaR is defined as the quantile

of the profit and loss (P& L) distribution lt = (Vt+1 −Vt) =∑d
j=1 aj,tSj,t{exp(xj,t+1)−1},

j = 1, . . . ,d. Vt =
d∑

j=1
aj,tSj,t is the value of the portfolio at time t, aj,t are some weights,

Sj,t is the jth asset’s closing price at day t, xj,t+1 is the jth asset’s log-return at day t+1, d
is the number of assets in the portfolio, T is the sample size, and N =∑T

t=1 I{lt < V̂aRt(α)}
is the number of exceedances of the realization of distribution lt. From now on, portfolios

with equal wealth allocation are considered, i.e. aj,t = Vt/(d×Sj,t), j = 1, . . . ,d.

Before applying the models, the dataset was cleaned according to Brownless and Gallo

(2006), namely the quotes with normal trading conditions, positive price and volume with

the timestamp within office trading hours of NYSE are used. Then, outliers have been

removed according to a specific bid–ask spread rule.

After the dataset was cleaned, the log-returns were aggregated to the 1-minute fre-

quency and the realized volatilities and correlations were obtained using the realized kernel

estimator, which allows reducing the microstructure noise. More details on this estimator

are given in Appendix 1.B.

The prediction of the realized volatilities and the realized correlations is made using the

HAR model (1.16). The realized volatilities of the selected assets and their out-of-sample

predictions are given in Appendix 1.D, Figure 1.A.1. The time series of the selected realized

correlations together with the predicted values are given in Appendix 1.D, Figure 1.A.2.

The results coincide with the conclusions of Audrino and Corsi (2010), who state that the

prediction of the realized correlations is more difficult than the prediction of the realized

volatility due to their large variance. When the realized correlations and the realized

volatilities are estimated and the forecast is made, the out-of-sample prediction of the

one-day-ahead VaR at the 0.5%, 1%, 5% and 10% levels can be made using the clustering

estimator according to Algorithm 4.
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Algorithm 4 Applying rHAC to the VaR.

Input: predicted realized covariance matrix R̂t+1|t, predicted realized correlation matrix

P̂t+1|t, log-returns xj,t, j = 1, . . . ,d.

Predict the R̂t+1|t using HAR, compute P̂t+1|t.
Estimate the structure ŝt+1|t and the parameter vector θ̂θθt+1|t of the rHAC from P̂t+1|t

using Algorithm 2 and Algorithm 3 with α� = 0.01.
for i = k, . . . ,1000 do

Simulate a sample uj,t+1|t from Cd

(
·; ŝt+1|t,θ̂θθt+1|t

)
, j = 1, . . . ,d.

Compute xj,t+1|t =
√

r̂j,t+1|t ·Φ−1
(
uj,t+1|t

)
.

Calculate P&L l
(k)
t+1

end for

Calculate the V̂aRt+1|Ft
(α) as

V̂aRt+1|Ft
(α) = F̂ −1

lt+1|Ft
(α)

Return: V̂aRt+1|Ft
(α).

In the VaR modelling, it is required that the exceedances are independent and the

percentage of the exceedances corresponds to the predefined VaR level. Three backtesting

procedures have been used to test these properties. The first testing procedure is the

unconditional coverage testing due to Kupiec (1995), which compares the exceedance ratio

to the VaR level. The second procedure is the VaR duration test of Christoffersen and

Pelletier (2004), which checks the independence of the exceedances. This backtesting tool

is based on the number of days between the violations of the risk metric.

The dynamic quantile (DQ) test of Engle and Manganelli (2004) enables testing the

two required properties simultaneously. In the most widespread version of the test, the

demeaned exceedances are regressed on their first lag and the lagged values of the VaR:

I{lt < V̂aRt(α)}−α = γ0 +γ1I{lt−1 < V̂aRt−1(α)}−α +γ2V̂aRt−1(α)+ εt. (1.17)

The null hypothesis for independence and conditional coverage is given by H0 : γ0 = 0, γ1 =
0 and γ2 = 0.

To verify this method, the results are compared to the benchmark models described in

Section 1.5.2. The backtesting results of the unconditional coverage and independence tests

are presented in Table 1.3. The p-values indicate that the copula models give more accurate



1.6 Application 32

prediction for the AA-AXP-BAX-C-INTC-KO portfolio, at the 0.5%, 1% and 5% levels, and

do not match the 10% level quantile well. The unconditional coverage test supports both

the rolling window and rHAC models. However, the independence test of Christoffersen

and Pelletier (2004) speaks in favor of the rHAC model.

The time series of the P&L for the given portfolio and the corresponding VaR bounds

are illustrated in Figure 1.7. The rHAC method has been found to be effective in handling

the 1% and 0.5% quantiles, which is especially important in risk management. No models

with a similar predictive power have been found. The hitting ratios of the dynamic copula

and the realized covariance approaches are disappointing.

As was mentioned above, VaR prediction using the competing models gets computa-

tionally difficult in higher dimensions, which is not the case for the rHAC approach. The

VaR regions of the rHAC model and the model of Bauer and Vorkink (2011) for a portfolio

consisting of 17 assets (AA (Alcoa Inc.), AXP (American Express), BAX (Baxter Interna-

tional Inc.), BLK (BlackRock Inc.), C (Citigroup Inc.), DOW (Dow Chemical Company),

GS(Goldman Sachs Group), HAS (Hasbro Inc.), HOG (Harley-Davidson Inc.), INTC (Intel

Corporation), KO (Coca-Cola Co.), MET (Metlife Inc.), MSFT (Microsoft Corporation), NKE

(Nike Inc.), PFE (Pfizer), VZ (Verizon Communications), XOM (Exxon Mobil Corporation))

are given in Figure 1.8. The p-values for three considered backtesting procedures can be

found in Table 1.4. It is evident that the multidimensional realized copula model does

not suffer from the curse of dimensionality, and performs satisfactorily in the sense of

unconditional coverage for moderate α levels in higher dimensions. The null hypothesis

of the unconditional coverage test for the Gaussian model of Bauer and Vorkink (2011) is

rejected at all VaR levels.
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Model Level α̂ K C DQ

Rolling window, Clayton, GED

α = 0.005 0.0030 0.2712 0.0317 0.6756
α = 0.01 0.0076 0.3510 0.0000 0.6619
α = 0.05 0.0514 0.8163 1.0000 0.1290
α = 0.10 0.1043 0.0000 0.0000 0.0070

Rolling window, rGumbel, GED

α = 0.005 0.0045 0.8076 0.0018 0.4378
α = 0.01 0.0083 0.5257 0.0000 0.0053
α = 0.05 0.0506 0.9148 0.0000 0.0186
α = 0.10 0.0990 0.0000 0.0000 0.0016

DCC, t-copula

α = 0.005 0.0232 0.0001 0.0000 0.0139
α = 0.01 0.0304 0.0000 0.0000 0.0041
α = 0.05 0.0728 0.0000 0.0000 0.0001
α = 0.10 0.1112 0.0000 0.0000 0.0000

DCC, t-copula, GED

α = 0.005 0.0054 0.0671 0.0000 0.9796
α = 0.01 0.0162 0.0403 0.0000 0.0000
α = 0.05 0.0470 0.0000 0.0000 0.3045
α = 0.10 0.0924 0.0000 0.0000 0.2985

Patton, Clayton

α = 0.005 0.0509 0.0000 0.0377 0.6360
α = 0.01 0.0616 0.0000 0.0601 0.7315
α = 0.05 0.1036 0.0000 0.2041 0.7414
α = 0.10 0.1366 0.0001 0.3031 0.4549

Patton, rGumbel

α = 0.005 0.0332 0.0000 0.0786 0.8460
α = 0.01 0.0370 0.0000 0.0425 0.6558
α = 0.05 0.0612 0.0709 0.0653 0.5654
α = 0.10 0.0937 0.4372 0.1178 0.3615

GAS, Clayton, GED

α = 0.005 0.0303 0.0000 0.0549 0.0726
α = 0.01 0.0427 0.0000 0.0079 0.1935
α = 0.05 0.0822 0.0000 0.0493 0.0078
α = 0.10 0.1404 0.0000 0.4827 0.0046

GRAS, Clayton, GED

α = 0.005 0.0303 0.0000 0.0002 0.0001
α = 0.01 0.0388 0.0000 0.0000 0.0001
α = 0.05 0.0869 0.0000 0.0234 0.0014
α = 0.10 0.1381 0.0000 0.5202 0.0164

GAS, rGumbel, GED

α = 0.005 0.0217 0.0000 0.0208 0.0838
α = 0.01 0.0295 0.0000 0.0052 0.0150
α = 0.05 0.0760 0.0001 0.0035 0.0007
α = 0.10 0.1296 0.0007 1.0000 0.0027

GRAS, rGumbel, GED

α = 0.005 0.0202 0.0000 0.0052 0.0884
α = 0.01 0.0326 0.0000 0.0001 0.0639
α = 0.05 0.0706 0.0014 0.0242 0.0228
α = 0.10 0.1327 0.0002 1.0000 0.0345

RCov, Bauer and Vorkink

α = 0.005 0.0350 0.0000 0.2920 0.0009
α = 0.01 0.0474 0.0000 0.1937 0.0008
α = 0.05 0.1213 0.0000 0.8088 0.0038
α = 0.10 0.1773 0.0000 0.0017 0.0017

rHAC, Clayton

α = 0.005 0.0047 0.8589 0.5042 0.0000
α = 0.01 0.0085 0.5873 0.5064 0.0028
α = 0.05 0.0551 0.4098 0.1521 0.0000
α = 0.10 0.1140 0.0995 0.1482 0.0000

Table 1.3 VaR performance for the AA-AXP-BAX-C-INTC-KO. The hitting ratio α̂ and the
p-values of the Kupiec test (K), Christoffersen (C), and the DQ test.
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risk management, as the structure and the parameters of the copula are estimated daily

based solely on the realized correlation matrix.

Based on the simulation results, it has been concluded that the linear correlation matrix

based estimator performs well for large enough samples; it is unbiased but less efficient

that the full maximum likelihood estimator. However, it is less computationally intensive

than benchmark models and does not suffer from the curse of dimensionality.

In the empirical part of the study, the proposed estimator has been applied to predict

the VaR based on high-frequency data for two portfolios, one of 6 and the other of 17 assets.

The results have been compared to the benchmark approaches including dynamic copulas

and realized covariance models. Based on three tests (Kupiec, Christoffersen, DQ), it has

been concluded that the VaR regions obtained by the high-dimensional realized copula

models outperform the benchmark models in higher dimensions, especially for lower VaR

levels.



Appendices

Appendix 1.A The generators and the densities of some

ACs

Copula Generator Distribution Parameter

Gumbel (− log t)θ exp
[
−
{∑d

i=1 (− logui)θ
} 1

θ
]

θ ∈ [1,∞)

Clayton 1
θ

(
t−θ −1

)
max

[{(∑d
i=1 u−θ

i

)
−d+1

}− 1
θ ,0
]

θ ∈ (0,∞)

Frank − log
(exp(−θt)−1

exp(−θ)−1
)

1
θ log

{
1+

∏d
i=1(exp(−θui)−1)
(exp(−θ)−1)d−1

}
θ ∈ (0,∞)

Table 1.A.1 Archimedean copulae: Gumbel, Clayton and Frank.

Appendix 1.B Realized covariance and realized kernel

estimator

Assume that the d-dimensional log-price process follows a Brownian semimartingale

Xt = Xt−1 +
∫ t

t−1
σu dWu

where [t−1; t] is a period corresponding to one trading day, σt is a càdlàg volatility matrix

process and Wt is a d-dimensional vector of independent Brownian motions. It is important

to note that the price process is superimposed by the market microstructure noise Uτi , i.e.

one observes

Pτi = Xτi +Uτi ,

where t−1 = τ0 < τ1 < .. . < τN = t, E(Uτi) = 0,∑h |hΩh| < ∞ and Ωh = cov(Uτi ,Uτi−h
)

for h > 0. The realized covariance over the time interval [t−1; t] is defined as the sample
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analog of the quadratic variation of X given by

[X]t,t−1 =
∫ t

t−1
Σudu

with Σ = σσ� and is denoted by Rt in Section 1.2.

One of the estimators which reduces the effect of microstructure noise is the realized

kernel estimator proposed by Barndorff-Nielsen et al. (2008). As the realized covariances

are obtained by summing all the cross products of log-returns that have a non zero over-

lapping of their respective time span, the data should be synchronized first. The proce-

dure which is called refresh time sampling and described in Hautsch (2011) is applied

to synchronize the data. The first refresh time is defined as τ∗
1 = max{τ1,1, . . . , τd,1} and

τ∗
i+1 = min{τj,kj

|τj,kj
> τ∗

i , ∀kj = 1, . . . ,Nj ; j ∈ 1 . . .d}, where Nj is the number of price

observations for asset j. As a result, a new high-frequency vector of returns pi = Pτ∗
i

−Pτ∗
i−1

is produced, where i = 1, . . . ,n, and n is the number of the synchronized observations.

The multivariate realized kernel estimator is given by

K(P ) =
H∑

h=−H

k

( |h|
H +1

)
Γh,

where Γh is the autocovariance matrix defined as

Γh =
{ ∑n

j=|h|+1 pjp
�
j−h, h ≥ 0∑n

j=|h|+1 pj−hp�
j , h < 0 ,

and k(y) is the Parzen kernel

k(y) =
⎧⎨⎩ 1−6y2 +6y3 0 ≤ y ≤ 1/2

2(1−y)3 1/2 ≤ y ≤ 1
0 y > 1

.

The multivariate bandwidth parameter H is selected according to Barndorff-Nielsen et al.

(2008).
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Appendix 1.C Simulation results

n 200/m E Var(E) q0.25(E) q0.5(E) q0.75(E)

CE τ

30 0.290 0.391 0.037 0.254 0.358 0.492
50 0.377 0.247 0.014 0.169 0.222 0.313
70 0.493 0.215 0.013 0.131 0.203 0.268
100 0.552 0.183 0.008 0.116 0.159 0.235
200 0.707 0.117 0.003 0.073 0.110 0.153
300 0.784 0.099 0.002 0.069 0.088 0.124
500 0.844 0.072 0.001 0.047 0.064 0.095
800 0.897 0.063 0.001 0.042 0.059 0.081
1000 0.881 0.053 0.001 0.031 0.046 0.068

CE ρ

30 0.251 0.372 0.041 0.245 0.319 0.475
50 0.401 0.234 0.013 0.152 0.219 0.297
70 0.404 0.219 0.010 0.139 0.210 0.272
100 0.463 0.178 0.007 0.111 0.169 0.240
200 0.571 0.123 0.004 0.082 0.110 0.161
300 0.633 0.101 0.002 0.070 0.096 0.124
500 0.651 0.071 0.001 0.047 0.067 0.090
800 0.714 0.062 0.001 0.043 0.061 0.077
1000 0.707 0.054 0.001 0.033 0.048 0.069

SU

30 0.247 0.368 0.034 0.233 0.348 0.467
50 0.292 0.259 0.018 0.172 0.241 0.316
70 0.412 0.221 0.014 0.138 0.206 0.275
100 0.410 0.175 0.007 0.117 0.158 0.219
200 0.604 0.127 0.003 0.088 0.118 0.159
300 0.680 0.098 0.002 0.068 0.087 0.122
500 0.820 0.074 0.001 0.047 0.068 0.096
800 0.877 0.061 0.001 0.041 0.057 0.078

OOS

30 0.160 0.218 0.015 0.142 0.192 0.256
50 0.284 0.179 0.006 0.129 0.175 0.216
70 0.428 0.143 0.005 0.093 0.135 0.175
100 0.526 0.125 0.004 0.077 0.116 0.159
200 0.743 0.090 0.002 0.059 0.085 0.112
300 0.855 0.075 0.001 0.050 0.070 0.093
500 0.960 0.059 0.001 0.038 0.056 0.076
800 0.997 0.045 0.000 0.028 0.044 0.059
1000 1.000 0.042 0.000 0.027 0.039 0.054

Table 1.A.2 Simulation results for the Gumbel copula with the structure ((123)(45)) and
θθθ = (1.67,1.33,1.11)�.
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n 200/m E Var(E) q0.25(E) q0.5(E) q0.75(E)

CE τ

30 0.325 1.843 0.681 1.211 1.799 2.260
50 0.394 1.343 0.431 0.879 1.260 1.722
70 0.503 1.176 0.231 0.852 1.077 1.440
100 0.513 0.893 0.127 0.641 0.840 1.107
200 0.714 0.636 0.080 0.453 0.597 0.749
300 0.772 0.500 0.052 0.327 0.458 0.664
500 0.866 0.405 0.031 0.264 0.388 0.524
800 0.893 0.305 0.019 0.217 0.289 0.393
1000 0.909 0.267 0.013 0.187 0.254 0.331

CE ρ

30 0.264 2.564 2.372 1.420 2.081 3.888
50 0.403 1.800 1.661 0.943 1.384 2.176
70 0.430 1.306 0.824 0.777 1.104 1.473
100 0.423 0.996 0.437 0.652 0.913 1.177
200 0.557 0.628 0.082 0.414 0.579 0.813
300 0.637 0.532 0.049 0.361 0.524 0.663
500 0.685 0.415 0.034 0.284 0.392 0.513
800 0.667 0.324 0.021 0.220 0.310 0.416
1000 0.709 0.295 0.016 0.207 0.286 0.379

SU

30 0.222 1.812 0.737 1.150 1.678 2.279
50 0.272 1.399 0.422 0.934 1.355 1.758
70 0.401 1.140 0.256 0.787 1.062 1.433
100 0.425 0.886 0.147 0.593 0.830 1.111
200 0.601 0.661 0.079 0.479 0.633 0.790
300 0.662 0.502 0.050 0.336 0.474 0.653
500 0.813 0.399 0.033 0.256 0.375 0.522
800 0.905 0.304 0.019 0.214 0.294 0.385
1000 0.917 0.268 0.013 0.185 0.255 0.331

OOS

30 0.186 1.249 0.343 0.853 1.152 1.472
50 0.296 1.028 0.234 0.752 0.942 1.273
70 0.442 0.891 0.149 0.595 0.846 1.135
100 0.524 0.707 0.096 0.486 0.651 0.885
200 0.828 0.548 0.054 0.363 0.529 0.699
300 0.905 0.453 0.042 0.303 0.448 0.574
500 0.985 0.362 0.025 0.259 0.353 0.473
800 1.000 0.289 0.017 0.198 0.266 0.371
1000 1.000 0.255 0.013 0.168 0.249 0.328

Table 1.A.3 Simulation results for the Frank copula with the structure ((123)(45)) and
θθθ = (4.16,2.37,0.91)�.
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n 200/m E Var(E) q0.25(E) q0.5(E) q0.75(E)

CE τ

30 0.335 0.521 0.087 0.320 0.466 0.614
50 0.398 0.363 0.023 0.264 0.336 0.445
70 0.493 0.313 0.026 0.192 0.287 0.392
100 0.557 0.270 0.015 0.188 0.256 0.325
200 0.772 0.172 0.005 0.117 0.160 0.217
300 0.885 0.144 0.004 0.095 0.133 0.182
500 0.990 0.105 0.003 0.070 0.097 0.130
800 1.000 0.086 0.001 0.062 0.078 0.105
1000 1.000 0.079 0.001 0.052 0.074 0.099

CE ρ

30 0.345 0.481 0.091 0.300 0.408 0.587
50 0.427 0.358 0.030 0.238 0.321 0.441
70 0.475 0.315 0.029 0.189 0.277 0.403
100 0.581 0.276 0.016 0.187 0.259 0.324
200 0.781 0.168 0.005 0.117 0.152 0.218
300 0.881 0.143 0.005 0.097 0.127 0.173
500 0.990 0.106 0.002 0.069 0.100 0.128
800 1.000 0.087 0.002 0.060 0.077 0.103
1000 1.000 0.080 0.001 0.052 0.077 0.103

SU

30 0.255 0.536 0.086 0.322 0.458 0.622
50 0.290 0.367 0.029 0.258 0.341 0.452
70 0.402 0.326 0.027 0.220 0.306 0.377
100 0.418 0.274 0.016 0.185 0.251 0.329
200 0.631 0.173 0.005 0.123 0.162 0.218
300 0.697 0.140 0.004 0.094 0.128 0.173
500 0.885 0.105 0.003 0.068 0.096 0.131
800 0.990 0.086 0.001 0.062 0.078 0.105
1000 0.990 0.078 0.001 0.051 0.074 0.098

OOS

30 0.291 0.333 0.038 0.188 0.280 0.427
50 0.356 0.235 0.017 0.146 0.202 0.304
70 0.512 0.219 0.014 0.138 0.189 0.264
100 0.552 0.170 0.007 0.108 0.153 0.210
200 0.772 0.128 0.003 0.087 0.122 0.156
300 0.863 0.106 0.002 0.072 0.101 0.134
500 0.953 0.086 0.001 0.059 0.080 0.106
800 0.983 0.068 0.001 0.048 0.067 0.084
1000 0.993 0.062 0.001 0.042 0.061 0.079

Table 1.A.4 Simulation results for the Gumbel copula with the structure (((12)3)(45)) and
θθθ = (1.82,1.54,1.33,1.11)�.
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n 200/m E Var(E) q0.25(E) q0.5(E) q0.75(E)

CE τ

30 0.324 2.466 1.389 1.648 2.253 2.975
50 0.400 1.842 0.529 1.293 1.754 2.335
70 0.459 1.542 0.398 1.106 1.404 1.950
100 0.536 1.174 0.222 0.877 1.117 1.407
200 0.749 0.861 0.101 0.651 0.829 1.048
300 0.881 0.649 0.059 0.467 0.652 0.803
500 1.000 0.529 0.043 0.379 0.505 0.637
800 1.000 0.421 0.024 0.308 0.404 0.502
1000 1.000 0.354 0.023 0.244 0.335 0.442

CE ρ

30 0.344 3.009 2.284 1.870 2.690 3.931
50 0.403 2.214 1.594 1.424 1.867 2.523
70 0.451 1.723 0.872 1.086 1.528 2.116
100 0.625 1.321 0.457 0.944 1.240 1.561
200 0.800 0.944 0.122 0.697 0.887 1.169
300 0.909 0.694 0.076 0.499 0.673 0.837
500 1.000 0.559 0.053 0.405 0.537 0.675
800 1.000 0.434 0.028 0.319 0.416 0.522
1000 1.000 0.384 0.023 0.267 0.361 0.477

SU

30 0.226 2.539 1.191 1.792 2.368 2.896
50 0.273 1.863 0.617 1.292 1.767 2.330
70 0.400 1.635 0.489 1.153 1.494 2.031
100 0.401 1.253 0.215 0.946 1.214 1.499
200 0.606 0.877 0.107 0.648 0.846 1.055
300 0.719 0.665 0.065 0.466 0.668 0.814
500 0.909 0.514 0.042 0.362 0.497 0.619
800 0.995 0.420 0.024 0.308 0.404 0.502
1000 0.995 0.353 0.023 0.244 0.335 0.439

OOS

30 0.261 1.829 1.017 1.188 1.582 2.216
50 0.374 1.357 0.440 0.838 1.226 1.666
70 0.468 1.203 0.326 0.775 1.136 1.464
100 0.580 0.932 0.163 0.631 0.884 1.163
200 0.802 0.720 0.085 0.530 0.702 0.889
300 0.890 0.596 0.053 0.442 0.570 0.723
500 0.953 0.462 0.032 0.340 0.434 0.573
800 0.983 0.389 0.021 0.284 0.372 0.471
1000 0.990 0.337 0.020 0.226 0.324 0.431

Table 1.A.5 Simulation results for the Frank copula with the structure (((12)3)(45)) and
θθθ = (4.89,3.51,2.37,0.91)�.
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Appendix 1.D Realized volatilities and correlations

Figure 1.A.1 Time series of the selected daily realized volatilities (lines) and their one-day-
ahead out-of-sample predictions (bold black).
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Figure 1.A.2 Time series of the selected daily realized correlations (grey) and their one-day-
ahead out-of-sample predictions (bold black).

Appendix 1.E Benchmark models

Rolling window copula model The rolling window copula setting models the joint

distribution of the standardized innovations εt = xi,t√
ri,t

, i = 1, . . . ,d, t = 1, . . . ,T via a copula

with a parameter that is constant over some time period, where xi,t is the log-return and
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ri,t is the realized volatility of the ith asset at day t. In this study, the Clayton copula with

a rolling window of w = 200 days is applied. For the generalization of this approach, we

refer to the locally adaptive change point algorithm of Härdle et al. (2013). This model is

more flexible due to the time-varying rolling window. However, this model falls outside of

the scope of this paper, due to its computational complexity.

Dynamic copula models

Copula DCCmodel Another essential class of VaR models incorporates the DCCmodels

of Engle (2002). The mean process of the log-returns is assumed to be μt = 0 and the

correlation Rt of the standardized residuals εt = xi,t√
ri,t

, i = 1, . . . ,d, t = 1, . . . ,T is assumed

to follow a dynamic process. These correlations are used as the input for the Student’s t

copula, i.e. (
ε1,t, . . . , εd,t

)� ∼ Cd{F1,t (ε1,t) , . . . ,Fd,t

(
εd,t

)
;ν,Rt}.

The number of degrees of freedom ν is kept constant, while Rt is the conditional correlation

matrix of the DCC model. In this study, we use a GJR-GARCH(1,1) model for the univariate

time series and DCC (1,1) for the correlation of the log-returns. The normal and GED

distributions are used to capture the margins F1,t (ε1,t) , . . . ,Fd,t

(
εd,t

)
.

The Patton (2004) model While in the previous setting the mean process is assumed

to be μt = 0, Patton (2004) suggests that the parameter of the copula should depend on a

conditional mean process μt. This can be formalized as follows:

(
ε1,t, . . . , εd,t

)� ∼ Cd{F1,t (ε1,t) , . . . ,Fd,t

(
εd,t

)
;θt}, θt = Λ

⎛⎝ d∑
i=0

γiμi,t

⎞⎠ .

εt = xi,t√
ri,t

, i = 1, . . . ,d, t = 1, . . . ,T are the standardized residuals, γi, i = 1, . . . ,d are un-

known parameters, and the function Λ(·) ensures the validity of the copula parameter,

Λ(x) = exp(x) for the Clayton copula and Λ(x) = exp(x)+1 for the Gumbel copula. The

marginal time series are modelled as AR(1)-GARCH(1,1) processes with GED innovations.

GAS and GRAS models Even more complex models have been proposed by Creal et al.

(2013) and Salvatierra and Patton (2015). In the GAS model of Creal et al. (2013), the copula

parameter follows the autoregressive process

Λ(θt) = ω +βΛ(θt−1)+αst−1,
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where st−1 = St−1δt−1, δt−1 = ∂logc(ut−1,θt−1)
∂θt−1

is the score function of the copula of the

transformed standardized residuals ui,t = Fi,t (εi,t) and St−1 is a scaling matrix. The

univariate time series are assumed to be GARCH(1,1) with GED margins.

The updating equation of the GRAS model of Salvatierra and Patton (2015) additionally

includes the realized measure RMt = 2
d(d−1)

∑d
i>j rij,t

Λ(θt) = ω +βΛ(θt−1)+αst−1 +γRMt−1,

where rij,t is the realized correlation.

Realized covariance models The third popular class of the models are the realized

covariance models. According to the methodology proposed by Bauer and Vorkink (2011),

the time series of the realized covariance matrices Rt are transformed using the matrix

logarithm At = log(Rt). Thus, the positive-definiteness of the matrix At is guaranteed.

In the next step, the upper-triangular elements of the matrix At are stacked together in a

vector at = vech(At), which is modelled using the HAR model. Thereafter, the vector ât+1

is transformed back into the matrix Ât+1. The final prediction is obtained by taking the

matrix exponential, i.e. R̂t+1 = expm
(
Ât+1

)
. The predicted realized covariance matrix is

used as the input for a multivariate Gaussian distribution.

Another realized volatility model which uses the Cholesky decomposition instead of

the logarithmic transformation is addressed in Chiriac and Voev (2011). As it performs

similarly to that of Bauer and Vorkink (2011), we do not use it in the empirical part of the

study.
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Abstract

The fast-growing literature on the news and social media analysis provide empirical evidence

that the financial markets are often driven by sentiments rather than facts. However, the

direct effects of sentiments on the returns are of main interest. In this paper, we propose to

study the cross-industry influence of the news for a set of US and European stocks. The

graphical Granger causality of the news sentiments-excess return networks is estimated by

applying the adaptive lasso procedure. We introduce two characteristics to measure the

influence of the news coming from each sector and analyze their dynamics for a period

of 10 years ranging from 2005 to 2014. The results obtained provide insight into the news

spillover effects among the industries and the importance of sentiments related to certain

sectors during periods of financial instability.
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2.1 Introduction

The influence of the news and social media in politics and economics has grown consistently

over the last decades. The availability of real-time online sources and recent developments

in machine learning algorithms have made the news relevant for the area of quantitative

finance. The news influences the opinions and expectations of investors, which find

expression in sentiments. A growing number of agencies are developing news indices,

which can potentially help improve trading strategies, as recent research shows that the

behavior of market participants may be more highly influenced by the news than by reality.

Some authors have explored the sensitivity of stock returns to stock-related news; see,

for example, Fang and Peress (2009), Peress (2014), Akyildirim et al. (2015), Narayan and

Bannigidadmath (2015), Ding et al. (2015) and Luss and d’Aspremont (2015). Akyildirim

et al. (2015) describe the role of firm-specific public announcements on liquidity, price and

the volatility of individual stocks. Allen et al. (2015) have analyzed how the performance

of the GARCH, GJR and EGARCH can be improved by including sentiment data in the

model. Additional, general conclusions have been obtained by Cahan et al. (2009) who have

empirically shown that the information coming from the news can be seen as an additional

factor in the Fama French factor models. The most recent research by Borovkova et al.

(2016) makes an effort to construct a systematic risk indicator based on the news related to

the biggest financial companies. They show that the proposed risk measure outperforms

the conditional capital shortfall measure of systemic risk (SRISK) by Brownlees and Engle

(2015) and the CBOE volatility index (VIX) by Brenner and Galai (1989) in signalling the

periods of financial stress. Most of the above-mentioned studies concentrate, however, on

the direct effects of the asset-related news on the price and do not consider spillover effects.

In this paper, we study the news spillover effects based on the news data provided by

Thomson Reuters. The daily sentiment indices for 10 US sectors, 10 non-US sectors and 5

countries are considered together with the prices of more than 100 stocks. The analyzed

time interval ranges from the January 1, 2005 to December 31, 2014 and covers the global

financial crisis, the US debt-ceiling crisis, and the European sovereign debt crisis.

We conduct a rolling window analysis of the cross-industry influence of news sentiments.

The influence of news on the stock excess returns is defined by means of the graphical

Granger causality, which is estimated by constructing a sparse network. In order to reduce

the number of false positive edges of the network, the adaptive lasso methodology is applied

for the estimation of the networks with a related testing procedure introduced in Audrino

and Camponovo (2015). Two characteristics describing the relevance and the strength
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of the news coming from an individual sector or a specific country are suggested, and

their dynamic behavior is studied. The news sentiments coming from US and non-US

industrial sectors show similar behavior and are highly correlated; for this reason, the

spillover effects are analyzed separately for the US and the European companies, and the

results are compared.

In this study, we provide strong empirical evidence that the class of stock-relevant

sentiments is wider than just the stock-specific announcements and the news coming from

the related sector. We show that the returns of the whole industry are driven by the news

coming from several sectors. Moreover, we investigate how the importance of the news

changes over time, getting stronger just before periods of financial turbulence, which can

be seen as an early warning signal for investors.

The paper is organized as follows: The first section features an introduction to the

Thomson Reuters MarketPsych news data, and Section 2 discusses how the signal can be

extracted from the noisy news. The methodology related to the estimation of the graphical

Granger causality by means of sparse regression models is provided in Section 3. Full results

are presented in Section 4. Section 5 contains an empirical illustration of how the predictive

power of time series models can be improved by augmenting the conditional mean equation

by specific sentiment indices. Finally, we summarize the main contribution of the paper.

2.2 TRMI construction

The sentiment data used in the current paper are provided by Thomson ReutersMarketPsych

and include the MarketPsych indices (TRMI) ranging from 2005 to 2014. In this section, we

provide more details on the construction of the MarketPsych index and its characteristics.

In analogy to a variety of approaches in the sentiment literature, the TRMI is constructed

using the lexical analysis or the so-called "bag of words" technique: the frequency of a series

of predefined words in the text is counted and the quantitative index is extracted by means

of sentiment dictionaries such as code libraries by Tim Loughran and Bill McDonald and

Harvard General Inquirer. For more details on text analysis as applied to economic news

we refer to, for example, Loughran et al. (2009), Loughran and McDonald (2011), Loughran

and McDonald (2013) and Loughran and McDonald (2014). In contrast to the most popular

approaches, the TRMI is sensitive to grammatical structures and accounts for correlations

among the words.

TRMI is a multidimensional index which considers the sentiments beyond positive and

negative. Each TRMI index is constructed based on a set of over 4 000 variables (for example,
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Ambiguity, EarningsUpFuture, AccountingBad, AccountingGood) which are generated by the

linguistic machine learning algorithms. In the next step, a numerical value which considers

the tense, proximity and many other multipliers is assigned to each variable. Finally, the

variables are associated with the assets. To illustrate this procedure, consider the following

example from Peterson (2016):

Analysts expect Mattel to report much higher earnings next quarter.

The linguistic analysis of the sentence will be performed in the following steps:

1. The entity "Mattel" will be associated with the ticker MAT.

2. Word "earnings" is associated with the variable Earnings.

3. Word "expect" assigns future tense to the phrase.

4. Word "higher" is an Up-Word.

5. Word "higher" is multiplied by 2 due to the presence of the word "much."

6. Word "higher" is associated with the word "earnings" due to proximity.

The above-described procedure leads to the score of 2 for the variable EarningsUpFuture for

the ticker MAT.

In the next step, the variables (PsychVar) are combined into the TRMI sentiment indices

which are computed as a ratio of the sum of all relevant variables to the absolute values

of all TRMI-contributing variables called Buzz. In addition, each variable is classified as

additive or subtractive. Thus, the index is computed in the following way:

TRMI =
∑

c∈C(A), v∈V

[
I(v, t) ×PsychV arv(c)

]
Buzz (A) , (2.1)

where I(v, t) = 1, if the variable is additive and I(v, t) = −1, if the variable is subtractive,
Buzz(A) =∑c∈C(A),v∈V |PsychV arv(c)|, V is the set of all variables PsychVar, A denotes

a specific asset. C(A) is the set of all constituents of A, i.e. set of all entities which are

relevant for the specific asset; for example, Mattel is a constituent of the Nasdaq 100 index.

It is worth noting that a single variable can contribute to multiple TRMI; for example, the

above-mentioned variable earningsUpFuture is a constituent of such TRMI sentiment indices

as Optimism and fundamentalStrength, and Mattel is a constituent of the Consumer Goods

sector and the Nasdaq 100. Additionally, such characteristics as relevance and novelty are
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taken into account when the variables are summed up in the index. The weights of all

constituents are constantly recalculated, giving bigger coefficients to the more influential

companies.

In the current paper, we make use of the TRMI sentiment index for 10 industries and 5

countries which are listed in Appendix 2.A. This analysis considers a daily frequency, as

we are interested in the analysis of the global financial crisis which goes back to 2008 when

tick-by-tick data were not available for all the asset classes we are interested in.

2.3 Extracting signal from the news sentiment

Figure 2.1 News sentiment for the US Energy and Non-Cyclical Consumer Goods and
Services and the Kalman smoothed news sentiment.

As can be seen from Figure 2.1, the news data are very noisy and cannot be directly

used for modelling. Two main approaches for extracting the information from the noise

which appeared in the recent sentiment literature could be potentially used.

The first approach is the moving average convergence/divergence oscillator (MACD). It

was first developed by Appel (2003) and has been applied to sentiment data by, for example,

Peterson (2016), Kirange et al. (2016) and Lugmayr and Gossen (2013). Becker (2016b)

shows that 10-30 MACD of the TRMI sentiment about Starbucks has an influence on its

price. Becker (2016a) points out the connection between Volkswagen share prices and the

30-200 MACD of the TRMI Media sentiment. However, different studies consider different

time windows for the long and the short components of the MACD with a lack of a clear

statistical and economic reasoning for the (data-driven) choice of the time window.
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In the current study, we follow instead a more rigorous approach which employs the

Kalman filter first introduced by Kalman (1960) and discussed by Borovkova and Mahakena

(2015) and Borovkova et al. (2016) for applications to sentiment data. The real unobserved

sentiment μt is extracted from the noisy news yt by applying the Local Level model by

Durbin and Koopman (2001). The starting point of the model is the following system of

equations:

yt = μt + εt, εt ∼ N
(
0,σ2

ε

)
,

μt+1 = μt +ηt, ηt ∼ N
(
0,σ2

η

)
.

(2.2)

In the sentiment literature, it is assumed that economic agents are at least as intelligent

as animals and aggregate the news as a function of time decay. This fact is motivated by

the findings in the behavioral literature; see Nickerson (2011) and Reilly et al. (2012), for

example. The sentiment can be therefore considered to follow some autoregressive process.

In (2.2), the first equation corresponds to the noisy observed news yt, whereas the

second equation is the signal equation which corresponds to the unobserved sentiment μt+1,

t = 1, . . . ,T . The state moments μ̃t = E(μt|Ft−1) and Pt = Var(μt|Ft−1) are computed

recursively by solving the following equations:

εt =yt − μ̃t, Ft = Pt +σ2
ε ,

Kt =Pt

Ft
,

μ̃t+1 =μ̃t +Ktεt, Pt+1 = Pt (1−Kt)+σ2
η ,

μ̃1 =μ1, P1 = e7.

(2.3)

Thus, the unobserved state μt is updated each time a new noisy observation yt arrives. The

state at time t is calculated by exponentially weighting the previous states.

In the next step, the states are estimated by applying the Kalman smoother and solving

the following backward recursion equations:

μ̂t =μ̃t +Ptrt−1

rt−1 = εt

Ft
+Ltrt; Nt−1 = F −1

t +L2
t Nt,

Lt =1−Kt,

Vt =Pt −P 2
t Nt−1,

(2.4)
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where t = 1, . . . ,T , rT = 0 and N(μ̂t|D) is the conditional density of μt with μ̂t = E(μt|FT )
and Vt = Var(μt|FT ). For the technical details of the estimation procedure we refer to

Durbin and Koopman (2001). In the current study, the Kalman smoother is applied to the

daily averages of the news sentiment. The original data and the Kalman smoothed versions

for US and Energy and Non-Cyclical Consumer Goods and Services sectors are shown in

the Figure 2.1. It is worth noting, that for most sectors news sentiments of the US and

non-US sectors behave in a very similar way. The smoothed US and non-US financial news

sentiments are given in Figure 2.2. It is evident that the correlation between the two series

is very high and it would be difficult to disentangle the influence of the US and non-US

news on the different industries under investigation in a linear regression framework. We

decided, therefore, to analyze the US and the European markets separately.

Figure 2.2 Kalman smoothed news sentiment for US (red solid) and non-US (blue dotted)
financial sector.

2.4 Penalized estimation of the sentiment networks

In the current study, we are interested in analyzing if and in which cases the individual

time series of the companies’ prices can be potentially influenced by the news on sectors

and countries. Cross-industry news spillover effects have not been directly addressed

in the literature thus far. Most of the recent studies investigate the direct influence of

the sentiment about an asset on the asset itself and do not consider that, for example,

news coming from the energy sector can influence financial companies. Borovkova and

Mahakena (2015) and Borovkova (2015) have shown that extreme positive and extreme

negative sentiment days influence the future price momentum of natural gas and that there
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is a complex relationship between the arrival of the news and the price jumps. Similar

results have been developed for the energy markets in Borovkova and Lammiman (2010).

Erawan (2015) uses the sentiment data for different sectors as an input for classification

and regression trees and finds empirical evidence that the trading strategy can be improved

by including the sector-specific news data into the model. However, no spillover effects are

studied. Borovkova and Mahakena (2015) show that abnormal stock returns calculated from

Fama-French and Carhart factor models might be explained by the specific sentiment data.

The recent study by Borovkova et al. (2016) makes an effort to construct the risk measure

based on the financial news sentiment data only and tests for the ability of this indicator to

forecast the stress in the market.

As mentioned above, the aim of this work is to conduct a systematic empirical investiga-

tion of the spillover effect of the sentiment coming from different industries and countries

on individual stock prices. For this purpose, we employ sparse graphical models in order to

obtain insight into the joint causal relationship between the individual time series.

First, we introduce the notation specific to the network literature. In the first step,

a graph G = 〈V,E〉 is considered, where V is the set of p nodes corresponding to each

variableX1,X2, . . . ,Xp andE ⊂ V ×V is the set of the edges corresponding to the pairwise

association of all variables. Causal relations are usually represented by directed graphs: for

example, if the variable Xi is assumed to be influenced by a set of variables Xj , j = 1, . . . ,p,

j �= i, the associations j → i are studied. Thus, the dependence of Xi and a set of the nodes

is stated as:

Xi = fi

(
X1,X2, . . . ,Xp

)
+ εi, i = 1, . . . ,p, j �= i. (2.5)

In (2.5), εi is an error term. The function fi is usually assumed to be linear. In this way, the

estimation of the network can be reduced to the estimation of the individual regressions

Xi =
∑
j 	=i

βijXj + εi, (2.6)

where the associations j → i are expressed in terms of the coefficients βij .

The individual regressions can be estimated by OLS (ordinary least squares) or more

sophisticated methods. For example, Peng et al. (2009) suggest estimating nonzero partial

correlations by joint sparse regression models.

Where the causal relationship among the individual time series is important, it is useful

to consider the concept of Granger causality, first introduced by Granger (1980) and now

widely discussed in the literature. Per definition, the time series process {Xj
t }, t = 1, . . . ,T
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Granger causes the time series process {Xi
t}, t = 1, . . . ,T if the regression of Xi

t on the

past values of Xi
t and Xj

t gives a better fit than the regression of the past values of Xi
t .

One way to define Granger causality for a network where Xi
t is the response time series

which is caused by a high-dimensional time series X
[−i]
t = X1

t ,X2
t , . . . ,Xp

t , t = 1, . . . ,T , j �=
i is mentioned in Lozano et al. (2009) and Arnold et al. (2007) in the context of bioinformatics.

It has been proposed to test for Granger causality within the network by applying some

kind of variable selection procedure. In particular Xj
t is Granger causing Xi

t if the lags of

Xj
t are selected by some sparse estimation procedure for any time lag l ∈ L, j = 1, . . . ,p,

t = 1, . . . ,T . Formally speaking, the following regression model is estimated:

Xi
t =

p∑
j=1

∑
l∈L

βi,j
l Xj

t−l + εi
t i = 1, . . . ,p. (2.7)

In practical applications, the networks often appear to be high-dimensional and the number

of nodes can exceed the sample size. This fact leads to inaccuracy and overfitting of

the estimates. The remaining part of this section discusses how these drawbacks can be

overcome by means of sparse estimation methods.

A natural way to improve the performance of the estimator in a high-dimensional

regression model is to introduce a regularization penalty. Many new regularized methods

have been developed in the literature over the last decades, including the least absolute

shrinkage and selection operator (lasso) estimator by Tibshirani (1996), SCAD by Fan and

Li (2001), elastic net by Zou and Hastie (2005), fused lasso by Tibshirani et al. (2005) and

extensions of the lasso models, such as adaptive lasso by Zou (2006) and group lasso by

Yuan and Lin (2006). The application of sparse estimation methods for the estimation of

high-dimensional networks in computer biology is widely discussed in the literature; see,

for example, Gustafsson et al. (2005) , Shimamura et al. (2007), Li and Li (2008), Friedman

et al. (2008) and Jacob et al. (2009). The present work employs the lasso approach originally

formulated by Tibshirani (1996), i.e.

β̂i(λ) = argmin
β

⎛⎜⎝
∑T

t=max(L)+1
[
Xi

t −∑p
j=1

∑
l∈L βi,j

l Xj
t−l

]2
T −max(L) +λ‖βi‖1

⎞⎟⎠ , (2.8)

where ‖βi‖1 =∑p
j=1

∑
l∈L |βi,j

l | and λ > 0 is a penalty parameter. As a result of l1 penal-

ization, the lasso solution is sparse, i.e. some coefficients are set exactly to zero. However,

lasso has been shown to lack the consistency for selecting the relevant variables and to

produce small false positive non-zero coefficients.
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The two-stage adaptive lasso procedure introduced by Zou (2006) corrects the behavior

of the lasso and reduces the number of false positives by re-weighting the penalty function,

i.e.:

β̂i
adaptive(λ) = argmin

β

⎛⎜⎝
∑T

t=max(L)+1
[
Xi

t −∑p
j=1

∑
l∈L βi,j

l Xj
t−l

]2
T −max(L) +λ

p∑
j=1

∑
l∈L

|βi,j
l |

|β̂i,j
initial, l|

⎞⎟⎠ ,

(2.9)

where β̂i,j
initial, l, j = 1, . . . ,p, l ∈ L is the initial estimator from the first step of the procedure.

Thus, if β̂i,j
initial, l is large, the adaptive lasso employs a small penalty for the βi,j

l , j = 1, . . . ,p

and improves the estimation of the effective variables. The simple OLS, the ridge regression

or any other consistent estimator can be used to obtain the initial estimates. The theoretical

properties and the details of the estimation algorithms can be found in Bühlmann and Van

De Geer (2011).

In the current work, we include several lags of each regressor in the regression model

in order to check for Granger causality. In particular, we are interested in whether the news

for a given sector and not the specific lags are Granger causing the price of the asset. We

implement the adaptive lasso procedure with the OLS coefficients as the initial estimators.

In addition, we employ the testing procedure based on the finite sample properties of the

adaptive lasso developed by Audrino and Camponovo (2015) to reduce the number of false

positive selected variables.

In the current framework, the causality of the news data and its lags on the prices of

the assets in different sectors needs to be estimated. For this reason, we define two sets

of variables. Let {Xi
t}, t = 1, . . . ,T , i = 1, . . . ,p1 be the set of the prices or excess returns

and let {Xj
t }, t = 1, . . . ,T , j = p1 + 1, . . . ,p be the set of the news sentiment and {Xi

t−l}
be the corresponding lags. Thus, the network consists of p nodes. As we are interested in

Granger causality of the news rather than returns of other assets, the edges connecting the

price variable Xi
t to the lags of other prices Xj

t−l, j = 1, . . . ,p1, j �= i are set to zero. This

restrictive assumption is introduced because the sentiment data of the industries contain the

price information of the biggest companies. If both price and sentiment lags are included

in the regression, the estimated coefficients might be misleading. The combination of the

Granger causality concept with the adaptive lasso variable selection procedure results in

the following algorithm:

1. Define the input as the p1-dimensional vectors of returns {Xi
t}t=1,...,T , i = 1, . . . ,p1

and p2-dimensional vector of sentiment {Xj
t }t=1,...,T , j = p1 +1, . . . ,p.
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2. Set the adjacency matrix corresponding to the network G = 〈V,E〉 equal to the zero

matrix.

3. For i = 1, . . . ,p1:

• apply the adaptive lasso variable selection with its related testing procedure for

false positives to the model

Xi
t =

∑
l∈L

βi,i
l Xi

t−l +
p∑

j=p1+1

∑
l∈L

βi,j
l Xj

t−l + εi
t, (2.10)

where L is the set of the predefined lags.

• If for Xi
t at least one lag of Xj

t is selected as significant, place the edge Xj → Xi

into E, l ∈ L.

2.5 Results

In this section, the news spillover effects of 10 industrial sectors are analyzed using the

methodology of the graphical Granger causality. The data set contains the stock excess

returns and TRMI sentiment indices on 10 sectors listed in Appendix 2.A and 5 countries,

namely, US, China, Germany, Italy, and Greece. The country information plays the role of

a control variable. 78 US companies and 78 European companies are investigated, which

corresponds to approximately 8 companies per sector. The full list of the companies can be

found in Appendix 2.B. In order to extract the signal from the noisy sentiment data, the

Kalman smoothing approach described in Section 2.3 is applied. All the data are standardized

after applying the Kalman smoother. As mentioned above, the sentiments for the US and

non-US industries show similar trends over time. Therefore, the analysis is performed

separately for the US and European market. The rates of returns in excess are calculated

by applying the CAPM model by Sharpe (1964) using as a benchmark the S&P 500. The

preliminary analysis showed that the results for the prices and excess returns using different

benchmarks coincide, which is consistent with the discussion in Erawan (2015). Therefore,

the same benchmark is used for the US and European companies. The daily data ranging

from the January 1, 2005 to December 31, 2014 are used. A daily rolling window approach

is employed in order to analyze how the connectedness between the news and the excess

returns changes over time. The size of the rolling window is set to be equal to 200 trading

days, which is the shortest possible size addressed in the literature; see Audrino and Knaus
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(2016) for more details. The small size of the rolling window is motivated by the possible

time breakpoints.

Figure 2.3 The graphical Granger network for the set of US assets on Nov. 3, 2010.

Employing the notation of Section 2.4, we say that the news from one industry is

Granger causing the excess returns in the other industry if the lags of the sentiment on

one sector are selected by the adaptive lasso procedure (2.10) for the excess returns of the

assets from the other industry, i.e. Xj −→ Xi, i = 1, . . . ,p1, j = p1 +1, . . . ,p. In the current

studies, we distinguish between direct effects and spillover effects, i.e. if the sentiment of a

particular sector is Granger causing the excess returns of the assets from the same sector,

we call them direct effects, whereas in case the assets belong to different sectors we call

them spillover effects.

This study focuses on the information spillover effect due to sentiment. For this reason,

the network at time t, t = 1, . . . ,T is constructed by regressing the individual excess returns

Xi
t on their own lags Xi

t−l, l ∈ L and the set of the news sentiment lags on the sectors and

the countries Xj
t−l, j = p1 + 1, . . . ,p, l ∈ L. As explained above, lags of excess returns of

other stocks are not taken into consideration in the individual regressions. The estimation is

performed using the R package glmnet by Friedman et al. (2009). In this study, we suggest
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Figure 2.4 The graphical Granger network for the set of European assets on Nov. 3, 2010.

including 1 day, 1 week and 1 month lags in the individual regressions, i.e. l ∈ {1,5,22}.
Sentiment data of the same day (0 lag) are not included in the analysis because they

might contain the information about the prices and thus overestimate the causality of the

news. The choice of 1 month as mentioned above is motivated by the recent studies in the

sentiment literature which reveal that the shocks in the sentiment can drive the price of the

underlying during the period of the next month; see Borovkova et al. (2016), for instance.

The examples of the networks obtained by the adaptive lasso procedure for the US and

European stocks on November 3, 2010 are presented in the Figures 2.3 and 2.4, respectively.

The industries and countries are grey-colored in the graph, the abbreviations are given in

Appendix 2.A, and the companies are white-colored. The whole network is constructed by

regressing excess returns of each company on the past values of excess returns and lags

of the sentiments of the sectors and countries. Therefore, the connections coming from

the sentiment (grey nodes) to the returns (white nodes) represent the Granger causality

of the sentiment indices to the excess returns. If the node is self-connected, for example

Amazon (AMZ) in Figure 2.3, the lags of the excess returns of the company itself were

selected by the adaptive lasso procedure. The date always corresponds to the last day of the
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rolling window. The US network (2.3) is more connected than the European network (2.4).

However, in general European networks contain more edges; that is, more coefficients are

estimated as non-zero by the lasso procedure, on average 14.6 % nonzero coefficients for

Europe versus 13.9 % for USA. The countries that have more outgoing edges in Figure 2.3

(Germany, Greece and Italy) are considered to have more influence on the excess returns

during this time period. The most relevant industries during this time period are Financials

and Industrials. Similar results are observed for the European companies in the network in

Figure 2.4.

In order to analyze the spillover effects over time, one needs to introduce some measures

of connectedness among the excess returns and the news sentiments of the sectors and

countries. Dynamic analysis of these measures can provide insight into the importance

of particular sectors and countries during the global financial crisis starting in 2008 and

the subsequent European sovereign debt crisis. In this study, we are interested in two

characteristics of the sentiments: the relevance and the strength. We propose to measure

the relevance of each sentiment by the number of outgoing edges. This measure reflects

the share of regressions which have selected the considered sentiment index as an active

variable. Therefore, the relevance is not informative for expressing the strength of the

causality. For this reason, we define the second characteristic (strength) as the mean absolute

value of the outgoing edges.

Formally speaking, the overall relevance of the sentiment variable Xj can be defined

from the estimated coefficients over p1 regressions of the form (2.10):

R
(
Xj → {X1, . . . ,Xp1}

)
=
∑p1

i=1�{|β̂i,j
1 |+ |β̂i,j

5 |+ |β̂i,j
22 |}

p1
, (2.11)

j = p1 +1, . . . ,p,

�{x} =

⎧⎪⎨⎪⎩1 if x > 0,

0 otherwise

is an indicator function.

The overall strength of the l-th lag of the sentiment variable Xj can be defined as the

average absolute value of the coefficients of the outgoing edges:

Sl

(
Xj → {X1, . . . ,Xp1}

)
=

∑p1
i=1 |β̂i,j

l |∑p1
i=1�{|β̂i,j

l |} , l ∈ {1,5,22}, (2.12)
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if R
(
Xj → {X1, . . . ,Xp1}

)
is different than zero and is zero if the variable is irrelevant.

Thus, this characteristic represents the average absolute value of the coefficients β̂i,j
l in

the regressions of the excess returns of company i for the sentiment j. If only the sum

of the absolute values were considered, it would be impossible to distinguish between

the nodes with many links with small coefficients and the nodes with a small number of

links and bigger coefficients. Speaking in terms of graphical representation, the relevance

characterizes the average number of the outgoing links and the strength characterizes the

average width of the link. If the sentiment (node) has small relevance and high strength,

it is selected as significant in a small number of regressions but estimated with relatively

high coefficients. In definition (2.12), the strength of the regulator is defined separately for

each lag.

Similarly, the same measures can be defined for particular groups of companies. In this

case, the average is taken over the companies contained in the specific group. For example,

if the average is taken over the companies corresponding to the financial sector with the

Industrials sentiment as the variable under consideration, the relevance and the strength

will show the spillover effect of the Industrials-related news to the financial sector.

2.5.1 US results

FIN TEC IND MAT UTL COM HLC NCY ENE YCY
asset 0.72 0.77 0.72 0.69 0.61 0.71 0.64 0.68 0.66 0.71
MPTRXUSFIN 0.16 0.17 0.17 0.19 0.17 0.17 0.16 0.18 0.22 0.15
MPTRXUSTEC 0.11 0.13 0.15 0.12 0.17 0.20 0.16 0.14 0.23 0.14
MPTRXUSIND 0.12 0.16 0.17 0.13 0.14 0.19 0.13 0.14 0.15 0.14
MPTRXUSMAT 0.10 0.07 0.15 0.13 0.13 0.11 0.12 0.12 0.18 0.11
MPTRXUSUTL 0.09 0.10 0.14 0.15 0.10 0.17 0.12 0.10 0.21 0.09
MPTRXUSCOM 0.13 0.12 0.11 0.10 0.11 0.18 0.11 0.11 0.18 0.10
MPTRXUSHLC 0.15 0.14 0.21 0.14 0.12 0.16 0.12 0.14 0.13 0.13
MPTRXUSNCY 0.13 0.12 0.20 0.17 0.14 0.17 0.14 0.14 0.20 0.13
MPTRXUSENE 0.14 0.13 0.16 0.14 0.11 0.16 0.17 0.15 0.18 0.19
MPTRXUSYCY 0.12 0.10 0.12 0.11 0.12 0.14 0.11 0.12 0.16 0.11
US 0.14 0.16 0.16 0.13 0.11 0.17 0.15 0.17 0.17 0.11
IT 0.12 0.14 0.12 0.12 0.12 0.13 0.12 0.15 0.13 0.11
GR 0.17 0.15 0.16 0.16 0.15 0.17 0.11 0.16 0.14 0.14
DE 0.14 0.12 0.15 0.12 0.14 0.15 0.13 0.12 0.21 0.13
CN 0.09 0.10 0.14 0.12 0.09 0.10 0.08 0.13 0.11 0.12

Table 2.1 Mean relevance of the news sentiments of the US sectors and selected countries
for the US companies by sector ranging from Jan. 1, 2005 to Dec. 31, 2014.

To begin with, we discuss the average news spillover effects within the US market. In

Table 2.1 we present the cross-industry mean relevance of the news over the full time period

under consideration. For example, the number 0.12 in the first column and the tenth row
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means that YCY news is Granger causing the excess returns of 12 companies from 100 in

the financial sector on average. It is worth noting that the stocks are mostly self-connected,

i.e. the own lags of the excess returns of the stocks are chosen to be relevant for the future

excess returns by the adaptive lasso procedure (see the numbers in the first row). From

Table 2.1, one can observe that the relevance of the country-related news spreads almost

uniformly among the sectors. There is weak evidence of a bigger influence of US news

on NCY and Energy. A similar effect is observed for the industries; however, a slightly

higher relevance of the financial news for all sectors is evident. It is worth mentioning that

the results of Table 2.1 should be interpreted with caution, as the average is taken over a

long period of time. The time interval of almost 10 years might contain several structural

breakpoints in the relevance of the news.

The dynamics of the relevance over time becomes clearer from Figure 2.5 where the

rolling window relevance is presented for the selected countries and industries. It can be

concluded that, in general, the relevance is not constant and has a fluctuating behavior. For

some sectors, several breakouts can be observed. First, the relevance of the own lags of

the stock drops during the period of the global financial crisis. This finding coincides with

the results shown by Audrino and Knaus (2016) in the context of the HAR volatility model.

Second, the relevance of Technology and Industrials rises right after the crisis.

Similarly, the relevance of the country-specific news shows a fluctuating behavior.

The exception is the growing relevance of the US-related news around 2008 and the high

relevance of the Germany-related news around 2008-2010 and 2013. These results support

the common belief of the global leading role played by the US information flow during the

financial crisis and by the Germany-related news (as the leading European country) during

the financial and subsequent European sovereign debt crises.

In contrast to the analysis of relevance, a closer look at the strength of the sector-related

news gives better insight into the cross-industry news spillover effects. The mean cross-

industry strength of the 1, 5 and 22 lags of the news sentiments is presented in Appendix

2.C.

From Figure 2.6 it is clearly observed that the news of Financials and Energy have the

strongest causal influence on the excess returns in all sectors. Such a high strength of the

financial news could be explained by the fact that the global financial crisis and the European

sovereign debt crisis are part of our sample period. Interestingly, the lags related to the

stock itself are estimated with smaller coefficients than the lags of the sentiments. This

finding supports the result that the past values of the news contain additional information
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Figure 2.5 The overall relevance of the news sentiments of the selected sectors and countries
on the US stocks ranging from Jan. 1, 2005 to Dec. 31, 2014.

about the future stock returns; moreover, the importance of the news rises during financial

turbulence and macroeconomic recessions.

To get a deeper understanding, we present the rolling window results averaged over all

stocks in Figure 2.6 for one-day lag variables: results for other lags are similar. The strength

of the financial news starts rising in 2007, showing that the growing influence of the news

can be considered an early warning of future instability. Higher average strength of YCY

news is observed during the first half of the sample and decreases thereafter. This might be

explained by the fact that the aggregated consumption of US households started to grow

rapidly at the end of 2005, went through recession in 2008, and continued to increase in

2009. Consumption has shown stable upward trends since 2009; therefore, the news on

the YCY sector is less important in the second half of the period. Moreover, it is observed

that the strength of Technology and Industrials grows right after the recession period, as
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Figure 2.6 The overall strength of the 1 day lags of the news sentiments on the selected US
sectors and countries for the US companies ranging from Jan. 1, 2005 to Dec. 31, 2014.

innovations in these sectors contribute notably to the recovery process and gain additional

attention of the media. The smooth decline in the strength of the energy sector-related

news on the stock returns might be caused by the introduction of US energy independence

politics. The reduction in imports might be transferred to greater confidence in the market

and, as a result, less weight for the energy-related news. Figure 2.6 depicts the strength of

selected countries, and it appears that the US news shows relatively high overall strength

and relativity. On the other hand, short peaks with low persistence in the strength of the

news related to Italy and Germany are observed. The first peak in the strength of Italy

corresponds to the currency crisis of 2006 in Europe: there were some concerns that several

countries might leave the Eurozone, which could have potentially lead to the total collapse

of the Euro. This event would influence the currency market worldwide, in particular in

the US. The second peak could potentially be caused by the European debt crisis, which
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FIN TEC IND MAT UTL COM HLC NCY ENE YCY
asset 0.70 0.74 0.70 0.71 0.59 0.68 0.69 0.78 0.70 0.76
MPTRXFIN 0.13 0.17 0.17 0.16 0.12 0.11 0.19 0.17 0.14 0.14
MPTRXTEC 0.13 0.16 0.08 0.15 0.09 0.14 0.18 0.09 0.18 0.10
MPTRXIND 0.14 0.12 0.12 0.15 0.13 0.10 0.17 0.12 0.18 0.11
MPTRXMAT 0.15 0.15 0.12 0.15 0.12 0.14 0.18 0.12 0.21 0.11
MPTRXUTL 0.17 0.12 0.17 0.17 0.10 0.11 0.24 0.18 0.15 0.18
MPTRXCOM 0.20 0.17 0.13 0.14 0.12 0.13 0.19 0.13 0.19 0.12
MPTRXHLC 0.14 0.13 0.15 0.11 0.10 0.09 0.16 0.13 0.15 0.14
MPTRXNCY 0.14 0.14 0.14 0.11 0.14 0.14 0.21 0.12 0.17 0.13
MPTRXENE 0.18 0.15 0.13 0.16 0.12 0.15 0.18 0.16 0.16 0.13
MPTRXYCY 0.18 0.16 0.16 0.17 0.14 0.17 0.23 0.15 0.22 0.22
US 0.16 0.12 0.11 0.16 0.12 0.15 0.16 0.11 0.15 0.14
IT 0.15 0.15 0.17 0.19 0.10 0.12 0.16 0.16 0.15 0.13
GR 0.16 0.16 0.16 0.19 0.12 0.15 0.21 0.17 0.18 0.12
DE 0.12 0.15 0.14 0.15 0.11 0.14 0.18 0.11 0.19 0.13
CN 0.12 0.11 0.12 0.12 0.10 0.09 0.17 0.10 0.13 0.12

Table 2.2 Mean relevance of the news sentiments of the European sectors and selected
countries for the European companies by sector ranging from Jan. 1, 2005 to Dec. 31, 2014.

severely affected such countries as Italy and Greece. 2010 in Italy was characterized by

a rapid decrease in GDP and increasing unemployment. The fluctuations in Germany’s

strength can be explained by the global financial crisis of 2008, the European debt crisis of

2010 and the decision of Germany in 2012 to provide more support to its European partners

for more centralized control over the Eurozone. The results for other sectors and countries

are presented in Appendix 2.D. A detailed analysis of the strength by sector can be obtained

from the authors upon request.

The findings presented above must be interpreted with caution. It is important to bear

in mind that the omitted market factor could be responsible for the obtained results. Herein,

we discuss the extent to which the spillover remains unchanged after controlling for a

market-wide sentiment. The analysis described above is replicated, and the corresponding

lags of the VIX index are incorporated into the model. The VIX – CBOE volatility index –

measures the expected volatility implied by the S&P 500 index option and therefore reflects

uncertainty in the market. This index is often called a ’fear index’ due to its ability to mimic

investors’ sentiments. The mean values of the relevance and strength of all sectors after

controlling for VIX influence are presented in Appendix 2.E. These results confirm the

previous finding – the biggest spillover effects originate in the financial and energy sectors.

The main difference of the VIX augmented model is that the adaptive lasso procedure selects

the lags of the assets’ returns less frequently, while VIX lags are relevant for 90% of the

assets on average. However, due to the small values of the estimated coefficients, the overall

strength-related results remain unchanged. It is evident that an additional VIX covariate

adds more variance to the pattern of the strength. This difference can be explained by the
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more volatile nature of the VIX index in comparison to excess returns and a smoothed

sentiment index.

Figure 2.7 The overall relevance of the news sentiments of the selected sectors and countries
on the European stocks ranging from Jan. 1, 2005 to Dec. 31, 2014.

2.5.2 EU results

Comparing the news spillover effects in the European market to the US market, we observe

the similarity in terms of the relevance of the news. However, the strength of the news

sentiments is less strong on average; see the results summarized in Table 2.2. The fluctuating

behavior of the average relevance of some sectors for all stocks is shown in Figure 2.7.

The analysis of the strength of the sectors in terms of the average absolute lasso estimated

coefficients coincides with the results for the US market. The news related to Financials and

Energy seems to be important for all other sectors; see Appendix 2.C. Similarly to the US
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Figure 2.8 The overall strength of the 1 day lags of the news sentiments on the selected US
sectors and countries for the US companies ranging from Jan. 1, 2005 to Dec. 31, 2014.

market, the strength of the financial news rises before the crisis and reaches a maximum in

2008; see Figure 2.8 and Appendix 2.C. However, the pattern of the strength of the energy

news is fluctuating in contrast to the US market. This might be explained by the fact that, in

contrast to the US, the European energy market is less independent and concerns over the

prices spread out to the other sectors. Full detailed results of the analysis can be obtained

from the authors upon request.

It can be concluded that the news sentiments related to several important sectors provide

additional information about the future stock prices. For each market, several important

sectors can be defined. The news spillover effects coming from these influential sectors

seem to be at least as important as the direct effects. Moreover, the relevance of these

spillover effects increases during periods characterized by general economic instability

and/or financial market turbulence.
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2.6 An empirical illustration

The results of the analysis presented in the previous section show that the sentiment data of

several sectors have a significant information component, which can be used to improve the

prediction of the assets’ returns. This section illustrates the impact of the various sentiment

series on the conditional mean and the conditional variance equations of ARMA-GARCH

models. It is important to note that the purpose of this section is to give an insight into

possible practical applications of the results presented earlier rather than draw general

conclusions about sentiment augmented time series models.

Further on, a parsimonious ARMA(1,1)-GARCH(1,1) model with Gaussian innovations

is applied to the series of log returns of several firms. The choice of the model is due to the

fact that lower order GARCH models are used in most applications. Moreover, this model

has been selected according to the Akaike information criterion in the majority of cases.

This benchmark model is compared to extensions in which the lag of the sentiment index

is included in the model as an exogenous variable. The considered model has the following

specification:

Yt = α0 +α1Yt−1 +β1εt−1 +γ1St−1 + et,

Var(et|Ft−1) = a0 +a1σ2
t−1 + b1e2

t−1 +g1St−1,
(2.13)

where et = σtεt, with εt being a sequence of iid random variables with mean 0 and variance

1, Yt is the series of the log returns, St−1 is the sentiment index of the pre-defined sector,

t = 1, . . . ,T , and α0, α1, β1, γ1, a0, a1, b1, g1 are the parameters to be estimated. For further

details on time series models, we refer to Tsay (2005), Andersen et al. (2009), Francq and

Zakoian (2011) and original work on the GARCH model by Bollerslev (1986).

The specification (2.13) results in three competing models. If γ1 = 0 and g1 = 0, the
ARMA(1,1)-GARCH(1,1) model without exogenous sentiment variables is considered. If

g1 = 0, the sentiment variable is included in the conditional mean equation. If both γ1 and

g1 need to be estimated, the sentiment index is included in the conditional mean and the

conditional variance equations.

The analysis performed in the previous sections has shown that the sentiment spillover

effects dominate the direct effect during periods of financial turbulence. It has been empiri-

cally shown that the sentiment data of the financial and energy sectors drive the market

during certain periods. In order to validate this conclusion, we separately estimate the

models with the firm-specific sector’s sentiment and the sentiment data coming from the

financial and energy sectors.



2.6 An empirical illustration 70

MSE DM p-value MSPE DM p-value MSPE DM p-value
1.11.2008 - 1.11.2009 1.11.2009 - 1.11.2010 1.11.2010 - 1.11.2011

IFF (Basic Materials)

γ1 = 0, g1 = 0 4.18 · 10−5 5.89 · 10−5 3.06 · 10−5

g1 = 0, S = MPTRXFIN 4.96 · 10−5 3.76 · 10−1 9.70 · 10−6 8.05 · 10−8 4.29 · 10−5 1.51 · 10−1

S = MPTRXFIN 5.01 · 10−5 3.46 · 10−1 9.70 · 10−6 8.16 · 10−8 4.06 · 10−5 1.64 · 10−1

g1 = 0, S = MPTRXMAT 8.94 · 10−5 6.00 · 10−3 1.47 · 10−4 3.12 · 10−1 6.01 · 10−5 1.02 · 10−3

S = MPTRXMAT 6.70 · 10−5 3.00 · 10−3 1.44 · 10−4 3.30 · 10−1 5.64 · 10−5 3.10 · 10−3

WMB (Basic Materials)

γ1 = 0, g1 = 0 1.05 · 10−4 1.39 · 10−4 8.76 · 10−5

g1 = 0, S =MPTRXFIN 7.91 · 10−5 3.17 · 10−1 6.93 · 10−5 4.67 · 10−3 6.73 · 10−5 1.72 · 10−1

S = MPTRXFIN 7.53 · 10−5 2.46 · 10−1 6.94 · 10−5 4.78 · 10−3 6.75 · 10−5 1.75 · 10−1

g1 = 0, S =MPTRXMAT 6.80 · 10−5 1.74 · 10−1 1.69 · 10−4 3.43 · 10−1 2.17 · 10−5 1.26 · 10−9

S =MPTRXMAT 7.75 · 10−5 3.18 · 10−1 1.83 · 10−4 1.93 · 10−1 2.14 · 10−5 1.23 · 10−9

Table 2.3 MSPE of (2.13) (p-values of DM test compared to the model with γ1 = g1 = 0).

After estimating the models based on 200-day rolling windows and obtaining the one-

day-ahead forecast series, the models are compared in terms of their predictive power. Their

predictive power is expressed in terms of the mean squared prediction error (MSPE). The

two-sided test of Diebold and Mariano (1995) (DM test) is applied to the squared errors to

check whether the model provides a statistically significant improvement in comparison to

the ARMA(1,1)-GARCH(1,1), which is always used as the benchmark.

Four companies, belonging to two industrial sectors (Basic Materials and Healthcare),

are used for the illustrative purposes of this section: International Flavors & Fragrances Inc.

(IFF), Williams Companies Inc. (WMB), Chevron Corporation (CVX), and Cigna Corporation

(CI). The selection of the time intervals is motivated by Figure 2.9. It is evident that the

financial news has a strong effect on the companies related to Basic Materials in 2010 and

is less important for the returns of this sector in 2008 and 2009. The energy news is of high

importance for both Basic Materials and Healthcare at the beginning of the analysed time

period (2007) and is less influential at the end of the period (2013).

Figure 2.9 The strength of 1 day lags of the news sentiments of the FIN and ENE sectors for
the MAT and HLC US companies ranging from the 1st of Jan., 2005 to Dec. 31, 2014.
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The mean squared prediction errors and the p-values of the two-sided DM test for the

log returns of IFF and WMB are presented in Table 2.3. The comparison is always made

with respect to the ARMA(1,1)-GARCH(1,1) model, i.e. model (2.13) with g1 = γ1 = 0. It is
evident that including the exogenous variable of financial news in the conditional mean

equation improves the predictive power of the ARMA-GARCH model from November

1, 2009 to November 1, 2010, which corresponds to the period of strong influence of the

financial sector. An improvement is not observed during the year before and the year after

the above mentioned period. The results for the conditional variance equation are not

unambiguous and further research should be addressed to this question. In the majority of

the analysed cases, exogenous news indices do not provide any further improvement of the

predictive power of the model. Including sector related news (Basic Materials) in the model

does not significantly improve the predictive power from November 1, 2009 to November 1,

2010, when the financial news was driving the market. The influence of the sector-specific

news during other periods is more evident, but not always statistically significant.

Similar results are observed for CVX and CI, see Table 2.4. It is evident that including

energy-related news in the conditional mean equation improves the predictive power of the

ARMA-GARCH model in 2007 and is not relevant in 2014. The MSPE is not significantly

reduced when the sentiment data are included in the conditional variance model. Moreover,

sector-related sentiment data do not reduce the MSPE significantly in the period when the

market was driven by the news coming from the Energy sector.

The results for the considered firms support the conclusion of the previous section and

suggest that sentiment spillover effects dominate the direct effects in periods when the

market is driven by the news coming from a different sector. Therefore, the time series

models which are augmented by including the news of influential sectors might show

better predictive power for returns. The periods when the sentiment indices of particular

industries are more informative can be found by applying the procedure described in

Section 2.4. The illustrative examples discussed here support the results of Section 2.5,

which suggests the importance of the information contained in sentiment data for asset

pricing theory.

Conclusion

The goal of this paper is to investigate the cross-industry patterns of the news and stock

returns, and in particular to analyze how the news about one industry influences the

stock returns in the other industries. For this purpose, the graphical Granger model has
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MSPE DM p-value MSPE DM p-value
1.12.2006 - 1.12.2007 1.12.2013 - 1.12.2014

CVX (Basic Materials)

γ1 = 0, g1 = 0 1.82 ·10−4 2.47 ·10−5

g1 = 0, S =MPTRXENE 1.13 ·10−4 2.96 ·10−2 2.73 ·10−5 5.21 ·10−1

S =MPTRXENE 1.11 ·10−4 2.21 ·10−2 2.85 ·10−5 3.47 ·10−1

g1 = 0, S =MPTRXHLC 1.60 ·10−4 5.59 ·10−1 4.09 ·10−5 1.23 ·10−2

S =MPTRXHLC 2.19 ·10−4 3.70 ·10−1 2.37 ·10−5 7.99 ·10−1

CI (Healthcare)

γ1 = 0, g1 = 0 9.58 ·10−5 1.21 ·10−5

g1 = 0, S =MPTRXENE 3.89 ·10−5 4.9 ·10−3 9.00 ·10−6 2.70 ·10−1

S =MPTRXENE 3.88 ·10−5 4.8 ·10−3 9.50 ·10−6 3.50 ·10−1

g1 = 0, S =MPTRXMAT 1.60 ·10−4 3.9 ·10−2 4.09 ·10−5 2.29 ·10−6

S =MPTRXMAT 9.77 ·10−5 9.5 ·10−1 3.70 ·10−6 1.12 ·10−5

Table 2.4 MSPE of (2.13) (p-values of DM test compared to the model with γ1 = g1 = 0).

been applied to the Kalman smoothed sentiment data on 10 US and 10 non-US industries

and on the excess returns of 78 US and 78 European companies. The sentiment data on

several countries have been included in the analysis as control variables. The adaptive lasso

procedure has been applied to estimate the return-news networks. The network-based

measures reflecting the relevance and the strength of each news source have been proposed

and analyzed over a period of 10 years by employing a rolling window approach.

We found empirical evidence that the relevance of the news coming from different

sectors shows a fluctuating behavior and spreads evenly among the industries. Moreover,

our results show that the strength of the influence of the news on some sectors grows just

before periods of economic and financial instability and reaches a maximum during crises.

Interesting patterns are observed in the causality of the financial and energy sentiments.

These sentiments can be seen as the most influential, and the spillover effects from the

sectors dominate the direct effects. Estimation results show that the overall connectedness

among the stock returns and the news is stronger for the US market than for the European

market. The importance of sentiment spillover effects has been empirically illustrated. We

showed that the sentiment indices of specific industries can be successfully used to improve

the predictive power of time series models for returns.

In future research we plan to relax the assumption of predefined lags in the graphical

Granger model and to apply the same adaptive lasso methodology to test the significance

of arbitrary lags. This could be especially interesting to show the persistence of the news

coming from different sectors. Moreover, the study of the nonlinear or quantile cross-

industry dependencies among the news could yield further insights into the analysis of

the impact of direct sentiment effects as well as spillover sentiment effects on companies’

excess returns.



Appendices

Appendix 2.A TRMI sentiment indices

Asset Code Description

MPTRXUSENE/MPTRXENE US/non-US Energy (ENE)
MPTRXUSMAT/MPTRXMAT US/non-US Basic Materials (MAT)
MPTRXUSIND/MPTRXIND US/non-US Industrials (IND)
MPTRXUSYCY/MPTRXYCY US/non-US Cyclical Consumer Goods and Services (YCY)
MPTRXUSNCY/MPTRXNCY US/non-US Non-Cyclical Consumer Goods and Services (NCY)
MPTRXUSFIN/MPTRXFIN US/non-US Financials (FIN)
MPTRXUSHLC/MPTRXHLC US/non-US Healthcare (HLC)
MPTRXUSTEC/MPTRXTEC US/non-US Technology (TEC)
MPTRXUSCOM/MPTRXCOM US/non-US Telecommunications Services (COM)
MPTRXUSUTL/MPTRXUTL US/non-US Utilities (UTL)
CN China
DE Germany
GR Greece
IT Italy
US USA

Table 2.A.1 Thomson Reuters MarketPsych sentiment indices used for the analysis.
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Appendix 2.B List of the companies

Name TRBCEconomicSector

Bangkok Airways PCL Industrials
Asset Acceptance Capital Corp Industrials
Apple Inc Technology
Abcam PLC Healthcare
Abbott Laboratories Healthcare
AES Corp Utilities
Amgen Inc Healthcare
Amazon.com Inc Consumer Cyclicals
Anadarko Petroleum Corp Energy
Avery Dennison Corp Industrials
American Water Works Company Inc Utilities
American Express Co Financials
Boeing Co Industrials
Bank of America Corp Financials
Baxter International Inc Healthcare
BlackRock Inc Financials
Ball Corp Basic Materials
Citigroup Inc Financials
Caterpillar Inc Industrials
Cigna Corp Financials
Colgate-Palmolive Co Consumer Non-cyclicals
CMS Energy Corp Utilities
CVS Caremark Corp Consumer Non-cyclicals
Cisco Systems Inc Technology
CenturyLink Inc Telecommunication Services
Chevron Corp Energy
Dow Chemical Co Basic Materials
DTE Energy Co Utilities
Devon Energy Corp Energy
Ford Motor Co Consumer Cyclicals
Frontier Communications Corp Telecommunication Services
Corning Inc Technology
General Motors Co Consumer Cyclicals
Hasbro Inc Consumer Cyclicals
Harley-Davidson Inc Consumer Cyclicals
Hewlett-Packard Co Technology
International Business Machines Corp Technology
International Flavors & Fragrances Inc Consumer Non-cyclicals
Johnson & Johnson Healthcare
JPMorgan Chase & Co Financials
Coca-Cola Co Consumer Non-cyclicals
Eli Lilly and Co Healthcare
Masco Corp Consumer Cyclicals
Mattel Inc Consumer Cyclicals
McDonald’s Corp Consumer Cyclicals
Metlife Inc Financials
Merck KGaA Healthcare
Altria Group Inc Consumer Non-cyclicals
Merck & Co Inc Healthcare
Morgan Stanley Financials
Microsoft Corp Technology
Nike Inc Consumer Cyclicals
National Oilwell Varco Inc Energy
Eversource Energy Utilities
Nucor Corp Basic Materials
Oracle Corp Technology
PG&E Corp Utilities
PepsiCo Inc Consumer Non-cyclicals
Pfizer Inc Healthcare
Procter & Gamble Co Consumer Non-cyclicals
Praxair Inc Basic Materials
Sealed Air Corp Basic Materials
Schlumberger NV Energy
Southern Co Utilities
AT&T Inc Telecommunication Services
Target Corp Consumer Cyclicals
Textron Inc Industrials
United Parcel Service Inc Industrials
Vulcan Materials Co Basic Materials
Verizon Communications Inc Telecommunication Services
Wells Fargo & Co Financials
Williams Companies Inc Energy
Wal Mart Stores Inc Consumer Cyclicals
Xcel Energy Inc Utilities
Exxon Mobil Corp Energy
Yahoo! Inc Technology
Cambridge Antibody Technology Group PLC Healthcare
Bell Aliant Inc Telecommunication Services

Table 2.A.2 The US companies used in the current studies.
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Name TRBCEconomicSector

Anglo American PLC Basic Materials
Alcatel Lucent SA Technology
Antofagasta PLC Basic Materials
Anglo Pacific Group PLC Basic Materials
Daisy Group PLC Telecommunication Services
Electricite de France SA Utilities
Eni SpA Energy
Glencore PLC Energy
Iberdrola SA Utilities
Industria de Diseno Textil SA Consumer Cyclicals
Nestle SA Consumer Non-cyclicals
Rio Tinto PLC Basic Materials
Roche Holding AG Healthcare
SABMiller PLC Consumer Non-cyclicals
Swisscom AG Telecommunication Services
STMicroelectronics NV Technology
Sirius Minerals PLC Basic Materials
Syngenta AG Basic Materials
Telecity Group PLC Technology
Telenor ASA Telecommunication Services
United Utilities Group PLC Utilities
Vitec Group PLC Technology
Wolfson Microelectronics PLC Technology
Abengoa Yield PLC Utilities
ABB India Ltd Industrials
Aditya Birla Minerals Ltd Basic Materials
ArcelorMittal SA Basic Materials
AstraZeneca PLC Healthcare
Banco Bilbao Vizcaya Argentaria SA Financials
GlaxoSmithKline PLC Healthcare
Merck KGaA Healthcare
Novartis Healthcare
Banco Santander SA Financials
Total Energy Services Inc Energy
Anheuser-Busch Companies LLC Consumer Non-cyclicals
HSBC Holdings Financials
Lloyds Banking Group Financials
BNP Paribas Financials
Allianz Financials
UBS Group Financials
Deutsche Bank Financials
Logitech International Technology
Infineon Technologies Technology
SAP SE Technology
Siemens Industrials
Airbus Industrials
Schneider Electric Industrials
LINDE Industrials
Vinci Industrials
Glencore Industrials
ThyssenKrupp Basic Materials
BASF Basic Materials
Anglo Pacific Group Basic Materials
EOAN Utilities
National Grid Utilities
Enel SPA Utilities
Engie SA Utilities
Energie Baden-Wuettenberg Utilities
DTE Energy Utilities
Orange Telecommunication Services
Sanofi Healthcare
Bayer Healthcare
Bosch Consumer Non-cyclicals
Continental Consumer Non-cyclicals
Man SE Consumer Non-cyclicals
Peugeot Consumer Non-cyclicals
Volkswagen Consumer Non-cyclicals
Daimler Consumer Non-cyclicals
Sie de Saint-Gobain Consumer Non-cyclicals
BMW Consumer Non-cyclicals
Royal Dutch Shell Energy
British Petroleum Energy
Unilever Consumer Non-cyclicals
Sabmiller Consumer Non-cyclicals
L’oreal Consumer Non-cyclicals
Moet Hennessy Louis Vuitton SE Consumer Non-cyclicals
Diageo PLC Consumer Non-cyclicals

Table 2.A.3 The European companies used in the current studies.
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Appendix 2.C Mean strength of the lags of thenews sen-

timents for US and European companies

FIN TEC IND MAT UTL COM HLC NCY ENE YCY

assett−1 0.24 0.27 0.25 0.24 0.23 0.24 0.24 0.26 0.23 0.27
assett−5 0.22 0.23 0.23 0.24 0.21 0.23 0.22 0.22 0.22 0.23
assett−22 0.19 0.18 0.20 0.18 0.18 0.18 0.19 0.18 0.20 0.23

MPTRXUSFINt−1 1.33 1.08 1.28 1.53 0.98 1.02 0.83 1.14 1.52 1.35
MPTRXUSFINt−5 0.84 0.87 1.11 1.32 0.79 1.15 1.21 0.95 1.15 0.88
MPTRXUSFINt−22 0.90 0.94 0.94 1.28 0.95 1.01 1.07 0.78 1.10 0.87
MPTRXUSTECt−1 0.29 0.36 0.39 0.39 0.44 0.39 0.37 0.39 0.41 0.45
MPTRXUSTECt−5 0.41 0.33 0.38 0.49 0.28 0.40 0.26 0.29 0.54 0.46
MPTRXUSTECt−22 0.30 0.33 0.34 0.39 0.39 0.41 0.41 0.28 0.45 0.38
MPTRXUSINDt−1 0.43 0.54 0.51 0.51 0.49 0.62 0.45 0.54 0.59 0.52
MPTRXUSINDt−5 0.38 0.35 0.53 0.50 0.42 0.50 0.44 0.33 0.51 0.54
MPTRXUSINDt−22 0.57 0.47 0.46 0.64 0.46 0.61 0.43 0.51 0.57 0.52
MPTRXUSMATt−1 0.35 0.38 0.41 0.55 0.33 0.42 0.37 0.38 0.38 0.35
MPTRXUSMATt−5 0.37 0.32 0.36 0.45 0.34 0.35 0.32 0.36 0.38 0.30
MPTRXUSMATt−22 0.32 0.35 0.42 0.45 0.38 0.45 0.41 0.28 0.43 0.29
MPTRXUSUTLt−1 0.45 0.41 0.48 0.60 0.41 0.53 0.46 0.49 0.79 0.56
MPTRXUSUTLt−5 0.53 0.30 0.36 0.56 0.26 0.47 0.28 0.33 0.55 0.47
MPTRXUSUTLt−22 0.48 0.31 0.41 0.47 0.42 0.46 0.39 0.36 0.50 0.36
MPTRXUSCOMt−1 0.45 0.46 0.47 0.41 0.37 0.36 0.41 0.48 0.59 0.42
MPTRXUSCOMt−5 0.32 0.33 0.40 0.37 0.33 0.56 0.31 0.29 0.51 0.39
MPTRXUSCOMt−22 0.33 0.43 0.46 0.63 0.34 0.41 0.32 0.29 0.48 0.44
MPTRXUSHLCt−1 0.41 0.40 0.52 0.47 0.38 0.44 0.38 0.39 0.52 0.32
MPTRXUSHLCt−5 0.41 0.42 0.41 0.49 0.40 0.38 0.39 0.32 0.49 0.43
MPTRXUSHLCt−22 0.40 0.38 0.38 0.49 0.34 0.40 0.48 0.34 0.44 0.33
MPTRXUSNCYt−1 0.29 0.32 0.32 0.36 0.30 0.41 0.30 0.42 0.48 0.39
MPTRXUSNCYt−5 0.21 0.26 0.43 0.37 0.31 0.43 0.34 0.27 0.42 0.28
MPTRXUSNCYt−22 0.30 0.34 0.35 0.35 0.28 0.39 0.26 0.29 0.37 0.36
MPTRXUSENEt−1 0.82 0.94 1.03 2.04 0.92 1.26 1.67 0.83 2.06 0.83
MPTRXUSENEt−5 1.01 0.77 1.12 0.91 0.89 0.93 1.07 0.74 1.33 1.13
MPTRXUSENEt−22 0.78 0.70 0.88 0.88 0.87 1.04 0.87 0.92 0.93 1.21
MPTRXUSYCYt−1 0.59 0.42 0.38 0.77 0.39 0.64 0.34 0.48 0.42 0.64
MPTRXUSYCYt−5 0.36 0.35 0.45 0.37 0.32 0.51 0.33 0.38 0.49 0.44
MPTRXUSYCYt−22 0.39 0.30 0.44 0.54 0.54 0.52 0.52 0.40 0.53 0.39

USt−1 0.71 0.52 0.66 0.80 0.50 0.69 0.48 0.50 0.68 0.53
USt−5 0.57 0.32 0.60 0.50 0.34 0.63 0.44 0.44 0.51 0.54
USt−22 0.41 0.46 0.59 0.68 0.45 0.66 0.67 0.47 0.56 0.41
ITt−1 0.35 0.45 0.38 0.48 0.31 0.38 0.39 0.34 0.41 0.41
ITt−5 0.34 0.34 0.29 0.56 0.32 0.36 0.37 0.31 0.50 0.64
ITt−22 0.34 0.38 0.38 0.58 0.35 0.51 0.63 0.34 0.54 0.43
DEt−1 0.45 0.48 0.49 0.59 0.54 0.62 0.41 0.40 0.48 0.37
DEt−5 0.37 0.38 0.41 0.37 0.47 0.49 0.39 0.38 0.58 0.54
DEt−22 0.47 0.39 0.47 0.43 0.48 0.56 0.43 0.35 0.60 0.44
CNt−1 0.36 0.44 0.38 0.41 0.35 0.42 0.38 0.37 0.41 0.43
CNt−5 0.29 0.26 0.48 0.36 0.37 0.31 0.33 0.23 0.35 0.32
CNt−22 0.34 0.31 0.37 0.55 0.26 0.35 0.34 0.35 0.51 0.34
GRt−1 0.55 0.47 0.57 0.69 0.60 0.62 0.51 0.58 0.78 0.66
GRt−5 0.56 0.41 0.47 0.47 0.54 0.55 0.53 0.53 0.64 0.49
GRt−22 0.51 0.54 0.56 0.51 0.37 0.58 0.48 0.48 0.51 0.41

Table 2.A.4 Mean strength of the lags of the news sentiments on the US sectors and selected
countries for the US companies by sector ranging from Jan. 1, 2005 to Dec. 31, 2014.
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FIN TEC IND MAT UTL COM HLC NCY ENE YCY

assett−1 0.24 0.24 0.23 0.25 0.24 0.27 0.22 0.23 0.25 0.23
assett−5 0.23 0.23 0.23 0.22 0.22 0.23 0.23 0.23 0.22 0.22
assett−22 0.19 0.17 0.18 0.18 0.19 0.19 0.17 0.17 0.20 0.17

MPTRXFINt−1 0.77 0.65 0.98 0.96 0.85 0.61 0.77 0.75 0.84 0.68
MPTRXFINt−5 0.84 0.58 1.00 1.22 0.76 0.56 0.80 0.75 0.79 0.46
MPTRXFINt−22 0.61 0.52 0.88 0.83 0.59 0.63 0.65 0.67 0.67 0.39
MPTRXTECt−1 0.35 0.39 0.36 0.52 0.38 0.35 0.36 0.36 0.53 0.35
MPTRXTECt−5 0.30 0.36 0.28 0.46 0.43 0.30 0.31 0.34 0.46 0.18
MPTRXTECt−22 0.46 0.35 0.50 0.51 0.44 0.43 0.45 0.43 0.49 0.22
MPTRXINDt−1 0.47 0.38 0.47 0.57 0.60 0.50 0.55 0.41 0.58 0.26
MPTRXINDt−5 0.36 0.32 0.47 0.44 0.58 0.35 0.48 0.39 0.44 0.22
MPTRXINDt−22 0.45 0.46 0.56 0.64 0.53 0.42 0.40 0.53 0.51 0.31
MPTRXMATt−1 0.32 0.28 0.29 0.46 0.35 0.25 0.36 0.28 0.42 0.22
MPTRXMATt−5 0.32 0.28 0.41 0.39 0.32 0.26 0.28 0.25 0.37 0.24
MPTRXMATt−22 0.34 0.32 0.32 0.37 0.36 0.33 0.33 0.31 0.32 0.19
MPTRXUTLt−1 0.39 0.30 0.66 0.50 0.46 0.40 0.52 0.37 0.53 0.55
MPTRXUTLt−5 0.45 0.37 0.40 0.37 0.37 0.29 0.39 0.30 0.50 0.22
MPTRXUTLt−22 0.38 0.36 0.40 0.44 0.41 0.36 0.42 0.35 0.43 0.23
MPTRXCOMt−1 0.44 0.40 0.46 0.49 0.42 0.38 0.41 0.34 0.48 0.30
MPTRXCOMt−5 0.38 0.31 0.36 0.36 0.47 0.22 0.36 0.31 0.29 0.25
MPTRXCOMt−22 0.33 0.37 0.39 0.38 0.43 0.37 0.43 0.33 0.39 0.21
MPTRXHLCt−1 0.46 0.45 0.67 0.65 0.36 0.37 0.41 0.41 0.53 0.34
MPTRXHLCt−5 0.40 0.39 0.49 0.64 0.41 0.37 0.40 0.41 0.43 0.26
MPTRXHLCt−22 0.40 0.36 0.58 0.55 0.48 0.41 0.49 0.43 0.56 0.28
MPTRXNCYt−1 0.47 0.33 0.68 0.46 0.42 0.33 0.52 0.35 0.46 0.25
MPTRXNCYt−5 0.38 0.34 0.45 0.40 0.46 0.33 0.43 0.40 0.43 0.20
MPTRXNCYt−22 0.34 0.34 0.49 0.47 0.35 0.37 0.47 0.36 0.40 0.20
MPTRXENEt−1 0.87 0.77 1.12 0.84 0.83 0.65 0.77 0.71 0.87 0.62
MPTRXENEt−5 0.57 0.63 0.86 0.80 0.69 0.53 0.72 0.71 1.25 0.38
MPTRXENEt−22 0.68 0.65 0.88 0.87 0.83 0.57 0.87 0.54 0.89 0.49
MPTRXYCYt−1 0.42 0.40 0.46 0.48 0.42 0.39 0.38 0.39 0.44 0.45
MPTRXYCYt−5 0.36 0.33 0.36 0.36 0.41 0.30 0.46 0.30 0.50 0.21
MPTRXYCYt−22 0.30 0.50 0.48 0.59 0.30 0.41 0.38 0.32 0.40 0.21

USt−1 0.71 0.62 0.37 0.55 0.59 0.40 0.46 0.45 0.47 0.50
USt−5 0.57 0.39 0.65 0.54 0.50 0.45 0.55 0.42 0.56 0.25
USt−22 0.58 0.43 0.42 0.47 0.45 0.42 0.54 0.39 0.49 0.33
ITt−1 0.44 0.33 0.41 0.55 0.46 0.52 0.46 0.40 0.46 0.26
ITt−5 0.39 0.29 0.32 0.36 0.41 0.32 0.37 0.37 0.38 0.20
ITt−22 0.38 0.37 0.68 0.49 0.41 0.34 0.38 0.39 0.44 0.20
DEt−1 0.51 0.52 0.72 0.60 0.48 0.47 0.45 0.52 0.43 0.32
DEt−5 0.44 0.37 0.50 0.52 0.46 0.43 0.54 0.43 0.53 0.27
DEt−22 0.45 0.42 0.56 0.56 0.41 0.45 0.44 0.38 0.50 0.21
CNt−1 0.38 0.38 0.40 0.45 0.32 0.36 0.46 0.32 0.38 0.43
CNt−5 0.36 0.29 0.47 0.54 0.40 0.32 0.42 0.32 0.40 0.16
CNt−22 0.47 0.38 0.47 0.44 0.38 0.37 0.40 0.33 0.34 0.26
GRt−1 0.61 0.52 1.13 0.72 0.63 0.62 0.57 0.51 0.65 0.37
GRt−5 0.38 0.41 0.52 0.58 0.54 0.42 0.53 0.40 0.67 0.38
GRt−22 0.54 0.46 0.53 0.59 0.60 0.48 0.55 0.50 0.55 0.31

Table 2.A.5 Mean strength of the lags of the news sentiments on the European sectors and
selected countries for the European companies by sector ranging from Jan. 1, 2005 to Dec.
31, 2014.
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Appendix 2.D Overall relevance and strength of selected

sectors and countries for US and Euro-

pean companies

Figure 2.A.1 The overall relevance of the news sentiments of the selected sectors and
countries on the US stocks ranging from Jan. 1, 2005 to Dec. 31, 2014.

Figure 2.A.2 The overall strength of the news sentiments of the selected sectors and countries
on the US stocks ranging from Jan. 1, 2005 to Dec. 31, 2014.
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Figure 2.A.3 The overall relevance of the news sentiments of the selected sectors and
countries on the European stocks ranging from Jan. 1, 2005 to Dec. 31, 2014.

Figure 2.A.4 The overall strength of the news sentiments of the selected sectors and countries
on the European stocks ranging from Jan. 1, 2005 to Dec. 31, 2014.
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Appendix 2.E Overall relevance and strength of sectors

and countries for US companies control-

ling for the VIX index

FIN TEC IND MAT UTL COM HLC NCY ENE YCY
asset 0.56 0.68 0.60 0.55 0.50 0.61 0.53 0.57 0.52 0.62
MPTRXUSFIN 0.15 0.18 0.16 0.20 0.17 0.14 0.16 0.18 0.23 0.14
MPTRXUSTEC 0.13 0.15 0.17 0.13 0.23 0.18 0.19 0.16 0.30 0.18
MPTRXUSIND 0.12 0.16 0.16 0.13 0.12 0.17 0.11 0.15 0.19 0.13
MPTRXUSMAT 0.10 0.07 0.16 0.15 0.12 0.10 0.11 0.14 0.21 0.11
MPTRXUSUTL 0.07 0.09 0.14 0.14 0.12 0.17 0.12 0.12 0.24 0.11
MPTRXUSCOM 0.13 0.11 0.10 0.11 0.09 0.13 0.11 0.08 0.18 0.09
MPTRXUSHLC 0.13 0.15 0.19 0.11 0.10 0.13 0.11 0.15 0.14 0.13
MPTRXUSNCY 0.11 0.12 0.18 0.13 0.11 0.15 0.13 0.11 0.15 0.12
MPTRXUSENE 0.08 0.10 0.12 0.08 0.08 0.13 0.13 0.14 0.12 0.18
MPTRXUSYCY 0.08 0.09 0.12 0.10 0.11 0.10 0.08 0.11 0.19 0.11
US 0.13 0.15 0.14 0.10 0.08 0.14 0.15 0.16 0.16 0.12
IT 0.10 0.16 0.10 0.09 0.08 0.11 0.10 0.15 0.12 0.11
GR 0.14 0.13 0.17 0.15 0.14 0.14 0.09 0.17 0.16 0.13
DE 0.14 0.12 0.13 0.10 0.12 0.15 0.11 0.13 0.21 0.13
CN 0.10 0.12 0.14 0.12 0.11 0.10 0.09 0.12 0.15 0.13
VIX 0.89 0.96 0.96 0.84 0.83 0.89 0.88 0.94 0.84 0.87

Table 2.A.6 Mean relevance of the news sentiments of the US sectors and selected countries
for the US companies by sector ranging from Jan. 1, 2005 to Dec. 31, 2014 (controlling for
the VIX index).

Figure 2.A.5 The overall relevance (left) and strength (right) of the VIX index on the US
stocks ranging from Jan. 1, 2005 to Dec. 31, 2014.
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FIN TEC IND MAT UTL COM HLC NCY ENE YCY
assett−1 0.18 0.21 0.15 0.17 0.18 0.20 0.21 0.20 0.16 0.23
assett−5 0.19 0.22 0.22 0.22 0.19 0.22 0.22 0.21 0.22 0.23
assett−22 0.19 0.18 0.19 0.17 0.17 0.18 0.18 0.18 0.20 0.22
MPTRXUSFINt−1 1.11 1.05 1.26 1.46 1.00 0.64 0.85 0.93 1.24 1.38
MPTRXUSFINt−5 0.68 0.95 0.77 1.20 0.76 1.19 1.19 0.70 0.99 0.56
MPTRXUSFINt−22 0.58 0.86 0.88 1.16 0.92 1.11 1.17 0.72 0.92 0.81
MPTRXUSTECt−1 0.27 0.36 0.35 0.34 0.46 0.38 0.37 0.38 0.44 0.44
MPTRXUSTECt−5 0.40 0.46 0.35 0.45 0.30 0.44 0.25 0.29 0.52 0.43
MPTRXUSTECt−22 0.30 0.35 0.28 0.35 0.41 0.48 0.41 0.28 0.44 0.39
MPTRXUSINDt−1 0.39 0.54 0.54 0.50 0.43 0.74 0.39 0.44 0.56 0.54
MPTRXUSINDt−5 0.41 0.20 0.52 0.47 0.39 0.55 0.39 0.25 0.38 0.51
MPTRXUSINDt−22 0.45 0.47 0.40 0.61 0.50 0.54 0.51 0.50 0.54 0.56
MPTRXUSMATt−1 0.27 0.36 0.38 0.53 0.32 0.37 0.44 0.31 0.35 0.38
MPTRXUSMATt−5 0.35 0.32 0.39 0.42 0.35 0.39 0.28 0.38 0.22 0.34
MPTRXUSMATt−22 0.33 0.30 0.41 0.41 0.39 0.56 0.39 0.25 0.39 0.28
MPTRXUSUTLt−1 0.47 0.41 0.45 0.61 0.45 0.57 0.45 0.47 0.78 0.57
MPTRXUSUTLt−5 0.55 0.27 0.17 0.49 0.28 0.53 0.25 0.27 0.52 0.45
MPTRXUSUTLt−22 0.39 0.28 0.38 0.42 0.44 0.29 0.40 0.34 0.39 0.35
MPTRXUSCOMt−1 0.38 0.43 0.44 0.34 0.36 0.13 0.41 0.41 0.57 0.37
MPTRXUSCOMt−5 0.32 0.50 0.40 0.28 0.34 0.52 0.32 0.31 0.43 0.38
MPTRXUSCOMt−22 0.31 0.43 0.39 0.59 0.35 0.41 0.34 0.29 0.46 0.47
MPTRXUSHLCt−1 0.40 0.31 0.53 0.42 0.39 0.44 0.39 0.28 0.53 0.34
MPTRXUSHLCt−5 0.42 0.44 0.30 0.47 0.44 0.45 0.39 0.29 0.50 0.38
MPTRXUSHLCt−22 0.37 0.34 0.36 0.45 0.34 0.29 0.48 0.34 0.34 0.33
MPTRXUSNCYt−1 0.27 0.32 0.27 0.30 0.28 0.42 0.29 0.32 0.49 0.42
MPTRXUSNCYt−5 0.11 0.34 0.39 0.33 0.29 0.44 0.37 0.21 0.42 0.19
MPTRXUSNCYt−22 0.29 0.32 0.35 0.28 0.30 0.36 0.24 0.26 0.29 0.35
MPTRXUSENEt−1 0.78 0.87 1.02 1.98 1.01 1.18 1.71 0.81 2.00 0.87
MPTRXUSENEt−5 0.97 0.69 0.94 0.84 0.84 0.94 1.10 0.60 1.23 1.05
MPTRXUSENEt−22 0.63 0.63 0.72 0.62 0.82 0.91 0.89 0.82 0.72 1.19
MPTRXUSYCYt−1 0.62 0.39 0.41 0.73 0.33 0.67 0.33 0.47 0.37 0.59
MPTRXUSYCYt−5 0.30 0.32 0.43 0.33 0.25 0.47 0.35 0.28 0.42 0.47
MPTRXUSYCYt−22 0.35 0.23 0.42 0.49 0.78 0.22 0.49 0.27 0.39 0.42
USt−1 0.71 0.50 0.66 0.75 0.53 0.73 0.48 0.52 0.66 0.50
USt−5 0.51 0.36 0.59 0.36 0.01 0.55 0.53 0.45 0.51 0.51
USt−22 0.39 0.43 0.56 0.62 0.45 0.56 0.65 0.43 0.50 0.38
ITt−1 0.29 0.42 0.34 0.45 0.27 0.35 0.42 0.06 0.37 0.41
ITt−5 0.32 0.34 0.21 0.51 0.31 0.38 0.32 0.24 0.51 0.61
ITt−22 0.30 0.37 0.33 0.56 0.32 0.49 0.64 0.33 0.48 0.39
GRt−1 0.48 0.45 0.48 0.69 0.57 0.55 0.49 0.58 0.78 0.65
GRt−5 0.44 0.59 0.43 0.46 0.53 0.49 0.57 0.36 0.60 0.53
GRt−22 0.42 0.50 0.58 0.48 0.34 0.54 0.49 0.45 0.36 0.43
DEt−1 0.28 0.41 0.39 0.51 0.52 0.44 0.40 0.42 0.37 0.42
DEt−5 0.35 0.34 0.37 0.32 0.44 0.46 0.42 0.37 0.52 0.51
DEt−22 0.49 0.43 0.45 0.43 0.46 0.70 0.38 0.35 0.55 0.44
CNt−1 0.34 0.46 0.39 0.36 0.38 0.40 0.36 0.33 0.36 0.44
CNt−5 0.27 0.31 0.40 0.31 0.26 0.42 0.34 0.18 0.45 0.30
CNt−22 0.32 0.30 0.36 0.53 0.22 0.38 0.32 0.30 0.47 0.36
VIXt−1 0.14 0.14 0.14 0.14 0.13 0.15 0.11 0.12 0.17 0.10
VIXt−5 0.06 0.07 0.10 0.08 0.07 0.08 0.06 0.08 0.09 0.06
VIXt−22 0.13 0.09 0.08 0.07 0.08 0.14 0.09 0.07 0.09 0.06

Table 2.A.7 Mean strength of the lags of the news sentiments on the US sectors and selected
countries for the US companies by sector ranging from Jan. 1, 2005 to Dec. 31, 2014
(controlling for the VIX index).
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Figure 2.A.6 The overall strength of the news sentiments of sectors and countries on the
US stocks ranging from Jan. 1, 2005 to Dec. 31, 2014 (controlling for the VIX index).
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Abstract

A considerable amount of current research in finance addresses the influence of news and

social media on stock returns and volatility. Although news data are used in many applica-

tions, the mutual relationship among public announcements remains unclear. Moreover,

the majority of studies are conducted using aggregated data, which are less effective in

detecting causal links than observations of higher frequency. This paper provides evidence

of self and mutual triggering of news announcements in the financial sector. It is proposed

that the news arrival times be modelled as a multivariate Hawkes process to test the Granger

causality of company-specific news and to detect the most influential companies. Based

on this information, a novel method of constructing a composite news intensity index

(NII) is presented. The NII demonstrates the ability to timeously describe the uncertainty

in financial markets. The proposed measure Granger causes VIX at 6-month lag and can

therefore be used to diagnose the health of a financial system.
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3.1 Introduction

The increasing availability of news and social media data has attracted attention regarding

the sentiment models in the field of financial econometrics during the last decade. Special

attention has been drawn to the possibility of improving the prediction power of the

models by augmenting them with information contained in public announcements. Several

studies suggested that news data contain additional information that might be useful to

explain investors’ behaviour. Prior work in this field focused primarily on the influence of

investor sentiment on stock returns, for example, Neal andWheatley (1998), Lee et al. (1991),

Brown and Cliff (2004). More recent studies by Baker and Wurgler (2006) and Baker and

Wurgler (2007) attempted to quantify investor sentiment and measure the impact of news

announcements on stock returns. Some attempts were made with the purpose of explaining

the influence of public announcements on the volatility of stock returns, see Wang et al.

(2006), Ho et al. (2013) and Lee et al. (2002) for more details. Much of the current debate

revolves around the construction of news-based indices that would be able to predict the

future movements of the market and provide early signals of economic instability. The first

investigations in this direction were made by Shefrin (2007) and Borovkova et al. (2017).

Traditionally, the focus has always been on the direct effects of news announcements

about an asset on its returns and volatility. Audrino and Tetereva (2017) were the first

to investigate sentiment spillover effects. The authors demonstrated that returns in all

sectors are driven by sentiment from a few industries. In particular, the importance of

financial news during periods of financial instability was demonstrated. The question that

remains unanswered in the study by Audrino and Tetereva (2017) is whether financial

news is correlated with time and among companies. The debate on the contribution of an

individual company to the risk of the whole system is not new in the field. Many attempts

were made to measure the contribution of financial companies to systemic risk in terms of

returns, for example Brechmann et al. (2013), Hautsch et al. (2014) and Härdle et al. (2016).

One issue that needs to be raised is whether financial institutions are connected in terms

of public announcements, and in particular, whether there is information diffusion in the

media. Cerchiello et al. (2017) made the first attempt to measure the contagion among

financial news. In other words, their study attempted to address the question of the mutual

causality of financial news. While the authors found significant evidence of news contagion

among countries, the main limitation of their study was the low level of granularity due

to insufficient data coverage. Their analysis was performed on a monthly level, which

could have led to a deterioration in causal effects. Therefore, there is still considerable
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uncertainty with regard to news contagion among financial institutions on a daily or even

a high-frequency level.

In recent decades, research in the field of financial econometrics has provided ample

support for the assertion that one can benefit from analysing financial data at a transaction

level; more details can be found in preliminary works that Hasbrouck (1991) and Engle

and Russell (1998) carried out in the 1990s. With regard to the stock prices, the irregular

occurrences of transactions can be seen as a point process. Moreover, it was empirically

observed that transaction events are clustered over time, and durations are positively

autocorrelated. Engle and Russell (1998) made the first attempts to model durations by

means of a conditional autoregressive model; more details on duration models can be found

in Bauwens and Giot (2001) and Bauwens and Hautsch (2009). Although the autoregressive

conditional duration models by Engle and Russell (1998) and their modifications discussed

in Zhang et al. (2001) and Fernandes and Grammig (2006) gained prominent interest in the

field, a continuous time intensity based setting was shown to provide a more flexible and

powerful tool for modelling multivariate point processes. For this reason, the current study

takes advantage of multivariate Hawkes processes.

This paper contributes to the considerable amount of news sentiment-related literature

by studying the mutual excitation of the news in the financial sector at a high-frequency

level. It is proposed to uncover Granger causality in financial news data by means of

multivariate Hawkes graphs. This approach allows one to better understand the properties

of high-frequency news data and to measure the influence of individual companies on the

whole system in terms of news announcements. Based on the information extracted from

multivariate Hawkes graphs, the construction of a composite NII (news intensity index)

is proposed that can potentially be used to describe the health of a financial system. In

contrast to prior studies, this approach allows one to construct a valid index based purely

on news intensity information, and it avoids the need to compute sentiment scores. This

makes the index robust to measures such as relevance and the novelty of a topic. Moreover,

there is no need to use financial dictionaries to translate the text into numerical measures.

The performance of the index is tested by means of Granger causality, and its influence

on some real financial markets’ measures is analysed by means of an impulse response

function. The ability of the index to predict uncertainty among investors at a 6-month lag

is demonstrated.

The paper is organized as follows: Section 3.2 provides a brief overview of mutually

exciting point processes and introduces Granger causality for multivariate Hawkes graphs.

Section 3.3 describes the data and examines the properties of high-frequency observations



3.2 Hawkes process 87

that are specific for RavenPack sentiment data. The results are presented in Section 3.4.

Section 3.5 describes the way in which the results of Section 3.4 can be used to construct

the NII, and some conclusions are drawn in the final section.

3.2 Hawkes process

To measure the financial news contagion, the current study considers publishing times as

mutually exciting point processes. Before introducing the model, the essential definitions of

the considered framework are recalled. Further on, a probability space (Ω,F ,P) is assumed,

and a sequence of non-negative random variables - (ti)i∈ � such that ∀i ∈ �, ti < ti+1 -

is considered on this probability space. The process (ti)i∈ � is called a point process on

+. In this paper, ti represents the times of occurrence of news announcements. The

right continuous process is called the counting process associated with the point process

(ti)i∈�� :

N (t) =
∑

i∈��

�ti<t.

The left continuous intensity process is defined as follows:

λ
(
t
∣∣∣FN

t

)
= lim

h↓0

1
n

P
(
N(t+h)−N(t) > 0

∣∣∣FN
t

)
.

In the simplest case of a point process, the probability of occurrences of an event in (t, t+h]
does not depend on the history of the process; this type of point processes is the well-known

Poisson process. A generalization of the Poisson process is a linear self-exciting process:

λ(t) = λ0 (t)+
∫ t

−∞
h(t− s)dNs = λ0 (t)−∑

ti<t

h(t− ti) , (3.1)

where λ0 is a baseline intensity and h(·) is an excitement function that represents the

influence of the historical events on the current intensity process. Such point process is

called a Hawkes or self-exciting point process. (3.1) can be further extended to a case

when, apart from self-excitement, events of different types trigger each other. Such a

generalization is referred to as a multivariate Hawkes process. The conditional intensity of

a d-variate Hawkes process is defined as

λλλ(t) = λλλ0 +
∫ t

−∞
H (t− s)NNNds, (3.2)
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where N =
(
N1,N2, . . . ,Nd

)�
is a d-dimensional point process,λλλ0 is the vector of baseline

intensities, and H = (hi,j)1≤i,j≤d is a measurable d×d matrix-valued excitement function.

The component hi,j (t) of the matrix H (t) is called a kernel; it represents the effect of

events in component j on the intensity of the component i. The parametric kernels, and

exponential kernels in particular, have attracted considerable interest in the literature due

to the advantages of numerical computations and intuitive interpretation. Moreover, this

kernel function makes the dynamics of the Hawkes process Markovian; more details on

Hawkes processes with exponential kernels can be found in the work of Farajtabar et al.

(2014), Rasmussen and Williams (2006), Zhou et al. (2013b), Hall and Willett (2014), and Yan

et al. (2015). The power-law kernel was applied in Zhao et al. (2015). The nonparametric

estimation of the triggering kernels is desirable when the form of hi,j (t) is not known a

priori; this type of estimation was considered in Kirchner (2016), Xu et al. (2016) and Eichler

et al. (2017).

The triggering kernels play a major role in uncovering Granger causality for Hawkes

processes. The first definition of Granger non-causality for a Hawkes process appeared in

Eichler et al. (2017). The authors suggested that a type-i event does not Granger cause a

type-j event if hi,j (t) = 0 for t ∈ [0,∞), i, j = 1, . . . ,d. This definition is valid under the

assumption that dN(t−s) > 0 for 0 ≤ s ≤ t. The mutual Granger causality of a multivariate

Hawkes process can be visualized by making use of a causality graph with the set of

vertices [d] = {1,2, . . . ,d} representing event types and the set of directed edges E = V ×V
demonstrating the causality. The strength of Granger causality is usually associated with

the branching matrix A, where

Ai,j =
∫

(hi,j(t)dt)1≤i,j≤d . (3.3)

According to Embrechts and Kirchner (2016a), the effect of a branching matrix manipu-

lation of the form (3.3) can be summarized in the set of cascade and feedback coefficients,

which are defined as follows:

ci0 =
λi0
∑d

j=1 ei0,j∑d
i=1 λi

∑d
j=1 ei0,j

, i0 ∈ [d] (3.4)

and

fj = λjej,j∑d
i=1 λiei,j

, j ∈ [d] (3.5)
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with ei,j = (III −A)−1, where A is the branching matrix from (3.3) and III is a d×d matrix

with ones on the main diagonal and zeros elsewhere. The cascade coefficients (3.4) measure

the fraction of events in the system stemming from type-i events, and they are important

from a systemic point of view. Embrechts and Kirchner (2016a) pointed out that event

types with ci > 1
d have large impacts on the whole system. The feedback coefficients (3.5)

indicate how much of the total intensity experienced by a type-j event is due to its own

past activity.

There are two possible ways in which to estimate the branching matrix (3.3) and

consequently the cascade and feedback coefficients. The most well-known approach is to

estimate the baseline intensities and the excitement function based on (3.2). More recent

studies, for example, Achab et al. (2016) and Clements et al. (2017), proposed avoiding the

estimation of the whole multidimensional Hawkes process and, instead, estimating the

branching matrix (3.3) directly by matching the integrated cumulants of the process that

Jovanović et al. (2015) presented. The latter method is often preferred when the causality

relationships between the different types of events of the process are of particular interest.

However, this approach does not prevent the kernels from having negative values. Some

numerical experiments demonstrated that the obtained estimates are often not feasible

from a theoretical point of view. Therefore, the current study focuses on the full estimation

of a multivariate Hawkes process.

Initial work in the field of the estimation of Hawkes processes, for example, Ogata and

Akaike (1982), focused primarily on the maximum likelihood estimator. In this case, the

parametric form of the kernel function needs to be specified in advance; however, this might

be too restrictive in practical applications. As mentioned above, the usual choice of kernel

is the exponential function due to its remarkable advantage in computational costs. Some

attempts were made with the purpose of replacing triggering kernel functions with their

nonparametric versions. For example, Zhou et al. (2013c) suggested estimating the triggering

kernels from the data by replacing the parametric kernels with a linear combination of

the base kernels. The usual choices for the base kernel discussed in the literature are the

exponential and Gauss kernels. Moreover, the nonparametric kernel method by Zhou et al.

(2013c) was further developed in Zhou et al. (2013a) by including the penalty terms in

the likelihood function, and Xu et al. (2016) implemented the penalized nonparametric

likelihood function to define and estimate the Granger causality in multivariate Hawkes

graphs.

The current work implements another nonparametric procedure to estimate the Granger

causality in the multivariate Hawkes process introduced by Embrechts and Kirchner (2016a).
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The authors demonstrated that the Hawkes process can be represented as an integer-valued

autoregressive (INAR) time series process. It is shown that for a piecewise continuous

function h : �→ �
+
0 with h(t) = 0, t ≤ 0, satisfying

∫
h(t)dt < 1, constants δ > 0 and

K̃ < 1 exist such that

K(Δ) = Δ
∞∑

i=1
h(kΔ) ≤ K̃ < 1 for any Δ ∈ (0, δ) . (3.6)

Applying the result (3.6), the authors demonstrate that for Δ → 0,

N (Δ) (A) =
∑

k:kΔ∈A

X
(Δ)
k

w→ N , A ∈ B, Δ ∈ (0, δ) , (3.7)

where N is a Hawkes process with immigration intensity λ and reproduction intensities h,(
X

(Δ)
n

)
is the corresponding INAR (∞) sequence, and B is a Borel set on �.

Expression (3.7) means that the sequence
(

X
(Δ)
n

)
with immigration parameter Δλ and

reproduction coefficients Δh(kΔ) and k ∈� approximates the bin-count sequences of the

considered Hawkes process. The proofs of the above-mentioned results can be found in

Kirchner (2016).

In practice, the sample from the Hawkes process described in (3.2) on the time interval

(0,T ] is considered. The timeline is divided into bins of size Δ > 0, and the following

sequence is constructed:

X
(Δ)
k = N

(
((k −1)Δ,kΔ]

)�
, k = 1,2, . . . ,n. (3.8)

(3.8) represents the number of observations per bin of point process data with n = � T
Δ�.

Given representation (3.8), the autoregressive parameters of the sequence
(

X
(Δ)
n

)
are

estimated as

(
α̂

(Δ)
0 , α̂

(Δ)
1 , . . . , α̂(Δ)

p

)
= arg min(

α̂
(Δ)
0 ,α̂

(Δ)
1 ,...,α̂

(Δ)
p

) n∑
k=p+1

(
X

(Δ)
k − α̂

(Δ)
0 −

p∑
l=1

α̂
(Δ)
l X

(Δ)
k−l

)2

, (3.9)

k = 1,2, . . . ,p. The estimates of the immigration and reproduction intensities of the original

process (3.2) can be computed from (3.9), namely, λ̂0 = α̂
(Δ)
0
Δ and ĥk = α̂

(Δ)
k
Δ .

The multivariate Hawkes estimator is consequently defined as

Ĥ(Δ) = 1
Δ
(
Z�Z

)−1
Z�Y , (3.10)
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where Y
(

X
(Δ)
1 , . . . ,X

(Δ)
n

)
=
(

X
(Δ)
p+1,X

(Δ)
p+2, . . . ,X

(Δ)
n

)�
with p = � s

Δ� being the order of

the considered INAR process and Z
(

X
(Δ)
1 , . . . ,X

(Δ)
n

)
being the design matrix:

Z
(

X
(Δ)
1 , . . . ,X(Δ)

n

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
X

(Δ)
p

)� (
X

(Δ)
p−1

)�
. . .

(
X

(Δ)
1

)�
1(

X
(Δ)
p+1

)� (
X

(Δ)
p

)�
. . .

(
X

(Δ)
2

)�
1

. . . . . . . . . . . . . . .(
X

(Δ)
n−1

)� (
X

(Δ)
n−2

)�
. . .

(
X

(Δ)
n−p

)�
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.11)

It is important to note that the individual elements of the matrix Ĥ =
(
Ĥ1, . . . , Ĥp, λ̂0

)�

from (3.10) approximate the excitement functions or triggering kernels, i.e.

Ĥk =

⎛⎜⎜⎜⎝
ĥ1,1(kΔ) ĥ1,2(kΔ) . . . ĥ1,d(kΔ)
ĥ2,1(kΔ) ĥ2,2(kΔ) . . . ĥ2,d(kΔ)

. . . . . . . . . . . .
ĥd,1(kΔ) ĥd,2(kΔ) . . . ĥd,d(kΔ)

⎞⎟⎟⎟⎠ . (3.12)

Kirchner (2016) demonstrated that for a large T , a large p and a small Δ, the elements of

Ĥ are approximately jointly normally distributed around the true values. Moreover, the

covariance matrix of vec
(
Ĥ�) can be consistently estimated as

Ŝ2 = 1
Δ2

[(
Z�Z

)−1 ⊗�d×d

]
W
[(

Z�Z
)−1 ⊗�d×d

]
, (3.13)

where W =∑n
k=p+1 wkw�

k and

wk =
(((

X
(Δ)
k−1

)�
,
(
X

(Δ)
k−2

)�
, . . . ,

(
X

(Δ)
k−p

)�
,1
)�

⊗�d×d

)
·
(
X

(Δ)
k −Δλ̂−

p∑
l=1

ΔĤ�
l X

(Δ)
k−l

)
,

(3.14)

where k = p+1,p+2, . . . ,n.

The results presented above enable the estimation of the elements of the branching

matrix: ai,j =
∫

hi,j(t)dt is estimated as âi,j = Δ∑p
k=1 ĥi,j (kΔ). Moreover, the estimate of

the covariance matrix given in (3.13) makes it possible to test whether âi,j , i, j = 1, . . . ,d is

significantly larger than 0 and whether i-type events Granger cause j-type events. This

allows one to identify the non-causality of different types of events of a multivariate Hawkes

process. As a result, a Hawkes graph G = (V ,E), with the adjacency matrix equal to the
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branching matrix of the corresponding Hawkes process, can be constructed. If ai,j > 0,
then an i-type event belongs to the set of the parent nodes of a j-type event, i.e., i ∈ PA(j).

The choice of two parameters could potentially influence the quality of the estimator

(3.9), namely the choice of the bin width Δ and the order p of the corresponding autore-

gressive process. Embrechts and Kirchner (2016b) pointed out that the choice of Δ does

not heavily influence the estimation of Granger non-causality due to the available testing

procedure. In contrast, the quantitative estimation of the branching matrix requires Δ to be

small enough and p to be large enough. The authors recommend choosing Δ such that the

expected number of observations within the intervals is equal to 1, and they state that the

choice of p is less important. In the first step, Embrechts and Kirchner (2016b) recommend

choosing quite a large Δ to find the non-zero elements of the branching matrix or the

so-called skeleton of the Hawkes graph. The Hawkes skeleton estimator is given by the

following set of edges:

Ê = {(i, j) ∈ [d]2 : âi,j > σ̂i,jz
−1
1−α}, (3.15)

where z−1
1−α is the quantile of a standard normal distribution, and

σ̂2
i,j = Δ2E�

(i−1)d+j,·Ŝ
2E(i−1)d+j,·.

Ŝ2 is given in (3.13) and El is the l-th row of matrix E ∈ {0,1}d2×(d2p+d), which consists of

zeros and ones in row (i−1)d+ j at entries (k −1)d2 +(i−1)d+ j, k = 1,2, . . . ,p. Advice

for the next step, is to choose a much finer Δ and to regress the number of observations per

bin only on the past observations of the corresponding parent nodes. In practice, the size

of the edge set of the Hawkes skeleton is much smaller than d2. This makes the procedure

computationally tractable in a high-dimensional setting.

3.3 The data

The analysis of this paper focuses on RavenPack News Analytics – Dow Jones Edition.

RavenPack is one of the leading providers of real-time news analysis. The data contained

in the Dow Jones Edition measures news sentiment and news flow based on Dow Jones

Newswires, the Wall Street Journal, Barron’s and Marketwatch. The dataset is based on a

linguistic analysis of large volumes of articles that contain the world’s best business and

financial news. In the current study, only news-based sentiment scores were considered;

they refer to mainstream media and account for the stories produced by reputable sources.
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year company min q0.25 median mean q0.25 max
2005 Morgan Stanley 2.00 30.00 44.00 41.76 54.00 102.00

HSBC 1.00 18.00 23.00 26.27 30.00 185.00
Deutsche Bank 1.00 18.00 22.00 22.00 27.00 70.00
Credit Suisse Group 1.00 12.00 17.00 17.41 22.00 50.00
Bank of China 1.00 2.00 3.00 3.71 5.00 34.00

2010 Morgan Stanley 2.00 46.00 60.00 63.10 82.00 182.00
HSBC Holdings 1.00 28.00 38.50 48.54 52.25 902.00
Deutsche Bank 1.00 21.00 29.00 28.64 37.00 80.00
Credit Suisse Group 1.00 23.00 31.00 32.62 40.00 175.00
Bank of China 1.00 1.00 2.00 3.18 4.00 19.00

2015 Morgan Stanley 2.00 72.00 128.00 126.00 172.00 314.00
HSBC Holdings 1.00 48.00 59.00 60.06 71.00 417.00
Deutsche Bank 1.00 31.00 42.00 43.41 55.00 130.00
Credit Suisse Group AG 1.00 15.00 20.00 19.87 26.00 50.00
Bank of China 1.00 1.00 2.00 2.79 3.00 20.00

Table 3.1 Summary statistics for the number of daily news announcements for selected
companies (q0.25 and q0.75 are the first and the third quartiles correspondingly).

Figure 3.1 The relative frequency of the news announcements.

The quality of social media announcements varies significantly; therefore, this source of

information was not used for the analysis. It is important to note that real-time analytics

makes it possible to take into account the data of news intensity. Each Dow Jones Edition
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Figure 3.2 Barcode plots of the Deutsche Bank-related negative (upper panel) and positive
(lower panel) CSSs from Jan. 1, 2007 to Dec. 31, 2007.

Figure 3.3 The relative frequency of the negative, neutral and positive Morgan Stanley-
related news announcements versus time of day.

record contains 48 fields, including a timestamp; company identifiers; scores for relevance,

novelty, market impact and sentiment; and unique identifiers for each news story that was

analysed. Furthermore, one piece of news can concern several companies.

As Audrino and Tetereva (2017) demonstrated, the financial sector-related news has the

strongest impact on the stock returns of all sectors. Therefore, the mutual excitation of news

on financial companies is of particular interest. In the studies by Brechmann et al. (2013)

and Härdle et al. (2016), the set of influential (in terms of returns) financial institutions was

presented. Some companies from this set were selected for the given study, while others
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were omitted due to the lack of corresponding news observations – the complete list of

included companies is provided in Section 3.4. The analysis focuses on the panel of these

companies for the time period between January 1, 2005 and December 31, 2016. In the

remaining part of the section, the main characteristics of high-frequency news data and

the preparation of the data for further analysis are discussed in greater detail.

The timestamps of the announcements were calculated in milliseconds, and the data are

real-time. As the records are based on originally published messages, the frequency of the

data strongly depends on the underlying equity. Table 3.1 presents the summary statistics

of the number of daily news announcements. It is apparent that the frequency of news

differs from company to company and demonstrates a steady increase from 2005 to 2015.

For example, the mean number of Morgan Stanley announcements increased from 41.76 to

126 over the considered time period. Figures 3.1 and 3.2 demonstrate the characteristics of

high-frequency news announcements in more detail. There is a clear presence of weekly

and daily seasonality in the data, and the intensity of news announcements over weekends

is much lower. Furthermore, periods such as holidays have rates of news intensity that

are below the average. On the contrary, an increase in the rate at periods of quarterly

releases is observed. The current analysis is based on the timestamps of the RavenPack

composite sentiment score (CSS). This score was chosen because of the larger number of

observations available, while other scores are provided for significantly smaller numbers of

announcements. For example, the event sentiment score (ESS) was calculated only for 3%

of all announcements that mentioned Morgan Stanley during the time period from 2005 to

2016. The CSS is a score between 0 and 100 that represents the news sentiment of a given

story by combining various sentiment analysis techniques. Observations with score values

larger than 50 were considered as positive signals, whereas negative signals were associated

with a CSS smaller than 50. News announcements with a CSS equal to 50 were considered

to be neutral. The direction of the score was determined by looking at emotionally charged

words and phrases. It is important to note, that most announcements of a given data set are

neutral. For example, 63% of all Morgan Stanley-related announcements correspond to a

CSS equal to 50.

In contrast to other studies – for example, Hsuan (2017) – the CSS data do not exhibit

more positive scores in the morning. Hsuan (2017) stated that news sentiment is mostly

positive at the beginning of the trading day, which means that investors start the new

trading day with optimistic expectations. Figure 3.3 demonstrates the hourly relative

frequencies of negative, neutral and positive scores for Morgan Stanley for the time period

between 2005 and 2016, and it suggests that a change in the CSS occurs mostly at noon.
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This pattern is more pronounced for the positive and neutral CSSs and less evident for

negative ones.

Figure 3.2 illustrates the arrival times of the positive and negative news for Deutsche

Bank for the year 2007. A line represents each event; the vertical axis in this plot is for

visualization only and has no further meaning. It is possible to assess the visible clusters of

news arrival times from the plot – some of them are due to seasonality, which is discussed in

the rest of this section, while the others provide convincing evidence of the contribution of

previous events to the current intensity. On the basis of the empirical evidence available, it

seems fair to suggest that Hawkes processes might be useful tools for better understanding

and modelling of the news arrival processes.

One way in which to handle the observed weekly seasonality is to exclude all weekend

news from the analysis. However, the objective of this paper is to study themutual excitation

of news announcements, and some important releases could potentially appear outside the

usual business hours. For transaction data, it is well known that the frequency of trading

is higher near the open and the close of market, and slightly longer durations are usually

observed around noon. Such effects are not found in news announcement data. From Figure

3.1, it can be seen that the intensity of news releases is higher around noon, and another

minor increase in intensity appears at approximately 8 PM.

As mentioned in Engle and Russell (1997), in the context of the autoregressive condi-

tional duration models, the expected durations can be decomposed into deterministic and

stochastic components. The stochastic component can then be considered as a proxy for the

relative news activity. Engle and Russell (1997) proposed seasonally or diurnally adjusting

the data first and then fitting the model to the data, and Grammig and Maurer (2000) and

Zhang et al. (2001) mentioned the same approaches. Durations are divided by the estimated

daily cyclical component, and the seasonality adjustment is commonly made by estimating

the seasonal component using nonparametric regression methods, for example, splines, a

Fourier series or Nadaraya-Watson regression; more details on nonparametric regression

methods can be found in the work of Wasserman (2006). As is evident from both Figure

3.1 and the barcodes presented in Figure 3.2, there are two main types of seasonality in

the news time series: daily and weekly. Following Hautsch (2004), the durations of news

announcements were adjusted by applying cubic splines. The deterministic component

was captured by the diurnal factor function, which is obtained by fitting cubic splines. The

resulting diurnally adjusted duration was thus obtained by dividing the original duration

by the diurnal factor associated with the time point at which the news occurred. Due to the

dual nature of seasonality in the news time series, the adjustment was made in two steps.
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Figure 3.6 The total number of outgoing edges corresponding to the nodes representing
Royal Bank of Scotland, Citigroup, Wells Fargo, UBS Group, Credit Suisse, Deutsche Bank.

studies on contagion effects in stock returns, for example, Brechmann et al. (2013) and

Härdle et al. (2016). For such a long time period, it can not be assumed that the systemic

contribution of each individual company remains unchanged over time. For this reason, a

rolling window analysis was performed. The size of the window was chosen to be 200 days,

which is standard for the dynamic modelling literature. Moreover, the chosen size of the

window allows for ample observations for the estimation procedure for each company.

To assess the influence and evaluate the news diffusion among financial companies,

the methodology described in Section 3.2 was used. Furthermore, to approximate the

Hawkes process with the INAR(p) process and consequently learn the Granger causality for

a Hawkes graph, one needs to select the size of the bin Δ and the order of the autoregressive

process. As suggested in Embrechts and Kirchner (2016b), Δ was chosen to ensure that

the mean value of the observations in a bin is equal to 1. This parameter was fixed for

the first and second steps of the estimation procedure. The first step of the estimation

involves the estimation of the Hawkes skeleton. In other words, in the first step, one is
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.7 The estimated baseline intensities and estimated cascade coefficients for selected
companies.
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company ticker casc sd(casc) feed sd(feed)

Barclays BARC 0.106 0.169 0.283 0.260
Citigroup C 0.104 0.155 0.299 0.276
UBS UBS 0.077 0.179 0.349 0.309
Morgan Stanley MS 0.071 0.106 0.274 0.265
HSBC Holdings HSBC 0.055 0.084 0.431 0.362
Wells Fargo WFC 0.053 0.084 0.227 0.237
Bank of America BA 0.046 0.089 0.239 0.245
Deutsche Bank DB 0.044 0.078 0.247 0.251
Credit Suisse CS 0.038 0.076 0.240 0.247
JPMorgan Chase JPM 0.030 0.059 0.252 0.256
Goldman Sachs GS 0.025 0.045 0.225 0.240
Credit Agricole ACA 0.025 0.044 0.220 0.269
ING ING 0.019 0.039 0.261 0.311
State Street STT 0.018 0.035 0.217 0.290
Bank of China 3988 0.018 0.029 0.263 0.315
Sumitomo SUMA 0.016 0.031 0.214 0.284
Nordea Bank NDB 0.016 0.038 0.193 0.238
Societe Generale GLE 0.016 0.032 0.219 0.275
Mitsubishi UFJ MTUN 0.015 0.043 0.183 0.266
Dexia DEXB 0.015 0.040 0.236 0.303
UniCredit UCGR 0.013 0.028 0.248 0.313
Standard Chartered STAN 0.011 0.021 0.271 0.323
Zions ZION 0.011 0.016 0.279 0.356
Fifth Third Bancorp FITB 0.010 0.027 0.204 0.275
Westpac Banking WBC 0.009 0.019 0.231 0.285
Commerzbank CBK 0.009 0.023 0.243 0.302
BB&T BBT 0.009 0.023 0.189 0.262
Banco Bilbao BBVA 0.009 0.019 0.207 0.263
Lloyds Banking LYG 0.009 0.018 0.200 0.269
Intesa Sanpaolo ISP 0.008 0.019 0.235 0.324
China Construction Bank UBRA 0.008 0.015 0.239 0.306
BNP Paribas BNP 0.007 0.014 0.198 0.231
Industrial & Commercial Bank of China ICK 0.007 0.013 0.236 0.327
Huntington Bancshares HBAN 0.006 0.018 0.170 0.289
Royal Bank of Scotland RBS 0.006 0.012 0.269 0.336
M&T Bank MTB 0.005 0.009 0.234 0.336
Regions Financial RF 0.005 0.010 0.199 0.288
Mizuho Financial Group MFG 0.005 0.012 0.236 0.295
Banco Santander SAN 0.005 0.024 0.165 0.332
KeyCorp KEY 0.004 0.009 0.227 0.336
Northern Trust NTRS 0.004 0.008 0.183 0.217
Sumitomo Mitsui Banking 8316 0.002 0.005 0.391 0.476
Cullen/Frost Bankers CFR 0.002 0.004 0.187 0.342
BOK Financial 939 0.001 0.003 0.309 0.435
People’s United Financial PBCT 0.000 0.003 0.190 0.344

Table 3.2 Mean values and standard deviations of the cascade coefficients (casc) (3.4) and
the feedback coefficients (feed) (3.5).

interested in detecting the set of parent nodes for each node, and this allows the strength

of the connections among the nodes to be misspecified. In the current study, s was fixed at

a value equal to 3 days in the first step, and p was consequently computed as � s
Δ�. Here, it
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is important to note, that the set of parent nodes was found by applying the (3.13)-based

testing procedure described in Section 3.2. As mentioned in Embrechts and Kirchner (2016b),

this procedure is robust to the choice of p.

The skeletons containing 45 nodes were estimated using 200-day rolling windows. The

minimum number of non-zero edges corresponded to March 18, 2014, while the most

connected skeleton was estimated for October 11, 2007. The corresponding skeletons are

displayed in Figures 3.4 and 3.5. The size of the node is proportional to the number of

outgoing edges. From the estimated Hawkes graphs, it can be seen that US banks are

interconnected the most. Other outgoing edges are mostly generated by UK banks, the

Deutsche Bank and UBS. The company names corresponding to the tickers used in these

figures are presented in Table 3.2. From the rolling window analysis, it was evident that the

number of connections within the skeleton changes significantly over time. For example,

Figure 3.6 considers the number of the outgoing edges corresponding to the banks with the

largest losses during the 2008 crisis. The chosen set of companies contains mainly European

companies. Therefore, it was observed that the number of outgoing connections increased

during the European sovereign debt crisis in 2010 and Brexit voting in 2016. The Madoff

investment scandal is another possible explanation for the increasing connectivity among

financial companies in late 2008.

After estimating the skeleton and reducing the number of parent nodes for each company,

it was possible to estimate the weights of the edges more precisely. The value of Δ was

left unchanged to ensure that the mean number of observations in a bin is equal to 1.

The parameter s was set to 7 days, and p was computed as � s
Δ�. In this way, the potential

influence of events within the last week is taken into account. After estimating the branching

matrix (3.3), the cascade (3.4) and the feedback (3.5) coefficients could be computed. As

mentioned above, the cascade coefficients measure the contribution of each individual

company to the whole news intensity of the system; the feedback coefficients demonstrate

the proportion of that intensity caused by the past events of the corresponding company

itself. Table 3.2 presents the mean values and standard deviations of the cascade and

feedback coefficients over a period of 12 years. As stated in Embrechts and Kirchner (2016b),

the events with cascade coefficients greater than 1
d , where d is the dimension of the data

set, can be considered to be systemically important. In the case of d = 45, companies with a

cascade coefficient greater that 0.022 significantly influence the news intensity of the whole

system. Such companies are marked in bold in Table 3.2.

Generally speaking, evidence of systemic influence in terms of news was found for

US and UK financial institutions, and the highest mean value of the cascade coefficient
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corresponded to Barclays and Citigroup. Apart from US and UK banks, UBS seemed to

influence news diffusion in the whole system. Empirical evidence of the importance of news

about Deutsche Bank was found, while no significant patterns were found for the feedback

coefficients. However, the mean values of the feedback coefficients for all companies were

much smaller than 1. This means that financial institutions are connected to each other

in terms of news information diffusion, and the news intensity of a company can be only

partially explained by the past news arrivals of the company itself.

It is important to note that the mean values presented in Table 3.2 are taken over a

period of 12 years and should therefore be interpreted carefully. Figure 3.7 presents the

rolling window results for selected companies. In the remaining part of the section, the

permanent importance of some companies and the information flow generated by the group

of vulnerable banks are explained. Contrary to intuition, the baseline intensities do not grow

constantly over time, despite the constantly increasing volumes of information available.

Moreover, the increasing baseline intensity does not necessarily lead to greater influence

of a company on the whole system. For example, the increase in the baseline intensity of

news related to Lloyds Bank corresponds to January 19, 2009 – during that period, after

long discussions Lloyds took over HBOS, and this event generated a spike in the baseline

intensity of that bank (Figure 3.7(a)). However, the exploding baseline intensity had a minor

impact on the corresponding cascade coefficient (Figure 3.7(d)). The Deutsche Bank is

another systemically important European bank . The first peak of the baseline intensity of

Deutsche Bank news corresponds to the global financial crisis in 2008, and the second peak

relates to the breaking news on Brexit (Figure 3.7(b)). Moreover, in this case, the increase in

the baseline intensity can be matched to the increasing cascade coefficients (Figure 3.7(e)).

Figures 3.7(c) and 3.7(f) depict the estimated baseline intensity and cascade coefficients for

UBS. This bank is considered to have suffered much during the global financial crisis, and

the slowly decaying cascade coefficient is evidence of this fact. Moreover, the peak of the

baseline intensity corresponding to the UBS tax evasion controversy is observed in early

2008. The stabilisation of UBS, starting from 2009, resulted in the decaying baseline intensity

and moderate cascade coefficients. Figures 3.7(h) and 3.7(k) offer clear evidence of the

intense systemic influence of Barclays. The spike in the corresponding cascade coefficient

can be related to LIBOR manipulations by Barclays and the Deutsche Bank in 2012. It

is important to note that the cascade coefficient began to grow before Barclays-related

troubles. This means that in particular cases, the increasing influence of firm-specific news

announcements can be seen as early warning signals of coming instability. The detailed

rolling windows analysis for HSBC and Morgan Stanley is presented in Figure 3.7. It is
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apparent that the first peak of the cascade coefficient corresponds to the report of record

earnings of a British bank, while the second peak might be related to the discussion on

Brexit voting. The increase in the influence of Morgan Stanley in 2011 might be explained

by the fact that Morgan Stanley had to pay out multiple fines to settle lawsuits initiated

by regulators. The detailed analyses for all companies are available from the author upon

request.

3.5 Application – building a news intensity index

lag NII → VIX NII → price NII → volume VIX → NII
1 0.0302 0.0087 0.0326 0.1600
2 0.0101 0.0016 0.0439 0.0889
3 0.0179 0.0062 0.0305 0.0750
4 0.0360 0.0223 0.0038 0.1116
5 0.0365 0.0347 0.0052 0.1135
6 0.0497 0.0116 0.0084 0.0871

Table 3.3 Granger causality between the NII and VIX, S&P 500 price and volume (monthly
data).

One of the objectives of financial economics is to construct market indices. On the

one hand, such statistical measures are of obvious interest to policy makers. On the other

hand, some market indices allow for the diagnosis of the health of a financial system as

a whole. The construction of early warning indicators of distress gained more attention

in academia and the industry after the global financial crisis. Most research in this area is

devoted to systemic risk measures. Among others, measures such as SRISK (a conditional

capital shortfall measure of systemic risk) by Brownlees and Engle (2016) and CoVaR

(conditional Value at Risk) by Adrian and Brunnermeier (2016) are of particular importance.

The composite SRISK index is constructed to describe the overall risk of a financial system,

and it measures the total amount of capital that a government would have to provide in

the case of financial stress. This measure can be used to monitor the system and detect

early signs of financial instability. On the contrary, CoVaR measures the contribution of

an individual company to the risk of the whole system in terms of Value at Risk. Another

popular index for the stability of financial systems is VIX, which is the expected market

variance of the S&P 500. This index is often called a ’fear index’ as it reflects uncertainty

and variance risk premium.

All the above-mentioned indices are based on the observations originating from the

asset market. However, recent findings in the sentiment literature illustrate that stock prices
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Figure 3.8 NII vs. VIX (weekly data).

(a) NII → VIX (b) NII → price (c) NII → volume

Figure 3.9 The impulse response function ( VAR[1], weekly data) – NII on VIX and S&P500
price and volume.
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(a) VIX → NII (b) price → NII (c) volume → NII

Figure 3.10 The impulse response function ( VAR[1], weekly data ) – VIX and S&P 500 price
and volume on the NII.

Figure 3.11 Granger causality test – p-values for NII against VIX (left), NII against S&P 500
price (center) and VIX against NII (right) (monthly data).

are often driven by information rather than reality. Therefore, news- and media-based

indicators could be of particular importance for predicting the stability of a financial system.

One of the attempts to construct a news-based index is referred to as sentiment-based

systemic risk indicator (SenSR) by Borovkova et al. (2017). It is a composite index, which

accounts for the sentiments of important financial companies. The main advantage of this

index is its Granger causality to other indices, such as SRISK and VIX, and its ability to

detect early signals of financial stress. The main limitation of SenSR is that its performance

heavily depends on the selection of the weights for individual companies in the composite

index. Weights that are proportional to the leverage, market value or debt have been

proposed by the authors. Moreover, the sentiment indices for individual companies should



3.5 Application – building a news intensity index 106

be calculated by taking into account the novelty, relevance and other characteristics of

firm-specific news announcements.

Apart from the usefulness of the sentiment indices, the predictive power of news

intensity is widely discussed in the literature. For example, Sidorov et al. (2013) demonstrated

that the GARCH model, augmented by the daily number of press releases on a stock, has

more predictive power. Moreover, as has been demonstrated in Section 3.4, the health of a

financial system could be alternatively measured in terms of the news intensity. It has been

observed that the intensity of firm-specific announcements is significantly higher around

stress events. Therefore, the weighted average baseline intensity can be seen as a proxy for

panic among traders. However, the increasing intensity of firm-specific announcements

does not necessarily lead to the spread of distress to other financial institutions. The

influence of a company in the system can be described by means of cascade coefficients

(3.5). It is important to note that, in general, cascade coefficients are not proportional to the

baseline intensity of firm-specific announcements or the size of the company. In this paper,

the construction of a news intensity index (NII) is suggested as the weighted average of the

baseline intensities, with the weights being equal to the cascade coefficients:

NII =
∑
i∈I

ci · λ̂std
i , (3.16)

where I = {i : ci > 1
d}, λ̂std

i is the standardised estimated baseline intensity, and d is the

number of companies. Only the systemically important companies with cascade coefficients

larger than 1/d are taken into account when the index is constructed. The advantage of the

proposed news index (3.16) is that it considers only news arrival times, and it is still valid

for characterising and predicting the health of a financial system. This allows one to avoid

the calculation of the firm-specific sentiment index of each announcement.

For illustrative purposes, the NII for the US market is considered. Country-specific or

industry-specific news intensity based indices can be analogically constructed. The upper

panel of Figure 3.8 displays the NII for the US financial sector, which has been constructed

based on the news intensities of US companies from Table 3.2. The lower panel of Figure

3.8 presents the closest benchmark of the proposed news index in terms of the mood of the

traders. It is observed that the NII had more predictive power during the global financial

crisis. Moreover, it was able to mimic the uncertainty of the market participants around

Brexit voting and during the debt problems of European banks.

To test the predictive power of the NII for VIX, S&P 500 volume and S&P 500 price,

several formal tests are conducted. First, the impulse response functions are studied. The
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results are presented in Figure 3.9. It can be concluded that NII has a significant positive

impact on VIX and S&P 500 volume, and it negatively influences S&P 500 price. The

influence of the NII on VIX and S&P 500 volume is significant for approximately a one-

year period. The confidence intervals are constructed according to Hafner and Herwartz

(2009), which allows one to correct for potential heteroscedasticity and autocorrelations. In

contrast, VIX, S&P 500 price and volume do not significantly affect the proposed NII; this

can be seen as proof that the NII contains novel information, affording more accurate and

timely signals of market instability.

In addition to the analysis of the impulse response function, the Granger causality test

is conducted. In this section, the original definition of the Granger causality introduced

by Granger (1969) is used. Table 3.3 presents the p-values of the corresponding F -test for

the monthly data. Lower granularity is used here to test for the Granger causality of a

longer time period. It is concluded that the proposed NII measure Granger causes VIX

and the price and volume of the S&P 500 at a 5% significance level at time lags up to six

months. The opposite is not true; past values of VIX do not contain information that helps

to predict NII values beyond the information contained in past values of the NII alone. For

illustrative purposes, the corresponding p-values are graphically presented in Figure 3.11.

It is observed that the predictive power of the NII is slowly decaying; however, it is still

significant at a 6-month lag. Black points indicate the lags that are significant at a 5% level,

and red points correspond to non-significant lags. In summary, the introduced NII contains

timely information about the mood of market participants, and it can be used as an early

warning signal of distress in other indicators.

Conclusion

This paper highlighted the importance of studying news data at higher frequencies than

weekly or daily. It was suggested to model the news arrival times by means of multivariate

Hawkes processes. This approach provided a new method for assessing the systemic

importance of an individual company in the news diffusion process.

RavenPack sentiment data from January 1, 2005 to December 31, 2016 have been used

to study the nature of real-time news. Empirical evidence has been found that news arrival

times are triggered by the past values of both a company itself and other companies. This

empirical finding adds to a growing body of literature on sentiment analysis by indicating

that financial companies are contagious to each other in terms of news.
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On average, it has been found that US and UK financial companies are spreading news to

other countries. The strong influence of UBS and Deutsche Bank is also identified. The most

remarkable result to emerge from the data is that several companies drive the news diffusion

process. With a few exceptions, the obtained results have reveal that the mutual Granger

causality of the news arrival process dominates the autoregressive component. In other

words, the news arrival process of a company is triggered by news about other companies.

Another interesting finding is that in analogue to stock returns, mutual dependencies of

news arrival times are higher during times of instability.

This finding might have broad applications. The present study suggests using the

obtained cascade coefficients as the weights to construct the composite news intensity

index (NII) for the US market. The advantage of the proposed measure is that it uses only

the intensity of the news as an input and avoids the step of measuring the relevance or

sentiment of announcements. This makes the index robust with regard to the choice of

dictionary and the computations of novelty and relevance.

The relevance of this index was supported by analysing its Granger causality to VIX

and S&P 500 price and volume. The NII’s predictive power has been demonstrated for these

indicators at a 6-month lag. Therefore, the proposed index provides timely information

about the mood of traders and the health of the financial system. Moreover, this result

might be of obvious interest to policy makers as it provides an early warning signal of the

future changes in the market.

There is much room for further progress in constructing news intensity indices for

different countries and industries. More research is required to better understand whether

the proposed index can be improved by distinguishing between positive and negative signals

originating from the news. Moreover, it would be interesting to include the constructed

index into time series models or to study whether the use of the index can enhance trading

strategies.
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