
machine learning &

knowledge extraction

Article

A Survey of ReRAM-Based Architectures for
Processing-In-Memory and Neural Networks

Sparsh Mittal ID

Department of Computer Science and Engineering, IIT Hyderabad, Telangana 502285, India; sparsh@iith.ac.in or
sparsh0mittal@gmail.com

Received: 15 March 2018; Accepted: 26 April 2018; Published: 30 April 2018
����������
�������

Abstract: As data movement operations and power-budget become key bottlenecks in the design
of computing systems, the interest in unconventional approaches such as processing-in-memory
(PIM), machine learning (ML), and especially neural network (NN)-based accelerators has
grown significantly. Resistive random access memory (ReRAM) is a promising technology for
efficiently architecting PIM- and NN-based accelerators due to its capabilities to work as both:
High-density/low-energy storage and in-memory computation/search engine. In this paper,
we present a survey of techniques for designing ReRAM-based PIM and NN architectures.
By classifying the techniques based on key parameters, we underscore their similarities and
differences. This paper will be valuable for computer architects, chip designers and researchers
in the area of machine learning.

Keywords: review; memristor; resistive memory; artificial intelligence; machine learning; deep learning;
hardware architecture; processing-in-memory; non-volatile memory; emerging memory technology

1. Introduction

In recent years, the interest in machine learning and especially neural-network based techniques
has grown significantly. Since conventional processing units such as CPUs and GPUs do not
match the characteristics of machine learning (ML) algorithms, researchers have proposed novel
hardware architectures for accelerating these algorithms [1]. On the processor front, the von-Neumann
style compute-centric architectures are become increasingly constrained by data movement energy
and memory bandwidth, since the data movement between the core and off-chip memory incurs
∼100× higher energy than a floating-point operation [2,3]. To address this issue, researchers have
proposed “processing in/near memory” (also called near-data processing) whereby the computation
logic is placed inside memory or the characteristic of memory itself is exploited for performing
computations [4,5]. This approach avoids data movement completely and, thus, promises to break the
memory wall.

For design of ML accelerators and processing-in-memory (PIM) solutions, emerging memories,
such as resistive RAM (ReRAM) offer distinct advantages over conventional CMOS (complementary
metal–oxide–semiconductor) based designs [6,7]. In the CMOS-based approach, modeling a neuron
requires tens of transistors. In addition, SRAM (static random access memory) is a volatile memory
with high leakage energy [8] and, since SRAM does not efficiently support a wide range of operations in
memory, SRAM-based designs such as TrueNorth [1] use separate logic for performing computations.
By comparison, ReRAM is a non-volatile memory with near-zero leakage energy and high density.
The ReRAM state reflects the current passed through it in the history and this is very useful
for modeling the synaptic weights of neurological synapses and implementing neural network
(NN) architectures [9–11]. In addition, ReRAM supports operations such as analog matrix-vector
multiplication (MVM), search and bitwise operations within memory which facilities energy-efficient

Mach. Learn. Knowl. Extr. 2019, 1, 75–114; doi:10.3390/make1010005 www.mdpi.com/journal/make

http://www.mdpi.com/journal/make
http://www.mdpi.com
https://orcid.org/0000-0002-2908-993X
http://dx.doi.org/10.3390/make1010005
http://www.mdpi.com/journal/make
http://www.mdpi.com/2504-4990/1/1/5?type=check_update&version=2

Mach. Learn. Knowl. Extr. 2019, 1 76

accelerator design. For example, since the CONV (convolution) operation in convolutional neural
networks (CNNs) involves MVM, and CONV layers account for more than 95% of computations in
CNNs, ReRAM-based processing engine can boost the efficiency of CNNs significantly [12,13]. These
factors have motivated researchers to implement a variety of ML/NN architectures on ReRAM, such
as multi-layer perceptron [14,15], CNN [16–18], tensorized NN [19] and auto-associative memory [14].

Use of ReRAM for designing neuromorphic computing systems (NCSs), however, also
presents challenges. For example, ReRAM has several reliability issues, such as limited write
endurance, resistance drift, susceptibility to process variation (PV), etc. [20–23]. Analog operation
exacerbates these challenges and also brings area/energy overheads of ADCs/DACs (analog-to-digital
converters/digital-to-analog converters). Further, precise tuning of ReRAM requires frequent update
of weights and large number of training iterations which incurs high overhead due to the high write
energy and latency of ReRAM [24,25]. This presents challenges in achieving high throughput and
accuracy. Addressing these challenges using (micro)architectural and system-level techniques is vital
for ensuring adoption of ReRAM in state-of-the-art neuromorphic computing systems (NCSs). Several
recent techniques seek to fulfill this need.

In this paper, we present a survey of ReRAM-based architectures for processing-in-memory and
machine learning (especially neural networks) approaches. Figure 1 presents the overview of the
paper. Section 2 provides the background and discusses the challenges in architecting ReRAM-based
accelerators. It further provides a classification of the research works along several dimensions.
Section 3 discusses ReRAM-based ANN (artificial neural network) architectures and management
techniques and Section 4 reviews techniques for improving their reliability. ReRAM-based PIM
techniques and spiking neural network (SNN) architectures are discussed in Sections 5 and 6,
respectively. Even though many of the works fall into multiple categories, we discuss them under
single category only. Section 7 concludes this paper with a discussion of future challenges.

§2 Background and Overview
§2.1 Preliminaries

§2.2 Using ReRAM as a dot-product engine

§2.3 Challenges in using ReRAM

§2.4 Classification of research works

§3 ReRAM-based ANN Architectures
§5 ReRAM-based PIM Techniques

§5.1 Arithmetic and logical operations

§5.2 Data search operations

§5.3 Graph-processing operations

§5.4 Approximate computing approaches

Paper organization

§6 ReRAM-based SNN Architectures

§3.1 Mapping NN to ReRAM

§3.2 Architectures for NN inference

§3.3 Architectures for NN training

§3.4 MCA-aware pruning strategy

§3.5 Reconfigurable architectures

§3.6 Reducing overhead of analog implementation

§3.7 Analog-digital hybrid and digital-only designs

§4 Improving reliability of ReRAM

-based ANN architectures

§4.1 Addressing hard faults

§4.2 Addressing resistance drift

§7 Conclusion and Future Outlook

Figure 1. Organization of the paper.

To achieve a balance between brevity and breadth, we limit the scope of this paper as
follows. We include techniques implemented using ReRAM, although other emerging memories
such as SOT-RAM (spin orbit torque RAM) and STT-RAM (spin transfer torque RAM) also provide
PIM capabilities. Since different research projects use different evaluation platform and workloads,
we focus on their qualitative insights and do not generally include quantitative results. We focus
on (micro)architectural and system-level techniques and not device-level techniques. This paper is
expected to be useful for researchers, system-architects and chip-designers.

2. Background and Overview

We now review some terms and concepts which are useful throughout this article. We refer
the reader to previous work for a comprehensive background on non-volatile memories and their
reliability issues [26–28], hardware architectures for machine learning [29], deep neural networks [30]
spiking neural networks [1,31] and processing-in-memory [32].

Mach. Learn. Knowl. Extr. 2019, 1 77

2.1. Preliminaries

Machine learning architectures operate in two phases: training (learning) and testing (inference).
In training phase, the relationship between the inputs and outputs of the system being modeled are
learnt and, in the inference phase, the output is predicted for a given input. Neural network is an ML
approach modeled after biological nerve system, which predicts the output by computing a non-linear
function on the weighted sum of the inputs. There are two major flavors of NNs: ANNs and SNNs.
ANNs are functional models of neurons, whereas SNNs mimic the brain operations more closely.
A CNN has multiple convolutional (CONV), pooling and fully-connected (FC) layers in a multilayer
NN design. A deep neural network (DNN) refers to an ANN with several hidden layers between the
input and the output layers. In a binarized NN, both the feature maps and the weights are binary (+1
and −1) values.

Process variation refers to the deviation in parameters from their nominal values [33]. A hard fault
refers to a situation where a cell is stuck at the value 0 or 1, which happens when the write endurance
limit of a cell has been reached [34]. Resistance drift refers to change in the resistance of the cell over
time and, hence, it can lead to a soft-error [28]. Sneak-paths are undesired paths for current-flow which
exist in parallel to the desired path.

2.2. Using ReRAM as a Dot-Product Engine

Figure 2 shows the use of memristor for performing dot-product computation. Each bitline
connects to each wordline through a ReRAM cell. Let R and G denote the resistance and conductance
of a cell, where G = 1/R. If the cells in a column are programmed such that their conductance values
are G1, G2, . . . Gk. On applying the voltages V1, V2, . . . Vk to these k rows, a current of Vi × Gi current
passes from the cell into bitline, as per Ohm’s law. Then, from Kirchoff’s law, the total current from the
bitline is the sum of currents flowing through each column, as shown in Figure 2a. The total current
(I) is the dot-product of input voltages at each row (V) and cell conductances (G) in a column, that
is, I = V × G. In terms of NN, the synaptic weights of neurons are encoded as conductances of the
ReRAM cells. Then, the total current is the output of neuron in a CNN output filter. As shown in
Figure 2b, the memristor crossbar array (MCA) achieves very high parallelism and can perform MVM
in a single time step.

V1

G1

I1 = V1.G1

V2

G2

I2 = V2.G2

I = I1+I2

= V1.G1 + V2.G2

DAC

DAC

DAC

DAC

ADC

S&H S&H S&H S&H

Shift and add

(b) Vector-matrix multiplication
(a) Multiply-accumulate

operation

Figure 2. (a) Performing an analog sum-of-products operation using a bitline; (b) using an MCA for
MVM (figure adapted from [16]).

In addition to working as an MVM engine, ReRAM can also be used for implementing
logical/bitwise operations, search operations, as we show later in this paper.

2.3. Challenges in Using ReRAM

The use of ReRAM also presents several challenges:

Mach. Learn. Knowl. Extr. 2019, 1 78

Challenges in Analog Domain: Operation in analog domain brings several challenges, e.g., noise,
non-zero wire resistance, nonlinear I-V characteristics, I/O stage resistance, etc. In addition, storing
intermediary analog outcomes and implementing max pooling in analog domain is challenging [35].
Further, on using analog circuitry, communication with the digital circuitry necessitates use of
ADCs/DACs, however, these degrade signal precision and incur area/energy overheads. For example,
ADC/DAC can take 85% [36] to 98% [18] of the total area/power of an neuromorphic computing system
(NCS). Compared to this, digital signal transfer allows better control and high-frequency operation.

Reliability Challenges of ReRAM: The high defect rate and PV leads to reliability issues [21,37].
For example, due to “single-bit failure”, a cell may get stuck at high or low conductance value,
called stuck-at-one or stuck-at-zero (SA1/SA0), respectively. Especially for large NCSs, a ReRAM
implementation leads to heavy wire congestion and poor reliability of read/write operations due to
voltage-drop and PV [38]. With increasing device failure rate, the accuracy of NN reduces drastically.
To mitigate this issue, redundancy-based techniques can be used, however, they incur complexity and
area overheads.

Challenges in Achieving High Accuracy and Performance: Compared to SRAM, ReRAM has high write
energy/latency which increases the overall power consumption [39,40]. ReRAM limitations, e.g., series
line resistance and sneak-path, further reduce the performance [41]. Further, during NN training,
precise tuning of ReRAM requires frequent update of weights and large number of training iterations
for convergence [24]. This leads to high number of writes and large energy consumption. The non-ideal
characteristics of ReRAM, e.g., PV and abrupt behavior during SET operation further increase the
overhead of ReRAM tuning [36]. Although the errors due to ReRAM faults or the analog-operation
can be minimized by increased training, it leads to latency/energy penalty and aggravates ReRAM
endurance issues [42]. In addition, retraining may not be sufficient in case of high fault rate [21].

Limitations in Representing NNs: Not all NN architectures/layers can be implemented using
ReRAM, e.g., LRN layers cannot be accelerated with crossbars [16,43].

2.4. Classification of Research Works

Table 1 presents a classification of research works on several parameters, e.g., NN architecture
and ML phase. Table 1 also highlights several optimization strategies/goals and shows the works
which compare ReRAM-based architectures with other approaches such as execution on FPGA (field
programmable gate array) and GPU (graphics processing unit).

Table 1. Classification based on NN architecture, optimization objective and comparative evaluation.

Strategy Reference

NN architecture

Spiking NN [15,44,45]
Artificial NN nearly all others

Machine learning phase

Training [24,35,44,46,47]
Inference nearly all

Optimization objective/approach

Energy saving [14,16–19,24,35,36,41,45,46,48–61]
Approximate computing [20,35,43,62–66]

Pipelining [16,17,19,46]
Pruning NN or exploiting NN sparsity [19,20,67]

Binary architectures binary NNs [41,61], performing binary BLAS operations [68]
Avoiding transfer of all-zero data packets [15]

Storing multiple copies of data for achieving parallelism [46]
Using eDRAM buffer to exploit data reuse [16,17]

Mach. Learn. Knowl. Extr. 2019, 1 79

Table 1. Cont.

Strategy Reference

Algorithm
genetic algorithm [20], greedy algorithm [18,69], simulated
annealing [70], weighted bipartite-matching algorithm [47],

graph clustering [67]

Comparison of ReRAM-based design with

FPGA execution [52,56,62,70]
GPU execution [19,24,41,46,52,53,57,59,61,62]
CPU execution [14,19,41,49,53,54,57,62,65,71,72]

ASIC design [19,36,65,73]
SRAM-based design [55,57]
DRAM-based design [54]

Query-accelerator [72]
TrueNorth [41]

Design features

Hybrid CMOS-ReRAM design [19,68]
3D design [19,41]

3. ReRAM-Based ANN Architectures

In this section, we discuss techniques for mapping a NN to ReRAM crossbar (Section 3.1),
architectures for enabling NN inference (Section 3.2), architectures for enabling NN training
(Section 3.3), MCA (memristor crossbar array) aware pruning strategies (Section 3.4) and reconfigurable
designs (Section 3.5). We then review techniques for reducing overhead of analog operation (Section 3.6)
and designing hybrid analog–digital or purely-digital systems (Section 3.7).

3.1. Mapping NN to ReRAM

Table 2 summarizes salient features of mapping schemes. We now review several of these schemes.

Table 2. Strategies for mapping NN to ReRAM.

Strategy Reference

Storing positive and negative weights in different MCAs [12,18,21,38,43,74]
Using only non-negative weights [50]
Using multiple ReRAMs to overcome the precision limitation of ReRAM [17,18]
Using tiled designs to avoid using large MCAs and/or to achieve
fine-grain reconfigurability [15–17,41,46,56,57,70]

Mapping largest weights to variation/fault-free MCAs to minimize errors [69]
Assigning larger weights to MSB and smaller weights to LSB [58]
Distinguishing between critical and non-critical weights [37]
Avoiding costly SET operations in ReRAM [24]

Hu et al. [73] developed an algorithm for transforming arbitrary matrix values into memristor
conductances for minimizing inaccuracies in MVM while accounting for memristor crossbar array
(MCA) circuit limitations. Figure 3 shows the overall flow of their technique. They used a MATLAB
solver for crossbar simulation which is orders of magnitude faster than SPICE (simulation program
with integrated circuit emphasis) simulator. They first linearly mapped a matrix to an ideal MCA which
has zero wire resistance, zero I/O stage resistance, zero noise and perfectly linear I-V variation. Then,
the algorithm simulates actual current and voltages on the realistic MCA by tuning the conductance
values to match the current in every cross-point device in an ideal MCA (refer to “transformation” step
in Figure 3). Pre-computed Jacobian matrix is used to accelerate the simulation and, thus, their method
achieves high overall speed, e.g., an arbitrary matrix can be converted to a 128× 128 crossbar in few
seconds. After this, close-loop tuning is used for programming memristors to the target conductance
values (refer to “programming” step in Figure 3). Their technique allows arbitrarily changing the
device resistance value and provides high resolution. Finally, input signals are applied to the MCA,

Mach. Learn. Knowl. Extr. 2019, 1 80

and the MCA output is mapped to output signal (refer to “processing” step in Figure 3). The limitation
of their approach is that they compute the mapping on an external processor and not on-chip. Their
technique provides orders of magnitude higher performance-energy efficiency product than an ASIC
implementation and also achieves high accuracy for an NN application.

Matrix Is matrix on

crossbar?

Map transformation matrix to

ideal ReRAM conductance

Get ideal ReRAM behavior

Optimize actual ReRAM conductance

to approach ideal ReRAM

Map input signal to

ReRAM input signal

Actual ReRAM conductance

Program conductance to ReRAM

using close-loop pulse tuning

Apply input signal to ReRAM

Map ReRAM output to output signal

Mapping parameters

Set calibration signals

based on input pattern

End
All

computed?

Yes

Yes

No

No

Transformation

Programming

Processing

Input

signal

Figure 3. The overall flow of dot-product engine (figure adapted from [73]).

Li et al. [62] presented a ReRAM-based inexact functional unit (iFU) which implements a
three-layer NN that: (1) performs MVM of weights and inputs; and (2) computes sigmoid activation
function. Of these, they mapped MVM to MCA and implement the sigmoid function using a sigmoidal
neuron design [62]. By using multiple iFUs, high performance is achieved. DACs and ADCs are
used for converting signals between digital and analog domain. For every task, iFUs are trained by
adjusting the synaptic weights. Then, these weights are mapped to conductance states of ReRAM
devices in the MCA using program-and-verify operations. Figure 4 shows the overall flow of their
technique. Several complex functions that require thousands of cycles in a CPU can be performed
in few cycles using their iFU. Their technique improves energy efficiency compared to CPU, FPGA
and GPU.

Taha et al. [57] evaluated the design of an analog and a digital memristor-based neural core and
compared them with an SRAM-based digital core, GPU and CPU. Figure 5 shows their proposed
neural core architecture. With increasing size of crossbar, read energy also rises due to extra sneak
paths. To address this, they used a tiled MCA design where only one row of tiles is accessed at a time.
This restricts the leakage current present in an operation to that of a 4 × 4 crossbar. Thus, the dynamic
energy consumption is reduced in comparison to that of an untiled MCA. Both digital and analog
cores use tiled designs. In the digital core, SRAM arrays are substituted by the tiled MCAs. As for the
analog core design, the tiled design allows all the tiles to be read concurrently with much lower latency
than that in the digital core. It also allows elimination of multiple components used in digital core,
e.g., memory array decoder, MAC (multiply-accumulate), etc. Use of diodes prevents alternate current
paths. As for the write operation in the analog core, only a single row is written at a time during
training, similar to the case of digital core. To reduce the complexity of ADCs/DACs, the precision of
signals is assumed to be limited (4-bit). Results show that the designs can be ordered by increasing area
and energy as: analog memristor core, digital memristor core, SRAM core, GPU and CPU. Specifically,
their NN-based designs achieve magnitude-order higher energy and area efficiency compared to CPU
and GPU.

Mach. Learn. Knowl. Extr. 2019, 1 81

ReRAM model Weight matrixCircuit description

Choose initial

conductance Gi

Initialize ReRAM

devices to Gi

Find an untuned

ReRAM devices

Program-&-

verify

operation

Target

conductance

achieved

Reset ReRAM

device

END
Not found

Found

Yes

No

Figure 4. Iterative tuning strategy for mapping a function to MCA (figure adapted from [62]).

C C

C C

C C

C C

C C

C C

C C

C C

RR

RR

Decoder

MAC MAC

Output buffer

Input buffer

Pre-synaptic

neuron inputs

from other cores

(k, xk)

k

(k, xk) = (index, value) of neuron

(j, xj)

xk

Wkj M axons

N neurons

Post-synaptic

neuron outputs

Digital synaptic

memory array

MACs compute
neuron outputs

Figure 5. Digital neural core design (figure adapted from [57]). The analog core design [57] differs
slightly from this design.

Huang et al. [19] presented a 3D CMOS-ReRAM based accelerator for TNNs (tensor neural
networks). As shown in Figure 6, their design has three layers: two-layers of ReRAM crossbar and
one-layer of CMOS circuitry. The first ReRAM-crossbar layer works as a buffer for storing the weights
and is used for configuring the crossbar resistance values in the second layer. The tensor cores are 3D
matrices and its 2D slices are stored on Layer 1. The second layer of MCA executes operations such as
vector addition and MVM. This layer receives tensor cores from the first layer over through-silicon-via
(TSV) for performing parallel MVM. The third layer orchestrates the working of overall TNN. It
generates tensor-core indices for initiating tensor-train matrix multiplication. This layer also performs
the non-linear mapping.

CPU

TC3 TC4

TC1 TC2

Function

operands

Input

data

Stored

as cache
Layer 1: Pre-stored

tensor core data

Layer 2: ReRAM

computing

Layer 3: CMOS

control logic

TSV

TC = tensor core

Figure 6. 3D CMOS-ReRAM accelerator for TNN (figure adapted from [19]).

Mach. Learn. Knowl. Extr. 2019, 1 82

For mapping a TNN on their design, first the NN compression is done using layer-wise training
process. Then, the optimal NN design (e.g., layer-count and activation function) is found by exploring
parameters such as bit-width, compression ratio, accuracy, etc. After this, architectural optimization of
Layers 1 and 2 is performed to reduce read latency and energy. The TNN is mapped to their design in a
folded manner by leveraging the sequential operation of every layer on the NN. The crossbars in Layer
2 perform parallel multiplication and their output is sent to the scalar core for accumulation. The output
of scalar core is sent to the sigmoid function for activation in a pipelined manner. The activation matrix
is used for the processing of next layer. Thus, the entire TNN inference can be mapped to their proposed
design. Their technique achieves high amount of compression by using sparse representation of dense
data in high-dimensional space. Their design achieves better performance and energy efficiency
compared to ASIC (application-specific integrated circuit), CPU and GPU implementations.

Ni et al. [61] presented a technique for mapping binarized CNN on a sneak-path-free digital
MCA. In binarized CNN, both the feature maps and weights are stored as binary values (+1 and −1).
Hence, CONV can be achieved simply by binary dot-product instead of MVM. Every binary-CONV
layer performs CONV on binary feature maps from previous layer and binary weights. The output of
binary-CONV is processed by normalization layer and max-pooling layer. The output is fed to the
binarization layer which provides binary non-linear activations based on the input sign.

They map all binary CNN operations such as CONV, batch normalization, pooling and activation
on the digital MCA using unsigned bitwise operations. The works, which use two crossbars [12,74]
to store negative and positive weights, require a subtract operation for every complementary bitline
output. To avoid the need of subtract operation, they proposed converting signed binary CONV
to unsigned binary XNOR, as shown in Table 3. It is clear that, by transforming +1/−1 values into
1/0 values (respectively), a multiplication operation can be transformed into XNOR operation. Since
A�W = A.W + Ā.W̄, they map A and Ā as wordline inputs and W and W̄ as ReRAM conductances.
This strategy requires only one inverter for every input.

Table 3. Converting signed bitwise CONV to unsigned bitwise XNOR.

a w a × w (Multiplication) A W A � W (XNOR)

1 1 1 1 1 1
1 −1 −1 1 0 0
−1 1 −1 0 1 0
−1 −1 1 0 0 1

Further, since the order of binarization and pooling has no impact on the overall output,
the batch normalization and binarization can be combined. In addition, based on batch-normalization
computations, a threshold is chosen to compare with the binary CONV output. For pooling, a
single-output crossbar can be used and the comparator threshold can be suitably set to see whether
any binarization result in the pooling region is 1. Compared to a non-binary CMOS implementation,
their design achieves higher energy efficiency and performance with only minor loss in accuracy.

3.2. Architectures for NN Inference

Shafiee et al. [16] presented a CNN accelerator which uses MCAs for dot-product computations.
Figure 7 shows their overall architecture. Since CONV and classifier layers perform dot-product,
their technique is implemented for those layers. LRN (local response normalization) layers cannot be
implemented using crossbars. The system has multiple tiles each designed with MCA which store
synaptic weights and perform in-situ analog dot-product computations on them. Since a crossbar
cannot be efficiently reprogrammed at runtime, one crossbar is assigned for processing a group
of neurons in any CNN layer. Different CNN layers are pipelined which reduces the buffering
requirement, increases throughput and allows using higher amount of chip resources for dot-product
computations.

Mach. Learn. Knowl. Extr. 2019, 1 83

T T T T

T T T T

T T T T

T T T T

IO interface

Max Pool

eDRAM

buffer

Sigmoid

Output

register

Shift &

add

IMA IMA IMA IMA

IMA IMA IMA IMA

DAC

Crossbar

Sample

& hold

DAC

Crossbar

Sample

& hold

DAC

Crossbar

Sample

& hold

DAC

Crossbar

Sample

& hold

Input

register

Output

register

Shift &

add

ADC

ADC

ADC

ADC

In-situ multiply accumulate (IMA)
TileChip

Figure 7. MCA-based analog architecture proposed by Shafiee et al. (figure adapted from [16]).

Since ADC/DAC contribute a large fraction of total overhead, they proposed strategies to reduce
them. Each ADC is shared by multiple MCAs. Weights are stored as 16 b fixed-point values which
suffices for many ML applications. A 16 b number is represented using 16 consecutive voltage levels,
each recording 0/1 bit of the 16 b number. Product is computed as 16 sequential operations which
requires only 1-bit DAC. A 16-bit synaptic weight is stored in 16/w w-bits cells of a single row
(e.g., w = 2). Their partial products are merged using shifts and adds. When the weights in a column
are collectively large, they are stored in inverted form which ensures that the MSB (most significant bit)
of sum of products is always 1. This reduces the size of ADC by one bit. Due to (nearly) exponential
relationship between the resolution and cost of ADC and the large contribution of ADC in overall
power consumption, this optimization has large impact on overall efficiency. For representing negative
weight values, crossbar inputs are provided as 2’s complement and the most significant bit is used as
the sign bit. Their accelerator provides large improvement in throughput and energy compared to
other near-data accelerators.

The limitation of their pipelined design is that it improves throughput and energy efficiency only
when many inputs (e.g., images) can be successively fed to the accelerator. However, since images
are analyzed in batches where images in the next batch are analyzed using updated weights, their
deep pipeline suffers from bubbles and stalls [46]. Further, the digital circuitry such as shared data bus
and eDRAM (embedded DRAM) buffer consumes large area, especially due to the wide ports in the
eDRAM buffer.

Tang et al. [17] presented an area and energy-efficient memristor-based tiled architecture for
accelerating DNNs, which is illustrated in Figure 8. Every tile has an MCA-based PE (processing
engine) array, an eDRAM buffer, a register buffer and multiple DACs. The input feature maps of CNN
are stored in the eDRAM buffer and is cached in the register buffer. The register buffer provides data
for the CONV in current step and buffers the input data for the subsequent-step. The analog output
signals from DACs are transmitted across horizontal PEs. The output of PE array and the partial sums
of outputs are also saved in the eDRAM buffer and they are communicated across vertical PEs in
digital domain. Every PE has an ADC, a logic block (including a shift unit and an accumulate unit)
and two S&H (sample and hold) units. The ADC converts analog signals from the crossbar to digital
signals for subsequent MAC operations. The accumulate unit performs accumulation operation: (1)
between results of neighboring columns of crossbar; and (2) in CONV between neighboring PEs in
the same column of the PE array. One S&H unit holds temporal analog data and another unit holds
reused data between horizontal PEs. By using DACs in only one column of the PE array and not in all
the PE arrays, their design reduces the number of DACs.

Mach. Learn. Knowl. Extr. 2019, 1 84

eDRAM

buffer

Register

buffer

DAC

DAC

Crossbar

S+H

S+H

ADC Logic

Crossbar

S+H

S+H

ADC Logic

Crossbar

S+H

S+H

ADC Logic

Crossbar

S+H

S+H

ADC Logic

DAC

DAC

Figure 8. The architecture of the technique of Tang et al. (figure adapted from [17]).

To map a CNN layer to a tile, multiple 3D CONV kernels of a layer are organized into an unfolded
weight matrix. Since the low (e.g., 4-bit) resolution of a ReRAM cell is insufficient for storing a
high-precision (e.g., 16 bits) weight, a 16-bit weight is stored in four neighboring elements in a single row
and the 3D CONV kernel is stored in four neighboring columns. Their dataflow leverages three types of
data reuse which allows reducing the port-width of eDRAM buffer. First, the crossbar performs MAC
operations and the partial sums of CONV outputs are reused between vertical PEs. Second, analog
signals are reused between horizontal PEs. Third, the register buffer allows input reuse.

They further noted that, in ReRAM-based NCSs, the resolution of ADC and DAC are related
as RADC = RDAC + RReRAMcell + log2(Rows). Here, “Rows” shows the number of ReRAM rows and
RReRAMcell shows the resolution of a ReRAM cell. Thus, the resolution of ADC needs to be high
which exacerbates ADC power consumption. They propose reducing ADC resolution by leveraging
the error-tolerance of DNNs and narrow values of weights/inputs/outputs in widely-used DNNs.
Based on this, the input and weight values can be truncated and, thus, a tradeoff can be achieved
between the overall precision and energy efficiency. Compared to other ReRAM-based NCS [16], their
design reduces area and power consumption with negligible loss in accuracy.

3.3. Architectures for NN Training

Since NN training involves weight update and intricate data dependencies, most works only
support interference, and assume that weights are updated only in the beginning. By comparison,
some works present techniques for implementing NN training also in ReRAM. We now discuss some
of these works.

Song et al. [46] presented a ReRAM-based pipelined design for accelerating both training and
testing of CNNs. They divide MCAs into two types: memory and morphable. The morphable MCAs
can perform both computation and data-storage and memory MCAs can only store data, such as results
from morphable MCAs. Both forward and backward computations have data dependencies. The result
of forward computations are stored in memory MCAs which are used in backward computations
for generating errors and partial derivatives. Figure 9 shows their design for training a three-layer
CNN. In the logical cycle T1, input d0 enters morphable MCA (A1) which executes MVM. The results
are written to the memory MCA (d1). Continuing in this manner, the results of forward computation
are saved in d3. Backward computation starts in T4, where errors δl (l shows the layer) and partial
derivatives (Wl) are generated. First, the error for the third layer (δ3) is calculated in T4 and stored in a
memory MCA. In T5, two calculations happen concurrently which depend on δ3: (1) partial derivative
(OW3) is calculated by previous results in d2 and δ3; and (2) error (δ2) of the second layer is calculated
from δ3. Based on OW3, weights in A3 and A32 are updated. Continuing in this way, OW1 is calculated
in T7.

Their design exploits both intra- and inter-layer parallelism. To exploit intra-layer parallelism,
they note that, since the input to MCA in each cycle is large, mapping all the kernels to a single MCA
leads to inefficient design. Hence, they map them to multiple MCAs and, then, collect and add their
outputs. The number of duplicate copies of MCAs storing the same weight shows the granularity

Mach. Learn. Knowl. Extr. 2019, 1 85

of parallelism and by choosing a right value of this, a trade-off between hardware overhead and
throughput can be achieved. They further noted that, during training, the inputs processed before a
weight-update (called a “batch”) do not have any dependency. Since batch size is much larger than one
(e.g., 64), they propose a pipelined training architecture where inputs inside a batch can be processed in
pipelined manner but the input of next batch can enter the pipeline only when the previous batch has
been fully processed. To avoid the need of DACs, instead of voltage-level based input, they utilize a
weighted spike-coding approach and its higher latency is tolerated by the pipelined design of different
layers. To avoid the need of ADCs, they use “integration and fire” scheme which integrates analog
currents and stores the generated output spikes in a counter. Compared to GPU implementation, their
design achieves large improvement in performance and energy efficiency.

d0

A1

W1

d1

A2

W2

d2

A3

W3

d3

A11

d0

δ1

A21

d1

δ2

A31

d2

δ3

A22

W2
*

A32

W3
*

T0 T1 T2 T3

T7 T6 T5 T4

T

(a) Forward computation

(b) Backward

computation

W3W2
W1

Morphable MCA Memory MCA

Figure 9. Forward and backward computations in the technique of Song et al. (figure adapted from [46]).

Cheng et al. [24] presented an architecture along with peripheral circuitry for enabling NN
training in ReRAM. Their design provides support for back-propagation and weight-update and
leverages peripheral circuitry for inference operation. The sense amplifier implements analog-to-digital
conversion, ReLU and max functions and precision control. In deep reinforcement learning, max
function may be performed on more than four (e.g., 18) values and, hence, they add more registers
and multiplexors to implement this. Their design includes circuits for preprocessing and final-output
difference. They further noted that for addressing the write-variability problem, some works
iteratively RESET, read and initialize ReRAM which incurs large energy overhead. They presented a
variability-free tuning strategy which reduces the frequency of reads/writes to ReRAM by avoiding
unnecessary initialization, read and RESET operations. Furthermore, in ReRAM, SET/RESET
operations happen abruptly/gradually, respectively, and, hence, they proposed a gradual-write
strategy for avoiding error-prone SET operations. A synaptic weight is represented by two conductance
values in ReRAM termed as positive/negative ReRAM, respectively. They performed only RESET
operation in positive/negative ReRAM for reducing/increasing the weight, respectively. They show
that for supervised learning and deep reinforcement learning, their design provides higher energy
efficiency than an ASIC and a GPU implementation, respectively.

3.4. MCA-Aware Pruning Strategy

Ankit et al. [67] noted that pruning techniques lead to a network with irregular connections,
as shown in Figure 10b,c. The resulting network may not match to the crossbar design and, hence, it
may lead to inefficient hardware implementation. They proposed a technique for transforming DNNs
for allowing efficient implementation on MCAs. Their technique prunes at the granularity of the MCA
and not synapse, which helps in retaining the gains of algorithmic pruning and network sparsity in

Mach. Learn. Knowl. Extr. 2019, 1 86

memristive NCSs. Their technique is applicable to FC layers, which show no data reuse and have most
of the synapses of the network.

They propose a “Size-Constrained Iterative Clustering” (SCIC) algorithm transforms the
connectivity structure of the DNN into multiple high-utilization clusters. SCIC is based on
“spectral clustering”, a graph clustering algorithm which produces a group of disjoint graph nodes with
the goal of maximizing intra-cluster associativity and minimizing inter-cluster associativity. These goals
seek to produce clusters which can be mapped to MCAs with high utilization while also achieving high
throughput. The SCIC algorithm seeks to minimize the number of unclustered synapses. It iteratively
executes spectral clustering on the current connectivity matrix, until there is no more reduction in
unclustered synapses. In every iteration, clusters mapping to MCAs with high utilization are selected
and remaining clusters are merged with the present connectivity matrix. In each training iteration of
backpropagation algorithm, first pruning is performed and, then, SCIC is applied. Upcoming training
iterations recover the accuracy loss due to pruning. Thus, by removing ineffectual connections and
unclustered synapses, their technique achieves a network which is maximally clustered and optimally
pruned. Figure 10a summarizes the flow-diagram of their technique.

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

I1

I2

I3

I4

O1 O2 O3 O4

Connectivity mapInput

Output

(b) Original DNN (c) DNN+Pruning

(d) DNN+ Technique

of Ankit et al.

(a) Flow diagram

Original

NN

Transformed

NN

Train

synapses

Prune

cluster

SCIC on unclustered

synapses

Prune

network

Converged?

Fraction of

unclustered

synapses > λ

Yes

Yes

No

No

Figure 10. (a) Overall diagram of the technique of Ankit et al. [67], where λ is a threshold; and
(b) an illustration of the impact of network pruning and the technique of Ankit et al. on a DNN
connectivity matrix (here, 1/0 shows presence/absence of connection and not the actual weight)
(figure adapted from [67]).

Figure 10b–d shows the connectivity matrix of a DNN before pruning, after conventional pruning
and after employing their technique. Evidently, the irregular sparsity resulting from conventional
pruning prohibits direct mapping to MCAs, whereas their technique creates smaller clusters which can
be mapped to MCAs. They evaluated their technique on MLP (multi-layer perceptron) based SNNs
and observe large savings in area and energy. Their technique allows mapping a DNN to MCAs of
different sizes. They also showed that performing clustering after the training process cannot maintain
the gains of sparsity in hardware implementation.

3.5. Reconfigurable Architectures

Zidan et al. [41] proposed a “field programmable crossbar array” (FPCA) which combines
memory, analog and digital computing in a single core. This core can be dynamically reconfigured for
handling various applications. For example, as shown in Figure 11, for three different applications
(A, B and C), the cores/tiles that work as analog/digital-computing unit or memory unit can be
altered. The parallelism of MCA is leveraged for performing compute and storage operations. Further,
the resources are allocated in a manner to best match the computing requirements of the application.
Their design consists of multiple “memory cores” (M-cores). Every M-core is a single crossbar which

Mach. Learn. Knowl. Extr. 2019, 1 87

can perform computations using/inside local memory. Every M-core has multiple identical tiles that
can be reconfigured to work as storage or digital/analog computing element. Thus, either an entire
core or a tile can be assigned to a task, which allows multi-granularity reconfiguration to adapt to
application needs. In addition, processing for an application can happen in a domain (digital or analog)
which is optimal for it.

Unused Storage
Analog

computing

Digital

computing

Application “A” Application “B” Application “C”
K tiles

Figure 11. Field-programmable crossbar array architecture (figure adapted from [41]).

They noted that nearly all arithmetic operations such as matrix/trigonometric computations,
multiply/divide/add, etc. are based on a tree-reduction circuit. They further noted that an arithmetic
compressor works by counting the number of ONEs which can be easily achieved using the crossbar
design. Figure 12a shows a single column of a crossbar where all rows are biased with a reading
voltage (Vi). The output current is shown as Iout = ViΣ(1/Rj). Since Rj = Ron, Ro f f and Ro f f � Ron,
we have Iout = Nones × (Vi/Ron), where Nones shows the number of ones in the column. Further,
by biasing only selected rows, masked tree-reduction can also be realized, as shown in Figure 12b.
This reduces the overhead of implementing division/multiplication operations. This reduction can
also be extended to multiple columns, as shown in Figure 12c.

Vi

Vi

Vi

Vi

R1

R2

R3

R4

Vi

Vi

Vi

R1

R2

R3

R4

Iout
Iout

Vi

Vi

Vi

R1

R2

R3

R4

Ia

R5

R6

R7

R8

R9

R10

R11

R12

Ib Ic

(a) Unmasked crossbar

activation (single column)
(b) Masked crossbar

activation (single column)

(c) Masked crossbar

activation (multiple columns)

Figure 12. Masked and unmasked tree reduction in single and multiple columns (figure adapted
from [41]).

Several tree reduction operations, including masked tree-reduction, can be concurrently performed
on the same MCA. Thus, M-cores allow parallel in-memory processing. Using the arithmetic compressor,
multiple arithmetic operations are performed concurrently in the M-core. For example, for vector
addition, the number of ONEs in a column are written back to the M-core for the next iteration.
This iterative procedure stops when then vector addition reduces to addition of two operands. Along
similar lines, scalar/vector-vector/matrix-matrix multiplication can also be implemented. Thus, any
arithmetic operation, except incrementing or two-operand addition, can be implemented using
this approach.

They further proposed mapping NN architectures on binary ReRAM devices. In their design,
the weights are encoded in N-bit binary format and then stored in N-devices instead of just one analog
device, as shown in the Figure 13. Here, N-columns are equivalent to one analog column. Use of
quantized weights allows reducing the value of N. The output of each column shows the sum of

Mach. Learn. Knowl. Extr. 2019, 1 88

product of input current and binary weights of the column. After digitizing this and performing
binary-scaling, the output of N columns are added to obtain equivalent analog dot-product. Compared
to analog devices, use of binary devices allows storing the weights with higher accuracy and also
achieving high performance and energy efficiency. They further discussed strategies to integrate
FPCA at system-level. Their proposed design provides higher performance at lower power budgets
compared to CPU, GPU and TrueNorth.

N bits

Binary device

Analog device

(a) (b)

Figure 13. (a) Analog; and (b) binary-coded crossbar design (figure adapted from [41]).

Zha et al. [56,70] presented a design which allows better programmability across
memory–compute boundary for achieving in-memory computing. Their design has 2D array of
tiles each containing an MCA and some connection nodes. The connection node has multiplexors,
buffers, RAM cells for configuration, a flip-flop and a sense amplifier. Their design can reconfigure
mat(s) in four possible modes, as shown in Figure 14. First, a mat can be configured to implement
“TCAM function” (ternary content addressable memory) which is beneficial for search-based workloads.
Second, in compute (logic) mode, their design allows arbitrary combinational logic or sequential logic
(by using flip-flops), whereas other works use MCA for MVM only. Boolean inputs of a logic gate
are applied to connection nodes and are converted into digital outputs. These outputs are sent to
neighboring tiles as inputs and thus, direct data-flow computation can be performed based on the
configuration.

100
001
101

111

010
110

Search key 111

0
0
0

1

0
0

01 01 01

(a) TCAM mode

Match

vector

ҧ𝐴𝐴 ത𝐵𝐵 ҧ𝐶𝐶
𝐹 = 𝐴 ത𝐵 ҧ𝐶

𝐹 = 𝐴𝐵𝐶

(b) Logic gate mode

Program ReRAM to low-resistance state

ҧ𝐴𝐴 ത𝐵𝐵 ҧ𝐶𝐶

(c) Interconnect mode

Row

address

decoder

Write column select

logic

Read column select

logic

Write enable

Read

data

Column

address

Row address

Column address decoder

Memory array

Write data

Logic mat Memory mat

(d) Memory mode

Figure 14. Different modes in the reconfigurable architecture proposed by Zha et al. [56,70] (figure
adapted from [56]).

Third, in interconnect mode, a mat can be utilized for both global and local routing which
provides same function as switch/connection blocks in FPGA. Fourth, in memory mode, one mat
works as a memory array and column address decoder. Three neighboring mats are configured as
read/write column select logic and row address decoder, respectively. Based on the write enable signal,
the direction of connection nodes is changed to achieve read/write operations.

Compared to a CMOS peripheral circuitry, their design reduces the overhead of connecting bulky
CMOS circuitry with dense MCA. In addition, reconfigurability of row and column address decoders
allows flexible adjustment of aspect ratio of memory block to gain desired performance and capacity.
Their design allows partitioning the resources between compute, storage and interconnection for achieving
best performance for each application. In FPGA, the size and location of memory blocks cannot be

Mach. Learn. Knowl. Extr. 2019, 1 89

altered after they are manufactured, whereas their design allows this for efficiently exploiting data locality.
Compared to FPGA, their design provides better performance at lower area; and these benefits are not
merely because of substituting SRAM with ReRAM. In addition, compared to CPU, their design provides
large speedup and energy savings.

3.6. Reducing Overhead of Analog Implementation

Table 4 summarizes the strategies for reducing overhead of analog domain operation. We now
discuss several of these works.

Table 4. Strategies for reducing overhead of analog implementation.

Strategy Reference
Avoiding/reducing the A/D converters [17,44,46]
Reduce resolution (width) of converters [16,17,57]

Using analog comparators to avoid using ADCs [35,58,61,71]

Li et al. [58] presented a technique to avoid the need of using ADCs/DACs based on the idea that
the memristor-based NCS can directly learn the relationship between the binary arrays representing
digital I/O data. For instance, in an NCS with 2, 8 and 2 nodes in input/hidden/output layers
(respectively), instead of converting digital signals to analog to provide input to NCS, their technique
directly feeds digital signals to 16 input ports and, based on them, computes 16 digital outputs. Thus,
their technique allows direct interfacing between memristor-based NCS and the digital system, as
shown in Figure 15. Unlike in original NCS with ADCs/DACs, in their design, each port is independent
and can be separately optimized. Specifically, by reducing the error rate of ports representing MSBs
of a binary number, overall accuracy can be improved. For this, they modify the loss function of the
training algorithm and assign larger/smaller weights to MSBs/LSBs (least significant bit), respectively.
Due to this, an error in MSB leads to much higher penalty than the error in LSB and, hence, training
process places higher effort on reducing MSB error for improving final accuracy. Although their
technique increases the number of I/O ports and crossbar size greatly, overall area is still reduced
due to avoidance of ADCs/DACs and high density of crossbar. In addition, since the outputs of
their design are continuous analog signals, they use analog comparators (acting as 1-bit ADCs) for
converting them into discrete binary digital signals. Compared with conventional architecture that
uses ADCs/DACs, their technique reduces area and energy consumption while maintaining same
accuracy on average.

Xia et al. [18] presented a technique to reduce the overhead of DACs/ADCs in ReRAM NCSs.
They noted that, in different CONV layers of a CNN, on normalizing the output values by the maximum
value in that layer, most of these values become zero; most of the remaining values are small; and
only a small fraction of values are large. Hence, they first normalized the data, and then quantized
intermediary data to 1-bit value. This can be directly used as the analog input for ReRAM crossbar and,
hence, avoids the need of DACs. Since commonly-used functions such as ReLU and sigmoid increase
monotonically, the neuron function can be merged into sense amplifier by using a corresponding reference.
The threshold for quantization is searched for each layer separately using a greedy algorithm. In addition,
since quantization after max pooling is equivalent to quantization before pooling using same threshold,
they propose performing quantization before pooling, which reduces max pooling to an OR function of
1-bit inputs.

Mach. Learn. Knowl. Extr. 2019, 1 90

DAC

DAC

0.25

0.1401100..

01010..

ADC ADC

Analog Circuits

(Sigmoid, Amplifiers..)

0.3

00100.. 11100..

0.69

0.25

0.14

Analog Circuits

(Sigmoid, Amplifiers..)

0.3 0.69

0

1

0
1

(a) An NCS with DAC/ADC interfaces
(b) Merging the interface to avoid

using DAC/ADC

Figure 15. A comparison of: (a) conventional design with ADCs/DACs; and (b) the design proposed
by Li et al. for avoiding ADCs/DACs (figure adapted from [58]).

However, ADCs may still be required for merging ReRAM output signals with other results,
for example, when the precision provided by a single crossbar is insufficient and, hence, multiple crossbars
are required. To avoid the need of ADC in such cases, they used two ReRAM cells in a column to store the
highest and the lowest bits of a given weight and use different bias voltages in the input ports to select one
from them and achieve “shift and add” function. They also proposed solutions for the cases when merging
is required because of the need of storing positive and negative weights in two crossbars and when weight
matrix needs to be stored in multiple crossbars due to the CNN size exceeding that of ReRAM crossbar.
Their technique brings large reduction in area and energy with negligible impact on classification accuracy.

Comparator

+

Comparator

+

ε

1-ε

Oh

Filter

Zero-crossing detector

0

𝑘−1

(𝑊𝑘ℎ δ𝑘)

XNOR
Sign signal

Figure 16. Sign computation circuit used by Li et al. (figure adapted from [35]).

Li et al. [35] notes that, in conventional training methods for MCA based NNs, first the parameters
of memristors need to be found and then the MCA needs to be tuned to the target state. However,
this process incurs latency/area/energy overhead and may also introduce errors. They proposed a
mixed-signal framework for accelerating NN training. In “stochastic gradient descent algorithm” used
for NN training, many multiplications are performed which are difficult to be realized in analog domain.
To address this issue, they proposed approximating the error computations by ignoring values with small
magnitude, such that the impact on the overall result is minimal. Further, they divide the weight update
calculations into sign computation and numerical computation. Sign computation finds the direction
of weight update and it can be realized through a zero-crossing detector and an analog comparator, as
shown in Figure 16. The calculations between signs are realized in digital domain, which is beneficial
also because the digital data can be cached more easily than the analog data. To avoid analog numerical
computations, their technique automatically adjusts convergence rate and, if the convergence rate falls
below a threshold, the training process is stopped. Further, convergence rate is multiplied with a random
value between 0 and 1 to emulate fluctuation of values. To avoid caching the delta values and then
importing them in the network, they use a copy crossbar which allows directly computing these values.
Compared to a CPU implementation, their design achieves magnitude order higher performance and
energy efficiency with only minor reduction in accuracy.

Mach. Learn. Knowl. Extr. 2019, 1 91

3.7. Analog–Digital Hybrid and Digital-Only Designs

Table 5 summarizes the domain of operation of different designs. We now discuss some of these works.

Table 5. Domain of operation of different designs.

Strategy Reference

Digital-only design [61]
Analog–digital hybrid design [14,35]

Operating a tile in analog or digital domain [41]
Analog design nearly all others

Liu et al. [14] designed an NN accelerator using on-chip MCAs, which is shown in Figure 17a.
They used a hybrid signal representation where analog domain is used for computations in the MCAs
and signal transfers between MCAs, whereas control signals remain in digital format for simplifying
synchronization and communication between CPU and their accelerator. MCAs execute analog
neuromorphic calculations. MCAs are organized in a centralized mesh topology to lower the cost of
interconnection. MCAs are arranged in a hierarchical group structure and communication happens at
both intra- and inter-group level. MCAs are connected using a mixed-signal interconnection network
which helps in data migration and task mapping on MCAs. The analog datapath has input buffers
and data multiplexors for connecting any input port to any output port, as shown in Figure 17b.
They presented topology and routing strategies for both MLP and auto-associative memory (AAM)
implementations of NN. Their accelerator boosts the performance and energy efficiency compared to
the baseline CPU, a digital-only neural-processing unit design and a design where MCAs are connected
using a digital-interconnection network.

P

P

Q

Q

Input

buffer

DAC

Output

buffer

ADC

Config

buffer
Central

router

Group

router

MCA group

MCA

Input buffer

Input buffer

Input buffer

Input buffer

Input buffer

Input buffer

Input buffer

Input buffer

Digital controller

MCA0

MCA1

MCA2

MCA3

Group0

Group1

Group2

Central

router

MCA0

MCA1

MCA2

MCA3

Group0

Group1

Group2

Central

router

Analog circuit Digital circuit

(a) Overall architecture (b) Hybrid-signal router design

Figure 17. (a) The hybrid-signal MCA-based architecture of Liu et al. [14]; and (b) hybrid-signal router
design (figure adapted from [14]).

Ni et al. [36] noted that, on using analog values, the error rate of intermediate states is much higher
than that of terminal (ON/OFF) states, as shown in Figure 18. To remove unreliable intermediate
values, they proposed a completely digital ReRAM crossbar design where only binary values are used
and thus, ADC/DAC are not required. By comparing the column output voltage with the reference
threshold at sense amplifier, the analog value is digitized. To reduce the information loss due to
digitization, they increased the quantization level by using multiple thresholds. The thresholds are
carefully selected so that most information can be preserved after digitization.

Mach. Learn. Knowl. Extr. 2019, 1 92

Off-stateOn-state

Intermediate

-states

Target resistance

Error

rate

Figure 18. Error rate in programming for various target resistance values of ReRAM (figure
adapted from [36]).

Further, they decomposed multiplication operation into three sub-operations which can be
implemented on a binary N × N crossbar (where N shows the number of bits). First, they divided
MVM into multiple vector inner-product operations each of which are executed in parallel on one
crossbar. If s denotes the output of inner-product, then the output of column j in ReRAM crossbar
is given by Oj = 1 if j ≤ s and 0 if j > s. For example, if s = 3, then the output is equal to 11100000
(assuming N = 8).

Second, the inner-product of first step is ascertained by the position where the bit value changes
from 0 to 1. As such, to obtain the result index, XOR operation is performed on every neighboring pair
of bits. For instance, if s = 3, then, after XOR operation, 11100000 changes to 001000000. Third, output
of second step is taken and inner-product result (s) is produced in the binary format. For example, if
s = 3, the binary value 00000011 is produced and, hence, a value of 1 is stored in Row 3. Thus, their
MVM has binary input and binary output which obviates the need of ADCs/DACs. They show that
compared to a CMOS-based ASIC, their implementation achieves lower area, energy and latency.

4. Improving Reliability of ReRAM-Based ANN Architectures

Table 6 shows the techniques that address various vulnerabilities and their key ideas. We now
review the techniques for mitigating hard faults (Section 4.1) and resistance drift (Section 4.2).

Table 6. Reliability improvement techniques.

Strategy Reference

Issue addressed

Process variation [15,24,44,47,61,65]
Hard faults [20,37,47,47]

Resistance drift [75]
Signal distortion due to analog domain [14]

Solution approach

Redundancy scheme [21,37]
Mapping zero weights to SA0 cells [20]

4.1. Addressing Hard Faults

Chen et al. [47] proposed a fault-aware training scheme for ReRAM based NNs. Their technique
first finds an optimal mapping of weights to memristors based on the weighted bipartite-matching
algorithm. Since variation profile differs across memristors and large weights may get clustered due to
sparse weight matrix of NN, in this mapping, large weight may get mapped to a ReRAM with high
variation. To address this challenge, they noted that, due to the self-healing capability of NNs, loss in
accuracy due to removal of some weights is automatically compensated during training by changing
the neighboring weights. Hence, they trained NN based on the distribution of stuck-at-faults and
resistance variation in crossbar and lowered the magnitude of weight mapped to a memristor with

Mach. Learn. Knowl. Extr. 2019, 1 93

large variation/fault-rate, as shown in Figure 19. Their technique removes nearly all the loss in NN
accuracy due to faults/variations in ReRAM.

0.5

0.6

0.5

0.5

0.2

0.5

0.2

0.5

0.6

0.5

0.35

0.2

0.25

0.2

0.5

0.6

0.5

0.5

0.35

0.25

0.35

0.5

0.6

0.5

0.5

0.425

0.125

0.425

Large variation memristor

Small variation memristor

weight

(a) Pre-trained weights (b) Fixing the weights (c) After retraining (d) Next iteration

Input neuron

Output

neuron

Figure 19. Illustration of change in weight during retraining of the network (figure adapted from [47]).

Xia et al. [20] noted that hard faults in ReRAM due to manufacturing and limited endurance
lead to poor accuracy in training of a ReRAM-based NN. Their technique detects faulty cells after a
fixed number of iterations and tolerates the faults in subsequent training iteration by leveraging fault
tolerance feature of NN. Figure 20 shows their fault-detection scheme. Here, first stuck-at-0 faults and
then, stuck-at-1 faults are detected by seeing whether the value in the ReRAM can be updated properly.
Since stuck-at-0/1 faults can happen only in cells with high/low resistance (respectively), only these
cells are chosen for fault-detection, which reduces the latency of fault-detection operation.

Read ReRAM

values

Stuck-at-0

fault detection

Stuck-at-1

fault detection

Fault

distribution

Compute reference

voltages

Apply test voltages
Write δW (or -δW)

to all cells

Compare
Stuck-at-0 (or 1)

fault detection

Figure 20. Checking for Stuck-at-0/1 fault (figure adapted from [20]).

Figure 21 illustrates their procedure for training. They note that small weights make little
contribution to the accuracy, but reduce ReRAM lifetime significantly. Hence, in back-propagation
phase, their technique flushes weights smaller than a threshold to zero, which is termed as
“threshold-training” in Figure 21. This strategy boosts ReRAM lifetime while bringing only small
increase in the number of training iterations. Further, since pruning schemes lead to a large fraction
of weights becoming zero, they used this sparse-nature of NNs to tolerate stuck-at-0 faults. For this,
rows/columns of the weight matrix are reordered to map zero weights to cells having stuck-at-0 faults.
This is shown as “remapping” in Figure 21 and it requires on-line fault detection. For performing
remapping, they employed genetic algorithm for iteratively optimizing the order of neurons in each
layer. Their fault-tolerance technique improves accuracy significantly for both low-endurance cells
and cells with high endurance but a large fraction of initial faults.

Mach. Learn. Knowl. Extr. 2019, 1 94

FabricationOffline detection

Forward propagation

Actual output

Backpropagation

(compare ideal and

actual output)

Ideal

output

Update weights

Threshold training

Need

detection?

Perform

pruning

Pruning

distribution

Online

detection

Fault

distribution

Remapping

Chip

100% recall, 100% precision

YesNo

Figure 21. The fault-resilient training strategy of Xia et al. (figure adapted from [20]).

Liu et al. [37] presented a technique for tolerating stuck-at-faults in ReRAM-based NCSs. Figure 22
shows the overall design flow of their technique. They quantified the impact of every weight on final
accuracy through network training. This “weight significance” can also be found by modeling defects
in a well-tuned network and then comparing the actual and the ideal accuracy values. Based on this,
they divided the weights into crucial and non-crucial and observe that faults in non-crucial weights has
near-zero impact on the final accuracy. Then, a retraining scheme is used for recovering the accuracy
loss due to faults. In this scheme, the ReRAM cells which are stuck at a particular conductance levels
(and hence not adjustable) are identified and, then, the remaining weights are re-tuned for recovering
the accuracy. For this, two steps are used. First, in place of giving random values to weight matrices,
pre-trained weight matrix is used for initializing and accelerating re-training. Depending on the defect
map, values of defective cells are initialized. Second, during weight-update through back-propagation,
the weight of the defective cells are not updated. In the case of high fault-rate, however, retraining
may not recover the accuracy loss. For such cases, they proposed using redundant columns which are
used for remapping only the crucial weights, as shown in Figure 22. By remapping a small fraction
of most crucial weights, large improvement in accuracy is achieved. Overall, even under high defect
rates, their technique restores accuracy to a defect-free ReRAM design.

Accuracy

restored

Pre-training

Map ideal weights to

memristor conductance

Info about stuck

memristors

High

significance?

Retrain network based

on defect data

New weights

End

Redundant column

utilization

Significance based

weight classification

Remap most

significant

defective weights

Well-tuned

weights

Statistical

data
No

No

Final weights
Yes

Test

Program

and test

Yes

Figure 22. The overall flow of the technique of Liu et al. (figure adapted from [37]).

Mach. Learn. Knowl. Extr. 2019, 1 95

Huangfu et al. [21] presented a mapping algorithm and redundancy schemes to alleviate the
impact of ReRAM faults on accuracy. In ReRAM-based NCSs, the weight matrix is realized by a
positive and a negative MCA, as shown in Figure 23a. A naive method allocates positive and negative
values of the matrix in respective MCAs [38]. However, this method presents challenges in storing
zero values and inability in storing values in case of faults. They proposed a mapping algorithm which
explores the full mapping space. This algorithm initializes all robust (fault-free) devices to default
values. Then, for each value in the target matrix, all robust devices that can represent this target value
are adjusted one-at-a-time, until the combination of all devices cannot become more closer to the
target value.

Matrix modules

DAC

Negative

ReRAM

matrix

Positive

ReRAM

matrix

ADC ADC

Subtract

Vi

Vi

Vi

RS

Vo Vo Vo

Vi

Vi

Vi

RS

Vo Vo Vo

- + - +

RS

- +

MUX selects

input from:

Cut 1

Cut M

(a) Implementing a matrix in ReRAM

Original MCA

(b) Redundant MCAs (c) Independent redundant columns

Figure 23. Mapping a matrix to MCA and two redundancy schemes (figure adapted from [21]).

For the case of high-fault rates, they further used two redundancy schemes. The first scheme
uses multiple redundant MCAs of the same size as the original MCA, as shown in Figure 23b. Then,
their mapping algorithm is applied collectively on original MCA and redundant MCAs which allows
finding even better mapping results. With increasing number of redundant MCAs, error-protection
strength increases at the cost of increased overhead. In second scheme, independent redundant
columns are used which have much lower number of rows than the original MCA, as shown in
Figure 23c. They noted that two redundant devices in the positive and negative redundant columns
can completely cancel the negative effect of one faulty device. For instance, if a device in negative
MCA gets stuck at low resistance, to remove its impact, first the corresponding device on the positive
MCA can be set to low resistance and, then, a pair of robust devices can be added to bring the mapping
space to same as the ideal case. Since both positive/negative MCAs may have faults, the number of
redundant devices need to be doubled. Based on this, the number of devices in each redundant column
is found. Then, their mapping algorithm is applied collectively on original MCAs and redundant
columns. Due to presence of faults, muxes are required for selecting inputs to MCA in redundant
columns. For this, ReRAM devices in columns of original MCA are evenly divided into multiple parts,
called “cuts”. While the first scheme maintains the same MCA structure and requires no extra control
logic, the second scheme requires smaller number of ADCs/DACs and redundant devices than the first
scheme and incurs lower energy overhead. Both the redundancy schemes bring large improvement in
accuracy, although the improvement of first scheme is slightly higher.

4.2. Addressing Resistance Drift

Li et al. [75] noted that a memristor gradually drifts from its original programmed state,
e.g., a voltage of 0.1 V leads to 2% deviation from the original state in 1 s. Due to this, the precision of an
MCA-based system decreases gradually. This effect can be compensated by tuning the memristor to a
specific state, however, since memristor tuning takes much more latency than a regular operation (5 µs
vs. 50 ns), frequent calibration incurs large overhead. Moreover, the rate of decay of precision varies
over time even for a single system. They presented an inline calibration scheme for improving system
efficiency under drift. Their technique first measures system error using an “interrupt-and-benchmark

Mach. Learn. Knowl. Extr. 2019, 1 96

(InB)” operation which interrupts the normal operation, performs processing of the benchmark and
finds the error. InB is performed repeatedly at different time instances and these time stamps and
observed error values are recorded. Then, an Nth-degree polynomial is fitted to the data to find the
function showing the relationship between time and computation error. Based on this, the error at the
time of next InB operation is predicted and if it is less than the maximum tolerable error, the calibration
is skipped, but if it is larger, calibration is assumed to be required. Hence, using the polynomial
function, the time instance at which the predicted error would have reached maximum tolerable
error is estimated and, then, calibration is performed at this time instance. Since InB operations harm
performance, they also propose an adaptive technique for adjusting the time period between successive
InB operations. Their technique increases the number of normal (useful) operations between successive
calibration operations with negligible impact on performance.

5. ReRAM-Based PIM Techniques

This section reviews techniques for implementing arithmetic and logical operations (Section 5.1),
search operations (Section 5.2) and graph-processing operations (Section 5.3) in ReRAM.
Table 7 provides a classification of these techniques. Finally, several ReRAM-based approximate
computing approaches are discussed (Section 5.4).

Table 7. PIM approaches.

Strategy Reference

Bitwise/logical operations [48,54,59,76]
Addition/MVM [16,49,50,52,53,63]

Search operations [52,59,64,65,71,72]

5.1. Arithmetic and Logical Operations

Li et al. [54] noted that the compute-centric architecture (Figure 24a) leads to large data transfer
between core and memory, whereas the PIM approach (Figure 24b) can reduce the data movement
significantly. They presented a technique for performing bulk bitwise operations (OR, AND, XOR,
and NOT) in ReRAM. Conventionally, for reading a cell, the resistance of a cell is compared against a
reference resistance value to ascertain the stored value as 0 or 1, as shown in Figure 24c. Their technique
activates two rows simultaneously and thus, the resistance on the bitline becomes the parallel
connection of those cells. For computing AND/OR operations, only the reference resistance needs to
be changed, for example, for computing OR operation, the reference resistance should be changed to
RRefOR, as shown in Figure 24d. For XOR operation, one operand is read in a capacitor and another
operand is read in the latch. The output of two add-on transistors provides XOR outcome. For inversion
(NOT) operation, the differential value from the latch itself can be taken as the result. By using a
multiplexor, a normal read or AND/OR/XOR/NOT operation can be selected. The circuit can be
extended to compute OR operation on multiple rows, but AND operation on multiple rows are not
supported. By comparison, DRAM-based PIM techniques support two-row operations only.

Their technique requires changes to sense amplifier, e.g., local wordlines and device driver.
Thus, by merely changing the read-circuit, their technique computes bitwise operations on multiple
memory rows. The output can be written to the I/O bus or another memory row. Since their
technique performs row-level operations only, the software need to allocate data in PIM-aware
manner. Their technique can perform operations at intra-subarray, inter-subarray or inter-bank levels.
Their technique achieves higher energy efficiency and performance compared to general-purpose
processor and DRAM-based PIM techniques.

Mach. Learn. Knowl. Extr. 2019, 1 97

Operand row n-1

Operand row 1

Operand row 0

Result row

ALU

Caches

CPU

NVM main memory

Operand row n-1

Operand row 1

Operand row 0

Result row

ALU

Caches

Rearchitected SA

Only command
& address

Entire data over DDR bus

(a) Conventional approach (b) Processing-in-memory approach

Rlow

PDF

‘0’ region‘1’ regionSA output

RhighRRefReadRBL

Cell value

RL||RL

‘0’ region‘1’ region

RRefOR

‘0’‘1’

RH||RHRL||RH

(‘1’, ‘1’) (‘1’, ‘0’) (‘0’, ‘0’)

RBL

Cell value

PDF

SA output

(c) SA

reads with

RRefRead

(d) SA

computes

OR with

RRefOR

Figure 24. (a) The compute-centric approach leads to high amount of data transfer; (b) the PIM
approach performs N-row bitwise operations in NVM in a single step; and (c,d) modifying reference
resistance in SA to read the value and perform OR operation, respectively (figure adapted from [54]).

Lebdeh et al. [76] presented a design for implementing stateful XNOR/XOR gate in MCA.
Their design uses two “bipolar memristors (BMs)” for storing input and one “unipolar memristor
(UM)” for storing the output. For cascading the gates, the value of UM is buffered in a BM. They use
“threshold switching memristors” and leverage the ability of memristors to provide different values of
reset (OFF) and set (ON) threshold voltages. The ratio of OFF to ON resistance should be high. Both
OFF and ON resistance values of unipolar and bipolar memristors need to be equivalent. Their design
needs only two steps which allows using XNOR as the basic logic gate. In the first step, output UM and
BM are initialized to RON and ROFF, respectively. In the second step, the input memristors are supplied
with the execution voltages, whose magnitude is given by VexecXNOR = 2|Vreset(unipolar)|. The output
of XNOR for different input combinations is shown in Table 8, which confirms the functionality of
their XNOR gate. While the XNOR is computed in only two steps, using an additional step and a
computing memristor, their design also allows logic cascading of gates. Their design reduces area
(number of memristors), latency (number of steps) and energy consumption. Their PIM-based design
provides higher performance than voltage input/output memristive circuits. The limitation of their
design is that it needs both bipolar and unipolar memristors and uses multiple voltage levels.

Table 8. XNOR truth table (adapted from [76]).

RIN1 RIN2 Vout Rout

RON RON 0 RON
RON ROFF −VexecXNOR/2 ROFF
ROFF RON VexecXNOR/2 ROFF
ROFF ROFF 0 RON

Chi et al. [43] proposed a PIM architecture for ReRAM-based main memory for accelerating NN
computations. They divided a ReRAM bank into three types of subarrays: memory (Mem), buffer

Mach. Learn. Knowl. Extr. 2019, 1 98

and full function (FF). Mem subarrays only store data whereas FF subarrays can either store data or
perform NN computations, as shown in Figure 25. Buffer subarrays buffer the data for FF subarrays
without requiring involvement of CPU. FF subarrays benefit from high bandwidth of in-memory data
movement and ability to work in parallel to CPU. They noted that an SA performs similar function as
an ADC and same is also true for write drivers and DACs. Hence, with only small modifications, they
reused write drivers and SAs to perform the function of DAC and ADC, respectively. This sharing of
periphery between computation and memory lowers the area overhead.

Global row buffer

SA

Sub Sigmoid

Negative

weight

Positive

weight m

Buffer subarray

Latch

1

2

3

Global row buffer

SA

Sub Sigmoid

MemMem
m

Buffer subarray

Latch

1

2

3

FF

subarray

(a) Computation mode (a) Memory mode

Figure 25. Operating FF subarrays in: (a) computation mode; and (b) memory mode (figure adapted
from [43]).

To switch the FF subarrays from memory to compute mode, data stored in them are moved
to memory subarrays. Then, weights of the mapped NNs are written to the FF subarrays and the
periphery is reconfigured. Opposite process happens on change from compute to memory mode.
Since NN applications can tolerate low precision of inputs and weights, they assumed 3-bit and 4-bit
precision of input voltage and synaptic weights, respectively, which implies 8 voltage and 16 resistance
levels, respectively. The output precision required is 6-bit and dynamic fixed point format is used.
They used a composing scheme whereby two 3-bit inputs are composed into one 6-bit input and
two 4-bit cells are used for representing one 8-bit weight. To implement FC layers, they separate
synaptic weight matrix in two matrices for storing positive and negative weights and store them
in two MCAs. MVM is implemented in ReRAM arrays. They also discussed implementation of
convolution and max/mean pooling layers. Depending on the size of NN (e.g., small, medium or
large), the mapping of NN to ReRAM is optimized during compilation. Their design can support
large-sized CNNs and MLPs and provides large improvement in performance and energy efficiency
on ML workloads.

Imani et al. [63] implemented exact/inexact addition/multiplication operation using PIM
capability of MCAs. They used a crossbar memory which is logically partitioned into memory and
compute blocks, as shown in Figure 26a. These blocks connect with each other using reconfigurable
interconnects that inherently support shift operations. Thus, data shifting can be done while copying it
from one block to another without any additional delay. In addition, unlike bit-wise shifting, entire
data can be shifted at once. Their adder is based on the 3:2 CSA (carry save adder) design, as shown
in Figure 26c. It uses N 1-bit adders that produce two outputs each. The adders do not propagate
any carry bit and, hence, can execute in parallel. Using their memory unit which supports shifts, they
achieve CSA-like behavior. Finally, the two numbers are serially added. To add multiple numbers,
they used a Wallace-tree-like design [77], which reduces delay by propagating the carry only at the last
stage, although this design increases energy consumption and memory writes. The latency of their
reduction adder is independent of the size of operands, e.g., N × 32 multiplication takes same time
irrespective of the value of N.

Mach. Learn. Knowl. Extr. 2019, 1 99

Column decoder and

controller

Sense amplifiers

Interconnect

Processing

block k

Controller

M2i==1

M2

M1

(a) Overall design

Y

N

Copy

M1

Bitwise read

Interconnect

CSA CSA

Interconnect

CSA

CSA CSA

C11 S11 S1h
C1h

C21 S21
C2[2h/3] S2[2h/3]

Interconnect

CSA

CT1 ST1

C2n-1 C2n-2 C0

S2n-1 S2n-2 S0

C’2n C’2n-1 C’1

SASA

C2n-2

SA

P2n P2n-1 P1

(c) Fast adder (d) Final product generation(b) Partial product

generation

Figure 26. (a) Overall design proposed by Imani et al. [63], consisting of multiple data and processing
blocks; (b) partial product generator; (c); fast adder tree composed of CSAs and configurable
interconnects; and (d) final product generation for rippling the carry bits of tree structure (figure
adapted from [63]).

The multiplication involves three steps. First, partial-product of N×N multiplication is generated,
as shown in Figure 26b. Second, these N partial products are added to get two numbers. Third, these
two numbers are added to obtain the final product, as shown in Figure 26d. The partial-product is
generated by ANDing each bit of multiplier (M1) with the multiplicand (M2). To achieve this, M2 is
read bit-wise using sense-amplifier and if it is 1, M1 is copied, but if it is 0, no action is taken which
avoids write operation and saves energy. Their blocked architecture allows performing shifting of
partial products (for add operation) along with copy operation which avoids their latency overhead.
two consecutive NOT operations are equal to the copy operation.

They further noted that the third stage of multiplication above has high latency which becomes a
bottleneck. Hence, for approximable applications, they proposed an inexact multiplier design based on
the fact that, in 1-bit addition of (A, B, Cin), the sum (S) is the complement of the generated carry (Cout)
except for two out of eight combinations of inputs, which are (0,0,0) and (1,1,1) when shown as a (A, B,
Cin) combination (refer Table 9). Based on this, they evaluate Cout precisely and then approximate S.
This scheme reduces latency of 2N bit addition from 26N to 4N + 1 cycles. To further exercise tradeoff,
parts of the product can be computed in exact/inexact manner. Their design improves performance
and energy efficiency with acceptable quality loss.

Table 9. Result of one-bit addition.

Input Output

A B Cin Cout Sum

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

5.2. Data Search Operations

Imani et al. [64] proposed a resistive CAM (content addressable memory) design which leverages
analog features of non-volatile lookup-table (NVLUT) for implementing nearest-element search in
GPU applications. They note that GPU applications show high amount of data similarity and locality.
For example, fast Fourier transform and multimedia applications have repeated building blocks. Based
on this, most basic operations can be performed using an approximate look-up table. Through offline

Mach. Learn. Knowl. Extr. 2019, 1 100

profiling, their technique identifies frequently occurring inputs and stores them, along with their
outputs in the NVLUT, as shown in Figure 27. At runtime, the stored value which is most similar to
the input value is searched and the corresponding output is returned which avoids the need of actual
evaluation on the GPU core.

Thread

dispatch unit

Element 0

Element 1

Element 31

Compute engine Computing element

Accuracy

checker

SIMD 0

SIMD 3

NVLUT 0

NVLUT 3

Scheduler

Workload Accuracy target

λ

Nearest distance CAM

CAM

cell

CAM

cell

MEM

cell

MEM

cell

Distance

computation

Sense amplifier

Sense

amplifier

λ

Activate GPU

Buffer Bitline driver

Figure 27. NVLUT architecture (figure adapted from [64]).

NVLUT uses inverse CAMs which can search for the row whose value is nearest to the input.
They noted that use of Hamming distance as the similarity metric does not provide high accuracy
since it does not account for the contribution of each bit-index. A CAM for searching the exact nearest
value incurs high overhead. Instead, their technique changes the weight of every bit-index in the CAM
and accounts for these weights during the search operation. For different bit index values, access
transistors of different size are used. This allows assigning weight to each bit index during the search
operation for finding the row with nearest value. The limitation of their technique is that it works
only for approximable applications which have small number of inputs/outputs such that they can fit
inside the table.

By increasing the size of NVLUT, output accuracy can be improved at the cost of higher energy
overhead. However, increasing NVLUT size beyond a threshold does not improve the efficiency
and, hence, they proposed an adaptive approach. If the distance between the input value and stored
value exceeds a threshold (shown as λ in Figure 27), the input is assigned to the GPU core for
accurate execution, otherwise, it is assigned to NVLUT. By changing this threshold, a tradeoff between
performance and accuracy can be exercised. Compared to GPU-only execution, their technique
improves performance and saves energy with small loss in quality. A limitation of their technique is
the requirement of offline profiling.

Imani et al. [59] proposed a memory design which provides capabilities for normal storage, data
searching for nearest neighbor and AND/OR/XOR bitwise operations. The proposed memristor-based
memory is integrated on top of DRAM using 3D-stacking. Write- and read-intensive data are kept in
DRAM and ReRAM memory, respectively, which alleviates limited write-endurance issue of ReRAM.
In addition, read-intensive data are generally used for in-memory processing and example of this
include reference data for ML workloads, synaptic weights in NN, etc. Each bank of proposed memory
has multiple crossbar memories which can be used in CAM or memory mode for search operation or
bit-wise operation, respectively.

To search for a given target data, the most similar data points in all banks are simultaneously
examined. For this, Hamming distance is computed using analog properties of memristor. A CAM
has N blocks each with M-bit data and each row corresponds to the matchline, as shown in Figure 28.
Any mismatch on the CAM cells begins to discharge the matchline. With increasing mismatches,
discharge-rate increases, e.g., a CAM with 2-bit mismatch discharges faster than a CAM with 1-bit
mismatch. The SA detects this by measuring the discharge current in each cycle. A challenge in
this approach is that the discharge-rate saturates after a point, e.g., 5-bit and 6-bit mismatch lead to
similar discharge-rate. To address this issue, they divide the bitlines into multiple blocks. For each
row, a parallel counter accumulates distance values for each row. Finally, M rows with the smallest
distance are selected by a priority checker block. Their design searches in “block-serial, row-parallel”

Mach. Learn. Knowl. Extr. 2019, 1 101

manner which takes constant time. Each CAM requires only one SA, counter and comparator, which
reduces area overhead compared to a digital implementation.

Buffer

MEM

cell
Nearest

neighbor

selector

Parallel

counter

Find

MinimumRow

driver

MEM

cell

MEM/Bitwise sense amplifier

MEM

cell

MEM

cell

Buffer

MEM

cell

MEM

cell

MEM

cell

MEM

cell

Block 1Block N

ControllerClk
T1

TN

TN T1

Figure 28. Circuit for searching nearest-neighbor (figure adapted from [59]).

For bitwise operations, extra bitwise SAs are used. If both bits are “1” or “0” due to high/low
resistance (respectively), bitline discharge current is very small (Ilow) and large (Ihigh) respectively.
If only one of the bits is “0”, bitline offers a middle range of current Imid (Ilow < Imid < Ihigh). Based on
these current differences, a voltage-based SA identifies the result of a bitwise operation. For this,
three sense resistance values are used: RMEM, ROR and RAND. For normal read operation, RMEM
with low resistance is used for detecting any discharge current upon a row-activation. To perform
AND operation, RAND with large sense resistance is used for detecting discharge current of Ihigh.
For OR operation, ROR is used for finding when the discharge current exceeds Imid. XOR is performed
based on the results of OR and AND. AND/OR operations can also be performed on multiple rows,
whereas the XOR operation is performed for two rows in the same crossbar memory. Their design
achieves orders of magnitude improvement in performance and energy efficiency for search and
bitwise operations.

Imani et al. [72] presented an NVM-based query accelerator, termed “NVQuery” which can
perform many query functions in memory such as aggregation (MIN, MAX, Average, Count), prediction
(Exist, Search condition, Top), bit-wise operations and exact and nearest-distance search queries. As
shown in Figure 29, the crossbar memory is designed as a CAM which works based on analog features
of NVM. In their design, the crossbar memory can work as memory, LUT (for allowing exact search)
and nearest distance search. The memory has N banks each consisting of k memory blocks. Each block
provides result of the query and the results of all the blocks are finally processed to get the result from
the entire dataset. Based on the exact search, the total count of hits can also be computed. To perform
nearest distance search, the bit-by-bit search is performed to scan a bit with same index in multiple
words. The data-item that remains selected for the highest number of iterations is chosen as the nearest
data. Using this functionality, aggregation functions can also be implemented. For example, to compute
MIN function, the number having smallest distance from least possible value (e.g., zero for unsigned
number) is searched. This is shown as L in Figure 29 and for unsigned numbers, L = 0. For performing
TOP k (i.e., searching k values closest to the input data), nearest distance search is performed for k
iterations. After every iteration, the selected word is deactivated and the nearest distance search is
repeated on the remaining words. This provides k nearest values ordered by proximity to the input.
Thus, MIN/MAX and TOP k can be computed in single and k cycles, respectively.

Mach. Learn. Knowl. Extr. 2019, 1 102

NVQuery

DRAM

Memory

Xbar Xbar

Bank N-1Bank 0

Query

result

Query

key(s)

Input

query FIFO
Controller

Column driver

Row

driver

CAM

SA

Memory SA

G L

Register Register

Config Function CAM input CAM SA Memory SA

Nearest

search

MIN L Nearest

MAX G Nearest

Top k FIFO Nearest

Exact search Search FIFO Exact

Memory

Bitwise AND/OR

Memory MEM

Addition MAJ

(b) NVQuery Configuration

(a)

Figure 29. (a) NVQuery architecture; and (b) configuration settings [72]. G and L represent the greatest
and lowest values, respectively. Empty cells in the table indicate that those inputs/settings are not
applicable (figure adapted from [72]).

Further, by searching for the exact and closest values, bit/value-wise comparison can also be
performed. To perform bit-wise operations such as AND/OR/XOR and addition/average, the crossbar
is set in memory mode and the output is read from the sense amplifiers. They also discussed the
hardware extensions required for implementing their technique, e.g., to facilitate nearest-distance
search, a bitline driving scheme is used to give weights to the indices of the bits. Compared to CPUs and
query accelerators, their design provides large improvements in performance and energy efficiency.

Sun et al. [71] noted that in a 2D database, each row stores a tuple (e.g., record) of attributes and
each of the attribute is stored in a column, as shown in Figure 30. For simple queries, the row-oriented
and column-oriented organizations can fetch right amount of data to reduce cache misses. However,
these organizations are ineffective for queries seeking data from a particular column in a particular
row. For example, in a row-based organization, multiple rows are consecutively stored, e.g., Tuple0

= {P0, Q0, R0, S0, T0, U0, V0, W0} is stored in Row 1 and so on. A query such as “select P from Table
where P < 20” inquires for attribute P. As shown in Figure 30, P0 and P1 are in different cache blocks,
and hence, they do not get loaded together which leads to a cache miss.

P0 Q0 R0 S0 T0 U0 V0 W0

P1 Q1 R1 S1 T1 U1 V1 W1

P2 Q2 R2 S2 T2 U2 V2 W2

P3 Q3 R3 S3 T3 U3 V3 W3

P4 Q4 R4 S4 T4 U4 V4 W4

P5 Q5 R5 S5 T5 U5 V5 W5

P6 Q6 R6 S6 T6 U6 V6 W6

P7 Q7 R7 S7 T7 U7 V7 W7

Restriction

Aggregation

Cache block

width

Data loaded

and referenced

Data loaded but

not referenced

Figure 30. An illustration of the cache miss issue with query “select P from Table such that P < 20”
(figure adapted from [71]).

Sun et al. [71] remarked that the bi-polar nature of ReRAM cell and the crossbar design of
ReRAM array allow reading data using both row-oriented and column-oriented approaches. Hence, a

Mach. Learn. Knowl. Extr. 2019, 1 103

ReRAM crossbar-based memory can be highly effective in database applications for reducing cache
misses. Since computations of SQL (structured query language) queries can be also be considered as
matrix operations, a ReRAM-based PIM approach can allow efficiently processing SQL queries. They
presented a ReRAM-based PIM architecture for implementing SQL queries. Their technique supports
dot-products of ReRAM cells storing identical attribute in different tuples and different attributes
in the same tuple. They mapped data to ReRAM such that a tuple is stored in a ReRAM row and
attributes of a tuple are stored in columns of a row, as shown in Figure 31.

Attribute

P1

P2

Pn

Q1

Q2

Qn

Tuple
Vin

Vin

(a) Table storage approach (b) Row-wise PIM (c) Column-wise PIM

Figure 31. PIM approach for SQL queries [71]: (a) mapping of the table in ReRAM; (b) row-wise PIM;
and (c) column-wise PIM (figure adapted from [71]).

Their technique supports three query operations: restriction (selecting rows that fulfill a
criterion), projection (selecting specific columns in a row) and aggregation (summarizing specific
properties of multiple columns in a group of rows, e.g., adding the values). As for restrictions,
their technique supports: +, -, *, >, <, = ,≤, ≥, AND, OR, NOT, XOR, NAND and NOR.
The addition/subtraction/multiplication with constants are performed as row-wise dot-product
computation as shown in Figure 32a. To multiply two attributes, they are transferred to CPU to
perform the multiplication. To perform comparison operations, an analog comparator is used at the
row-output port to avoid ADCs. To process the output by equality or Boolean functions, an ADC is
used at row-output for converting the result to digital domain. The digital signal can be buffered and,
then, subsequent operations can be performed using digital circuitry.

(a) Restriction operation

Analog

compa-

rators or

ADCs

Peri-

pheral

units

Regs

(b) Projection operation

Analog

compa-

rators or

ADCs

Regs

Bitline decoder

& switches

MUX

ADC

(c) Aggregation operation

Regs = registers

Figure 32. Implementation of: (a) restriction; (b) projection; and (c) aggregation operation in ReRAM
crossbar (figure adapted from [71]).

To perform projection operation, row-wise dot-product computation is performed when specific
columns are to be selected, as shown in Figure 32b. The column to be read is supplied with an
input signal of 1 and the remaining columns are supplied with 0 signal. For aggregation, only “sum”
operation is supported using column-wise computation, as illustrated in Figure 32c. Of the tuples
selected in restriction step, certain attributes of these tuples are accumulated for performing sum
operation. The output of every column shows the result of sum operation for those attributes. At a
time, only row-wise or column-wise computations can be performed and, hence, the same ADC can be
used for row-ports and column-ports. By virtue of reducing data-transfer, their technique improves
energy efficiency over conventional CPU-based approach by orders of magnitude.

Mach. Learn. Knowl. Extr. 2019, 1 104

5.3. Graph-Processing Operations

Song et al. [53] noted that graph processing workloads are bottlenecked by memory-bandwidth
since they access memory randomly during neighborhood traversal. Since adjacent vertices are not
stored in nearby locations, the spatial locality is small and, hence, a cache block is not fully utilized.
This increases the data movements and wastage of energy. Even though all graph algorithms perform
MVMs, the sparsity of the graph leads to inefficient MVM. Hence, most works do not store graphs
in matrix form, but in compressed sparse matrix form. However, due to this, the memory access
latency far-exceeds the computation latency. They note that iterative algorithms in graph-computations
can tolerate errors. In addition, algorithms working on integers and probability computations such
as PageRank are also tolerant to errors. Hence, they propose ReRAM-based analog operation for
performing MVMs in graph-computations. The energy efficiency and PIM capability of ReRAM saves
energy despite sparsity of computations.

However, use of ReRAM presents challenges of properly representing the data, mapping graph
algorithms and minimizing data movements. To address these, their design uses ReRAM as both
memory and graph processor. The graph data are stored in compressed form in memory ReRAM.
The graph processor (ReRAM crossbar) performs MVMs on the sparse matrix. For enabling processing
of an entire large graph and coordinating the data block, they proposed a “streaming-apply execution
model”, which is shown in Figure 33. In the beginning, all data are loaded into memory ReRAM.
The graph data processed together in all GPs (graph processing engines) constitute a subgraph.
The subgraphs are originally stored in memory ReRAM in sparse format. The vertices and edges are
stored as vector and coordinate-list, respectively. The old vertex value for vertex read and new vertex
value for vertex update (write) are stored in two different vectors, termed Source and Destination,
respectively. After processing of the sub-graphs in an iteration, the Destination is copied to the Source
to allow reading new vertices in the next iteration. The subgraphs are processed in the GPs.

B0-0 B0-1 B0-2 B0-3

B1-0 B1-1 B1-2 B1-3

B2-0 B2-1 B2-2 B2-3

B3-0 B3-1 B3-2 B3-3

Dest

Src GP GP GP GPSrc

chunk

Dest chunk

Row parallelized

Column

oriented

Memory ReRAM

Figure 33. Streaming-apply execution architecture (src = source, dest = destination) (figure adapted
from [53]).

Their execution model allows deciding the order of processing of subgraphs and subgraph-regions
processed by any GP. Their design requires preprocessing of sparse graph data in coordinate list
format for facilitating loading of edge data in GPs. In a subgraph, data in a set of rows are
loaded and operated sequentially by all the GPs. The number of rows processed consecutively
is decided by the size of crossbars. By controlling the crossbar size, a tradeoff between utilization
and parallelism/performance/overhead can be achieved. Figure 34a shows an 8 × 8 adjacency
matrix, where the shaded/blank squares indicate presence/absence of an edge between two vertices,
respectively. Here, although the entire graph could be concurrently processed, only ∼39% cells are
utilized and remaining cells get wasted. On reducing the crossbar dimension to 4 × 4 or 2 × 2
(Figure 34b,c), the utilization increases to ∼52% and ∼78%, respectively. This is because unused squares
need not be mapped to ReRAM.

Mach. Learn. Knowl. Extr. 2019, 1 105

0

0 1 2 3 4 5 6 7

0

1

2

3
4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3
4

5

6

7
0 1 2 3 4 5 6 7

1

2

3
4

5

6

7

(a) 8*8 mapping (b) 4*4 mapping (c) 2*2 mapping

Figure 34. Processing of adjacency Matrix with: (a) 8 × 8; (b) 4 × 4; and (c) 2 × 2 ReRAM Crossbars
(figure adapted from [53]).

The auxiliary operations are handled by the peripheral logic for supporting data movement.
They also proposed techniques for mapping different graph algorithms to the crossbar architecture.
Their design provides higher performance than a CPU-based graph processing tool and achieves
similar performance as a GPU-based tool on excluding the data transfer overhead.

5.4. Approximate Computing Approaches

Table 10 summarizes several approximate-computing based techniques. We now review them.

Table 10. Approximate computing approaches.

Strategy Reference

Approximating mathematical functions [62,63,66]
Approximating search operations [64]
Precision-scaling or pruning [17,20,35,65]
Quantization [18,41]
Fixed-point operations [16,43]
Performing more aggressive memresistance scaling in LSBs than in MSBs [65]
Approximate storage [43]
Additional retraining iterations to reduce the errors [58,67]

An associative processor is an in-memory computing engine for parallel processing. A “memristive
associative processor (MAP)” uses a resistive CAM to perform any function by applying its truth table to
the resistive CAM. Yantir et al. [65] proposed two approximate-computing techniques [78] for improving
the efficiency of MAPs: bit-trimming and memristance-scaling. In associative computing, an arithmetic
operation is done by processing the bits starting from LSB to MSB. Hence, the overhead of an operation
depends on the number of bits, instead of the vector size. Based on this, by skipping lower K bits,
the number of cycles can be reduced for only minor loss in accuracy. Reduction in cycles leads to
reduction in write/compare operations which also saves energy. In addition, by changing the value of K,
a balance between accuracy loss and efficiency gain can be achieved.

They further noted that, in memristors, the logic-0 and logic-1 values are represented by the
maximum (Roff = 100 KΩ) and minimum (Ron = 100 Ω) memresistance values. However, tuning
the memristor precisely to these values incurs large latency and energy overhead. For example,
as memresistance approaches Ron, the energy consumed increases sharply, whereas the rate of change
in memresistance is reduced. Hence, a large amount of energy is spent in this region. To reduce this
overhead, the memresistance scaling scheme tunes the memristor in a sub-range of the maximum and
minimum memresistance values. This is achieved by scaling both write latency and write voltage,
which also reduces write energy.

Although the associative processor operates on digital data, the compare operation happens in
analog manner and the SAs convert the analog output into digital value. Hence, memresistance scaling
makes comparison operations into approximate operations. However, in presence of PV, the error rate

Mach. Learn. Knowl. Extr. 2019, 1 106

can become high, especially when the errors happen in MSBs. To mitigate this issue, the aggressiveness
of scaling is kept higher in LSBs than in MSBs. Their memristive associative processor architecture
offers higher performance and energy efficiency than CPU, GPU and ASIC implementations with
acceptable quality loss.

6. ReRAM-Based SNN Architectures

We now discuss ReRAM-based accelerators for SNN.
Ankit et al. [15] noted that larger crossbars facilitate flexible mapping of SNN and lower peripheral

circuitry, however, they also show poor accuracy due to non-ideal behavior, e.g., PV, sneak-path and
parasitic voltage drops. They proposed a reconfigurable design made of MCAs which realizes energy
benefits of MCAs and also addresses challenges due to its size. In their architecture, each reconfigurable
core has multiple neuro-cells which themselves have macro processing engines (MPEs) designed with
multiple connected MCAs, as shown in Figure 35. Each of these allow mapping unique type of
reconfigurability in SNN design. For example, the cores allow mapping SNNs of different layer-counts,
the neuro-cells allow mapping SNNs with different inter/intra-layer connections, e.g., MLPs and
CNNs and MPEs map neurons with varying fan-in. The synapses of neurons computed in an
MPE are contained in MCAs and this is achieved by mapping their connectivity matrix on MCAs.
Since the MCA size required for reliable operation is much smaller than the fan-in of a typical NN,
the connectivity matrix is partitioned and mapped to multiple MCAs. Neuron-computations are
performed by time-multiplexing MCA outputs on the neuron.

MPE MPE MPE MPE

MPE MPE MPE MPE

MPE MPE MPE MPE

MPE MPE MPE MPE

Neurocell-1

Neurocell-N

IO Bus

Global

control

unit

Input

memory

Programmable switch

Figure 35. A reconfigurable core consisting of multiple neurocells, each composed of multiple MPEs
(figure adapted from [15]).

By virtue of performing both storage and multiplication, MCA saves energy of data-transfer. In
addition, MPE reconfigurability allows optimized mapping, for example, an MCA size providing most
reliable operation for a given MCA technology can be chosen. This lowers peripheral energy of each
MCA and is especially useful for matrices with sparse connectivity generally found in CNNs. Inside a
neurocell, a “zero-check logic” is used which avoids transfer of trivial (e.g., all-zero) spike-packets.
Further, at the core level, event-driven characteristics of SNN is used to avoid useless broadcasts to
neurocells by utilizing zero-check logic. Compared to a digital CMOS design, their designs achieve
much higher throughput and energy efficiency for MLPs and deep CNNs.

Wang et al. [44] presented a ReRAM based design of an SNN and discussed two training
approaches. In first approach, unsupervised STDP (spike-timing-dependent plasticity) is used for
feature-extraction and, then, the supervised classifier is used for completing the classification. They
proposed a five-layer NN design with a two-layer SNN and a three-layer ANN, as shown in Figure 36a.
The two-layer SNN is trained by STDP in which weights are updated based on the relative spiking
time of pre- and post-synaptic neurons. With increasing distance between pre- and post-synaptic
weights, the learning rate is reduced. When no weight changes or all weights reach 0/1, learning
process is completed. Spike trains from SNN are converted into spiking count vectors and are fed to

Mach. Learn. Knowl. Extr. 2019, 1 107

ANN. The ANN is used as a classifier for processing the features extracted by SNN. CMOS analog
neurons are used for LIF (leaky integrate-and-fire) neuron and ReRAM crossbar is used for performing
vector addition in SNN and MVM in ANN. On comparing the five layer (two-layer SNN + three-layer
ANN) design with a three-layer ANN design, the former design achieves lower accuracy in recognition
and, thus, STDP method has limited efficacy. However, SNN consumes lower energy than ANN since
it works with lower voltages (0.1 V vs. 0.9 V). This is because input voltage of SNN can be binary since
it transforms numeric information into time-domain. Hence, unlike ANN, it does not need to hold a
large voltage range for representing different input states. Binary coding in SNN also avoids the need
of ADC/DAC which further reduces energy consumption.

Temporal coding

SpikeDelay = α exp(-

ImageGrayValue/τ)

STDP network

0
1
3
2

Classifier

Result

Input

Image

Transform each pixel into

a spike train

SpikeNumber =

round 𝑁𝑠 ∗
𝑉
𝑖

σ𝑘=1
𝑁 𝑣

𝑘

Crossbar-based

MVM

Find the input

with highest

spike number

Counter and

comparator

Input

Image

Result

Spike count

vector

Spike trainsSpike encoding

Spike encoding

Spike trains

Spike trains

(b)

(a)

Figure 36. (a) Two-layer STDP based SNN (for unsupervised feature extraction) and three-layer ANN (for
supervised classification); and (b) transferring ANN to SNN using neural sampling scheme (figure adapted
from [44]).

In the second training approach, termed as “neuron sampling” (Figure 36b), an equivalent ANN
is trained using gradient-based scheme. Then, ANN is transferred to SNN which is mapped to ReRAM.
This approach provides higher accuracy in recognition. In addition, the SNN design is robust towards
input fluctuation and PV. To implement SNN using ReRAM, they also discussed an MCA working
as a network synapse, an analog spiking neuron design and a mapping scheme for configuring
ReRAM-based SNN. Since SNN has higher area/energy efficiency than ANN, they further proposed
improving the accuracy by integrating multiple SNNs.

Narayanan et al. [45] noted that, in design of SNNs, sparsity of spike rate allows reducing
A/D conversion overheads, however, handling of neuron potential requires higher storage cost.
They presented an efficient MCA-based SNN design. In their design, a chip has multiple tiles organized
in a mesh network, as shown in Figure 37a. Layers of an SNN are distributed on these tiles. Every tile
has SRAM buffers, neuron units, synaptic units and a router. The synaptic-unit has multiple MCAs
and ADCs (Figure 37b), whereas neuron-unit has adders and thresholding logic (Figure 37c). A neuron
with many inputs can be mapped to multiple crossbars or even synaptic units. A single CONV layer
is executed in two phases: an odd and an even phase. In the odd phase, inputs from the buffers are
applied to the crossbars. Every phase is at least 100 ns, which allows time for a crossbar read and
capturing the bitline outputs. Massive parallelism in analog domain is leveraged for estimating the
impact of every incoming spike on the potential of multiple neurons (i.e., increment).

In the even phase, first, the output of first bitline is converted to digital signal using ADC.
Then, the results of different bitlines are aggregated and the potential increment of a neuron is routed
to the home of that neuron. In DNNs, this may require traveling multiple hops. In neuron’s home,
increment is added to neuron’s potential and leak to obtain the new potential. Then, the new potential
of neuron is thresholded, and the final potential is stored in SRAM buffer. The spike generated is sent
to the next layer where it is accessed in the upcoming odd phase. Multiple crossbars work concurrently
on different layers of NN to form an effective pipeline architecture. Compared to the 22-stage pipelined
ANN design [16], their design uses only a two-stage pipeline for processing every neuron in a layer.
In addition, due to the network sparsity, their design uses low-width ADC which improves area

Mach. Learn. Knowl. Extr. 2019, 1 108

efficiency and allows allocating higher area for storage and neuron updates. The parallelism enabled
by crossbars allows their design to achieve high throughput and energy efficiency and exceed that
offered by TrueNorth architecture.

T T T T

T T T T

T T T T

T T T T

North

synaptic unit

Neuron unit

CB1

CB2

CB3

Neuron unit

South

synaptic unit

CB4

Inter-tile

router

I

N

P

U

T

B

U

S

I

B

U

F

Xb+

ADC

Xb+

ADC

Xb+

ADC

Xb+

ADC

I

B

U

F

Xb+

ADC

Xb+

ADC

Xb+

ADC

Xb+

ADC

I

B

U

F

Xb+

ADC

Xb+

ADC

Xb+

ADC

Xb+

ADC

I

B

U

F

Xb+

ADC

Xb+

ADC

Xb+

ADC

Xb+

ADC

Output Bus

Routing

logicOBUF

Ring

To West

From

East

To Neuron Unit

Compare

Add

Update

Vmem

Vleak

Vth

𝑖=0

𝑛

𝑥𝑖𝑤𝑖

Vmem

from

central

buffer

from

synaptic

unit

(a) Tiled architecture and organization of each tile

(b) North synaptic unit (SU) (c) Neuron unit (NU)

West

SU
NU NU

East

SU

Figure 37. The technique of Narayanan et al. [45]: (a) pipeline diagram; (b) tiled architecture and
organization of each tile; (c) north synaptic unit; and (d) neuron unit (S+A = shift and add)) (figure
adapted from [45]).

7. Conclusions and Future Outlook

Addressing the challenges faced by modern computing industry requires fundamental
breakthroughs in memory and compute architectures. While PIM approach and ML techniques
are promising, their infeasibility/inefficiency on conventional memories and processors limits their
potential. In this paper, we present a survey of techniques for designing NN accelerators and enabling
PIM using ReRAM. We organize the works in several categories to highlight their similarities and
differences. We also highlight the key ideas of different works to gain insights. We conclude this paper
with a discussion of future challenges.

Most existing ReRAM architectures have focused on accelerating a limited range of
computations/algorithms, such as bitwise operations, MVM, etc. Further, the vulnerabilities of
ReRAM, such as PV, hard fault, resistance drift, etc. pose a serious threat to the accuracy of these
computations. In addition, tolerating these errors is feasible only in error-resilient applications which
comprise only a fraction of the total applications. Since these “low-hanging fruits” are expected to
vanish soon, system architects have to now extend the benefits of ReRAM architectures to entire
spectrum of applications. In addition, advanced manufacturing processes will now be even more
crucial to reduce the ReRAM vulnerabilities; for example, an increase in ReRAM write endurance
or reduction in ReRAM write latency/energy can make it highly attractive for power-constrained
systems [79,80], such as mobile processors. Similarly, techniques to reduce the number of write

Mach. Learn. Knowl. Extr. 2019, 1 109

operations such as cache bypassing [81] and data-compression [82] will be very effective in dealing
with the write-agnostic nature of ReRAM.

Compared to ANNs, much little progress has been made towards implementing SNNs on ReRAM.
Similarly, training acceleration has received less attention than inference acceleration, although training
phase is more computationally demanding than the inference phase. Going forward, more progress in
these areas is definitely required. Further, comparative evaluation of ReRAM-based PIM architectures
with PIM architectures based on other memories such as domain wall memory [83], phase change
memory [84] and DRAM [85] is also required.

System-level exploration of ReRAM-based architectures requires real ReRAM prototypes as
well as accurate modeling tools/simulators. Given the emerging nature of ReRAM, its prototypes
may not be available in large capacity or at mass scale. In addition, due to lack of open-source
modeling tools, researchers derive ReRAM parameters using in-house tools or estimation based on
other works. This, however, may provide incorrect estimates and also prohibits reproduction of results.
Evidently, development of open-source tools for exploring the design-space of ReRAM-based NN
and improvement in economic feasibility of ReRAM will allow wide-scale adoption of ReRAM and
integration into real systems.

Funding: This research was funded by Science and Engineering Research Board (SERB), India, award number
ECR/2017/000622 and a grant from Intel.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

ADC analog-to-digital converter
BLAS basic linear algebra subprograms
CAM/TCAM (ternary) content addressable memory
CONV convolution
CNN/DNN/SNN/TNN convolutional/deep/spiking/tensor neural network
Xbar crossbar
DAC digital-to-analog converter
FFT fast Fourier transform
FC fully connected
IBUF/OBUF input/output buffer
LSB/MSB least/most significant bit
LRN local response normalization
LUT lookup table
MVM matrix-vector multiplication
MCA memristor crossbar array
MAC multiply-accumulate
NCS neuromorphic computing system
NVM non-volatile memory
PE processing engine
PV process variation
ReLU rectified linear unit
S&H sample and hold
SA sense amplifier
STDP spike timing dependent plasticity

Mach. Learn. Knowl. Extr. 2019, 1 110

References

1. Merolla, P.A.; Arthur, J.V.; Alvarez-Icaza, R.; Cassidy, A.S.; Sawada, J.; Akopyan, F.; Jackson, B.L.; Imam, N.;
Guo, C.; Nakamura, Y.; et al. A million spiking-neuron integrated circuit with a scalable communication
network and interface. Science 2014, 345, 668–673. [CrossRef] [PubMed]

2. Pandiyan, D.; Wu, C.J. Quantifying the energy cost of data movement for emerging smart phone workloads
on mobile platforms. In Proceedings of the IEEE International Symposium on Workload Characterization
(IISWC), Raleigh, NC, USA, 26–28 October 2014; pp. 171–180.

3. Mittal, S.; Vetter, J. A Survey of CPU-GPU Heterogeneous Computing Techniques. ACM Comput. Surv. 2015,
47, 1–35. [CrossRef]

4. Chang, Y.F.; Zhou, F.; Fowler, B.W.; Chen, Y.C.; Hsieh, C.C.; Guckert, L.; Swartzlander, E.E.; Lee, J.C.
Memcomputing (Memristor + Computing) in Intrinsic SiOx-Based Resistive Switching Memory: Arithmetic
Operations for Logic Applications. IEEE Trans. Electr. Devices 2017, 64, 2977–2983. [CrossRef]

5. Zhou, F.; Guckert, L.; Chang, Y.F.; Swartzlander, E.E., Jr.; Lee, J. Bidirectional voltage biased implication
operations using SiOx based unipolar memristors. Appl. Phys. Lett. 2015, 107, 183501. [CrossRef]

6. Chang, K.C.; Chang, T.C.; Tsai, T.M.; Zhang, R.; Hung, Y.C.; Syu, Y.E.; Chang, Y.F.; Chen, M.C.; Chu, T.J.;
Chen, H.L.; et al. Physical and chemical mechanisms in oxide-based resistance random access memory.
Nanoscale Res. Lett. 2015, 10, 120. [CrossRef] [PubMed]

7. Vetter, J.S.; Mittal, S. Opportunities for Nonvolatile Memory Systems in Extreme-Scale High Performance
Computing. Comput. Sci. Eng. Spec. Issue 2015, 17, 73–82. [CrossRef]

8. Mittal, S. A Survey of Architectural Techniques For Improving Cache Power Efficiency. Elsevier Sustain.
Comput. Inform. Syst. 2014, 4, 33–43. [CrossRef]

9. Kim, S.; Kim, H.; Hwang, S.; Kim, M.H.; Chang, Y.F.; Park, B.G. Analog Synaptic Behavior of a Silicon
Nitride Memristor. ACS Appl. Mater. Interfaces 2017, 9, 40420–40427. [CrossRef] [PubMed]

10. Hsieh, C.C.; Roy, A.; Chang, Y.F.; Shahrjerdi, D.; Banerjee, S.K. A sub-1-volt analog metal oxide
memristive-based synaptic device with large conductance change for energy-efficient spike-based computing
systems. Appl. Phys. Lett. 2016, 109, 223501. [CrossRef]

11. Chang, Y.F.; Fowler, B.; Chen, Y.C.; Zhou, F.; Pan, C.H.; Chang, T.C.; Lee, J.C. Demonstration of synaptic
behaviors and resistive switching characterizations by proton exchange reactions in silicon oxide. Sci. Rep.
2016, 6, 21268. [CrossRef] [PubMed]

12. Yu, S.; Li, Z.; Chen, P.Y.; Wu, H.; Gao, B.; Wang, D.; Wu, W.; Qian, H. Binary neural network with 16 Mb
RRAM macro chip for classification and online training. In Proceedings of the IEEE International Electron
Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016.

13. Gao, L.; Chen, P.Y.; Yu, S. Demonstration of convolution kernel operation on resistive cross-point array.
IEEE Electr. Device Lett. 2016, 37, 870–873. [CrossRef]

14. Liu, X.; Mao, M.; Liu, B.; Li, H.; Chen, Y.; Li, B.; Wang, Y.; Jiang, H.; Barnell, M.; Wu, Q.; et al. RENO:
A high-efficient reconfigurable neuromorphic computing accelerator design. In Proceedings of the Design
Automation Conference, San Francisco, CA, USA, 7–11 June 2015; pp. 1–6.

15. Ankit, A.; Sengupta, A.; Panda, P.; Roy, K. RESPARC: A Reconfigurable and Energy-Efficient Architecture
with Memristive Crossbars for Deep Spiking Neural Networks. In Proceedings of the Design Automation
Conference, Austin, TX, USA, 18–22 June 2017; p. 27.

16. Shafiee, A.; Nag, A.; Muralimanohar, N.; Balasubramonian, R.; Strachan, J.P.; Hu, M.; Williams, R.S.;
Srikumar, V. ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars.
In Proceedings of the International Symposium on Computer Architecture, Seoul, Korea, 18–22 June 2016;
pp. 14–26.

17. Tang, S.; Yin, S.; Zheng, S.; Ouyang, P.; Tu, F.; Yao, L.; Wu, J.; Cheng, W.; Liu, L.; Wei, S. AEPE: An area
and power efficient RRAM crossbar-based accelerator for deep CNNs. In Proceedings of the Non-Volatile
Memory Systems and Applications Symposium (NVMSA), Hsinchu, Taiwan, 16–18 August 2017; pp. 1–6.

18. Xia, L.; Tang, T.; Huangfu, W.; Cheng, M.; Yin, X.; Li, B.; Wang, Y.; Yang, H. Switched by input: Power
efficient structure for RRAM-based convolutional neural network. In Proceedings of the Design Automation
Conference ACM, Austin, TX, USA, 5–9 June 2016; p. 125.

19. Huang, H.; Ni, L.; Wang, K.; Wang, Y.; Yu, H. A Highly-parallel and Energy-efficient 3D Multi-layer
CMOS-RRAM Accelerator for Tensorized Neural Network. IEEE Trans. Nanotechnol. 2017. [CrossRef]

http://dx.doi.org/10.1126/science.1254642
http://www.ncbi.nlm.nih.gov/pubmed/25104385
http://dx.doi.org/10.1145/2788396
http://dx.doi.org/10.1109/TED.2017.2699679
http://dx.doi.org/10.1063/1.4934835
http://dx.doi.org/10.1186/s11671-015-0740-7
http://www.ncbi.nlm.nih.gov/pubmed/25873842
http://dx.doi.org/10.1109/MCSE.2015.4
http://dx.doi.org/10.1016/j.suscom.2013.11.001
http://dx.doi.org/10.1021/acsami.7b11191
http://www.ncbi.nlm.nih.gov/pubmed/29086551
http://dx.doi.org/10.1063/1.4971188
http://dx.doi.org/10.1038/srep21268
http://www.ncbi.nlm.nih.gov/pubmed/26880381
http://dx.doi.org/10.1109/LED.2016.2573140
http://dx.doi.org/10.1109/TNANO.2017.2732698

Mach. Learn. Knowl. Extr. 2019, 1 111

20. Xia, L.; Liu, M.; Ning, X.; Chakrabarty, K.; Wang, Y. Fault-Tolerant Training with On-Line Fault Detection
for RRAM-Based Neural Computing Systems. In Proceedings of the Design Automation Conference,
Austin, TX, USA, 18–22 June 2017; p. 33.

21. Huangfu, W.; Xia, L.; Cheng, M.; Yin, X.; Tang, T.; Li, B.; Chakrabarty, K.; Xie, Y.; Wang, Y.; Yang, H.
Computation-oriented fault-tolerance schemes for RRAM computing systems. In Proceedings of the Asia
and South Pacific Design Automation Conference (ASP-DAC), Chiba, Japan, 16–19 January 2017; pp. 794–799.

22. Hsieh, C.C.; Chang, Y.F.; Jeon, Y.; Roy, A.; Shahrjerdi, D.; Banerjee, S.K. Short-Term Relaxation in HfO x/CeO
x Resistive Random Access Memory With Selector. IEEE Electr. Device Lett. 2017, 38, 871–874. [CrossRef]

23. Chang, Y.F.; Fowler, B.; Chen, Y.C.; Chen, Y.T.; Wang, Y.; Xue, F.; Zhou, F.; Lee, J.C. Intrinsic SiOx-based
unipolar resistive switching memory. I. Oxide stoichiometry effects on reversible switching and program
window optimization. J. Appl. Phys. 2014, 116, 043708. [CrossRef]

24. Cheng, M.; Xia, L.; Zhu, Z.; Cai, Y.; Xie, Y.; Wang, Y.; Yang, H. TIME: A Training-in-memory Architecture for
Memristor-based Deep Neural Networks. In Proceedings of the Design Automation Conference, Austin, TX,
USA, 18–22 June 2017; pp. 1–6.

25. Mittal, S.; Vetter, J.S. AYUSH: A Technique for Extending Lifetime of SRAM-NVM Hybrid Caches. IEEE
Comput. Archit. Lett. 2015, 14, 115–118. [CrossRef]

26. Mittal, S.; Vetter, J.S.; Li, D. A Survey Of Architectural Approaches for Managing Embedded DRAM and
Non-volatile On-chip Caches. IEEE Trans. Parallel Distrib. Syst. 2014, 26, 1524–1537. [CrossRef]

27. Mittal, S.; Vetter, J. A Survey of Software Techniques for Using Non-Volatile Memories for Storage and Main
Memory Systems. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 1537–1550. [CrossRef]

28. Mittal, S. A Survey of Soft-Error Mitigation Techniques for Non-Volatile Memories. Computers 2017, 6, 8.
[CrossRef]

29. Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J. Efficient processing of deep neural networks: A tutorial and survey.
arXiv 2017, arXiv:1703.09039.

30. Nielsen, M. Neural Networks and Deep Learning. Available online: http://neuralnetworksanddeeplearning.
com/ (accessed on 16 April 2018).

31. Ghosh-Dastidar, S.; Adeli, H. Spiking neural networks. Int. J. Neural Syst. 2009, 19, 295–308. [CrossRef]
[PubMed]

32. Balasubramonian, R.; Chang, J.; Manning, T.; Moreno, J.H.; Murphy, R.; Nair, R.; Swanson, S. Near-data
processing: Insights from a MICRO-46 workshop. IEEE Micro 2014, 34, 36–42. [CrossRef]

33. Mittal, S. A Survey Of Architectural Techniques for Managing Process Variation. ACM Comput. Surv. 2016,
48, 1–29. [CrossRef]

34. Mittal, S.; Vetter, J. A Survey of Techniques for Modeling and Improving Reliability of Computing Systems.
IEEE Trans. Parallel Distrib. Syst. 2015, 27, 1226–1238. [CrossRef]

35. Li, B.; Wang, Y.; Wang, Y.; Chen, Y.; Yang, H. Training itself: Mixed-signal training acceleration for
memristor-based neural network. In Proceedings of the IEEE Asia and South Pacific Design Automation
Conference (ASP-DAC), Singapure, 20–23 January 2014; pp. 361–366.

36. Ni, L.; Wang, Y.; Yu, H.; Yang, W.; Weng, C.; Zhao, J. An energy-efficient matrix multiplication accelerator by
distributed in-memory computing on binary RRAM crossbar. In Proceedings of the Asia and South Pacific
Design Automation Conference (ASP-DAC), Macau, China, 25–28 January 2016; pp. 280–285.

37. Liu, C.; Hu, M.; Strachan, J.P.; Li, H.H. Rescuing memristor-based neuromorphic design with high
defects. In Proceedings of the 54th Annual Design Automation Conference 2017 ACM, Austin, TX, USA,
18–22 June 2017; p. 87.

38. Gu, P.; Li, B.; Tang, T.; Yu, S.; Cao, Y.; Wang, Y.; Yang, H. Technological exploration of rram crossbar array for
matrix-vector multiplication. In Proceedings of the Asia and South Pacific Design Automation Conference
(ASP-DAC), Chiba, Japan, 19–22 January 2015; pp. 106–111.

39. Mittal, S.; Wang, R.; Vetter, J. DESTINY: A Comprehensive Tool with 3D and Multi-level Cell Memory
Modeling Capability. J. Low Power Electron. Appli. 2017, 7, 23. [CrossRef]

40. Mittal, S.; Vetter, J.S. EqualChance: Addressing Intra-set Write Variation to Increase Lifetime of Non-volatile
Caches. In Proceedings of the USENIX Workshop on Interactions of NVM/Flash with Operating Systems
and Workloads (INFLOW), Broomfield, CO, USA, 5 October 2014.

41. Zidan, M.; Jeong, Y.; Shin, J.H.; Du, C.; Zhang, Z.; Lu, W. Field-programmable crossbar array (FPCA) for
reconfigurable computing. IEEE Trans. Multi-Scale Comput. Syst. 2017. [CrossRef]

http://dx.doi.org/10.1109/LED.2017.2710955
http://dx.doi.org/10.1063/1.4891242
http://dx.doi.org/10.1109/LCA.2014.2355193
http://dx.doi.org/10.1109/TPDS.2014.2324563
http://dx.doi.org/10.1109/TPDS.2015.2442980
http://dx.doi.org/10.3390/computers6010008
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
http://dx.doi.org/10.1142/S0129065709002002
http://www.ncbi.nlm.nih.gov/pubmed/19731402
http://dx.doi.org/10.1109/MM.2014.55
http://dx.doi.org/10.1145/2871167
http://dx.doi.org/10.1109/TPDS.2015.2426179
http://dx.doi.org/10.3390/jlpea7030023
http://dx.doi.org/10.1109/TMSCS.2017.2721160.

Mach. Learn. Knowl. Extr. 2019, 1 112

42. Mittal, S.; Vetter, J.S. EqualWrites: Reducing Intra-set Write Variations for Enhancing Lifetime of Non-volatile
Caches. IEEE Trans. VLSI Syst. 2016, 24, 103–114. [CrossRef]

43. Chi, P.; Li, S.; Xu, C.; Zhang, T.; Zhao, J.; Liu, Y.; Wang, Y.; Xie, Y. PRIME: A novel processing-in-memory
architecture for neural network computation in reram-based main memory. In Proceedings of the
International Symposium on Computer Architecture, Seoul, Korea, 18–22 June 2016; pp. 27–39.

44. Wang, Y.; Tang, T.; Xia, L.; Li, B.; Gu, P.; Yang, H.; Li, H.; Xie, Y. Energy efficient RRAM spiking neural network
for real time classification. In Proceedings of the Great Lakes Symposium on VLSI, Pittsburgh, PA, USA,
20–22 May 2015; pp. 189–194.

45. Narayanan, S.; Shafiee, A.; Balasubramonian, R. INXS: Bridging the Throughput and Energy Gap for
Spiking Neural Networks. In Proceedings of the International Joint Conference on Neural Networks,
Anchorage, AK, USA, 14–19 May 2017.

46. Song, L.; Qian, X.; Li, H.; Chen, Y. PipeLayer: A pipelined ReRAM-based accelerator for deep learning.
In Proceedings of the International Symposium on High Performance Computer Architecture (HPCA),
Austin, TX, USA, 4–8 February 2017; pp. 541–552.

47. Chen, L.; Li, J.; Chen, Y.; Deng, Q.; Shen, J.; Liang, X.; Jiang, L. Accelerator-friendly neural-network training:
Learning variations and defects in RRAM crossbar. In Proceedings of the Design, Automation & Test in
Europe (DATE), Lausanne, Switzerland, 27–31 March 2017; pp. 19–24.

48. Xie, L.; Du Nguyen, H.; Yu, J.; Kaichouhi, A.; Taouil, M.; AlFailakawi, M.; Hamdioui, S. Scouting Logic:
A Novel Memristor-Based Logic Design for Resistive Computing. In Proceedings of the IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), Bochum, Germany, 3–5 July 2017; pp. 176–181.

49. Du Nguyen, H.A.; Xie, L.; Taouil, M.; Nane, R.; Hamdioui, S.; Bertels, K. On the Implementation of
Computation-in-Memory Parallel Adder. IEEE Trans. Very Large Scale Integr. Syst. 2017, 25, 2206–2219.
[CrossRef]

50. Kadetotad, D.; Xu, Z.; Mohanty, A.; Chen, P.Y.; Lin, B.; Ye, J.; Vrudhula, S.; Yu, S.; Cao, Y.; Seo, J.S. Parallel
architecture with resistive crosspoint array for dictionary learning acceleration. IEEE J. Emerg. Sel. Top.
Circuits Syst. 2015, 5, 194–204. [CrossRef]

51. Cai, R.; Ren, A.; Wang, Y.; Yuan, B. Memristor-Based Discrete Fourier Transform for Improving Performance
and Energy Efficiency. In Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
Pittsburgh, PA, USA, 11–13 July 2016; pp. 643–648.

52. Yavits, L.; Kaplan, R.; Ginosar, R. In-Data vs. Near-Data Processing: The Case for Processing in Resistive CAM.
Technical Report; Technion – Israel Institute of Technology: Haifa, Israel, 2017.

53. Song, L.; Zhuo, Y.; Qian, X.; Li, H.; Chen, Y. GraphR: Accelerating Graph Processing Using ReRAM. arXiv 2017,
arXiv:1708.06248.

54. Li, S.; Xu, C.; Zou, Q.; Zhao, J.; Lu, Y.; Xie, Y. Pinatubo: A processing-in-memory architecture for bulk bitwise
operations in emerging non-volatile memories. In Proceedings of the Design Automation Conference (DAC),
Austin, TX, USA, 5–9 June 2016; pp. 1–6.

55. Hasan, R.; Taha, T.M.; Yakopcic, C.; Mountain, D.J. High throughput neural network based embedded
streaming multicore processors. In Proceedings of the International Conference on Rebooting Computing
(ICRC), San Diego, CA, USA, 17–19 October 2016; pp. 1–8.

56. Zha, Y.; Li, J. IMEC: A Fully Morphable In-Memory Computing Fabric Enabled by Resistive Crossbar.
IEEE Comput. Architect. Lett. 2017, 16, 123–126. [CrossRef]

57. Taha, T.M.; Hasan, R.; Yakopcic, C.; McLean, M.R. Exploring the design space of specialized multicore
neural processors. In Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN),
Dallas, TX, USA, 4–9 August 2013; pp. 1–8.

58. Li, B.; Xia, L.; Gu, P.; Wang, Y.; Yang, H. Merging the Interface: Power, Area and Accuracy Co-optimization
for RRAM Crossbar-based Mixed-Signal Computing System. In Proceedings of the Design Automation
Conference, San Francisco, CA, USA, 7–11 June 2015; pp. 1–6.

59. Imani, M.; Kim, Y.; Rosing, T. MPIM: Multi-purpose in-memory processing using configurable resistive
memory. In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC),
Chiba, Japan, 16–19 January 2017; pp. 757–763.

60. Liu, X.; Mao, M.; Li, H.; Chen, Y.; Jiang, H.; Yang, J.J.; Wu, Q.; Barnell, M. A heterogeneous computing
system with memristor-based neuromorphic accelerators. In Proceedings of the IEEE High Performance
Extreme Computing Conference (HPEC), Waltham, MA, USA, 9–11 September 2014; pp. 1–6.

http://dx.doi.org/10.1109/TVLSI.2015.2389113
http://dx.doi.org/10.1109/TVLSI.2017.2690571
http://dx.doi.org/10.1109/JETCAS.2015.2426495
http://dx.doi.org/10.1109/LCA.2017.2672558

Mach. Learn. Knowl. Extr. 2019, 1 113

61. Ni, L.; Liu, Z.; Song, W.; Yang, J.J.; Yu, H.; Wang, K.; Wang, Y. An energy-efficient and high-throughput
bitwise CNN on sneak-path-free digital ReRAM crossbar. In Proceedings of the International Symposium
on Low Power Electronics and Design (ISLPED), Taipei, Taiwan, 24–26 July 2017; pp. 1–6.

62. Li, B.; Gu, P.; Shan, Y.; Wang, Y.; Chen, Y.; Yang, H. RRAM-based Analog Approximate Computing.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2015, 34, 1905–1917. [CrossRef]

63. Imani, M.; Gupta, S.; Rosing, T. Ultra-Efficient Processing In-Memory for Data Intensive Applications.
In Proceedings of the Design Automation Conference, Austin, Tx, USA, 18–22 June 2017; p. 6.

64. Imani, M.; Peroni, D.; Rosing, T. NVALT: Non-Volatile Approximate Lookup Table for GPU Acceleration.
IEEE Embed. Syst. Lett. 2017, 10, 14–17. [CrossRef]

65. Yantir, H.E.; Eltawil, A.M.; Kurdahi, F.J. Approximate Memristive In-memory Computing. ACM TECS 2017,
16, 129. [CrossRef]

66. Woods, W.; Teuscher, C. Approximate vector matrix multiplication implementations for neuromorphic
applications using memristive crossbars. In Proceedings of the IEEE International Symposium on Nanoscale
Architectures (NANOARCH), Newport, RI, USA, 25–26 July 2017; pp. 103–108.

67. Ankit, A.; Sengupta, A.; Roy, K. TraNNsformer: Neural Network Transformation for Memristive Crossbar
based Neuromorphic System Design. arXiv 2017, arXiv:1708.07949.

68. Bhattacharjee, D.; Merchant, F.; Chattopadhyay, A. Enabling in-memory computation of binary BLAS using
ReRAM crossbar arrays. In Proceedings of the International Conference on Very Large Scale Integration
(VLSI-SoC), Tallinn, Estonia, 26–28 September 2016; pp. 1–6.

69. Liu, B.; Li, H.; Chen, Y.; Li, X.; Wu, Q.; Huang, T. Vortex: Variation-aware training for memristor X-bar.
In Proceedings of the Design Automation Conference (DAC), San Francisco, CA, USA, 7–11 June 2015; pp. 1–6.

70. Zha, Y.; Li, J. Reconfigurable in-memory computing with resistive memory crossbar. In Proceedings of the IEEE
International Conference on Computer-Aided Design (ICCAD), Austin, TX, USA, 7–10 November 2016; pp. 1–8.

71. Sun, Y.; Wang, Y.; Yang, H. Energy-efficient SQL query exploiting RRAM-based process-in-memory
structure. In Proceedings of the Non-Volatile Memory Systems and Applications Symposium (NVMSA),
Hsinchu, Taiwan, 16–18 August 2017; pp. 1–6.

72. Imani, M.; Gupta, S.; Arredondo, A.; Rosing, T. Efficient query processing in crossbar memory. In Proceedings
of the IEEE International Symposium on Low Power Electronics and Design (ISLPED), Taipei, Taiwan, 24–26
July 2017; pp. 1–6.

73. Hu, M.; Strachan, J.P.; Li, Z.; Grafals, E.M.; Davila, N.; Graves, C.; Lam, S.; Ge, N.; Yang, J.J.; Williams, R.S.
Dot-product engine for neuromorphic computing: programming 1T1M crossbar to accelerate matrix-vector
multiplication. In Proceedings of the Design Automation Conference (DAC), Austin, TX, USA, 5–9 June 2016;
pp. 1–6.

74. Tang, T.; Xia, L.; Li, B.; Wang, Y.; Yang, H. Binary convolutional neural network on RRAM. In Proceedings of
the Asia and South Pacific Design Automation Conference (ASP-DAC), Chiba, Japan, 16–19 January 2017;
pp. 782–787.

75. Li, B.; Wang, Y.; Chen, Y.; Li, H.H.; Yang, H. ICE: inline calibration for memristor crossbar-based computing
engine. In Proceedings of the Conference on Design, Automation & Test in Europe. European Design and
Automation Association, Dresden, Germany, 24–28 March 2014; p. 184.

76. Lebdeh, M.A.; Abunahla, H.; Mohammad, B.; Al-Qutayri, M. An Efficient Heterogeneous Memristive xnor
for In-Memory Computing. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 2427–2437. [CrossRef]

77. Wallace, C.S. A suggestion for a fast multiplier. IEEE Trans. Electron. Comput. 1964, 13, 14–17. [CrossRef]
78. Mittal, S. A Survey Of Techniques for Approximate Computing. ACM Comput. Surv. 2016, 48, 1–33.

[CrossRef]
79. Chen, Y.C.; Lin, C.Y.; Huang, H.C.; Kim, S.; Fowler, B.; Chang, Y.F.; Wu, X.; Xu, G.; Chang, T.C.; Lee, J.C.

Internal filament modulation in low-dielectric gap design for built-in selector-less resistive switching memory
application. J. Phys. D Appl. Phys. 2018, 51, 055108. [CrossRef]

80. Kim, S.; Chang, Y.F.; Kim, M.H.; Bang, S.; Kim, T.H.; Chen, Y.C.; Lee, J.H.; Park, B.G. Ultralow power
switching in a silicon-rich SiN y/SiN x double-layer resistive memory device. Phys. Chem. Chem. Phys. 2017,
19, 18988–18995. [CrossRef] [PubMed]

81. Mittal, S. A Survey Of Cache Bypassing Techniques. J. Low Power Electron. Applic. 2016, 6, 1. [CrossRef]
82. Mittal, S.; Vetter, J. A Survey Of Architectural Approaches for Data Compression in Cache and Main Memory

Systems. IEEE Trans. Parallel Distrib. Syst. 2015, 27, 1524–1536. [CrossRef]

http://dx.doi.org/10.1109/TCAD.2015.2445741
http://dx.doi.org/10.1109/LES.2017.2746742
http://dx.doi.org/10.1145/3126526
http://dx.doi.org/10.1109/TCSI.2017.2706299
http://dx.doi.org/10.1109/PGEC.1964.263830
http://dx.doi.org/10.1145/2893356
http://dx.doi.org/10.1088/1361-6463/aaa1b9
http://dx.doi.org/10.1039/C7CP03120C
http://www.ncbi.nlm.nih.gov/pubmed/28702540
http://dx.doi.org/10.3390/jlpea6010001
http://dx.doi.org/10.1109/TPDS.2015.2435788

Mach. Learn. Knowl. Extr. 2019, 1 114

83. Mittal, S. A Survey of Techniques for Architecting Processor Components using Domain Wall Memory.
ACM J. Emerg. Technol. Comput. Syst. 2016, 13, 29. [CrossRef]

84. Mittal, S. A Survey of Power Management Techniques for Phase Change Memory. Int. J. Comput. Aided Eng.
Tech. 2016, 8, 424–444. [CrossRef]

85. Mittal, S.; Vetter, J. A Survey Of Techniques for Architecting DRAM Caches. IEEE Trans. Parallel Distrib. Syst.
2015, 27, 1852–1863. [CrossRef]

c© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2994550
http://dx.doi.org/10.1504/IJCAET.2016.079392
http://dx.doi.org/10.1109/TPDS.2015.2461155
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Overview
	Preliminaries
	Using ReRAM as a Dot-Product Engine
	Challenges in Using ReRAM
	Classification of Research Works

	ReRAM-Based ANN Architectures
	Mapping NN to ReRAM
	Architectures for NN Inference
	Architectures for NN Training
	MCA-Aware Pruning Strategy
	Reconfigurable Architectures
	Reducing Overhead of Analog Implementation
	Analog–Digital Hybrid and Digital-Only Designs

	Improving Reliability of ReRAM-Based ANN Architectures
	Addressing Hard Faults
	Addressing Resistance Drift

	ReRAM-Based PIM Techniques
	Arithmetic and Logical Operations
	Data Search Operations
	Graph-Processing Operations
	Approximate Computing Approaches

	ReRAM-Based SNN Architectures
	Conclusions and Future Outlook
	References

