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Summary 

This dissertation consists of four essays exploring risk modeling and aggregation, with a 

particular focus on cyber risk in the insurance context. It aims to provide appropriate answers 

to research questions that arise from practical challenges on both the supply and demand sides 

of the cyber-insurance market. By answering these questions, this dissertation constructs data-

driven risk modeling and aggregation methods and investigates an economic framework to 

represent potential insureds’ behavior observed in the current market. In particular, risk 

modeling and aggregation methods are further applied in the study on the improvement of the 

regulatory model for risk capital. 

The first two essays, “Copula approaches for modeling cross-sectional dependence of data 

breach losses” and “Probable maximum cyber loss: Empirical estimation and reinsurance 

design with public intervention,” investigate supply side challenges in the current cyber-

insurance market by constructing risk modeling and aggregation methods and an alternative 

approach to estimating extreme losses. These essays attempt to provide a statistical process of 

data breach losses, their dependence structure in risk pooling, the evaluation of extreme loss 

events beyond a widely used Pareto model, and a possible collaboration between the public 

sector and the private sector in the risk transfer scheme. 

A challenge on the demand side of the cyber-insurance market represented by a behavioral bias 

is examined in the third essay, “Decision-making on cyber risk management: Interaction 

between market insurance and risk control measures under prospect theory”, which models an 

economic decision on risk transfer and control measures under loss aversion assumption in the 

presence of interdependent risk. The finding of this essay supports anecdotal evidence of the 

behavioral bias against cyber risks, showing that an agent tends to not implement additional 

measures for cyber risk management. 

The fourth essay, “Risk aggregation in non-life insurance: Standard models vs. internal models”, 

provides an approach (internal model) for more accurately estimating risk capital for insurers 

based on risk modeling and aggregation methods studied in the first essay. Using two datasets 

from Korea and Germany and assessing three regulatory schemes (Korean Risk-based Capital, 

Solvency II and Swiss Solvency Test), the essay concludes that the standard models lead to 

more than 50% higher capital requirements on average than those of internal models, which can 

imply a potential distortion of the competition when both approaches are available in a single 

market.
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Zusammenfassung 

Diese Dissertation besteht aus vier Arbeiten zum Thema Risikomodellierung und -aggregation 

mit Fokus auf Cyberrisiken in einem Versicherungskontext. Das Ziel ist es Forschungsfragen 

zu beantworten, die sich in Zusammenhang mit Herausforderungen bei der Nachfrage- und 

Angebotsseite im Cyberversicherungsmarkt stellen. Die Forschungsfragen werden bearbeitet 

indem datenbasierte Risiko- und Aggregationsmodelle konstruiert werden und das 

Nachfrageverhalten im bestehenden Markt durch ökonomische Modelle repräsentiert wird. Im 

speziellen werden Risikomodellierungs- und Aggregationsmethoden verwendet um 

Verbesserungsvorschläge für die regulatorischen Kapitalmodelle herzuleiten. 

Die ersten beiden Arbeiten, „Copula approaches for modeling cross-sectional dependence of 

data breach losses“ und „Probable maximum cyber loss: Empirical estimation and reinsurance 

design with public intervention“, untersuchen die Herausforderungen, die sich im aktuellen 

Cyberversicherungsmarkt auf der Nachfrageseite ergeben, indem Risiko-, Aggregations- und 

alternative Extremwertmodelle konstruiert werden. Die Modelle beschreiben den statistischen 

Prozess von Datenverlusten, Abhängigkeiten im Risikopools, extreme Verluste, die über die 

häufig verwendete Paretoverteilung hinausgehen, und mögliche Kooperationen zwischen 

öffentlichem und privatem Sektor bei der Risikotragung. 

Die Herausforderung auf der Nachfrageseite des Cyberversicherungsmarktes, beschrieben als 

Verhaltensbias, wird in der dritten Arbeit, „Decision-making on cyber risk management: 

Interaction between market insurance and risk control measures under prospect theory“, 

untersucht. Dabei werden ökonomische Entscheidungen betreffend Risikotransfer und 

Risikokennzahlen unter der Annahme von Verlustaversion und statistischer Unabhängigkeit 

modelliert. Die Ergebnisse dieser Analyse stützen tatsächlich die anekdotischen 

Beobachtungen eines Verhaltensbias für Cyberrisiken und entsprechen würden die Akteure 

keine zusätzlichen Risikokennzahlen im Rahmen des Cyber-Risikomanagements 

implementieren. 

Die vierte Arbeit, „Risk aggregation in non-life insurance: Standard models vs. internal models“, 

erweitert die Risikomodellierungs- und Aggregationsmethoden aus der ersten Arbeit um ein 

adäquateres (internes) Kapitalmodell. Basierend auf zwei Datensätze aus Korea und 

Deutschland sowie drei verschiedenen regulatorischen Modellen (Koreanisches risikobasiertes 

Kapitalmodel, Solvency II und Swiss Solvency Test), schlussfolgert die Arbeit, dass das 

Standardmodell durchschnittlich über 50% mehr Kapital verlangt als das interne Modell. Dies 

könnte zu Wettbewerbsverzerrungen führen, falls beide Modelle gleichzeitig angewendet 

werden.
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Introduction 

Risk landscapes currently facing non-life insurance businesses in relation to information 

technology are rapidly evolving. Classical, widely used methodologies in both academia and 

industry might not appropriately consider data circumstances and fast-changing risk types. This 

dissertation deals with statistical techniques that can be used to address new risk landscapes by 

providing data-driven risk modeling and aggregation methods to estimate the size of risk in the 

future. In particular, with a focus on cyber risk as a new risk type in the digital society, the 

discussion attempts to resolve current problems arising from both the supply and demand sides 

of the cyber-insurance market and suggest empirical benchmarks for risk measurement and 

insurance pricing. 

Emerging risks relative to information technology represented by cyber risk in this dissertation 

demonstrate several challenges for both the supply and demand sides. The supply side usually 

lacks standard modeling in loss process and risk aggregation associated with new risks, which 

can result from relatively less accumulated databases and a lack of understanding related to the 

characteristics of risks. To fill this gap in the cyber risk context, an actuarial model for cyber 

risk assessment and dependence structure in a cyber-insurance risk pool is constructed with one 

of the largest databases for data breach losses in the first essay, “Copula approaches for 

modeling cross-sectional dependence of data breach losses”. Specifically, the essay proposes 

two cross-sectional categorizations of cyber losses for risk aggregation: cross-industry (hacking, 

lost electronic device, unintended disclosure and insider breach) and cross-breach type 

(banking/insurance, governmental entity, medical service, business entity and educational 

institution). Applying the collective risk model and a high-dimensional dependence model (vine 

models), the essay concludes the best fit models for loss frequency (negative binomial), loss 

severity (lognormal) and the dependence structure (R-Vine). It further finds that the risk 

aggregation under the cross-industry setting generates higher correlated risk for the cyber-

portfolio, which can lead cyber-insurers to remain safe from potential simultaneous cyber risks. 

Although the first essay provides an answer on the demand for risk modeling and aggregation 

methodologies driven by a data breach database, it is not sufficient to fully figure out how big 

the next extreme cyber loss could be. On the supply side of an insurance market, the size of an 

extreme event likely to occur in the future needs to be evaluated as a benchmark for the cover 

limit of a coverage. With regard to cyber risk, several studies have explored the estimation of 

extreme losses with a widely used Pareto-based model. However, some recent loss events have 

been more extreme than these estimations. The second essay, “Probable maximum cyber loss: 
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Empirical estimation and reinsurance design with public intervention”, proposes an alternative 

approach to estimating extreme cyber losses using time-series analysis and loss maxima process. 

It demonstrates that the predicted loss amount likely to occur in the next five years (defined as 

probable maximum cyber loss in the essay) is almost seven times larger than recent literature’s 

estimate using a widely used Pareto-based model. In particular, the estimates based on the more 

recent data period show a significant increase compared to those for the older period, with a 

structural break between pre-2014 and post-2014. Given the estimates of probable maximum 

cyber loss, the results suggest a three-layer reinsurance portfolio involving the public sector as 

well as the private sector and provides an empirical benchmark of premiums for the private 

sector and of average cost per exposure above the estimated cover limit for the public sector. 

Despite the lack of understanding relevant to cyber risk and standard modeling, the cyber-

insurance market has been growing rapidly in recent years. However, this market growth is less 

significant than what many experts previously predicted, and the absolute size of the market 

represented by the premium volume is obviously not comparable with other property and 

casualty markets. In particular, a behavioral bias on the demand side possibly hindering the 

explosive growth of the market has been observed in practice and has also been found in some 

heuristic studies about cyber risk. Such bias shows that although the awareness of cyber risk is 

increasing, agents are still reluctant to purchase cyber-insurance, especially until they 

experience a loss event. The third essay, “Decision-making on cyber risk management: 

Interaction between market insurance and risk control measures under prospect theory”, offers 

a conceptual framework to explain such a demand side anomaly with consideration for loss 

aversion and interdependent risk as the nature of cyber risk. The essay sets self-protection as 

the reference point, reflecting the status quo of business parties in the interconnected network 

environment, and compares it with possible decisions on additional risk management tools—

namely, market insurance and self-insurance. It finds that an agent with the reference point of 

self-protection as an essential effort on cyber risk management is likely to not invest in 

additional risk management measures, which implies a behavioral bias against cyber risk. 

The backbone of this dissertation focusing on risk modeling and aggregation methods is not 

simply limited to the study of cyber risk, but also considers a possible improvement in insurance 

regulation. The fourth essay, “Risk aggregation in non-life insurance: Standard models vs. 

internal models”, attempts to make this improvement, particularly for risk aggregation in 

standard models, by applying the linear correlation assumption between risk factors. By 

considering non-linear dependence structures for risk factors, it proposes an internal model 
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undertaking specific parameters that regulatory frameworks usually do not count in their 

standard models. A comprehensive framework with the base-level aggregation between 

different assets or different lines of business and the top-level aggregation between asset 

portfolio and insurance portfolio is established using empirical datasets from the Korean and 

German markets. The internal model provides economic capitals to be compared with those 

from three regulatory frameworks: the Korean Risk-based Capital (K-RBC), Solvency II and 

Swiss Solvency Test (SST). The comparison reveals that standard models overestimate the 

economic capital by an average of 61.2% for the Korean case and 57.8% for the German case, 

implying that insurers can significantly reduce their risk capital using the proposed internal risk 

model. The regulated risk parameters in standard models address on average 34.3 percentage 

points and 29.0 percentage points of the total deviation for the Korean and German cases 

respectively, whereas, ceteris paribus, the rest of the deviation is led by the correlation 

parameters in the linear setting for each case. 

Ultimately, this dissertation offers potential solutions to current challenges arising from the 

supply and demand sides of the cyber-insurance market. On the supply side, it answers 

questions about the lack of standard modeling driven by an empirical dataset for cyber risk and 

the limitation of the traditional estimation for the cover limit presented in the market (Essay I 

and II). On the demand side, it provides a framework to better understand a particular behavior 

against cyber risk observed in the market, especially when that behavior cannot be explained 

by the classical expected utility theory (Essay III). The dissertation contributes to the literature 

in the cyber risk context by taking into account the overall cyber-insurance market and 

penetrating urgent, demanding issues for the next movement. It also contributes to the general 

insurance context by suggesting an internal model for the estimation of the capital requirement 

for non-life insurers (Essay IV) using an optimal solution to risk modeling and aggregation 

issues inherent in existing regulatory frameworks. The findings and models proposed in this 

dissertation may not be applicable to all relevant fields, but they are believed to offer insights 

for further research in cyber risk and insurance regulation, which was one of the most driving 

and significant objectives of this dissertation.
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Essay I 

Copula approaches for modeling cross-sectional 
dependence of data breach losses 

 

 

Abstract 

Many experts claim that cyber risks are correlated, but there is not much supporting empirical 

evidence. We consider 3,327 data breach events from 2005 to 2016 and identify a significant 

asymmetric dependence of monthly losses in two cross-sectional settings: cross-industry losses 

in four categories by breach types (hacking, lost electronic device, unintended disclosure and 

insider breach) and cross-breach type losses in five categories by industries (banking and 

insurance, government, medical service, retail/other business and educational institution). To 

identify the method that best fits the dependence structure of the dataset, we implement copula 

modeling by separating the dependence into pairwise non-zero losses and zero loss arrivals. We 

model the former by pair copula construction (PCC) allowing for the flexible choice of copula 

functions, whereas the latter is modeled by Gaussian copula. We illustrate the usefulness of our 

results in two applications to risk measurement and pricing. Our findings are important for risk 

managers and actuaries who are designing cyber-insurance policies. 

 

Keywords 

Cyber risk, Data breach, Zero-inflated data, Pair copula construction, Vine copula, Risk 

measurement, Insurance pricing, Diversification effect 
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1 Introduction 

Cyber risks are operational risks to information and technology assets that have consequences 

for confidentiality, availability, and integrity of information and information systems (Cebula 

and Young, 2010). Every day, media illustrate the growing economic and social importance of 

cyber risk (see, e.g., World Economic Forum, 2016). In addition, more businesses than ever are 

facing cyber risks and incurring considerable corporate losses (Allianz, 2015). Although 

numerous papers have researched cyber risks, there is a lack of understanding of how to model 

potential losses from cyber risks and how to price cyber-insurance (Böhme and Schwartz, 2010; 

Eling and Wirfs, 2019). One aspect often discussed in this context is what the dependence 

structure between cyber losses might look like. Many experts believe that cyber losses are 

correlated (see, e.g., Böhme and Schwartz, 2010; Ogut, Raghunathan and Menon, 2011), for 

example, because all companies are using the same software. 

A few papers discuss the correlation of cyber risk, for example on information systems or 

infected computers (Böhme and Kataria, 2006; Herath and Herath, 2011; Mukhopadhyay et al., 

2013; Shah, 2016; Xu and Hua, 2017; Peng et al., 2018)0F

1; but there is still a need for a 

comprehensive empirical study that analyzes the dependence between actual cyber losses, and 

if such a dependence exists, what it looks like. The reason for the dearth of empirical research 

on this field might be a lack of data. The availability of data is, however, improving over time, 

especially with the emergence of the first database on data breaches.1F

2 

This paper aims at identifying the dependence structure between different cyber losses. For 

insurers, ex-post analysis on cyber losses is important because estimating the size of risk in a 

cyber-insurance risk pool is a key task in asset-liability management. The dependence structure 

in a cyber-insurance risk pool can provide diversification benefits; thus, our modelling helps to 

correctly identify premiums and capital requirements. We construct a high-dimensional 

dependence model of cyber losses using different copula methods. For this purpose, we 

consider 3,327 data breach events from 2005 to 2016 and apply the actuarial toolbox to identify 

                                                      
1  Appendix A provides an overview of the literature and outlines the contribution of our paper. Only Böhme and 

Kataria (2006) consider a broader dataset (the number of potential attacks measured by honeypots), but they 
do not consider loss data and focus on the t-copula to capture potential tail dependencies. The other four papers 
rely either on simulations or on smaller datasets. Note that our focus is not on the global interconnection of 
different IT systems or computer networks, but on identifying the potential dependence structure of actual 
cyber losses, which is important for cyber risk management or to manage cyber-insurance portfolios. 

2  Since 2002, companies in many U.S. states have been legally required to report data breaches to their customers 
(NCSL, 2019) and with this data breach report databases are becoming increasingly available. Starting in 2018, 
companies in the European Union will be required to report data breach events (European Union, 2016); this 
will improve the availability of data. Private Rights Clearinghouse, a nonprofit organization in the U.S. is a 
good example of a database that has grown since 2005 (PRC, 2016). 
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the dependence structure between monthly loss events, in terms of both frequency and severity. 

We are interested in finding the dependence structure that most accurately describes the data, 

whether that structure is linear or non-linear. Since monthly losses include several zero values 

indicating no loss event in a certain month, we split the dependence structure into two parts: 

pairwise non-zero losses and zero loss arrivals. We then fit frequency and severity distributions 

using different parametric distributions and compound them by convolution. With the results 

of dependence modeling, we analyze the implications of the models in two applications to risk 

measurement and insurance pricing by aggregating cyber losses from different risk factors. 

This paper contributes to cyber risk research in that we take two categorizations of cyber losses 

into account in an integrated structure and estimate a more accurate dependence structure of 

cyber losses in the risk pool. The two cross-sectional categorizations we consider are breach 

type (hacking, lost electronic device, unintended disclosure and insider attack) and industry 

(banking and insurance, governmental entity, medical service, retail/merchant and other 

business and educational institution); we call the former cross-industry structure and the latter 

cross-breach type structure.2F

3 Upon this cross-sectional setting, an up-to-date copula method, 

the pair copula construction (Aas et al., 2009), is used to build an empirical model for high-

dimensional cyber risks. As a result, we find significant asymmetric tail dependence, providing 

evidence for non-linear dependence between different types of cyber risks. Our results are 

important for practitioners and regulators working on cyber risk management and for insurance 

underwriters working on the establishment of cyber-insurance policies.3F

4  The paper will 

motivate further research by outlining future research questions on the topic of cyber risk. 

The rest of the paper is structured as follows. In Section 2, we describe the theoretical 

background on the high-dimensional copula method and the methodology of pair copula 

construction. Then in Section 3 the data is given. The results of the dependence modeling and 

applications to pricing and risk measurement are presented in Sections 4 and 5 respectively. 

Finally, the conclusion and possibilities for future research are shown in Section 6. 

                                                      
3  Cross-industry setting consists of variables categorized by breach types, in which losses occurred across 

industry level, whereas cross-breach type setting contains variables categorized by industry, in which losses 
occurred across breach type level. This categorization is important because underwriting a cyber-insurance 
policy differentiates the sources of risk and industries, which have different risk exposures (Romanosky et al., 
2017). The detail on the categorization is shown in the caption of Table 1. 

4  What risk managers are mainly concerned about is the likelihood of the tail risk from different risk factors 
(McNeil, Frey and Embrechts, 2005, p. 18). For an insurance company, loss aggregation is typically applied to 
the reserving process to measure the possible total loss amount from different lines of business (Kaas et al., 
2008, Chapter 3). Similarly, each cyber risk factor can form an individual line of cyber insurance business with 
customized policies depending on a specific risk type or industry (Allianz, 2015; Eling and Wirfs, 2016). Thus, 
there is a need to analyze cyber risk in context of an insurance pool. 
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2 Theoretical background and methodology 

2.1 Research background on cyber loss process 

The loss process for cyber risk can be regarded as an operational loss process (Cebula and 

Young, 2010; Biener et al., 2015). Several methods have been developed to estimate an 

operational loss process. The loss distribution approach (LDA) has been widely used; it models 

the frequency and severity of operational risk losses separately (Panjer, 2006, Chapter 1.3). 

LDA is also frequently used to model underwriting claims in the collective risk model. It is 

based on the distributional fitting procedure for frequency and severity; the fitted distributions 

are then compounded by convolution (Wang, 1998; Frachot et al., 2001; McNeil, Frey and 

Embrechts, 2005, Chapter 10; Panjer, 2006, Chapter 6). A compound loss process estimated for 

each risk factor j is a full predictive distribution to account for parameter uncertainty and can 

be described as:  

𝜆௧
(௝)

= ෍ 𝑋௜,௧
(௝)

ே೟
(ೕ)

௜ୀଵ

, (1) 

where 𝑡 = 1,2, … is discrete time in the monthly unit, 𝑗 = 1, … , 𝑑 is a breach type (d = 4) or an 

industry (d = 5), 𝑁௧
(௝) is the monthly count (frequency) process, 𝑋௜,௧

(௝) is the monthly severity 

process and 𝜆௧
(௝) is the monthly compound process. We assume that the count process and the 

severity process are independent (Wang, 1998; Shevchenko, 2010). In addition, we assume that 

the claim severity process, 𝑋௜,௧
(௝), is independent and identically distributed (i.i.d.); hence, we do 

not assume temporal dependency.4F

5 We also postulate that the aggregate claims process, 𝜆௧
(௝), is 

a Markov process so that the development of claims at a certain time point does not rely on the 

development of the aggregate claims up to that time point (Bühlmann, 2007, p. 55).  

As an example, a compound Poisson process with Poisson distribution for the frequency and 

lognormal or other continuous distribution for the severity is frequently used in operational risk 

                                                      
5  A criticism of this assumption is that there might be temporal dependency in claim amounts (see Araichi, 

Peretti and Belkacem, 2016, for a general discussion in the context of auto insurance). Indeed, in our cyber 
context, a malicious attack by hacking (HACK) might trigger temporal dependency in losses on an hourly or 
perhaps a daily basis (e.g., Wannacry attack in 2017), but not on a monthly scale which is of interest for our 
modeling. Furthermore, it is not reasonable to assume temporal dependency for the other three risk sources 
considered in the paper (ELET, DISC and INSD), whose losses typically are firm-specific and occur 
independently over time; we could imagine temporal dependency within a firm, but not in the aggregate 
variables considered in this paper. We thus believe that for all four risks considered in this paper, the temporal 
structure of monthly data can be reasonably assumed away. Also empirically we do not observe non-stationarity 
and any serial dependence for our variables of interest (e.g., using the augmented Dickey-Fuller test; see 
Appendix C). 
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modeling (Panjer, 2006, Chapter 5). Once a compound process has been estimated for each risk 

factor, we apply a dependence model for different risk factors, which we assume constitute the 

risk pool of a cyber-insurance provider. One challenge of the empirical study in this paper is 

that data breach risks on a monthly basis contain a number of zero values, indicating that no 

loss occurred in a certain month (see column 3 in Table 1). This zero-inflation could generate 

a misspecification of a dependence model due to discontinuous probability function (Erhardt 

and Czado, 2012).5F

6 For this reason, following Erhardt and Czado (2012) and Brechmann, 

Czado and Paterlini (2014), we model the parametric dependence structure in two separate 

approaches: dependence in positive loss pairs and dependence in zero value arrival. Hereafter, 

dependence in positive loss pairs is denoted by non-zero pair dependence and dependence in 

the zero value arrival by a zero loss dependence structure. The non-zero pair dependence is 

built upon the equation (1), where monthly loss severity without zero loss is modeled by a 

parametric continuous distribution and monthly loss frequency is modeled by a parametric 

discrete distribution in Section 4.1. The zero loss dependence structure is based on a 

multivariate binary distribution, each margin of which gives 1 to zero value and 0 to non-zero 

value (Brechmann et al., 2014):6F

7  

𝑣௞ ∶= ቄ
1        𝑧𝑒𝑟𝑜 𝑙𝑜𝑠𝑠 
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , (2) 

where 𝑣௞  is a binary random variable. 

When 𝑣௞(𝜆) = 0, the random variable has a positive loss and we can derive the cumulative 

distribution function of 𝑣௞, 𝑃௩ೖ
, with the probability of a positive loss: 

𝑃௩ೖ
∶= ൜

𝑝௩ೖ
(0) 

1
    

௓௘௥௢ ௟௢௦௦
௢௧௛௘௥௪௜௦௘

 ,  (3) 

where 𝑝௩ೖ
 is a probability mass function of 𝑣௞ and 𝑝௩ೖ

(0) is the probability of a positive loss. 

The methodology for dependence modeling in the two approaches is described in Section 2.3. 

2.2 Theoretical background on Copula modeling  

The copula method is an effective and tractable way to identify complex, non-linear 

dependences inherent in multivariate distributions.7F

8 Copula functions can be classified into 

                                                      
6  We test the dependence of original zero-inflated data by elliptical copulas, Archimedean copulas, joint 

Archimedean copulas and rotated Archimedean copulas (90°, 180° and 270°); however, we find that any type 
of parametric copula function does not fit the zero-inflated dataset. 

7  The mathematical description of a zero loss dependence structure is given in detail in Appendix D. 
8  Copula modeling is widely used to examine dependence structures and helps to identify non-linear relations 

between different marginal distributions. The cyber risk literature that employs the copula method still has 
limitations. For example, Mukhopadhyay et al. (2013) make a normality assumption on each Bayesian network 
node, thereby using Gaussian copula to integrate all nodes. Furthermore, a simple copula method to identify 
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different classes. Elliptical copulas are the copula functions of elliptical distributions (e.g., 

Gaussian, student-t); thus, if a bivariate copula function belongs to the elliptical class, margins 

will in general belong to the elliptical distribution (Embrechts, Lindskog, and McNeil, 2001). 

However, elliptical copulas are limited to symmetrical distributions and dependency 

(Embrechts et al., 2001). As shown in finance and insurance research, there might be a strong 

asymmetric dependence and tail dependence, for instance, between stock returns or insurance 

losses that cannot be captured by a symmetric and linear dependence measure.8F

9  As an 

alternative, Archimedean copulas incorporate different asymmetric tail dependence structures. 

However, since they explain the dependence structure by a single parameter only (via the 

generating function), using simple Archimedean copula to analyze a multivariate dependence 

structure is restricted in a multivariate case (Embrechts et al., 2001).9F

10 

To resolve these problems of multivariate dependence modeling, several advanced techniques 

have been developed (Aas and Berg, 2009). Among them, the pair copula construction (PCC) 

method, which is also called the vine copula model, is used to reduce the dimension by pairing 

the variable set (Bedford and Cooke, 2001). In this sense, the high-dimensional copula analysis 

can be transformed to a bivariate analysis to be more tractable. PCC is flexible in that any type 

of copula class can be applied to the construction and there is no mathematical complexity when 

one uses different copula functions in the modeling (Aas and Berg, 2009). These advantages 

result from the fact that a high-dimensional density function can be factorized by marginal 

density functions and conditional density functions.10F

11  

PCC is a tree-based model, where one builds the first tree with given random variables and 

continues to construct another tree with conditional variables estimated from the previous tree. 

The conditional variables are generated by copula densities as moving forward to the next trees 

                                                      
the dependence of a high-dimensional structure is theoretically restricted due to lack of explanatory power 
(Embrechts and Hofert, 2013). 

9  For instance, multivariate asset returns or derivatives are not appropriately described by linear correlation 
measures (Chiou and Tsay, 2008). It also has been shown that the data breach information that we look at in 
this paper is non-normal and heavy tailed (Edwards, Hofmeyr, and Forrest, 2016) such that linear dependence 
might not fully illustrate the dependence structure of the data breach risk. 

10  Additionally, the single parameter for d-dimensional dependency can induce the permutation-symmetric 
property in multi-dimensional arguments, thereby resulting in exchangeability of margins (Savu and Trede, 
2010). The exchangeability can be described as (in the three-dimensional case): 

𝐶(𝑢ଵ, 𝑢ଶ, 𝑢ଷ) = 𝐶(𝑢ଵ, 𝑢ଷ, 𝑢ଶ) = 𝐶(𝑢ଶ, 𝑢ଵ, 𝑢ଷ) = ⋯ 
This property is called permutation-symmetric and the copula distribution is indifferent in d-exchangeable 
marginal variables; this exchangeability can become problematic when some variables come from the same 
sector and some from different sectors (Savu and Trede, 2010). Elliptical copulas also correspond to the 
exchangeability property in the bivariate case, but in a multi-dimensional case, it depends on the variance-
covariance matrix of the marginal elliptical distributions (Harder, 2016). 

11  Aas et al. (2009) develop this methodology in the inferential way by decomposing a multivariate distribution 
into bivariate unconditional and conditional distributions based on the mathematical proofs by Joe (1996). 
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(Aas and Berg, 2009). Three types of PCC have been developed (Kurowicka and Cooke, 2004; 

Czado, 2010): the drawable vine (D-Vine), the canonical vine (C-Vine) and the regular vine 

(R-Vine). The D-Vine is a hierarchical structure, the C-Vine is a dependence structure centered 

by a core risk factor and the R-Vine allows for more flexibility to structure dependency than 

the D-Vine and the C-Vine do. The D-Vine and the C-Vine can be represented by the R-Vine 

structure in accordance with the dependency in the first tree; thus, we focus on the R-Vine 

structure in our empirical modeling. A four-dimensional case for three types is illustrated in 

Figure 1; the mathematical definitions of the vine models are given in Appendix B.  

In Figure 1, the marginal distribution in the first tree is transformed to an uniform distribution 

( 𝑢௜ ∈ [0,1], 𝑖 = 1, … , 𝑑 ) and estimated copula functions in the following trees are also 

accordingly transformed to uniform conditional distributions. Due to high dimensional 

optimization for the parameter estimation, a two-step approach consisting of marginal 

estimation and copula estimation is customary (Czado, Jeske and Hofmann, 2013). Joe and Xu 

(1996) introduce this two-step approach for the marginal estimation and the copula estimation 

using maximum likelihood method, known as the inference function for margins (IFM).1 1F

12 The 

uniform distribution in our empirical study is estimated non-parametrically using the ranks of 

the observations, called pseudo-observations (Aas and Berg, 2009). The pseudo-observations 

are used for bivariate conditional copula functions in the sequential estimation (described in the 

next section) and the optimization of pairwise likelihood function with pseudo-observations is 

conducted by maximizing the pseudo-likelihood (Aas et al., 2009).1 2F

13 

                                                      
12  A simple case of IFM can be described in the following. According to Sklar’s theorem, we can describe the d-

dimensional probability function for the random vector 𝚾 as: 
𝐹(𝐗; 𝜏ଵ, … , 𝜏ௗ, 𝛉) = 𝐶(𝐹ଵ(𝑥ଵ; 𝜏ଵ), … , 𝐹ௗ(𝑥ௗ; 𝜏ௗ); 𝛉), 

 where 𝜏௜ , 𝑖 = 1, … , 𝑑 is a parameter of a marginal function 𝐹௜ , 𝜽 is a set of dependence parameters by the 
copula function 𝐶.  In our case, the random vector X is continuous and we can derive the joint density 
function of the random variables as: 

𝑓(𝐗; 𝜏ଵ, … , 𝜏ௗ , 𝛉) = 𝑐(𝐹ଵ(𝑥ଵ; 𝜏ଵ), … , 𝐹ௗ(𝑥ௗ ; 𝜏ௗ); 𝛉) ෑ 𝑓௝൫𝑥௝; 𝜏௝൯
ௗ

௝ୀଵ
, 

 where 𝑐(∙) is a copula density function. Then, the log-likelihood function for the joint density function is: 

𝐿(𝛉, 𝜏ଵ, … , 𝜏ௗ) = ෍ log𝑓(𝑥௜ ; 𝜏ଵ, … , 𝜏ௗ , 𝛉)
ௗ

௜ୀଵ
. 

The parameter estimation by IFM is comprised of separate optimizations for univariate margins and the 
optimization of the d-dimensional log-likelihood with the dependence parameter. The derivation of the 
parameters for vine models using IFM has been studied in Haff (2013) and Czado, Jeske and Hofmann (2013). 

13  The maximum pseudo-likelihood estimation (MPL) is introduced by Genest, Ghoudi and Rivest (1995) and 
has been developed in Chen and Fan (2006) for time-series copula modeling and in Aas et al. (2009) for pair 
copula construction. The estimation using MPL is basically a semi-parametric approach, consisting of non-
parametric marginal transformation and parametric estimation for dependence parameters (Genest et al., 1995). 
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Figure 1. The pair copula structure (four-dimensional case). The D-Vine is a structure showing the 
dependency in a row and forming a hierarchical tree; hence, the variables are ordered by dependency. 
The C-Vine is a star-like structure, where a core variable placed in the center connects all other variables. 
The R-Vine flexibly links the variables by dependency without fixing a certain structure; thus, the R-
Vine can also project the D-Vine and the C-Vine structures (see Appendix B for more detail). 

2.3 Methodology 

In non-zero pair dependence modeling, we apply the estimated compound process for cyber 

risk into different dependence models. There have been several studies and textbooks on 

modeling dependence in the operational risk context with copula based on compound 

distribution method (e.g., Wang, 1998; Frachot et al., 2001; Panjer, 2006, Chapter 8; Embrechts 

and Puccetti, 2008; Giacometti et al., 2008; Shevchenko, 2010). We estimate the R-Vine, 

Gaussian, Student-t, Gumbel and Clayton and determine the best fit structure for the cyber loss 

processes. We consider different copula functions in the R-Vine model: independence, normal, 

student-t, Clayton, Gumbel, Frank, Joe, survival Archimedean copulas and rotated 

Archimedean copulas (90° and 270°). We take rotated Archimedean copulas into consideration 

to model negatively dependent variables (Dissmann et al., 2013). Gaussian and student-t copula 

models are used in many fields because of their tractability; the Gumbel and Clayton copulas 

are frequently used in dependence modeling due to the presence of asymmetric tail dependence 

(Genest and Rivest, 1993; Demanta and McNeil, 2005; Rosenberg and Schuermann, 2006).  

The statistical process in the empirical study is designed to identify whether non-linear 

dependence modeling with the R-Vine is the best fit for the dependence structure of cyber losses 

or if it can be better described by linear dependence modeling (Gaussian or student-t) or by 

simple asymmetric tail dependence modeling (Gumbel and Clayton) using uniform margins. 

Furthermore, we check the statistical test results for the C-Vine and the D-Vine to see whether 

the R-Vine method formulates the structure identical to the C-Vine or the D-Vine.  
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We first determine the structure of the first tree and sequentially implement bivariate copula 

modeling for each adjacent pair and select the best fit copula with the following rules:1 3F

14  

Step 1: Select the most appropriate copula candidates by the Vuong-Clarke test (Vuong, 1989; 

Clarke, 2007; Brechmann and Schepsmeier, 2013):14F

15 

Vuong test: 
𝜏 =

1
𝑛

∑ log ቈ
𝑐ଵ൫𝑢௜ห𝜃෠ଵ൯

𝑐ଶ൫𝑢௜ห𝜃෠ଶ൯
቉௡

௜ୀଵ

ඩ∑ ൭log ቈ
𝑐ଵ൫𝑢௜ห𝜃෠ଵ൯

𝑐ଶ൫𝑢௜ห𝜃෠ଶ൯
቉ − 𝐸 ቆlog ቈ

𝑐ଵ൫𝑢௜ห𝜃෠ଵ൯

𝑐ଶ൫𝑢௜ห𝜃෠ଶ൯
቉ቇ൱

ଶ

௡
௜ୀଵ

, 
(4)                                                 

Clarke test: 𝜈 = ෍ 1(଴,ஶ) ቆlog ቈ
𝑐ଵ൫𝑢௜ห𝜃෠ଵ൯

𝑐ଶ൫𝑢௜ห𝜃෠ଶ൯
቉ቇ

௡

௜ୀଵ

, (5) 

where 𝑢௜ ∈ [0,1], 𝑖 = 1, … , 𝑛, is a uniform margin, n is the number of margins (dimension),  𝑐௝(∙),

𝑗 = 1,2 is a copula function to be compared, 𝜃෠௝, 𝑗 = 1,2 is the corresponding copula parameter. 

Step 2: Check the statistical specification of those candidates by Cramer-von-Mises (CvM) 

goodness-of-fit test (Genest et al., 2009): 

CvM test: 𝑆௡ = න ቂ√𝑛 ቀ𝐶௡(𝐮) − 𝐶ఏ೙
(𝐮)ቁቃ

ଶ
𝑑𝐶௡(𝐮)

[଴,ଵ]೏
, (6) 

where 𝐮 is a vector of uniform margins, 𝐶௡(𝐮) =
ଵ

௡
∑ 1(௎೔భஸ௨భ,…,௎೔೏ஸ௨೏)

௡
௜ୀଵ  is an empirical copula with 

uniform margins and 𝐶ఏ೙
(𝐮) is a copula function of interest with a parameter 𝜃௡. We exclude the 

candidates that fail to be accepted by the CvM test. 

Step 3: Select the most appropriate copula function by AIC.15F

16 We choose the function with the 

minimum AIC for every single pair dependence. 

For zero-loss dependence modeling, we use the Gaussian copula. According to Erhardt and 

Czado (2012) and Brechmann et al. (2014), this dependence modeling on binary margins is not 

                                                      
14  The choice of the fitted parametric copula function in each pair is still an open question (Erhardt and Czado, 

2012). Furthermore, the pair copula method with parametric bivariate copula functions might have an inherent 
model risk arising from the misspecification of marginal copulas; thus, the sequential estimation of pair copulas 
could be unstable due to the error-prone selection (Scheffer and Weiss, 2017). 

15  In this step, we implement the comparison test proposed by Belgorodski (2010) between different copulas in 
the bivariate setting, the test that is conducted by using both tests from Vuong (1989) and Clarke (2007). The 
comparison test allocates “1” to a copula model if it is preferred to another, otherwise “-1” is allocated. No 
point is assigned if there is no preference between copulas. The final decision on the most appropriate 
candidates is made by the highest score after all possible comparisons. 

16  The information criterion developed by Akaike (1973) is defined as: 
𝐴𝐼𝐶 ≔ −2𝐿𝑜𝑔𝑙𝑖𝑘௜(Θ|𝒖) + 2𝑘, 

 where 𝐿𝑜𝑔𝑙𝑖𝑘௜(∙) is the log-likelihood of i-th model, Θ = (θଵ, … , θ௞) is a set of parameters, 𝒖 = (𝑢ଵ, … , 𝑢ௗ) 
is a d-dimensional set of uniform margins and 𝑘 is the number of parameters. 
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standardized; hence, some parametric copulas (Archimedean copulas) and the vine copula 

method are not appropriate due to the non-existence of a closed form and the non-heterogeneous 

pairwise dependence. Instead, we follow Brechmann et al. (2014) and model this binary 

dependence by Gaussian copula with rank correlation parameters as an efficient tool for 

dependence modeling. 

With the estimated structures from non-zero and zero loss dependency, we aggregate monthly 

losses from both non-zero and zero loss dependence structures as (Brechmann et al., 2014): 

𝜆௞ = 𝑣௞ × 𝜆௞
଴ + (1 − 𝑣௞) × 𝜆௞

ା = (1 − 𝑣௞) × 𝜆௞
ା, (7) 

where 𝜆௞ ≥ 0 (𝑘 = 1, … , 𝑑)  is the k-th loss out of the d-dimensional risk, 𝑣௞  ~ 𝑃௩ೖ
 is the 

occurrence of zero loss as a binary random variable. We denote zero loss by 𝜆௞
଴  and a positive 

loss by 𝜆௞
ା.  

The aggregate loss distributions are applied to derive risk measures and insurance premiums in 

Section 5 and analyze the diversification effect of each dependence model. We compare the 

estimated dependence structures with the independence structure as a benchmark to see how 

our dependence modeling affects risk measures, insurance premiums, and diversification results. 

Figure C1 in Appendix C depicts the methodology of this study.  

3 Data 

We consider data breaches from January 1, 2005 to December 31, 2016, derived from the 

Privacy Rights Clearinghouse (PRC). The PRC dataset provides the entity, attack type, and the 

total number of records breached. PRC collects data breach information from government 

agencies and verifiable media sources.1 6F

17 In this dataset, most damages have been reported with 

positive breached records, whereas the rest of damages remains with zero record, because these 

cases either are not publicly acknowledged or are still being investigated (Edwards et al., 2016; 

Privacy Rights Clearinghouse, 2016). Such a data type with excess zeros is frequently presented 

in a variety of research areas, for example, insurance claim analyses and ecological studies, 

                                                      
17  Given the absence of individual cyber-insurance loss data, we use the aggregate data for data breaches available 

from the PRC dataset. To use this dataset, the reliability of the data needs to be confirmed. Regarding reliability, 
each loss event has been confirmed at least by one major media source and is thus easily traceable and peer-
reviewable. The dataset has already been used in numerous academic papers (e.g., Edwards et al., 2016; Eling 
and Loperfido, 2017; Rasoulian et al., 2017; Eling and Wirfs, 2019) and is widely accepted in practice. In terms 
of completeness, one limitation is that the data provider only includes losses that were publicly recognized 
(Edwards et al., 2016). However, PRC continuously updates the dataset to ensure the best possible 
completeness and the dataset is the largest public database about breached data information (Edwards et al., 
2016). 
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showing that a dataset consists of a substantial proportion of zero values and extremely skewed 

distribution of non-zero values (Fletcher, Mackenzie, and Villouta, 2005; Erhardt and Czado, 

2012). These zero values could give distorted information on the dependence structure of cyber 

losses, so we restrict breach data to those with counts (non-zero values). However, zero values 

appear again when we model the data on a monthly aggregate base, because some months have 

no breach events. Thus, we consider dependence structures in the presence of zero values. 

Descriptive statistics of the monthly loss data are shown in Table 1.1 7F

18 Variables are categorized 

in two cross-sectional settings. The underlying dataset contains 3,327 data breach observations 

that we group into 144 monthly observations.18F

19 The monthly dataset is zero-inflated, because 

in some months no losses occur. It is observed in panel A of Table 1 that all severity 

distributions of risk factors are highly skewed and leptokurtic. Particularly, hacking risk 

(HACK) and retail/other business risk (BSE) categories have severer and more frequent losses 

than other variables do.19F

20  

Böhme and Kataria (2006) define the correlations of different cyber security attacks in two 

categories: internal and global correlation, which are consistent, respectively, with cross-

industry type and cross-breach type in our case.20F

21 Based on Table 2 showing rank correlation 

matrices for the size of the severity per event with statistical significance, we can empirically 

classify different types of data breach risks with respect to rank dependency.21F

22  The 

classification is determined by the test statistics for rank correlations at the 10% critical level. 

                                                      
18 We choose monthly average data as the standard timeframe that can provide less excessive zeros than, for 

example, weekly data or bi-weekly data that are not sufficient for meaningful aggregation.  
19  Although there is no clear standard on the sample size in the copula estimation, we do not consider all types of 

attacks included in the PRC dataset due to lack of data. Specifically, while variables in our model mainly 
include more than 100 data points, the subcategories of CARD (Payment card fraud), UNKN (Unknown attack) 
and NGO contain fewer than 20 data points. An analysis with small samples could give rise to a higher 
probability of assuming a false premise as true (Hogg, McKean, and Craig, 2005). This can be also applied to 
the case of our dataset that the small sample size might lead to a distorted dependence structure between risks 
or between industries. Moreover, the industries BSO (Business others) and BSR (Retail/Merchant business) 
are combined to BSE (Business entities apart from finance and insurance) and the attack types PORT (Portable 
device) and STAT (Stationary device) combined to ELET (Electronic devices). Once enough data are 
accumulated, these industries and types of attacks might be analyzed in greater detail. 

20  Plots in Appendix C offer graphical descriptions on the monthly data in both cross-sectional settings. Panels A 
and B of Figure C2 and C3 display the histograms of frequency, severity and log-severity for cross-sectional 
variables. Both frequency and severity are right skewed, whereas the distributions of log-severity data seem to 
be closer to the normal distribution. Figure C4 shows pairwise scatterplots with original monthly losses in 
panel A and with transformed uniform margins in panel B. Clustering in small losses is observed in panel A, 
but simultaneous extreme losses are scarce. Zero inflated pairs are more clearly identified in panel B, which 
are treated separately in the dependence modeling in Section 4. 

21  We determine cross-industry dependency (correlation) as equivalent to internal correlation in Böhme and 
Kataria (2006) in that we look into the dependence structure between losses from different breach types. Cross-
breach type dependency is applied in the identical way. 

22  In this analysis, we use monthly average loss per risk factor, which can describe an expected association 
between individual losses from different risk factors. 
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Table 1. Descriptive Statistics of Monthly Loss Data 

Panel A: Loss severity (in the number of breach records) 

Variable N 
N of 

zeros 
Mean Std. Dev Skew Kurtosis Min Median Max 

HACK 144 4 5,378,936 24,606,777 9.141 95.518 0 52,316.7 270,131,250 
ELET 144 12 185,391 868,203 9.378 97.310 0 24,300.3 9,550,998 
DISC 144 12 353,149 2,736,163 10.925 125.022 0 7,336.0 31,835,867 
INSD 144 32 305,371 2,457,333 10.643 118.941 0 1,700.0 28,200,000 

BSF 144 51 1,990,783 10,801,531 6.548 42.735 0 1,255.5 80,000,000 
GOV 144 22 640,856 3,104,316 6.470 44.048 0 14,330.2 25,333,655 
MED 144 12 97,605 422,936 8.903 87.057 0 13,229.0 4,500,000 
BSE 144 10 16,882,242 95,715,936 8.680 82.987 0 44,039.8 1,000,000,000 
EDU 144 21 23,926 37,239 2.927 10.598 0 8,710.0 227,539 
 
Panel B: Loss frequency 

HACK 144 4 5.764 4.591 1.862 4.968 0 4 27 
ELET 144 12 7.160 5.752 1.244 1.913 0 6 30 
DISC 144 12 4.757 3.343 0.654 -0.080 0 4 14 
INSD 144 32 2.319 2.454 2.341 9.145 0 2 17 

BSF 144 51 2.007 2.337 1.545 2.882 0 1 12 
GOV 144 22 3.167 2.715 1.104 1.281 0 3 14 
MED 144 12 7.125 6.671 1.350 1.581 0 5 31 
BSE 144 10 3.757 3.299 2.019 5.667 0 3 18 
EDU 144 21 3.944 3.148 0.848 0.749 0 3 15 
Note (PRC, 2016):  
Breach type: HACK = Hacked by outside party or infected by malware; ELET = Lost, discarded or stolen portable devices 
or Stationary computer loss; DISC = Unintended disclosure, e.g., sensitive information posed in public or mishandled or 
sent to the wrong party; INSD = Insider breach by employee, contractor or customer 
Entity(Industry) type: BSF = Financial and insurance services; GOV = Government and military; MED = Healthcare, 
medical providers and medical insurance services; BSE = Retail/Merchant and other business parties; EDU = Educational 
institutions 

Our empirical classification in Table 2 is consistent with Böhme and Kataria (2006) in that 

hacking attacks (including worms and viruses) and insider attacks fall into the high dependence 

category (internal correlation). This classification could result from the fact that hacking and 

insider breaches are malicious attacks which are expected to be more correlated than negligent 

risks such as disclosure risk. For example, if an insider who intends to breach some customer 

or financial information can access the company’s security system to plant a malicious code 

into the system, an outsider might find it much easier to hack the system as well. Thus, the 

connection between a malicious insider and a hacker outside of the entity might facilitate a 

breach event. The correlation between HACK and ELET can be explained in a similar context, 

since ELET can be regarded as an internal risk. There might be also a case in which a driver by 

malware or ransomware could trigger an extreme loss event due to highly correlated 

information systems, but such a case could not be identified in this example. Note that other 

risks in Böhme and Kataria (2006), for example spyware/phishing and hardware failure, do not 

fully overlap with the risks in this study apart from insider/hacking attack, as our dataset is 

based on numerical values of data breach records. 
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Table 2. Rank Correlation Matrices of Cyber Losses 

Cross-industry Cross-breach type 
 HACK ELET DISC INSD  BSF GOV MED BSE EDU 

HACK 1    BSF 1     

ELET 0.119* 1   GOV 0.108* 1    

DISC 0.038 0.070 1  MED 0.091 0.071 1   

INSD 0.268*** -0.006 0.008 1 BSE -0.067 -0.038 -0.066 1  

     EDU -0.008 0.028 0.080 0.074 1 
Note: The table shows the rank correlation matrices in both cross-sectional settings, which is comparable with the correlation 
classification in Table 1 of Böhme and Kataria (2006). The correlation measures in the table are calculated upon the monthly 
average losses, which we regard as the representative of individual loss processes. *,**,*** indicate that the p-value is less 
than the significance levels, 10%, 5% and 1% respectively. 

4 Results 

4.1 Marginal modeling 

In this section, we conduct the distribution fitting for the frequency and severity data. Several 

studies provide evidence that the distribution of cyber risk frequencies follows a negative 

binomial distribution (see Edwards et al., 2016; Eling and Loperfido, 2017; Eling and Wirfs, 

2019). These studies take into account Poisson and negative binomial as candidates, both of 

which are widely used in the insurance claim analysis. We consider three additional candidates: 

zero-inflated Poisson, zero-inflated negative binomal and Geometric, all of which could provide 

a better fit for our right-skewed and zero-inflated dataset.22F

23 We evaluate the distributions with 

the best fit based on the AIC and chi-squared goodness-of-fit test result. In Table 3 and 4, we 

display fitting results for frequency and severity in the cross-industry setting, whereas the 

results in the cross-breach type setting are illustrated in Appendix E. Monthly frequencies in 

Table 3 are best described by the negative binomial distribution, but some are better fitted by 

the zero-inflated negative binomial. However, we can conclude in line with the literature that 

the negative binomial distribution well describes the count process of data breach risks.  

In the severity fitting (Table 4), we do not consider zero values because, otherwise, zero values 

are double considered both in freqency and severity. We test several continuous distributions 

known for right skewed distributions to fit severity: lognormal, skew normal, skew student-t, 

weibull, gamma, inverse Gaussian, cauchy, burr, generalized Pareto and Peaks-over-Threshold 

                                                      
23  The zero-inflated Poisson distribution takes the distributional property from Poisson distribution, but more zero 

values are contained than expected (Zuur et al., 2009). The geometric distribution is a special case of the 
negative binomial, but different from the negative binomial in that it models the number of trials until the first 
success (Hogg et al., 2005). Hence, it focuses on the number of failures (the number of no breach events in our 
dataset). We compare the five discrete distributions by Chi-square goodness-of-fit test results. 
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(POT) with lognormal in the body and Pareto above 90% threshold.23F

24 These distributions are 

widely used in the operational risk modeling and the insurance context24F

25 and we choose them 

in accordance with the graphical description on the severity shape of body and tail (see panel B 

of Figure C2 and C3). The best-fitting distribution is assessed by minimizing the AIC and the 

Kolmogorov-Smirnov test (K-S test). 

Table 3. Goodness-of-fit and Model Comparison for Loss Frequency 

Distribution Log-likelihood AIC Chisq-Test 
    

Panel A: Hacking (HACK)   

Poisson -466.368 934.747 192.713   *** 
Zero-inflated Poisson -460.888 925.777 >10,000   *** 
Negative Binomial -390.279 784.558 8.609  
Zero-inflated Neg. Binomial -390.279 786.558 53.347     *** 
Geometric -408.058 818.116 52.927     *** 
     
Panel B: Electronic device (ELET)   

Poisson -571.296 1,144.591 1,614.03 *** 
Zero-inflated Poisson -522.838 1,049.675 >10,000    *** 
Negative Binomial -430.241 864.482 8.347  
Zero-inflated Neg. Binomial -428.399 862.799 34.408  
Geometric -437.078 876.156 45.201       ** 
     
Panel C: Disclosure (DISC)    

Poisson -403.684 809.368 148.609   *** 
Zero-inflated Poisson -384.636 773.273 101.345   *** 
Negative Binomial -366.322 736.644 4.266  
Zero-inflated Neg. Binomial -364.762 735.523 7.815  
Geometric -382.758 767.515 38.043     *** 
     
Panel D: Insider (INSD)    

Poisson -321.857 645.713 108.172   *** 
Zero-inflated Poisson -307.818 619.637 >10,000   *** 
Negative Binomial -288.792 581.583 3.093  
Zero-inflated Neg. Binomial -288.792 583.583 52.156     *** 
Geometric -292.499 586.999 23.679  
Note: *,**,*** indicate that the p-value is less than the significance levels, 10%, 5% and 1% respectively. The bold indicates 
the best fit distribution for each loss distribution based on AIC and goodness-of-fit test result. 

                                                      
24  We test different thresholds for POT from 50% to 99% and determine 90% threshold with the minimum AIC 

as the optimal value for the dataset. AIC is derived from the minimum negative log-likelihood from the body 
model and the tail model with the number of parameters for each variable. Scarrott and MacDonald (2012) 
argue that the tradeoff between bias and variance of the parameter estimates needs to be considered when the 
optimal threshold is estimated. In particular, they state that a sufficiently high threshold is required to confirm 
that the asymptotic estimates are reliable and unbiased, thereby making 90% threshold a stable level for the 
parameter estimates in this case. We use the R package, evmix, to carry out POT fitting with continuity 
constraints (see Scarrott and MacDonald, 2012, for more detail on the continuity constraint at a threshold). The 
goodness-of-fit test in this distribution is implemented by two sample Smirnov test (Conover, 1971). The 
estimated shape parameters of the tail distribution (GPD) are for HACK: 0.1763, ELET: 0.2288, DISC: 0.3193, 
INSD: 0.3586, BSF: 0.1971, GOV: 0.1997, MED: 0.2357, BSE: 0.1977, EDU: 0.1533. We thus find that the 
distributions of DISC and INSD are more heavy-tailed than those of other variables. 

25  See Frachot, Georges and Roncalli (2001), Moscadelli (2004), Fu and Moncher (2004), Shevchenko (2011) 
and Frees, Lee and Yang (2016). 
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Table 4. Goodness-of-fit and Model Comparison for Loss Severity (non-zero values) 

Distribution Log-likelihood AIC K-S Test 

Panel A: Hacking (HACK) 
   

Lognormal -1,953.437 3,910.873 0.105  
Skew normal -2,582.646 5,169.292 0.907   *** 
Skew t -2,507.013 5,022.027 0.986   *** 
Weibull -1,972.419 3,948.838 0.160 *** 
Gamma -2,002.671 4,009.343 0.284   *** 
Inverse Gaussian -2,004.296 4,012.593 0.334 *** 
Cauchy -2,080.374 4,164.748 0.321 *** 
Burr -1,995.684 3,999.367 0.979 *** 
GPD -2,103.127 4,212.254 0.417 *** 
POT (lognormal-GPD) -1,952.288 3,912.576 0.121  

Panel B: Electronic Device (ELET) 
    

Lognormal -1,623.860 3,251.719 0.049  
Skew normal -1,997.298 3,998.597 0.962   *** 
Skew t -1,877.755 3,763.510 0.985   *** 
Weibull -1,639.617 3,283.235 0.111  
Gamma -1,663.419 3,330.838 0.213   *** 
Inverse Gaussian -1,638.764 3,281.527 0.179 ** 
Cauchy -1,694.562 3,393.124 0.277 *** 
Burr -1,624.796 3,257.591 0.059  
GPD -1,680.591 3,367.182 0.351 *** 
POT (lognormal-GPD) -1,623.369 3,254.737 0.138  

Panel C: Disclosure (DISC) 
    

Lognormal -1,521.159 3,046.317 0.073  
Skew normal -2,148.995 4,301.990 0.977   *** 
Skew t -2,009.115 4,026.229 0.985   *** 
Weibull -1,547.675 3,099.350 0.149 ** 
Gamma -1,596.578 3,197.156 0.290   *** 
Inverse Gaussian -1,566.356 3,136.713 0.279 *** 
Cauchy -1,592.378 3,188.756 0.282 *** 
Burr -1,515.401 3,038.802 0.034  
GPD -1,546.286 3,098.573 0.226 *** 
POT (lognormal-GPD) -1,516.954 3,041.908 0.083  

Panel D: Insider (INSD) 
   

Lognormal -1,216.649 2,437.298 0.079  
Skew normal -1,820.389 3,644.778 0.973   *** 
Skew t -1,697.613 3,403.226 0.982   *** 
Weibull -1,233.527 2,471.054 0.128 ** 
Gamma -1,273.039 2,550.078 0.266   *** 
Inverse Gaussian -1,253.774 2,511.548 0.314 *** 
Cauchy -1,310.905 2,625.809 0.327 *** 
Burr -1,215.820 2,439.641 0.045  
GPD -1,317.948 2,641.896 0.464 *** 
POT (lognormal-GPD) -1,215.768 2,439.537 0.143  
Note: *,**,*** indicate that the p-value is less than the significance levels, 10%, 5% and 1% respectively. The bold indicates 
the best fit distribution for each loss distribution based on AIC and goodness-of-fit test result. 

Table 4 shows that the lognormal distribution is the best fit for most severity distributions 

(HACK, ELET and INSD) and DISC is better fitted by burr2 5F

26, which implies that cyber loss 

                                                      
26  Burr distribution is a continuous probability distribution allowing for only non-negative values. This 

distribution is statistically connected to Pareto distribution and consists of 12 different types as a distribution 
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severity is long-tailed in general, but extreme losses on the right tail are not necessarily modeled 

by an infinite-mean model from extreme value theory. The estimation for cross-breach type 

frequency and severity distributions in Appendix E yields similar results; for instance, for 

severity the lognormal shows the best fit in three out of five cases, while the burr is the best fit 

for BSE and Weibull for EDU (see Table E1, E2). In Appendix E, we provide the graphical 

diagnosis in the fitting outcomes using QQ plots and CDF plots for both cross-sectional cases, 

where the plots illustrate good fits of the estimated distributions for the risk factors by showing 

an almost exact match of the theoretical line and the fitting line (see Figure E1, E2). 

4.2 Modeling non-zero pair dependence 

We now model the dependence structures for pairwise non-zero losses in different dependence 

settings. We estimate the R-Vine, Gaussian, Student-t, Gumbel and Clayton and determine the 

best fit structure for the cyber loss processes. Kendall’s tau is used to order random variables 

in the first tree since Kendall’s tau can estimate non-parametric correlation independently of 

the hypothetic distribution and provide a global measure for non-Gaussian families (Dissmann 

et al., 2013).  

Figure 2 illustrates the orders of uniform margins with Kendall’s tau at each edge in the R-Vine 

structure.26F

27  In the cross-industry setting, ELET connects other risk factors under strong 

dependency, which draws the identical structure to the C-Vine structure. Similarly, EDU plays 

a central role in the cross-breach type setting except for indirect connection to MED, providing 

a more flexible structure than that of D-Vine or C-Vine. It can be assumed that the dependences 

in the first tree are stronger than those in the other trees because the conditional correlation 

between variables given a certain variable is smaller than the unconditional correlation in the 

first tree (see Dissmann et al., 2013, Section 3.1). This property reduces the number of the 

model parameters by using independence copula in the later trees when the dependence 

parameters in these trees are close to independence.2 7F

28  For this reason, we consider the 

independence copula in the selection process and find its validity in the later trees in the 

estimation (see Table 6).  

 

                                                      
family (Kleiber and Kotz, 2003, Section 2.3). Among them, Burr type XII is most widely used and known; 
thus, here we use Burr type XII for our severity analysis (see, e.g., Frees and Valdez, 2008; Frees et al., 2016). 

27  The measures of Kendall’s tau in Figure 2 are based on the monthly loss sum per risk factor, which better 
describe the estimated compounding process. For this reason, the rank correlations are different from those in 
Table 2. 

28  Typically, modeling R-Vine structure is computationally intensive due to a substantial number of possible R-
Vine structures (Dissmann et al., 2013). 
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Cross-industry Cross-breach type 

             

Figure 2. The ordering of variables in the first tree (R-Vine) 

Table 5 shows the goodness-of-fit results and the information criteria of pairwise dependence 

structures. Overall, the pair copula structures (D-Vine, C-Vine and R-Vine) turn out to be the 

better fit to describe the dependency in both cross-industry risks and cross-breach type risks 

according to AIC and goodness-of-fit results than elliptical copulas and Archimedean copulas. 

Among vine models, the R-Vine structure is the most appropriate model for data breach losses 

and is identical to the C-Vine structure in the cross-industry setting (see Figure 2). 

Based on the results from Table 5, the estimation parameters for the best fit pair copula structure 

(R-Vine) are illustrated in Table 6. In addition, the tree structures in both cross-sectional settings 

are graphically illustrated in Appendix F (Figure F1). Parameters are obtained by the maximum 

likelihood estimation based on the copula function fitted for each pair. As above-mentioned, 

ELET and EDU play key roles in the relationship of the risk factors. In the cross-industry setting, 

ELET is placed in the center of the dependence being connected to all other risk factors in the 

first tree; similarly in the cross-breach type setting EDU is directly connected to the other factors 

except for MED. We observe lower tail dependence between DISC/INSD and ELET (𝜃ଶଷ and  

𝜃ସଶ in panel A of Table 6) and between GOV/BSF and EDU (𝜃ହଶ and 𝜃ହଵ in panel B of Table 

6). Smaller losses from DISC/INSD and ELET as well as GOV/BSF and EDU are thus 

dominant in the dependence structure. Moreover, ELET and HACK are negatively dependent 

described by 270° rotated Clayton copula, indicating a tendency to have a small loss by ELET 

and a larger loss by HACK at the same time. This also applies to the relationship between EDU 

and BSE.28F

29 

 

                                                      
29  Estimated 270° Clayton copula indicates the correlation between small loss of ELET and large loss of HACK. 

Similarly, estimated 90° Joe demonstrates the correlation between small loss of EDU and large loss of BSE. 
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Table 5. Comparison of Dependence Models by Different Pair Copula Structures 

 Cross-industry Cross-breach type 
Model LogLik AIC GoF test LogLik AIC GoF test 

PCC 
D-Vine 22.154 -32.308 12.842 ** 19.952 -19.904 15.842 ** 
C-Vine 27.840 -43.680 10.003  25.654 -37.307 16.365 * 
R-Vine 27.840 -43.680 10.003  26.274 -38.548 32.822  

Elliptical 
Gaussian 0.0001 1.999 0.057 ** 0.0005 1.999 0.032 ** 
Student-t 16.472 -18.943 0.977  15.388 -8.776 1.862 * 

Archime-
dean 

Gumbel 0.048 1.904 0.055 ** 0.013 1.974 0.033 ** 
Clayton 1.183 -0.365 0.734 ** 4.740 -7.481 0.083 ** 

Note: The table illustrates the results of statistical tests in both cross-sectional settings: Log-likelihood, Akaike Information 
Criteria and goodness-of-fit test. These measures help compare the model fits and determine which model is the best fit for 
each dependence structure. The parametric PCCs (C-Vine and R-Vine) are sequentially determined by R-package 
VineCopula and the D-Vine structure is estimated via CDVine.29F

30 *,**,*** indicate that the p-value of GoF test is less than 
the significance levels, 10%, 5% and 1% respectively. The bold indicates the best fit distribution for each loss distribution 
based on AIC and goodness-of-fit test result. 

This common relationship can be explained by the fact that the risk by losing an electronic 

device containing personal/corporate data can lead to a small loss due to the limit of the device, 

whereas the risk by hacking can be significantly large due to the interconnected system in the 

corporation. In the similar context, it can be implied that a business entity operating small sub-

units such as a university or school is more likely to be exposed to less risk than other entities 

possessing a centralized and complex operation in the retail/franchise industry are (Wheatley 

et al., 2016).  

The asymmetric tail dependency on the left tail has implications for an insurance company 

managing a cyber-insurance portfolio in that data breach losses with high frequency and low 

severity could mainly constitute the risk pool. That is, small losses of data breach can more 

frequently occur, whereas the frequency of large losses tends to be rather rare and stable 

(Wheatley et al., 2016). If extremely large losses frequently occur simultaneously, an insurance 

company might need more reserves to prepare against those simultaneous claims and these 

losses might not be insured. In line with the analysis by Biener, Eling and Wirfs (2015) we 

conclude that cyber risk can be insured in terms of the criteria on maximum possible loss and 

loss exposure. Such an asymmetric co-movement in losses could not be captured by a linear 

                                                      
30  Note that the C-Vine and the D-Vine in Table 5 are unique structures by determining the shape of the first tree 

in accordance with the structure of each vine (see Figure 1). In the implementation of the vine models the 
package VineCopula might convert the C-Vine and the D-Vine to the optimal R-Vine model because the R-
Vine can represent the two other models depending on the dependence structure of variables. The C-Vine 
estimation can be implemented via this R-package using the default option for this model in the sequential 
estimation, whereas the D-Vine estimation needs to be conducted via the R-package, CDVine, to obtain a 
unique D-Vine structure. CDVine is still available in R, but not actively developed anymore so that the package 
authors ask users to transfer to VineCopula package. To model a unique D-Vine structure in the VineCopula 
package, one can employ a function facilitating to convert the D-Vine structure to an R-Vine matrix 
representation. 
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dependence modeling, which might lead to an inaccurate estimation on the risk level for the 

insurance company. 

Table 6. Parameter Estimations of Flexible Pair Copula Structure 

 Copula Parameter Lower-tail 
dependency 

Upper-tail 
dependency 

Panel A: Cross-industry 

𝜃ଶଵ; 𝐶ா௅ா்,ு஺஼௄  (270° Rotated Clayton) -0.60 - - 
𝜃ଶଷ; 𝐶ா௅ா்,஽ூௌ஼ (Survival Joe) 1.46 0.391 - 
𝜃ସଶ; 𝐶ா௅ா்,ூேௌ஽ (Survival Joe) 1.27 0.275 - 
𝜃ଵଷ|ଶ; 𝐶ு஺஼௄,஽ூௌ஼|ா௅ா் (Frank) 0.92 - - 
𝜃ସଵ|ଶ; 𝐶ூேௌ஽,ு஺஼௄|ா௅ா்  (Student-t) 0.08 (df=4.04) 0.093 0.093 
𝜃ସଷ|ଵ,ଶ; 𝐶ூேௌ஽,஽ூௌ஼|ு஺஼௄,ா௅ா் (Independence) - - - 
 
Panel B: Cross-breach type 

𝜃ହଶ; 𝐶ா஽௎;ீை௏  (Survival Joe) 1.52 0.424 - 
𝜃ହଵ; 𝐶ா஽௎,஻ௌி  (Survival Joe) 1.44 0.382 - 
𝜃ହସ; 𝐶ா஽௎,஻ௌா  (90° Rotated Joe) -1.29 - - 
𝜃ଵଷ; 𝐶஻ௌி,ொ஽ (Student-t) -0.05 (df=2.69) 0.121 0.121 
𝜃ଵଶ|ହ; 𝐶஻ௌி,ீை௏|ா஽௎  (Independence) - - - 
𝜃ସଵ|ହ; 𝐶஻ௌா,஻ௌி|ா஽௎ (Independence) - - - 
𝜃ହଷ|ଵ; 𝐶ா஽௎,ொ஽|஻ௌி  (Independence) - - - 
𝜃ସଶ|ଵହ; 𝐶஻ௌா,ீை௏|஻ௌி,ா஽௎ (Independence) - - - 
𝜃ଶଷ|ହଵ; 𝐶ீை௏,ொ஽|ா஽௎,஻ௌி  (Survival Joe) 1.12 0.146 - 
𝜃ସଷ|ଶହଵ; 𝐶஻ௌா,ொ஽|ீை௏,ா஽௎,஻ௌி  (Survival Joe) 1.12 0.141 - 
Note: The parametric PCCs are sequentially determined by R-package VineCopula. The numbers as subscripts of the 
copula parameters indicate in the following: 
Cross-industry: 1 = HACK (Hacking), 2 = ELET (Lost electronic device), 3 = DISC (Disclosure), 4 = INSD (Insider attack); 
Cross-breach type: 1 = BSF (Banking and insurance), 2 = GOV (Governmental entity), 3 = MED (Medical service), 4 = 
BSE (Retail/Merchant and other business), 5 = EDU (Educational institution). 

4.3 Modeling zero loss dependence 

If we want to derive risk measures from a portfolio loss distribution with excessive zeros, zero 

value dependence needs to be separately considered (Brechmann et al., 2014). As mentioned in 

Section 2.2, each variable is binary distributed, where 1 is given to a zero value and 0 is given 

to a non-zero value. We implement Gaussian copula modeling to identify the dependence of 

binary distributions, displaying how dependent zero value arrival processes are. For the 

Gaussian copula model, we generate parameter matrices for both cross-industry and cross-

breach type (see Table 7).  

We observe very weak dependences in zero loss arrivals where many of the parameters are 

close to 0. Here, a positive dependence means that risks are more likely to simultaneously arrive 

than arrive not simultaneously, whereas a negative dependence indicates a higher likelihood of 

counter-monotonicity in zero loss arrivals. It can be inferred that there is no significant 

dependency between zero losses. We generate the probability of zero losses for each loss 
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distribution from the Gaussian dependence structure and use it to measure risk levels and price 

insurance premiums by the equation (11) in the next section. 

Table 7. Dependence Parameters of Gaussian Copula for Zero Loss Arrival 

Cross-industry Cross-breach type 

 HACK ELET DISC INSD  BSF GOV MED BSE EDU 

HACK 1    BSF 1     

ELET -0.017 1   GOV 0.004 1    

DISC -0.009 0.0002 1  MED -0.008 -0.003 1   

INSD -0.006 0.0005 -0.007 1 BSE 0.010 0.018 0.004 1  

     EDU -0.009 0.001 -0.006 -0.012 1 

Note: The table displays the correlation matrices of zero-loss processes estimated by Gaussian copula model. The acronyms 
of variables are described as follows:  
Cross-industry: HACK = Hacking; ELET = Lost electronic device; DISC = Disclosure; INSD = Insider attack 
Cross-breach type: BSF = Banking and insurance; GOV = Governmental entity; MED = Medical service; BSE = 
Retail/Merchant and other business; EDU = Educational institution 

4.4 Statistical difference in loss aggregate distributions 

Prior to the applications, we want to evaluate whether there is a difference in the estimated loss 

aggregate distributions. To achieve this, we conduct two statistical tests: the Wilcoxon signed-

rank test, which is a non-parametric statistical hypothesis test to compare two independent 

samples by using population mean ranks, and the Kolmogorov-Smirnov test (Wilcoxon, 1945; 

Smirnov, 1948). We thus test whether two loss aggregate distributions from different 

dependence structures are significantly different. Each aggregate distribution of breached 

records is generated based on the equation (11) with 500,000 simulations. Four comparisons 

are tested among the R-Vine structure, the independence structure, the Gaussian structure and 

the empirical structure, which are of main interest in the applications. The null hypothesis is:30F

31 

𝐻଴: 𝐿௜ − 𝐿௝ = 0 (𝑖 ≠ 𝑗), 

where 𝐿௜ is a loss vector from a dependence structure considered (𝑖 = 1, … ,3).  

The results in Table 8 show that the differences in aggregate distributions between the R-Vine 

structure and the independence structure, between the independence structure and the empirical 

structure and between the R-Vine structure and the Gaussian structure are statistically 

significant for both cross-industry and cross-breach type settings; no significant difference 

between the R-Vine structure and the empirical structure is identified. Tests in both cross-

                                                      
31  All tests are two-sided paired difference tests as related to the null hypothesis. 
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sectional settings arrive at the same conclusion and the testing results are confirmed at the 10% 

critical level.31F

32 The R-Vine model is thus close to the empirical model, but different from the 

independence and Gaussian models. 

Table 8. The Result of Statistical Difference Test 

  Wilcoxon test K-S test 

Cross-industry 

𝐿ோ௩௜௡௘ − 𝐿௘௠௣ 242,297 0.024 

𝐿ோ௩௜௡௘ − 𝐿௜௡ௗ 268,598** 0.069*** 

𝐿ோ௩௜௡௘ − 𝐿ீ௔௨௦௦ 231,743* 0.059* 

𝐿ூ௡ௗ − 𝐿௘௠௣ 229,505** 0.069*** 

Cross-breach type 

𝐿ோ௩௜௡௘ − 𝐿௘௠௣ 259,209 0.035 

𝐿ோ௩௜௡௘ − 𝐿௜௡ௗ 279,855*** 0.078*** 

𝐿ோ௩௜௡௘ − 𝐿ீ௔௨௦௦ 265,948* 0.068** 

𝐿ூ௡ௗ − 𝐿௘௠௣ 229,635** 0.076*** 
Note: The table shows how statistically close different aggregate distributions are based on two statistical tests. Wilcoxon 
test is a non-parametric statistical test using ranks of two distributions of interest and K-S test is a Goodness-of-Fit test using 
an empirical distribution to measure the distance. *,**,*** indicate p-value less than a significant level at 10%, 5% and 1% 
respectively. 

5 Applications to risk measurement and pricing 

We now apply the estimated PCC dependence structure from Section 4 to risk measurement 

and insurance pricing. The applications are based on the aggregate distributions from different 

dependence models with 500,000 copula-simulated values. The risk measures and prices using 

PCC are then compared with the measures under the a) independence assumption, b) linear 

dependence assumption (Gaussian copula), c) linear and symmetric tail dependence assumption 

(Student-t copula) and d) the dependence structure from the empirical copula.32F

33 

The applications are again carried out in two cross-sectional settings: cross-industry and cross-

breach type. With regard to insurance pricing, since the values of the aggregated distribution 

are the number of breached records, it is necessary to convert them to dollars to derive insurance 

prices. Several cyber security companies offer data breach cost calculators (e.g., Imperva, 2016; 

eRiskHub, 2016; FireEye, 2016). However, there is no established method on how to conduct 

                                                      
32  The test result between R-Vine and Gaussian is determined at the 10% level, whereas other test results are 

confirmed at the 5% level. The statistical distance between R-Vine and Gaussian is relatively closer than the 
distances between R-Vine and independence and between independence and empirical structure. 

33  The independence assumption is a baseline benchmark without any dependence modeling. Gaussian and 
student-t copula models are used in many fields; hence, the measures by these two models might be close to 
the values that are used in practice. Lastly, the empirical setting can serve as a benchmark for our estimated 
model on how close our model is to the historically, empirically observed dependency. 
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these calculations.33F

34 Jacobs (2014) analyzed the Ponemon datasets3 4F

35 for 2013 and 2014 and 

proposed the following regression model to compute data breach cost that we use to calculate 

insurance prices: 

𝐷𝑜𝑙𝑙𝑎𝑟 𝑙𝑜𝑠𝑠 = exp[7.68 + 0.76 ∗ ln(𝑏𝑟𝑒𝑎𝑐ℎ 𝑟𝑒𝑐𝑜𝑟𝑑𝑠)]. (8) 

Two risk measures are derived from the aggregate distribution of breached records: 

Value at Risk: 𝑉𝑎𝑅(ଵିఈ)(𝑋) = inf{𝑋 ∈ ℝ: 𝑋 ≥ 𝐹𝑋
ିଵ(1 − 𝛼)}, (9)                     

Expected Shortfall: 𝐸𝑆(ଵିఈ)(𝑋) = 𝐸[𝑋 ∈ ℝ:  𝑋 | 𝑋 ≥ 𝐹𝑋
ିଵ(1 − 𝛼)], (10) 

where 𝑋 is a non-negative random variable with finite variance, 𝛼 is a risk threshold and 𝐹 is 

the aggregated loss distribution. We calculate risk measures at critical levels of 90%, 95%, 99% 

and 99.5% (i.e., 𝛼 is 10%, 5%, 1% and 0.5%).35F

36 In addition, we derive insurance premiums 

using three pricing principles that incorporate different expected utility functions (see 

Embrechts, 2000): 

Fair Premium: 𝑃 = 𝐸𝑋, (11)                                 

Standard Deviation Principle: 𝑃 = 𝐸𝑋 + 𝛿 ∙ ඥ𝑉𝑎𝑟(𝑋), (12) 

Exponential Principle: 𝑃 =
1

𝛾
ln൫𝐸(𝑒ఊ௑)൯, (13) 

where 𝛿 is a cost-loading and 𝛾 is the risk-aversion parameter.36F

37 

In addition to risk measurement and insurance pricing, we investigate the effect of each 

dependence model on portfolio diversification. The effect demonstrates the extent to which risk 

                                                      
34  The cost per data breach might be different for company size, industry or other factors and insured losses by a 

cyber-insurance provider typically consist of data recovery/replacement of intellectual property, third-party 
liability and forensics (Allianz, 2015). Thus, the estimated risk measures in this section do not perfectly reflect 
the actually insured losses in reality. 

35  Ponemon Institute (2016) provided parameters about cost of data breach by different years, industries and type 
of attacks in its annual reports. The approximation of Jacobs (2014) to transfer the number of records breached 
into actual loss data is useful to carry out the first applications, but is clearly only a crude and rough 
approximation of the real loss. 

36  We choose 99.5% as the most extreme critical level estimated since Solvency II requires VaR at 99.5% as the 
equity capital. Swiss Solvency Test (SST) requires Tail VaR (Expected shortfall) at 99% level (FINMA, 2016). 

37  The equation (11) is based on the zero-utility model where the expected utility before paying the insurance 
premium is the same as that after paying the insurance premium, if the policyholder is risk neutral (Kaas et al., 
2008). The equation (12) includes a cost-loading, 𝛿, representing the level of transaction cost and requiring 
some risk aversion to accept the insurance contract. Following Mukhopadhyay et al. (2013), we assume a cost 
loading of 0.1 for the standard deviation principle. The equation (13) explicitly includes the exponential utility 
function 𝑈(𝑋) = −𝛾𝑒ିఊ௑, where increasing 𝛾 augments the premium, implying that a more risk averse insured 
is willing to pay a bigger premium to cover the risk. If 𝛾 converges to 0, the premium converges to the fair 
premium. We specify the risk aversion level as 1/1000, 1/10000, 1/100000 to see the difference in premiums 
with different risk aversion levels. 
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measures of the aggregate distribution under the estimated model are reduced compared to the 

sum of the risk measures from the individual loss distributions. That is the relative risk reduction 

compared to the comonotonicity assumption (the equally weighted summation of individual 

risks; Brechmann et al., 2014). We estimate the effects using the expected shortfall since this 

measure is coherent and satisfies sub-additivity (Artzner et al., 1999; Acerbi and Tasche, 

2002).37F

38 The loss aggregation is based on the equally weighted aggregation that can be derived 

(Jorion, 2007): 

𝜑௝,ଵିఈ =
𝐸𝑆௝,ଵିఈ൫∑ 𝜆௝௞

ௗ
௞ୀଵ ൯ − ∑ 𝐸𝑆(𝜆௝௞)ௗ

௞ୀଵ

∑ 𝐸𝑆(𝜆௝௞)ௗ
௞ୀଵ

, (14) 

where 𝜑௝,ଵିఈ is a diversification effect of j-th model at 1 − 𝛼 quantile (𝑗 = 1, … ,3) and 𝜆௝௞ is a 

loss vector of k-th risk from j-th model (𝑘 = 1, … , 𝑑). 

The risk measures in panel A of Table 9 indicate the potential monthly breach records at 

different critical levels for the entire U.S. market consisting of risks from five industries (BSF, 

GOV, MED, BSE and EDU) and exposed to four breach types (HACK, ELET, DISC and 

INSD). For instance, if we use the pair copula model for cyber risk aggregation with the cross-

industry risk categorization, we expect 59.54 million monthly breach records at the 90% critical 

level and around 1.03 billion at the 99.5% level from the potential U.S. risk pool.  

The independence structure produces a lower level of risk than other structures do in both cross-

sectional settings, resulting from the fact that the structure does not consider correlated risk 

among the risk factors in the portfolio. The student-t provides higher values at a more extreme 

level (e.g., 99 or 99.5%), especially in case of the expected shortfall. This might be because the 

restrictive model using student-t copula with only one tail dependence parameter can hinder the 

accurate estimation of the true tail dependency and causes the risk measure to be overestimated 

(Brechmann et al., 2014). In line with the statistical tests from Section 4.4, the risk measures 

with the R-Vine structure are closer to the empirical structure than in other cases, demonstrating 

                                                      
38  Sub-additivity can be defined in the following. Let X and Y be two risk factors and let 𝜌 be a function of a risk 

measure. The risk measure, 𝜌, which can be defined in the real space of random variables is sub-additive if it 
satisfies the following property (Artzner et al., 1999): 

𝜌(X + Y) ≤ 𝜌(X) + 𝜌(Y). 
This property does not hold in case of Value-at-Risk so that there could exist the following case in Value-at-
Risk: 

𝜌(X + Y) > 𝜌(X) + 𝜌(Y). 
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that the pairwise dependence structure with different copula functions serves as a useful tool 

for this modeling.38F

39  

Table 9. Applications to Risk Measurement and Insurance Pricing 

Panel A: Risk measurement (in million breached records, monthly time horizon) 
Data 
Type 

Dependence 
Structure 

Value-at-Risk Expected Shortfall 
90% 95% 99% 99.5% 90% 95% 99% 99.5% 

          

Cross-
industry 

Indep 46.87 157.88 764.80 994.87 288.41 472.25 1,011.61 1,050.55 
PCC 59.54 163.22 984.61 1,041.85 313.98 522.75 1,033.12 1,053.11 
Empirical 59.77 163.03 986.18 1,045.82 310.11 515.85 1,035.70 1,055.18 
Gaussian 55.91 161.43 980.39 1,040.28 301.51 502.24 1,033.78 1,055.87 
Student-t 57.20 161.06 983.76 1,045.13 306.85 512.52 1,039.03 1,062.97 

        

Cross-
breach 
type 

Indep 45.39 152.59 732.02 946.05 276.49 452.80 957.41 983.84 
PCC 51.60 153.99 930.56 930.88 276.09 467.91 933.49 936.16 
Empirical 51.74 154.35 930.57 931.04 274.47 463.43 933.93 937.09 
Gaussian 51.78 156.06 930.62 931.25 280.95 475.16 934.82 938.79 
Student-t 50.88 154.35 930.60 932.09 279.24 474.29 942.20 953.38 

        
Panel B: Insurance pricing (monthly premium in million $) 
Data  
Type 

Dependence 
structure 

Fair 
Premium 

Standard 
Dev. Principle 

Exponential Premium Principle 
𝛾 = 10ିଷ 𝛾 = 10ିସ 𝛾 = 10ିହ 

        

Cross-
industry 

Indep 724.81 938.58 10,924.60 1,065.05 748.35 
PCC 761.97 979.94 10,911.78 1,114.47 786.59 
Empirical 758.67 975.03 10,927.01 1,106.02 782.93 
Gaussian 739.42 952.01 10,906.24 1,074.83 762.84 
Student-t 749.61 964.88 11,024.94 1,094.51 773.63 

        

Cross-
breach 
type 

Indep 688.44 894.99 10,257.92 999.85 710.38 
PCC 689.86 889.76 9,763.18 978.17 710.52 
Empirical 686.77 885.50 9,748.62 971.25 707.19 
Gaussian 695.86 897.84 9,812.90 990.53 716.96 
Student-t 685.96 888.05 9,929.22 982.63 707.09 

Note: The risk measurements are specified by Value-at-Risk (VaR) and Expected Shortfall (ES) at three critical levels, 90%, 
95%, 99% and 99.5%. For insurance pricing, we calculate the premium by three different pricing principles on an annual 
basis: fair premium principle, standard deviation principle and exponential premium principle. 𝛾  is the risk aversion 
parameter, where 𝛾 → 0 indicates risk neutrality. The bold model is the preferred model from Section 4. 

The risk measures estimated in the cross-industry setting are larger than the measures in the 

cross-breach type setting, although the number of risk factors in the cross-industry setting is 

smaller.39F

40 There are three plausible reasons for this outcome. First, it can result from the 

estimated dependence models and the dependence structure of the cross-industry risk pool 

incorporates a higher correlated risk (i.e., less number of pairs are modeled by independence 

                                                      
39  Compared to these industry-level estimates, company-level estimates are derived in Appendix G, informing a 

cyber-insurer of the potential loss amount per event in the cyber-insurance portfolio. The company-level 
estimation is more complicated than the industry-level estimation due to additional assumptions required. For 
example, we need to reduce the dimension from aggregate level to individual level by using an estimator how 
many companies are breached in the U.S. market. Furthermore, we also need to break down the aggregate level 
of premium size into the individual level by specifying a certain industry and a certain risk type. 

40  Brechmann et al., (2014) also compare the estimated risk measures from two settings of operational risk 
(business line: BL and event type: ET). The difference between the log-scaled estimates in their paper (see 
Figure 6) is not significant and comparable with the difference between the estimates in panel A of Table 9 
with log-transformation.  
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copula in the cross-industry setting than in the cross-breach type setting; see Table 6). Second, 

the likelihood of zero loss occurrence is affected by different zero loss dependences when 

integrated by the equation (7). Lastly, a smaller size in the cross-breach type setting could be 

addressed by the key factor of the dependence structure, EDU, which demonstrates the lowest 

severity among all considered risk factors. We thus suggest aggregating the cyber risks in the 

cross-industry setting, which could lead a cyber-insurer to be on the safe side against cyber-

insurance claims. 

Based on the results of risk measurement, cyber-insurance premiums are estimated in panel B 

of Table 9, again on a monthly and an aggregated industry level. Note that there are no cover 

limits or deductibles assumed in the pricing application and current cyber-insurance policies 

usually provide the protection against a certain type of risk with restricted coverage and 

consider internal factors of an insured.40F

41 Therefore, the estimated premium size will be different 

from that in practice. If we assume independence, $724.81 million would be needed as fair 

premium to cover the possible monthly loss in the cyber-insurance portfolio with four types of 

risk and five industries. The value estimated for the PCC model ($761.97 million) is 5.1% 

higher and very close to the empirical value ($758.67 million); it thus seems that not enough 

premium could be collected when independence is assumed, especially in the cross-industry 

setting. Gaussian and student-t models lead to an underestimation of the insurance premium in 

the cross-industry setting, illustrating the need to be accurate in describing the dependence 

structure.41F

42 As with the risk measurement, the premium size in the cross-industry setting is 

generally higher than in the cross-breach type setting due to the stronger dependence. 

Diversification effects of the estimated models are presented in Table 10 and Figure F2 

(Appendix F). In line with the literature (see Brechmann et al., 2014) we observe diversification 

effects in all structures in both cross-industry and cross-breach type modeling and this benefit 

becomes larger at more extreme levels. Overall, the pair copula structure shows a bigger 

diversification effect across quantiles for both cross-sectional settings than other structures do, 

accounting for the strength of the pairwise dependence model.  

 

                                                      
41  We do not specify any details such as company size, revenue or type of security system in place. In addition, 

a range of risk types including malicious and accidental risks are considered in the price. However, risk 
classification in practice is based on the specific cyber risk profile of a customer, which relies on company size, 
industry, existing security systems and other factors (Allianz, 2015; KPMG, 2016).  

42  In the cross-breach type setting, it is observed that the Gaussian model generates a higher fair premium than 
others do. This can be explained by a higher density of the aggregate distribution by the Gaussian model at less 
extreme levels, which can influence the expectation value of the distribution. 
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Table 10. Diversification Effects on ES per Quantile 

Model 90% 95% 99.5% 
Panel A: Cross-industry 
PCC -5.6% -9.6% -19.9% 
Empirical -5.1% -9.5% -19.0% 
Gaussian -5.5% -9.5% -19.6% 
Student-t -5.4% -9.5% -19.0% 
Panel B: Cross-breach type 
PCC -7.8% -9.7% -13.6% 
Empirical -7.6% -9.6% -13.3% 
Gaussian -7.7% -9.6% -13.4% 
Student-t -7.0% -9.0% -11.9% 
Note: The diversification effects are derived using expected shortfalls. The bold model is the preferred model from Section 
4. 

6 Conclusion and further research 

In this paper, we implement the pair copula construction (PCC) with a range of parametric 

copulas to investigate the dependence structure of data breach losses. Since monthly breach 

records include excessive zero losses, we model the dependence by using non-zero pair 

dependence and zero-loss dependence. We describe the modeling results in two cross-sectional 

settings: cross-industry by four breach types (HACK, ELET, DISC and INSD) and cross-breach 

type by five industries (BSF, GOV, MED, BSE and EDU). We find a significant asymmetric 

tail dependence among risk factors, especially lower tail dependency dominated by small losses. 

This asymmetric tail dependency is estimated pairwise, resulting in a more accurate tail 

dependence estimation than the widely used elliptical models or Archimedean copula models. 

The likelihood of simultaneous small losses might in general not be a big concern for a cyber-

insurance provider, however, when aggregating the estimated loss distributions, the insurer 

must take the potential dependence into account to avoid an underestimation of the risk and 

necessary premiums. We also show that on an aggregate industry level the U.S. could be faced 

with approximately 1 billion monthly breach records at 99.5% critical level (one event with 

such amount likely to occur over 200 months), in our case considering four breach types and 

five industries. 

The estimated pair copula structure produces a higher level of potential loss than under 

independence assumption. Hence, there might be a possibility for a risk manager to 

underestimate the risk level when neglecting the potential correlated risk. In addition, the 

correlated risk in the cross-industry setting (between risk factors by breach types) turns out to 

be higher than the risk in the cross-breach type setting (between risk factors in different 

industries). This result illustrates the importance of determining the risk factors considered in 

underwriting and risk management of cyber risk. We propose considering the risk aggregation 
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in the cross-industry setting, since this setting incorporates higher correlated risks in the 

portfolio, leads a cyber-insurer to be on the safe side with higher capital requirement against 

cyber risk claims and provides a higher diversification benefit at more extreme levels (see 

Figure F2). Given that cyber insurance policies typically cover different types of risk and the 

policies are then aggregated across companies from different industries, risk managers in 

insurance companies might follow this approach. We also show that if an insurer offers different 

types of data breach risks in the coverage, simultaneous losses on the tails might have different 

impacts on the capital basis when different dependence structures are considered. This finding 

is relevant for recent equity capital standards such as US Risk-Based Capital (RBC), Solvency 

II or the Swiss Solvency Test, which typically do not model non-linear dependence among risk 

factors. 

This study identifies a non-linear dependence in data breach losses, but there are several 

limitations which open directions for future research. For example, the cyber-insurance market 

development must clearly define damage by a single risk and identify how this damage can be 

accurately measured. Moreover, the dependence structures in data breach loss could be affected 

by different characteristics of industries or other causes, such as geographical variation or the 

degree of the development of security system. For instance, we might expect the costs of data 

breaches to vary by industry, e.g., when comparing banking and healthcare. If more data on 

breach events are available across the globe, we might compare the dependence among different 

regions, because there could be geographically different appearance, size and frequency in 

cyber risk events. Moreover, the time variation in data breach risk should be studied in more 

detail, especially given the dynamic nature of cyber risk and the risk of change; it is thus not 

clear whether a dependence structure observed in historical data will also hold in the future. As 

indicated above, we could not include all types of data breaches in our analyses (payment card 

fraud, unknown attacks) and not all types of companies (NGO’s), because the samples are too 

small. When enough data on those events and industries are accumulated, those should be also 

analyzed in detail. Additionally, the insurance pricing example presented here should not be 

interpreted as more than a first rough indication, because it is based on the number of breached 

data and not on actual loss information that needs to be verified when more and better 

information becomes available. Another interesting avenue for future research could be to dig 

deeper into the potential drivers of correlations. 
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Appendix A. Overview of literature and comparison with the present paper 

 
Table A1. Summary of Literature on Dependence of Cyber Risk Analyzed with Copula Modeling 

 BK06 HH11 MCSMS13 S16 PXXH18 Present paper 

M
od

el
in

g 
pe

rs
pe

ct
iv

e 

Data type Honeypot data (worms and 
virus infection) – 183,000 
data 
(Feb, 2003 – Sep, 2005) 

ICSA survey – 15 data     
(number of viral infected 
computers and dollar loss) 

Log data from security 
appliances 
(not details on the data 
provided) 

Simulated copula-based 
prices with presumed 
parameters 

Honeypot data – 1123 
hours between Nov 4, 2010 
and Dec 21, 2010 

Data breaches (PRC) – 
3,327 data (Jan, 2005 – 
Dec, 2016) 

Focus of 
Study 

 Simulation-based 
estimation on premium 
pricing. 

 Empirical estimation of 
correlation on loss 
arrival. 

Focusing on specifying 
Copula-based pricing 
models in the actuarial 
aspect. 

Theoretical modeling by 
Copula-based Bayesian 
Belief Network (CBBN) 
and suggesting pricing 
model with utility theory. 

Simulation-based 
estimation on dependence 
among sub-cyber risk 
losses affecting CLI 
pricing. 

Modeling high-dimensional 
cyber attack losses. 

High-dimensional risk 
structures with Pair 
Copula Construction 
(PCC). 

Copula 
modeling 

t-copula to model the 
distribution of cross-firm 
risks 

Archimedean copula 
(Clayton & Gumbel) 

Gaussian copula with 
normality and linear 
correlation of Bayesian 
nodes 

Gaussian, t and Gumbel 
copulas to model six-
dimensional dependence 

R-Vine with different 
copulas, Gaussian and t 

R-Vine with different 
copulas, Gaussian, t and 
Archimedean 

Copula-
dimension 

Multivariate (High-
dimension) 

Bivariate Bivariate Multivariate (High-
dimension) 

Multivariate (High-
dimension) 

Multivariate (High-
dimension) 

Evaluated 
Dependence 

 Cross-attack risks 
 Cross-industry risks 

Cross-attack risks Cross-network 
vulnerability dependence 

Cross-attack risks Cross-attack risks  Cross-breach type risks 
 Cross-industry risks 

O
ut

co
m

e 

Main points  The most suited classes 
of risk correlation for the 
cyber risk insurability are 
identified.  

 Risk-averse firms are 
inclined to insure risks if 
intra-firm correlation is 
high and cross-firm 
correlation is low. 

 The marginal 
distributions of two 
variables, the number of 
infected computer and 
the dollar loss, are 
Weibull (non-normal). 

 Independence 
assumption in cyber-
insurance pricing can 
make pricing errors 
substantial. 

 Four different nodes 
about security elements 
are evaluated and the 
firewall is the most 
vulnerable. 

 By Utility-based 
preferential pricing 
(UBPP) model, a risk-
averse entity is willing to 
transfer its cyber risk to 
an insurer and pay a 
higher premium. 

The effectiveness of CLI 
contracts on risk mitigation 
is increasing as intra-firm 
and upper tail correlations 
are increasing. 

Copula-GARCH model is 
used to model different 
cyber attack losses in a 
high-dimensional setting. 

 Information on data 
breach events has been 
classified in different 
cross-sectional settings 
and analyzed in different 
dependent structures. 

 It shows how different 
high-dimensional 
dependence constructions 
influence on cyber-
insurance premiums and 
risk measures. 

Implication 
& 
Limitation 

The more reliable 
outcomes and accurate risk 
measures can be realized 
by more appropriate and 
abundant data.  

The size of the data is 
relatively too small to 
obtain the meaningful 
result of copula modeling.  

This study does not cover 
different types of attack 
risks and the curse of 
dimensionality is implied 
in the model. 

Empirical evidence is not 
enough to support its 
proposal of cyber risk 
index. 

The dataset covers cyber 
incidents, but not real loss 
data. 

A comprehensive analysis 
on dependence structure of 
data breach risks is 
suggested.  

Note: The references introduced in the table are specified in the following. BK06: Böhme and Kataria (2006); HH11: Herath and Herath (2011); MCSMS13: Mukhopadhyay et al. (2013); S16: Shah 
(2016); PXXH18: Peng et al. (2018). The bold indicates the contributing points of the present paper to the literature. 
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Appendix B. Vine copula models 

We consider three types of vine models in the dependence modeling: C-Vine, D-Vine and R-

Vine. Among them, the R-Vine is a generalized model that is more flexible than the C-Vine 

and the D-Vine (Cooke, Joe and Aas, 2011). In what follows, we define three models to describe 

the difference in the formulation of the structure. Forming the copula distribution function starts 

with the density factorization. Let us consider a vector of random variables, 𝑋 = (𝑋ଵ, … 𝑋ௗ), 

which has a joint density function, 𝑓(𝑥ଵ, … , 𝑥ௗ). Then, the density 𝑓 can be factorized as: 

𝑓(𝑥ଵ, … , 𝑥ௗ) = 𝑓ଵ(𝑥ଵ) ∙ 𝑓ଶ|ଵ(𝑥ଶ| 𝑥ଵ) ⋯ 𝑓ௗ|ଵ,…,ௗିଵ(𝑥ௗ| 𝑥ଵ, … , 𝑥ௗିଵ). (B.1) 

Using Sklar’s theorem (Sklar, 1959) and the chain rule with continuous marginal function, 

𝐹௜(𝑥௜), 𝑖 = 1, … 𝑑, we can obtain  

𝑓(𝑥ଵ, … , 𝑥ௗ) = 𝑓ଵ(𝑥ଵ) ⋯ 𝑓ௗ(𝑥ௗ) ∙ 𝑐ଵ,…,ௗ[𝐹ଵ(𝑥ଵ), … , 𝐹ௗ(𝑥ௗ)], (B.2) 

where 𝑐ଵ,…,ௗ[∙] is a d-dimensional copula density. 

Specifically, the equivalence between the equation (B.1) and the equation (B.2) can be proven 

by factorizing the conditional density in the equation (B.1). For example, the conditional density 

in the bivariate setting, 𝑓ଶ|ଵ(𝑥ଶ| 𝑥ଵ), can be defined as 

𝑓ଶ|ଵ(𝑥ଶ| 𝑥ଵ) =
𝑓ଵ,ଶ(𝑥ଵ, 𝑥ଶ)

𝑓ଵ(𝑥ଵ)
=

𝑐ଵ,ଶ[𝐹ଵ(𝑥ଵ), 𝐹ଶ(𝑥ଶ)] ∙ 𝑓ଵ(𝑥ଵ) ∙ 𝑓ଶ(𝑥ଶ)

𝑓ଵ(𝑥ଵ)
= 𝑐ଵ,ଶ[𝐹ଵ(𝑥ଵ), 𝐹ଶ(𝑥ଶ)] ∙ 𝑓ଶ(𝑥ଶ), (B.3) 

where 𝑐ଵ,ଶ[∙,∙] is a copula density function for the pair of 𝑋ଵ and 𝑋ଶ, each of which has a density 

function, 𝑓௜(𝑥௜), 𝑖 = 1,2, and a probability function, 𝐹௜(𝑥௜). 

A three-dimensional case with more than one variable given to the condition in a conditional 

density can be expressed as an example, 

𝑓ଵ|ଶଷ(𝑥ଵ| 𝑥ଶ, 𝑥ଷ) = 𝑐ଵ,ଶ|ଷൣ𝐹ଵ|ଷ(𝑥ଵ|𝑥ଷ), 𝐹ଶ|ଷ(𝑥ଶ|𝑥ଷ)൧ ∙ 𝑓ଵ|ଷ(𝑥ଵ|𝑥ଷ). (B.4) 

Depending on the dependence structure of variables, one can find different factorization of the 

conditional density from the factorization in the equation (B.4) as follows  

𝑓ଵ|ଶଷ(𝑥ଵ| 𝑥ଶ, 𝑥ଷ) = 𝑐ଵ,ଷ|ଶൣ𝐹ଵ|ଶ(𝑥ଵ|𝑥ଶ), 𝐹ଷ|ଶ(𝑥ଷ|𝑥ଶ)൧ ∙ 𝑓ଵ|ଶ(𝑥ଵ|𝑥ଶ). 
(B.5) 

 

The equation (B.5) can be further decomposed to the following by factorizing the conditional 

density function, 𝑓ଵ|ଶ(𝑥ଵ|𝑥ଶ), 

𝑓ଵ|ଶଷ(𝑥ଵ| 𝑥ଶ, 𝑥ଷ) = 𝑐ଵ,ଷ|ଶൣ𝐹ଵ|ଶ(𝑥ଵ|𝑥ଶ), 𝐹ଷ|ଶ(𝑥ଷ|𝑥ଶ)൧ ∙ 𝑐ଵ,ଶ[𝐹ଵ(𝑥ଵ), 𝐹ଶ(𝑥ଶ)] ∙ 𝑓ଵ(𝑥ଵ). (B.6) 
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Based on the development of the decomposition, we can generalize the equation (B.1) by 

constituting the pairwise copula construction and a conditional marginal density as follows (Aas 

et al., 2009): 

𝑓(𝑥| 𝚯) = 𝑐௫,஀ೕ|𝚯ష𝒋
ൣ𝐹൫𝑥|𝚯ି௝൯, 𝐹൫Θ௝|𝚯ି𝒋൯൧ ∙ 𝑓൫𝑥|𝚯ି𝒋൯, (B.7) 

where 𝚯 is a d-dimensional vector, Θ௝ is an arbitrarily selected component of the vector 𝚯 and 

𝚯ି𝒋 is a vector of 𝚯 without the 𝑗-th component. 

Vine models consist of a number of trees, 𝑇௝, 𝑗 = 1, … , 𝑑 − 1, as the decomposition is developed, 

the trees where starts from unconditional marginal densities. Each tree, 𝑇௝, incorporates 𝑑 − 𝑗 

nodes and 𝑑 − 𝑗 − 1 edges and in the end the entire decomposition of the vine density is defined 

by 𝑛(𝑛 − 1)/2 edges and the marginal densities of 𝑑 variables. The labels of the edges in the 

tree 𝑇௝ାଵ are defined by the nodes in the tree 𝑇௝. Specifically, the case that two edges in the tree 

𝑇௝ have a common node forms an edge in the tree 𝑇௝ାଵ as can be seen in Figure 1. 

As abovementioned, R-Vine flexibly links the variables by dependency without fixing a certain 

structure, providing a general form of a vine model. The following definition illustrates a 

regular vine model based on Bedford and Cooke (2001, 2002), Cooke, Joe and Aas (2011) and 

Dissmann et al. (2013). 

Definition B1. (A regular vine) 𝐗 = {𝑥ଵ, … , 𝑥ௗ} is a d-dimensional set. 𝒱 = {𝑇ଵ, … , 𝑇ௗିଵ} is a 

nested set of trees in a regular vine structure on d components if 

(1) 𝑇ଵ is the first tree with nodes 𝐷ଵ = {1, … , 𝑑} and a set of edges, 𝐸ଵ. 

(2) For 𝑖 = 2, … , 𝑑 − 1, 𝑇௜ is a following tree with nodes 𝐷௜ = 𝐸௜ିଵ and a set of edges, 𝐸௜. 

(3) (Proximity condition) for 𝑖 = 2, … , 𝑑 − 1  and {𝑎, 𝑏} ∈ 𝐸௜ , #(𝑎 ∩ 𝑏) = 1  holds, where # 

indicates the cardinality of a set. 

The definitions in the following describe how to formulate the vine densities of the C-Vine and 

the D-Vine, which are special forms of a regular vine model (Aas et al., 2009). 

Definition B2. (Canonical vine density) 𝐗 = {𝑥ଵ, … , 𝑥ௗ} is a d-dimensional set. In a canonical 

vine model (C-Vine) in the d-dimensional setting, it consists of 𝑇௝, 𝑗 = 1, … , 𝑑 − 1, trees, each 

of which incorporates 𝑑 − 𝑗 nodes and 𝑑 − 𝑗 − 1 edges. Then, the joint density of 𝑑 variables 

can be described as: 

𝑓(𝑥ଵ, … , 𝑥ௗ) = ෑ 𝑓(𝑥௞)

ௗ

௞ୀଵ

ෑ ෑ 𝑐௝,௝ା௜|ଵ,…,௝ିଵ ቀ𝐹൫𝑥௝ห𝑥ଵ, … , 𝑥௝ିଵ൯, 𝐹൫𝑥௝ା௜ห𝑥ଵ, … , 𝑥௝ିଵ൯ቁ

ௗି௝

௜ୀଵ

ௗିଵ

௝ୀଵ

, (B.8) 
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where index 𝑗 stands for the 𝑗-th tree and index 𝑖 represents the 𝑖-th edge in each tree.4 2F

43 

The C-Vine consists of the trees 𝑇௝, each of which has a unique node linked with 𝑑 − 𝑗 edges, 

implying that a core variable placed in the center connects all other variables. In contrast, the 

D-Vine is a structure showing the dependency in a row and forming a hierarchical tree.  

Definition B3. (Drawable vine density) 𝐗 = {𝑥ଵ, … , 𝑥ௗ} is a d-dimensional set. In a drawable 

vine (D-Vine) model in the d-dimensional setting, it consists of 𝑇௝, 𝑗 = 1, … , 𝑑 − 1, trees, each of 

which incorporates 𝑑 − 𝑗 nodes and 𝑑 − 𝑗 − 1 edges. Then, the joint density of 𝑑 variables can 

be described as: 

𝑓(𝑥ଵ, … , 𝑥ௗ) = ෑ 𝑓(𝑥௞)

ௗ

௞ୀଵ

ෑ ෑ 𝑐௜,௜ା௝|௜ାଵ,…,௜ା௝ିଵ ቀ𝐹൫𝑥௜ห𝑥௜ାଵ, … , 𝑥௜ା௝ିଵ൯, 𝐹൫𝑥௜ା௝ห𝑥௜ାଵ, … , 𝑥௜ା௝ିଵ൯ቁ

ௗି௝

௜ୀଵ

ௗିଵ

௝ୀଵ

, (B.9) 

where index 𝑗 stands for the 𝑗-th tree and index 𝑖 represents the 𝑖-th edge in each tree.4 3F

44 

Aas et al. (2009) provide more detail in specific algorithms of the D-Vine and the C-Vine and 

Bedford and Cooke (2001, 2002), Cooke, Joe and Aas (2011) and Dissmann et al. (2013, 

Section 2) for more detail in representation and specification of R-Vine and the statistical 

inference on the vine model.

                                                      
43  As an example, the 3-dimensional density function of the C-Vine can be expressed as: 

𝑓(𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = 𝑓ଵ(𝑥ଵ) ∙ 𝑓ଶ(𝑥ଶ) ∙ 𝑓ଷ(𝑥ଷ) ∙ 𝑐ଵଶ൫𝐹ଵ(𝑥ଵ), 𝐹ଶ(𝑥ଶ)൯ ∙ 𝑐ଵଷ൫𝐹ଵ(𝑥ଵ), 𝐹ଷ(𝑥ଷ)൯

∙ 𝑐ଶଷ|ଵ൫𝐹(𝑥ଶ|𝑥ଵ) ∙ 𝐹(𝑥ଷ|𝑥ଵ)൯. 
44  As an example, the 3-dimensional density function of the D-Vine can be expressed as: 

𝑓(𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = 𝑓ଵ(𝑥ଵ) ∙ 𝑓ଶ(𝑥ଶ) ∙ 𝑓ଷ(𝑥ଷ) ∙ 𝑐ଵଶ൫𝐹ଵ(𝑥ଵ), 𝐹ଶ(𝑥ଶ)൯ ∙ 𝑐ଶଷ൫𝐹ଶ(𝑥ଶ), 𝐹ଷ(𝑥ଷ)൯

∙ 𝑐ଵଷ|ଶ൫𝐹(𝑥ଵ|𝑥ଶ) ∙ 𝐹(𝑥ଷ|𝑥ଶ)൯. 



Essay I  Cross-sectional dependence of data breach losses 

32 
 

Appendix C. Additional description of the method and risk factors 

 

 

Figure C1. Graphical structure of methodology 

 

Table C1 Augmented Dickey-Fuller Test Results 

 Variable Statistics P-value 

Cross-industry HACK -4.241 0.010 
ELET -3.782 0.022 
DISC -4.015 0.011 
INSD -3.971 0.013 

Cross-breach type BSF -3.095 0.098 
GOV -3.861 0.018 
MED -3.710 0.026 
BSE -4.199 0.010 
EDU -3.756 0.023 
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Panel A: Histograms of loss frequency data 

 

 

Panel B: Histograms of loss severity data (original vs. log-scaled) 

 

Figure C2. Graphical description on data (cross-industry) 
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Panel A: Histograms of loss frequency data 

 

Panel B: Histograms of loss severity data (original vs. log-scaled) 

 

Figure C3. Graphical description on data (cross-breach type) 
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Panel A: Scatterplot of original monthly data 

      Cross-industry         Cross-breach type 

 

Panel B: Scatterplot of transformed uniform margins 

     Cross-industry       Cross-breach type 

 

Figure C4. Pairwise plots in both cross-sectional settings 
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Appendix D. Dependence in zero-loss arrivals 

Suppose that there are d-dimensional losses including excess zeros. We model the dependence 

between occurrences of zero loss events, following Erhardt and Czado (2012) and Brechmann 

et al. (2014). The k-th loss is denoted by 𝜆௞ ≥ 0, 𝑘 = 1, … , 𝑑. The occurrence of zero loss can 

be defined by a binary random variable, 𝐼௞ given as: 

𝑣௞ ∶= ቄ
1        𝑧𝑒𝑟𝑜 𝑙𝑜𝑠𝑠 
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (D.1) 

For k-th loss, 𝜆௞ is either 1 or 0 as a binary component when it has zero or a positive number 

respectively. As Erhardt and Czado (2012) and Brechmann et al. (2014) indicate, we also denote 

a positive loss by 𝜆௞
ା > 0 distinguished from zero loss, 𝜆௞

଴ = 0. We recall the equation (7) for 

k-th loss distribution with the binary distribution and the separated loss values as (Brechmann 

et al., 2014): 

𝜆௞ = 𝑣௞ × 𝜆௞
଴ + (1 − 𝑣௞) × 𝜆௞

ା = (1 − 𝑣௞) × 𝜆௞
ା. (D.2) 

The cumulative density function of 𝑣௞, 𝑃௩ೖ
, is composed by: 

𝑃௩ೖ
∶= ൜

𝑝௩ೖ
(0) 

1
    

௓௘௥௢ ௟௢௦௦
௢௧௛௘௥௪௜௦௘

 , (D.3) 

where 𝑝௩ೖ
 is a probability mass function of 𝑣௞ and 𝑝௩ೖ

(0) is the probability of positive loss.  

Based on the above expressions, we can construct the joint density of multivariate binary 

distribution and multivariate loss distribution, where we apply the mathematical descriptions 

from Erhardt and Czado (2012) and Brechmann et al. (2014). The d-dimensional joint density 

consists of Λ ∶= (𝜆1, … , 𝜆𝑑)′, a vector of loss values, 𝐕 ∶= (𝑣1, … , 𝑣𝑑)′, a binary vector. The joint 

density can be expressed: 

𝑙𝐕,ஃ(𝑣, 𝝀) = 𝑝𝐕(𝒗)𝑙ஃ|𝐕(𝝀|𝒗), (D.4) 

where  𝑽 ∶= (𝑣ଵ, … , 𝑣ௗ)ᇱ ∈ {0,1}ௗ and 𝝀 ∶= (𝜆ଵ, … , 𝜆ௗ)ᇱ ∈ ℛஹ଴
ௗ . 

The conditional probability density function, 𝑙ஃ|𝐕(𝝀|𝒗), can be specified by: 

𝑙ஃ|𝐕(𝝀|𝒗) = 𝑙ఒభ
శ,…,ఒೖ

శ | ௩ೖୀ଴,   ௞∈{ଵ,…,ௗ}(𝜆௞, 𝑘 ∈ {1, … , 𝑑}). (D.5) 

The joint probability mass function of binary variables, 𝑝𝐕(𝒗) , can be formed by copula 

functions. However, in the high-dimensional case, there might exist heterogeneous pairwise 

correlation between binary variables, which cannot be captured by Archimedean copulas with 
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a single dependence parameter (Brechmann et al., 2014). Besides, no closed form has been 

developed for such a dependence by vine copula method so that we use Gaussian copula to 

build the joint binary distribution as modeled in Section 4.3. 

Basically, a joint probability mass function can be generated as follows: 

𝑝𝐕(𝒗) = 𝑃(𝑉ଵ = 𝑣ଵ, 𝑉ଶ = 𝑣ଶ … , 𝑉ௗ = 𝑣ௗ) 

 = 𝑃(𝑉ଵ ≤ 𝑣ଵ, 𝑉ଶ ≤ 𝑣ଶ, … , 𝑉ௗ ≤ 𝑣ௗ) −  𝑃(𝑉ଵ ≤ 𝑣ଵ − 1, 𝑉ଶ ≤ 𝑣ଶ, … , 𝑉ௗ ≤ 𝑣ௗ)
− ⋯ 

     −𝑃(𝑉ଵ ≤ 𝑣ଵ − 1, 𝑉ଶ ≤ 𝑣ଶ − 1, … , 𝑉ௗିଵ ≤ 𝑣ௗିଵ − 1, 𝑉ௗ ≤ 𝑣ௗ) 
     +𝑃(𝑉ଵ ≤ 𝑣ଵ − 1, 𝑉ଶ ≤ 𝑣ଶ − 1, … , 𝑉ௗିଵ ≤ 𝑣ௗିଵ − 1, 𝑉ௗ ≤ 𝑣ௗ − 1). 
 

2ௗ-components are required to generate the joint function. For each multivariate probability 

function, we can use a copula function as represented by Sklar’s theorem (Sklar 1959): 

𝑝𝐕(𝒗) = 𝐶𝐕 ቀ𝑃௏భ
(𝑣ଵ), 𝑃௏మ

(𝑣ଶ), … , 𝑃௏೏
(𝑣ௗ)ቁ − 𝐶𝐕 ቀ𝑃௏భ

(𝑣ଵ − 1), 𝑃௏మ
(𝑣ଶ), … , 𝑃௏೏

(𝑣ௗ)ቁ − ⋯ 

     −𝐶𝐕 ቀ𝑃௏భ
(𝑣ଵ − 1), 𝑃௏మ

(𝑣ଶ − 1), … , 𝑃௏೏షభ
(𝑣ௗିଵ − 1), 𝑃௏೏

(𝑣ௗ)ቁ 

     +𝐶𝐕 ቀ𝑃௏భ
(𝑣ଵ − 1), 𝑃௏మ

(𝑣ଶ − 1), … , 𝑃௏೏షభ
(𝑣ௗିଵ − 1), 𝑃௏೏

(𝑣ௗ − 1)ቁ 

 

= 𝐶𝐕ቀ𝑢ଵ
{ଵ}

, 𝑢ଶ
{ଵ}

, … , 𝑢ௗ
{ଵ}

ቁ − 𝐶𝐕ቀ𝑢ଵ
{ଶ}

, 𝑢ଶ
{ଵ}

, … , 𝑢ௗ
{ଵ}

ቁ − ⋯ 

     −𝐶𝐕ቀ𝑢ଵ
{ଶ}

, 𝑢ଶ
{ଶ}

, … , 𝑢ௗିଵ
{ଶ}

, 𝑢ௗ
{ଵ}

ቁ + 𝐶𝐕ቀ𝑢ଵ
{ଶ}

, 𝑢ଶ
{ଶ}

, … , 𝑢ௗିଵ
{ଶ}

, 𝑢ௗ
{ଶ}

ቁ, 

where 𝐶𝐕  is a copula function, 𝑢௞
{ଵ} =𝑃௏ೖ

(𝑣௞)  and 𝑢௞
{ଶ}

= 𝑃௏ೖ
(𝑣௞ − 1) . When 𝑣௞ = 0 , 𝑃௏ೖ

(𝑣௞ −

1) = 𝑃௏ೖ
(−1) = 0. 
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Appendix E. Distribution fitting results 

Table E1. Goodness-of-fit and Model Comparison for Loss Frequency (cross-breach type) 

Distribution Log-likelihood AIC Chisq-Test 
    

Panel A: Banking and Insurance (BSF)   

Poisson -323.185 648.370 170.542 *** 
Zero-inflated Poisson -285.813 575.625 293.466   *** 
Negative Binomial -275.371 554.742 10.041 ** 
Zero-inflated Neg. Binomial -274.285 554.571 13.283  
Geometric -275.379 552.758 14.605  
     
Panel B: Governmental and Military Entities (GOV)   

Poisson -356.099 714.199 69.186 *** 
Zero-inflated Poisson -338.971 681.942 430.380  *** 
Negative Binomial -322.991 649.983 1.560  
Zero-inflated Neg. Binomial -322.706 651.413 11.839  
Geometric -330.648 663.296 23.148 * 
     
Panel C: Medical Service (MED)     

Poisson -656.099 1,314.197 3,479.017  *** 
Zero-inflated Poisson -608.074 1,220.147 >10,000     *** 
Negative Binomial -434.950 873.901 5.462  
Zero-inflated Neg. Binomial -434.950 875.901 25.882  
Geometric -436.423 874.846 26.856  
     
Panel D: Retail/Merchant and Other Business (BSE)   

Poisson -383.642 769.284 52.480 *** 
Zero-inflated Poisson -378.542 761.085 >10,000  *** 
Negative Binomial -339.426 682.852 5.827  
Zero-inflated Neg. Binomial -339.426 684.852 67.508 *** 
Geometric -352.259 706.518 49.869 *** 
    
Panel E: Educational Institution (EDU)   

Poisson -395.706 793.413 166.410  *** 
Zero-inflated Poisson -364.743 733.485 214.055  *** 
Negative Binomial -351.012 706.025 13.769 * 
Zero-inflated Neg. Binomial -348.082 702.164 11.490 * 
Geometric -358.493 718.987 30.455     ** 
Note: *,**,*** indicate that the p-value is less than the significance levels, 10%, 5% and 1% respectively. The bold indicates 
the best fit distribution for each loss distribution based on AIC and goodness-of-fit test result. 
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Table E2. Goodness-of-fit and Model Comparison for Loss Severity (cross-breach type) 

Distribution Log-likelihood AIC K-S Test 
Panel A: Banking and Insurance (BSF) 

Lognormal -1,186.534 2,377.069 0.051  
Skew normal -1,657.241 3,318.481 0.935 *** 
Skew t -1,580.384 3,168.769 0.978 *** 
Weibull -1,194.651 2,393.302 0.099  
Gamma -1,216.283 2,436.567 0.239 *** 
Inverse Gaussian -1,271.820 2,547.640 0.489 *** 
Cauchy -1,307.130 2,618.260 0.369 *** 
Burr -1,187.885 2,383.769 0.061  
GPD -1,262.033 2,530.065 0.389 *** 
POT (lognormal-GPD) -1,186.796 2,381.593 0.129  
Panel B: Governmental and Military Entities (GOV) 

Lognormal -1,529.995 3,063.990 0.060  
Skew normal -2,006.018 4,016.036 0.959 *** 
Skew t -1,869.513 3,891.964 0.984 *** 
Weibull -1,549.831 3,097.662 0.114  
Gamma -1,578.088 3,160.176 0.248 *** 
Inverse Gaussian -1,603.662 3,211.324 0.382 *** 
Cauchy -1,616.086 3,236.172 0.309 *** 
Burr -1,528.178 3,064.357 0.035  
GPD -1,672.186 3,350.372 0.470 *** 
POT (lognormal-GPD) -1,528.819 3,065.638 0.049  
Panel C: Medical Service (MED) 

Lognormal -1,558.599 3,121.197 0.052  
Skew normal -1,902.317 3,808.634 0.947 *** 
Skew t -1,646.361 3,300.721 0.985 *** 
Weibull -1,574.132 3,152.265 0.116  
Gamma -1,595.772 3,195.545 0.185 *** 
Inverse Gaussian -1,592.513 3,189.025 0.206 *** 
Cauchy -1,621.456 3,246.912 0.266 *** 
Burr -1,557.608 3,123.217 0.045  
GPD -1,593.763 3,193.527 0.263 *** 
POT (lognormal-GPD) -1,558.205 3,124.411 0.091  
Panel D: Retail/Merchant and Other Business (BSE) 

Lognormal -1,856.833 3,717.666 0.100  
Skew normal -2,656.840 5,317.680 0.955 *** 
Skew t -2,554.446 5,116.892 0.985 *** 
Weibull -1,875.289 3,754.578 0.171 ** 
Gamma -1,912.092 3,828.184 0.275 *** 
Inverse Gaussian -4,830.702 9,665.404 1.000 *** 
Cauchy -2,014.406 4,032.811 0.338 *** 
Burr -1,854.728 3,717.456 0.049  
GPD -1,975.322 3,956.643 0.374 *** 
POT (lognormal-GPD) -1,856.936 3,721.872 0.127  
Panel E: Educational Institution (EDU) 

Lognormal -1,376.489 2,756.979 0.049  
Skew normal -1,473.857 2,951.714 0.772 *** 
Skew t -1,377.429 2,762.858 0.984 *** 
Weibull -1,374.155 2,752.309 0.068  
Gamma -1,375.841 2,755.682 0.089  
Inverse Gaussian -1,416.137 2,836.274 0.270 *** 
Cauchy -1,428.622 2,861.243 0.248 *** 
Burr -1,373.585 2,755.170 0.060  
GPD -1,408.566 2,823.132 0.246 *** 
POT (lognormal-GPD) -1,382.941 2,757.360 0.146  
Note: *,**,*** indicate that the p-value is less than the significance levels, 10%, 5% and 1% respectively. The bold indicates 
the best fit distribution for each loss distribution based on AIC and goodness-of-fit test result. 
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Panel A: Frequency QQ-plots and CDF plots 

 

Panel B: Severity QQ-plots and CDF plots 

 

Figure E1. QQ-plots and CDF plots for the best fitted distributions 
(Cross-industry) 
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Panel A: Frequency QQ-plots and CDF plots 

 

Panel B: Severity QQ-plots and CDF plots 

 

Figure E2. QQ-plots and CDF plots for the best fitted distributions 
(Cross-breach type)
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Appendix F. Graphical description of tree structures and diversification effects 

 

Cross-industry Cross-breach type 
Tree 1 Tree 2 Tree 1 Tree 2 

    

Tree 3 Tree 3 Tree 4 

   

Figure F1. The estimated dependence structure for each cross-sectional setting. The estimated copula functions and their dependence parameters 
are displayed at edges. The names of copula functions at edges and the variable names in vertices are specified as follows: 
SJ: Survival Joe; C270: 270° Rotated Clayton; t: Student-t; F: Frank; I: Independence 
Cross-industry: V1 = HACK, V2 = ELET, V3 = DISC, V4 = INSD; Cross-breach type: V1 = BSF, V2 = GOV, V3 = MED, V4 = BSE, V5 = EDU. 
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     Cross-industry      Cross-breach type 

 
Figure F2. Comparison of diversification effects. The figures indicate the diversification levels over the 
quantiles between 90% and 99.5%. The diversification level varies from 5% to 20% in the cross-industry 
setting and from 7% to 14% in the cross-breach type setting. The measures are estimated upon the 
equation (14) to show how expected shortfalls of different dependence models are reduced from the 
comonotonicity assumption (simple sum of individual expected shortfalls). 
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Appendix G. Applications on a company level 

The results of risk measurement in panel A of Table G1 indicate the potential breach records 

per event on a single company level. In other words, a cyber-insurer could be confronted with 

such estimates from an individual insured in its cyber-insurance portfolio. Besides of the risk 

measurement, two cases of annual insurance premiums in panel B of Table G1 are considered: 

one is for an educational institution suffering from hacking risk (company #1) and the other for 

a hospital exposed to lost electronic device risk (company #2).44F

45 These cases are designed to 

be comparable with the examples in Table 9 of Eling and Loperfido (2017).45F

46 To compute 

annual insurance premiums (annual loss probability) and calibrate the values on a company 

level, we construct the following estimator as the annual loss probability (𝜋௅) of a cyber-insured 

(Hess, 2011): 

𝜋௅ =
𝑁௥

𝑁௬ ∙ 𝑁௘
, (G.1) 

where 𝑁௥ is the number of incidents, 𝑁௬ is the number of years and 𝑁௘ is the number of entities. 

Applying the above equation to the complete data breach dataset leads to a conditional 

transformation factor, because our dataset only contains companies that actually have been 

breached. Risk measures and insurance prices in this case might be too high. To overcome this 

problem, we use the S&P500 index (as a reference for the number of entities) and filter our 

dataset by looking into how many firms in the index have been breached (to identify the number 

of incidents). Through the filtering process, we find 0.0165 as the annual loss probability used 

to price the fair premium with 𝑁௥=99, 𝑁௬=12 and 𝑁௘=500. 

 

                                                      
45  To generate the premium estimation for a particular insured exposed to a specific risk type, we define a 

weighting parameter,𝑤௜௝, to generate a loss variable for a considered policyholder applied to insurance pricing, 
the parameter where 𝑖 is the dimension of cross-industry setting (𝑖=1,…4) and 𝑗 is of cross-breach type setting 
(𝑗=1,…,5). The weighting parameter is described in the following: 

𝑤௜௝ =
E(𝑥௜௝)

∑ ∑ E(𝑥௜௝)ହ
௝ୀଵ

ସ
௜ୀଵ

, 

 where 𝑥௜௝  is a vector of industry j suffering from risk i. For an educational institution suffering from a hacking 
risk, the weighting parameter turns out to be 0.0019 and for a hospital exposed to lost electronic device risk it 
is 0.0065. 

46  Eling and Loperfido (2017) derive the premium value for a university suffering from a hacking risk from 
univariate distributions under different parametric assumptions; hence, the result does not incorporate any 
dependence structure. However, our result is derived under the estimated dependence structures, which 
implicitly contains a correlated risk. The difference in the results between two studies comes from different 
parameter assumptions on the loss probability, that is, Eling and Loperfido (2017) assume 10% as the loss 
probability, which is around 6 times larger than the loss probability used in this application. 
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Table G1. Applications to Risk Measurement and Insurance Pricing 

Panel A: Risk measurement (in million breached records) 
Data 
Type 

Dependence 
Structure 

Value-at-Risk Expected Shortfall 
90% 95% 99% 99.5% 90% 95% 99% 99.5% 

          

Cross-
industry 

Indep 2.34 7.89 38.24 38.24 14.42 23.61 50.58 52.53 
PCC 2.98 8.16 49.23 52.09 15.70 26.14 51.66 52.66 
Empirical 2.99 8.15 49.31 52.29 15.51 25.79 51.78 52.76 
Gaussian 2.80 8.07 49.02 52.01 15.08 25.11 51.69 52.79 
Student-t 2.86 8.05 49.19 52.26 15.34 25.63 51.95 53.15 

        

Cross-
breach 
type 

Indep 2.27 7.63 36.60 47.30 13.82 22.64 47.87 49.19 
PCC 2.58 7.70 46.53 46.54 13.80 23.40 46.67 46.81 
Empirical 2.59 7.72 46.53 46.55 13.72 23.17 46.70 46.85 
Gaussian 2.59 7.80 46.53 46.56 14.05 23.76 46.74 46.94 
Student-t 2.54 7.72 46.53 46.60 13.96 23.71 47.11 47.67 

        
Panel B: Insurance pricing (annual premium in $) 

Case 
Data  
Type 

Dependence 
structure 

Fair 
Premium 

Standard 
Dev. Principle 

Exponential Premium Principle 
𝛾 = 10ିଷ 𝛾 = 10ିସ 𝛾 = 10ିହ 

        

Compan
y 
#1 

Cross-
industry 

Indep 102,214 132,360 102,259 102,219 102,215 
PCC 107,454 138,192 107,501 107,459 107,455 
Empirical 106,990 137,500 107,036 106,994 106,990 
Gaussian 104,275 134,254 104,320 104,279 104,275 
Student-t 105,711 136,068 105,757 105,716 105,711 

       

Cross-
breach 
type 

Indep 97,085 126,214 97,127 97,089 97,085 
PCC 97,285 125,475 97,325 97,289 97,285 
Empirical 96,850 124,874 96,889 96,854 96,850 
Gaussian 98,131 126,615 98,172 98,135 98,132 
Student-t 96,736 125,234 96,740 96,740 96,736 

  

Compan
y 
#2 

Cross-
industry 

Indep 260,798 337,715 261,092 260,827 260,801 
PCC 274,167 352,595 274,475 274,198 274,171 
Empirical 272,982 350,829 273,285 273,012 272,985 
Gaussian 266,055 342,547 266,348 266,085 266,058 
Student-t 269,720 347,176 270,020 269,750 269,723 

       

Cross-
breach 
type 

Indep 247,710 322,032 247,984 247,737 247,713 
PCC 248,221 320,147 248,480 248,247 248,224 
Empirical 247,111 318,615 247,367 247,137 247,114 
Gaussian 250,380 323,056 250,645 250,407 250,383 
Student-t 246,820 319,532 247,084 246,846 246,822 

Note: The risk measurements are specified by Value-at-Risk (VaR) and Expected Shortfall (ES) at three critical levels: 90%, 
95%, 99% and 99.5%. For insurance pricing, we calculate the premium by three different pricing principles on an annual 
basis: fair premium, standard deviation and exponential premium principles. 𝛾 is the risk aversion parameter, where 𝛾 → 0 
indicates risk neutrality. The bold model is the preferred model from Section 4. 
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Essay II 

Probable maximum cyber loss: Empirical estimation and 
reinsurance design with public intervention  

 

 

Abstract 

This study defines the probable maximum cyber loss (PMCL), which stands for the worst cyber 

loss likely to occur, with an alternative approach to estimating the potential size of a next worst 

cyber risk event. We determine that the series of cyber loss maxima on weekly, biweekly and 

monthly bases are stationary, that short-range temporal dependency exists and that the Fréchet 

type of generalized extreme value distribution (GEV) well describes fat-tailedness of cyber loss 

maxima, and we observed extreme dependency. We find that the predicted cyber loss likely to 

occur in the next five years is almost seven times larger than the estimate presented by the 

recent literature based on a widely used Pareto model. In particular, the comparison between 

the estimates from the data for the more recent period (after 2014) and those for the older period 

(before 2014) shows a significant increase with a structural break. Applying PMCL estimates, 

we further provide an empirical benchmark of premiums under reinsurance design with public 

intervention. Our findings are important for risk managers, actuaries and policymakers 

concerned about the enormous cost of the next extreme cyber event. 

 

Keywords: Cyber risk, Block maxima, Generalized extreme value distribution, Extreme value 

copula, Cyber-reinsurance, Public intervention 
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1 Introduction 

In the interconnected network environment, society has constantly been exposed to large-scale 

cyber risk over the last decade. As seen in Figure 1, large-scale cyber losses are already 

considered in the risk category of high likelihood and high severity (World Economic Forum, 

2016). Large-scale extreme losses mostly result from extreme scenarios potentially triggering 

a significant systemic loss in an industry beyond the classical estimate of extreme risk (Lloyd’s, 

2017). For instance, the loss amount stemming from the “WannaCry” attack in 2017 is expected 

to reach nearly $4 billion around the globe (Berr, 2017), and Lloyd’s (2017) estimates the 

potential economic damage by extreme cyber risk to be more than $120 billion.46F

47 An extreme 

cyber loss event could cost society more than a major natural catastrophe would, such as super 

storm Sandy in 2012 (Ralph, 2017). 

    Frequency trend     Severity trend 

     

Figure 1. Trends in frequency and severity of cyber risk between 2005 and 2018 from Privacy Rights 
Clearinghouse (PRC). Rolling windows for 50 days are applied to both data sets to see the cluster. 

This extreme cyber risk can also trigger a huge accumulation risk to insurance companies. 

Extreme cyber risk becomes more catastrophic, complex and rapidly evolving; hence, one of 

the challenges for insurers and risk managers is to estimate the size of the next extreme loss 

simultaneously hitting many policyholders in other property and casualty pools, called silent 

cyber risk (Orcutt, 2017). However, most cyber-insurance policies in the market are 

conservatively underwritten and lack a standard approach to estimating the coverage limit and 

the premium so that the coverage limit of the policies is usually set at a low level (Romanosky 

                                                      
47  Extreme scenarios possibly triggering a huge economic cost could include, for example, a cyberattack on 

critical infrastructure (Paté-Cornell et al., 2018) and cyber hacking to disrupt a global IT supply chain (Zheng 
and Albert, 2019). 

Heavier losses occurred more 
frequently over last three years 
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et al., 2017), keeping potential insureds (organizations) from purchasing cyber-insurance. Thus, 

there is a need to provide empirical evidence on how much the coverage limit of cyber-

insurance could be set. 

A number of studies on empirical processes have already sought to identify features of extreme 

cyber losses (Maillart and Sornette, 2010; Edwards, Hofmeyr and Forrest, 2016; Wheatley, 

Maillart and Sornette, 2016; Eling and Jung, 2018; Eling and Wirfs, 2019; Hofmann, Wheatley 

and Sornette, 2019).47F

48 Such studies have commonly found that cyber risk is heavy-tailed and 

needs to be modeled using extreme value techniques. However, all of them have mainly focused 

on the loss distribution of cyber risk across the entire spectrum of the loss severity, in which 

predominantly small losses are observed while only a few are extremely large.48F

49 From the 

insurer’s perspective, small losses can be considered uninsurable as they are generally classified 

into the risk category of high frequency and low severity (Eling and Jung, 2018).  

The extreme value technique mostly employed in the literature and in the industry for the entire 

spectrum is a threshold-based approach that splits a random variable into two parts: the main 

body and the tail above a threshold. For instance, Wheatley et al. (2016) conclude that the tail 

behavior of the loss severity is extremely heavy so that the tail distribution beyond a threshold 

needs to be evaluated by Pareto distribution (power-law), estimating the expected maximum 

breach size to be around 200 million records based on the data from 2007 to 2015. Yet nine 

events triggering more than 200 million breaches have already occurred over last five years (see 

Table B2 in Appendix B), accounting for losses that Wheatley et al. (2016) call are “dragon 

kings.”4 9F

50 If insurers estimate the required capital using what the classical method suggests, as 

is done in most literature, they would fail to manage a cyber dragon king and would face an 

increasing possibility of insolvency. Thus, the main interest of cyber-(re)insurers would be to 

                                                      
48  A detailed description of the literature is presented in Table A1 in Appendix A to compare the findings with 

the present paper. 
49  Likewise, in financial risk management, the entire spectrum of financial returns cannot help one accurately 

capture the maximum likely loss of a financial institution under stress market conditions (e.g., the 2008 
financial crisis). Bali (2007), thus, suggests an approach to estimating the maximum likely loss based on the 
distribution of extreme financial returns with generalized extreme value method, which the author argues can 
provide a better prediction of catastrophic market risk. 

50  Wheatley et al. (2016) are concerned about the possibility of dragon kings that are beyond their estimated 
distribution function. As mentioned, their concern has already become the reality, which can increase the 
demand for a different approach to constructing a predictive model for the maximum loss. An alternative 
approach can be utilized to help insurers (or reinsurers) set the coverage limit for cyber-insurance. In addition, 
a dragon king event is different from a black swan event in that the latter is regarded as an “unknown unknown” 
(Aven, 2013), whereas the former is a “known unknown” so that it can be predictable to some extent. In this 
sense, we aim to construct an empirical estimation process for cyber dragon king losses. 
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determine how much probable maximum loss (PML)50F

51 that cyber risk as a dragon king could 

generate, which can significantly influence the estimation of capital requirement against 

catastrophe cyber risk.  

In this regard, we suggest an alternative approach to a more accurate, widening prediction for 

the coverage limit by focusing on maximum losses in certain blocks (time blocks) and 

investigating their statistical property.51F

52 Thus, the aim of this paper is to provide a holistic 

framework in a clearly distinct manner from the existing literature to determine how big the 

next cyber loss would be. We apply time-series and extreme value analyses to the loss maxima 

for certain time blocks (weekly, biweekly, and monthly) to ascertain whether time-varying and 

autoregressive features exist in the cyber loss maxima series and what distributional properties 

the series incorporate.52F

53  This procedure is also applied to a bivariate setting, where two 

variables are defined from the database: malicious risk (hacking, insider breach and payment 

card fraud risk source) and negligent risk (lost portable device, unintended disclosure, physical 

loss and lost stationary device). We apply extreme value copulas (Gumbel-Hougaard, 

Galambos, Husler-reiss, and Tawn) to aggregate the bivariate risk factors and estimate a 

potential maximum size of the correlated risk that a cyber-insurer is likely to be confronted in 

a cyber risk pool. 

All steps of the above process are conducted within three data periods: the entire (between 2005 

and 2018), the pre-2014 and the post-2014 periods. The rationale of the time separation is based 

on our finding of a structural break between pre-2014 and post-2014, as observed in the right 

panel of Figure 1. This analysis is material for figuring out the recent trend of a possible worst 

cyber loss and how different probable maximum cyber losses between two periods are in the 

fast-changing digitalized society (risk of change). Based on the statistical estimation on loss 

maxima, the probable maximum cyber losses are predicted for the next one, three, and five 

years and applied to an empirical design of reinsurance portfolio with public intervention, where 

                                                      
51  Probable maximum loss (PML) is a term that has been used in the insurance field for decades, indicating the 

possible largest loss that could be caused by a catastrophe (Wilkinson, 1982). This concept has usually been 
applied to property insurance under the assumption that self-protective measures functioning against possible 
fire losses exist. 

52  Modeling the upper limit of the cyber loss is crucial, particularly for the current cyber-insurance market, in that 
low demand for cyber-insurance observed in the market can result from uncertainty in insurance coverage and 
this uncertainty can be reduced by increasing the coverage limit for cyber loss, which can lead to a higher 
demand for cyber-insurance (Wang, 2017). 

53  We consider temporal dependency in cyber loss maxima series. The extremes with trends have been modeled 
in some fields, such as in hydrologic studies (Gilli, 2006), and we take this approach for different time frames 
to more accurately model the statistical process of the cyber loss maxima. 
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a quota share treaty is signed with a reinsurer and a form of deposit insurance contract with the 

government as the last resort.53F

54 

The rest of the paper is structured as follows. In Section 2, we first present the theoretical 

background of this study, followed by the methodological framework of the paper. The data 

used in the empirical study are described in Section 3. Section 4 identifies the procedure and 

result of the modeling, and Section 5 presents applications to the economic values and a 

reinsurance design with public intervention. Finally, the conclusion and potential future 

research opportunities are shown in Section 6. 

2 Theoretical background and methodology 

Most extreme value models assume that a random variable is independent and identically 

distributed (i.i.d.), particularly a threshold-based extreme model (i.e., Pareto-based or power-

law) with the estimation of entire densities. Diebold, Schuermann, and Stroughair (2000) claim 

that this basic assumption can be violated and may even undermine the performance of the tail 

estimator. They suggest fitting GEV to the maxima series as one of two possible ways to 

improve the performance, which can particularly mitigate the problem in violating the 

assumption. In addition to this argument, Chavez-Demoulin and Davison (2012) demonstrate 

that short-range dependence of extremes often arises in many cases, whereas long-range 

dependence seems implausible in most contexts. Thus, it can also be expected in the cyber risk 

context that short-range dependence of cyber loss maxima can emerge. In the following sections, 

we briefly describe the theoretical background of extreme value theory and dependency in 

extremes and introduce four types of extreme value copula in the bivariate setting.  

Extreme value theory 

Two main approaches in extreme value theory (EVT) exist: the block maxima (BM) and the 

peaks-over-threshold (POT). The former model leads one to focus on the maximum observation 

in a certain block (usually time block), showing that such maxima approximately follow an 

extreme value distribution (Ferreira and De Haan, 2015). One using POT method needs to set 

a threshold level to filter the observations in excess of the threshold, then model two separate 

domains by the threshold. The observations over the threshold are typically approximated by a 

                                                      
54  Our analysis results from the database at the aggregate level of cyber risk in American industries, which 

supports the idea that there is a need for an industry or national level plan against cyber risk. Hence, our results 
suggest a need for an industry- or regional-level risk pooling (see, e.g., Dumm, Johnson and Watson, 2015). 
We also expect that the modeling outcomes and the procedure help risk managers and cyber-insurers, who still 
suffer from a lack of standardization in modeling and underwriting cyber risk. 
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generalized Pareto distribution using a tail index estimator (De Haan and Ferreira, 2006, 

Chapter 3). The POT method is frequently used in many studies working on rare events, as POT 

can usually provide better flexibility than BM due to a flexible choice of the threshold (Ferreira 

and De Haan, 2015). However, as the POT method heavily depends on the choice of the 

threshold and it is hard to identify the optimal level of the threshold, the tail fit by GPD might 

not be optimal. In contrast, although the choice of the block size is also an issue in the estimation, 

the BM method is implemented with the fixed size of the observations to approximate the 

maxima distribution (Ferreira and De Haan, 2015).54F

55 Unlike most previous studies on cyber 

loss data using the POT method, here we focus on the BM method to identify the predictive 

distribution of the maximum cyber losses in different time blocks. 

Let 𝑋௜ , 𝑖 = 1, … , 𝑛 be an i.i.d. random variable in the real space, ℝ, following a distribution 

function, 𝐹. Let us consider the maximum of the process in a certain timeframe, 𝑀௝, 𝑗 = 1, … , 𝑏, 

where 𝑏  denotes the number of blocks. The size of 𝑛  is determined by the choice of the 

timeframe, for example, 𝑛 = 365 (366 in leap years) for the annual timeframe. The total number 

of observations, 𝑏 × 𝑛, is split into 𝑏 blocks with size 𝑛. The maximum process is then defined 

as follows (Ferreira and De Haan, 2015): 

𝑀௝ = max
(௝ିଵ)௡ழ௟ஸ௝௡

𝑋௟ (1) 

The distribution function for the maximum process is 

P൫𝑀௝ ≤ 𝑥൯ = P൫𝑋(௝ିଵ)௡ାଵ ≤ 𝑥, … , 𝑋௝௡ ≤ 𝑥൯ = 𝐹௝(𝑥) (2) 

The maxima 𝑀௝ converges to 𝑥̅௝ in probability (𝑀௝

௣
→ 𝑥̅௝) as 𝑛 → ∞ almost surely, where 𝑥̅௝ is the 

right end point of the distribution function 𝐹௝(𝑥)  (i.e., 𝑥̅௝ = sup {𝑥 ∈ ℝ: 𝐹௝(𝑥) < 1} ≤ ∞). To 

determine the asymptotic feature of the sample maxima, 𝑀௝, it is customary to normalize the 

maxima by using constants 𝜎 > 0 and 𝜇 ∈ ℝ so that 

lim
௡→ஶ

𝐹௝൫𝜎𝑀௝ + 𝜇൯
ௗ
→ 𝐺൫𝑀௝൯, (3) 

where 
ௗ
→ indicates the convergence in distribution. 

                                                      
55  As typically found in many statistical estimation problems, there exists a trade-off in choosing the block size: 

bias and variance (Embrechts, Klüppelberg, and Mikosch, 1997, Chapter 6). Usually, the small size of the 
block causes a bias issue whereas a large block triggers a larger variance. 
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We call the distribution function, 𝐺 , a max-stable distribution if its i.i.d. random variable, 

 𝑋௜ , 𝑖 = 1, … , 𝑛 , satisfies max (𝑋ଵ, … , 𝑋௡)
ௗ
→ 𝜎𝑋 + 𝜇  for appropriate constants 𝜎 > 0  and 𝜇 ∈ ℝ 

(Embrechts, Klüppelberg, and Mikosch, 1997, Definition 3.2.1). Equation (3) comes from the 

following theorem by Fisher and Tippett (1928), called the Fisher–Tippett theorem or extreme 

value theorem: 

Theorem 1 (Fisher–Tippett theorem) Let 𝑋௡  be an i.i.d. random variable. If there exist 

constants 𝜎 > 0 and 𝜇 ∈ ℝ and a non-degenerating function, 𝐾, such that 

𝑋௡ − 𝜇

𝜎

ௗ
→ 𝐾(𝑥), (4) 

then 𝐾 belongs to the following distribution family for extreme values: 

𝐺ఊ(𝑥) = ቐ
exp ൤−(1 + 𝛾𝑥)

ି
ଵ
ఊ൨ , 𝛾 ≠ 0

exp[− exp(−𝑥)] ,             𝛾 = 0
 (5) 

where 𝛾 ∈ ℝ and 1 + 𝛾𝑥 > 0.55F

56 

This family is a limiting distribution, as shown in equation (3), and called a generalized extreme 

value distribution (GEV). Combining the max-stable property for the maxima, we refer to Coles 

(2001, p. 50) for the following theorem: 

Theorem 2 A distribution is max-stable if and only if it is a GEV distribution. 

The parameters of the family consist of location (𝜇), scale (𝜎) and shape (𝛾), where the location 

parameter determines the position of the distribution’s maximum and the scale parameter 

describes the distribution’s spread. Depending on the choice of the shape parameter, this family 

ends up with one of the following three distributions: 

Type I (Gumbel, 𝛾 = 0): exp[− exp(−𝑥)] ,    − ∞ < 𝑥 < ∞ (6) 

Type II (Fréchet, 𝛾 > 0): 
൜

0,                          𝑥 ≤ 0
exp[−𝑥ିఈ],          𝑥 > 0, 𝛼 > 0

 (7) 

Type III (Weibull, 𝛾 < 0): 
൜
exp[−(−𝑥)ఈ],     𝑥 < 0, 𝛼 > 0

1,                          𝑥 ≥ 0
 (8) 

Type I (Gumbel) is light-tailed on the right side, Type II (Fréchet) is heavy-tailed, and Type III 

(Weibull) is short-tailed. The location, scale, and shape parameters of a GEV distribution can 

                                                      
56  The proof of Theorem 1 can be found in De Haan and Ferreira (2006, p.7).  
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be estimated by maximizing the following log-likelihood function derived from the probability 

density function of the GEV distribution: 

𝑙(𝜇, 𝜎, 𝛾; 𝑥) = −𝑏log𝜎 − ൬
1

𝛾
+ 1൰ ෍ log ቂ1 + 𝛾 ቀ

𝑥௜ − 𝜇

𝜎
ቁቃ

௕

௜ୀଵ

− ෍ ቂ1 + 𝛾 ቀ
𝑥௜ − 𝜇

𝜎
ቁቃ

ି
ଵ
ఊ

௕

௜ୀଵ

. (9) 

Temporal dependency in extremes 

When one discusses the presence of temporal dependency in an extreme series, the following 

definition, called the distributional mixing condition or Leadbetter’s 𝐷(𝑢௡)  condition, is 

referred to (Leadbetter, 1983): 

Definition 1 (Distributional mixing condition) Let 𝑋෨௜ , 𝑖 = 1,2, … be a stationary series and 𝛿௡ 

be a sequence of constants. A stationary series, 𝑋෨௜, satisfies the distributional mixing condition 

if, for all 𝑖ଵ < ⋯ < 𝑖௣ < 𝑗ଵ < ⋯ < 𝑗௤ with 𝑗ଵ − 𝑖௣ > 𝑙, 

ቚ𝐹 ቄ𝑋෨௜భ
≤ 𝛿௡, … , 𝑋෨௜೛

≤ 𝛿௡, 𝑋෨௝భ
≤ 𝛿௡, … , 𝑋෨௝೜

≤ 𝛿௡ቅ

− 𝐹 ቄ𝑋෨௜భ
≤ 𝛿௡, … , 𝑋෨௜೛

≤ 𝛿௡ቅ 𝐹 ቄ𝑋෨௝భ
≤ 𝛿௡, … , 𝑋෨௝೜

≤ 𝛿௡ቅቚ ≤ 𝛼௡,௟, 
(10) 

where 𝛼௡,௟೙
→ 0 as 𝑛 → ∞ for some sequence {𝑙𝑛} such that 𝑙௡ = 𝑜(𝑛) as 𝑛 → ∞. 

In the case of an independent series, the subtraction in equation (10) is exactly zero for any 

sequence {𝛿𝑛}. It is required in a general case that the above condition holds only for a certain 

sequence of {𝛿𝑛} that increases with n. For this sequence, the condition holds in a way that, for 

a set of clearly distinct variables, the subtraction in equation (10) is not zero, but sufficiently 

close to zero so that it does not influence the limiting laws for extremes (Leadbetter, 1983). 

Based on Definition 1, the following theorem describes the limiting distribution of an extreme 

series in the presence of temporal dependency (Chavez-Demoulin and Davison, 2012). 

Theorem 3 Let 𝑋෨௜, 𝑖 = 1,2, … be a stationary series satisfying the distribution mixing condition 

in Definition 1 and let 𝑀෩௡ = max {𝑋෨ଵ, … , 𝑋෨௡}. Suppose there exists an independent series 𝑋௜ , 𝑖 =

1,2, … with 𝑋, which has the same distribution as 𝑋෨௜, and 𝑀௡ = max {𝑋ଵ, … , 𝑋௡}. If 𝑀௡ has a non-

degenerate limiting distribution 𝐺  under the non-degenerate limit law, P[(𝑀௡ − 𝑏௡)/𝑎௡ ≤

𝑥] → 𝐺(𝑥), then it follows that 

P ቈ
𝑀෩௡ − 𝑏௡

𝑎௡
≤ 𝑥቉ → 𝐺ఏ(𝑥), (11) 

for some extremal index, 0 ≤ 𝜃 ≤ 1. 
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The extreme parameter, 𝜃, quantifies the degree of dependency in extremes, showing that 𝜃 =

1  indicates a completely independent process and 𝜃 = 0  addresses an increasing level of 

dependency in extremes. Importantly, a non-degenerate limiting distribution, 𝐺, is necessarily 

an extreme value distribution so that the distribution of maxima with short-range temporal 

dependency is also an extreme value distribution with the max-stability property in Theorem 2. 

This implies that the limiting distribution of the maxima of a stationary series is linked with the 

limiting distribution of an independent series if the distribution mixing condition is fulfilled. 

For more detail on the theoretical background, see Beirlant et al. (2004, Chapter 10). 

Extreme value copula 

The joint distribution of bivariate extremal random variables, X and Y, can be expressed as 

(Sklar, 1959): 

𝐺(𝑋, 𝑌) = P[𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦] = 𝐶[𝐹௑(𝑥), 𝐹௒(𝑦)], (12) 

where 𝑥, 𝑦 ∈ ℝ  and 𝐶  is some extreme-value copula, which is an asymptotic dependence 

structure of component-wise maxima (Ghorbal, Genest and Neslehova, 2009). 

If a copula, 𝐶, is max-stable in the d-dimensional setting expressed as, 

𝐶(𝐮) = ൛𝐶൫𝑢ଵ
ଵ/௥

, … , 𝑢ௗ
ଵ/௥

൯ൟ
௥
, (13) 

where ∀ 𝐮 ∈ [0,1]ௗ and ∀ 𝑟 > 0, then the function 𝐶 is an extreme-value copula (Kojadinovic, 

Segers and Yan, 2011). 

Any extreme-value copula 𝐶 can be expressed with its Pickands dependence function (Pickands, 

1981) as follows: 

𝐶(𝑢, 𝑣) = exp ቈ𝑙𝑜𝑔(𝑢𝑣) ∙ 𝐴 ቊ
𝑙𝑜𝑔(𝑣)

𝑙𝑜𝑔(𝑢𝑣)
ቋ቉, (14) 

where 𝑢, 𝑣 ∈ [0,1] are uniform distributions from 𝐹௑(𝑥), 𝐹௒(𝑦), respectively, through probability 

integral transform and 𝐴{∙}: [0,1] → [0.5, 1] is the Pickands dependence function that is convex 

and fulfills the conditions max (𝑡, 1 − 𝑡) ≤ 𝐴(𝑡) ≤ 1  for all 𝑡 ∈ [0,1]  and 𝐴(0) = 𝐴(1) = 1 

(Ghorbal, Genest, and Neslehova, 2009; Kojadinovic and Yan, 2010). 

The Pickands dependence function, 𝐴{∙}, in equation (14) is determined by the extreme-value 

copula family to which it belongs (Genest et al., 2011). The following specifies the Pickands 

dependence function for each extreme-family: 
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Gumbel Hougaard: 𝐴(𝑡) = ൫t஘ + (1 + t)஘൯
ଵ/஘

, 𝜃 ≥ 1 (15) 

Galambos: 𝐴(𝑡) = 1 − ൫tି஘ + (1 + t)ି஘൯
ିଵ/ఏ

, 𝜃 > 0 (16) 

Tawn: 𝐴(𝑡) = 𝜃𝑡ଶ − 𝜃𝑡 + 1, 𝜃 ∈ [0,1] (17) 

Husler-Reiss: 𝐴(𝑡) = 𝑡Φ ൬
1

𝜃
+

1

2
𝜃 ln ൤

𝑡

1 − 𝑡
൨൰ + (1 − 𝑡)Φ ൬

1

𝜃
+

1

2
𝜃 ln ൤

1 − 𝑡

𝑡
൨൰ , 𝜃 ≥ 0 (18) 

Based on the theoretical description above, Figure 2 highlights the overall methodological 

structure of this study with the theoretical background for each step described above. Detailed 

empirical procedures are illustrated in Section 4. 

 
Figure 2. The methodological process for the statistical estimation of cyber loss maxima. 

3 Data 

The dataset in the empirical study is derived from Privacy Rights Clearinghouse (PRC), which 

is a nonprofit organization collecting information on data breach events in the U.S. since 2005 

(PRC, 2019).56F

57 PRC has accumulated 9,002 observations (as of January 31, 2019) from the 

beginning of 2005 to the end of 2018. The PRC database has recently been used in many 

academic studies and is widely accepted in practice, ensuring the reliability of the database (see, 

e.g., Edwards et al., 2016; Eling and Loperfido, 2017; Rasoulian et al., 2017; Eling and Jung, 

2018; Kamiya et al., 2018; Hofmann, Wheatley and Sornette, 2019). Forming the largest public 

database for cyber loss, PRC continuously increases its data pool by adding and updating the 

                                                      
57  The definition of cyber risk can incorporate different types of risks associated with information technology and 

security assets. Data breach risk as part of the operational risk (Eling and Wirfs, 2019) is one of the most 
prominent types in the category of cyber risk and is a main loss event covered by cyber-insurance in the current 
market. This paper deals with data breach risk by representing the majority of cyber risk incidents as most 
literature in the cyber risk context have done (see, e.g., Edwards et al., 2016; Wheatley et al., 2016; Eling and 
Jung, 2018; Hofmann et al., 2019). 
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events, each of which can be found by either a government agency or a verifiable media 

source.57F

58  

The dataset incorporates information on the breach date, the event location, the entity level, the 

loss type and the total number of breached records, among which the total number of breached 

records is the only numerical variable representing the loss severity. The number of records 

includes zero values that demonstrate either no loss amount in the events or records still under 

ongoing investigation. Therefore, the inclusion of zero values might hinder the reliability of the 

modeling result (Edwards et al., 2016; Eling and Jung, 2018) and trigger the self-selection bias, 

which—according to Kamiya et al. (2018) using the same dataset—does not meet cyberattack 

notification laws and might not be compulsory for firms to disclose information. For this reason, 

we do not count zero values in the empirical study. We further exclude the losses in the category 

of “Unknown” risk type, which does not include any information on loss events. As a result, 

we end up with 6,047 data items. Table 1 describes the variables from the database and the 

bivariate categorization of the variables. 

Table 1. Bivariate Risk Setting 

Risk type Variable Explanation 
Malicious Hacking (HACK) Hacking attack by outsiders or infection by malware 

Insider (INSD) Breached by an insider (e.g., employee or contractor) 
Payment card fraud (CARD) Fraud involving debit and credit cards 

Negligent Portable device (PORT) Lost, discarded or stolen portable devices 
Stationary device (STAT) Lost stationary computers 
Unintended disclosure (DISC) Privacy information disclosed unintentionally 
Physical loss (PHYS) Lost, discarded or stolen non-electronic information 

Note: The information in this table is derived from PRC (2019), and the bivariate categorization (malicious vs. negligent) 
is based on Edwards et al. (2016). 

Descriptive statistics of cyber loss maxima 

We consider weekly, biweekly and monthly timeframes in the statistical fitting procedure.58F

59 

The block length (time length) is important to extract the maxima from the dataset; if the length 

is too short, Theorem 1 and 2 supporting the maxima process might not be valid, whereas too 

lengthy of a block might trigger a lack of data with which to work (Bücher and Segers, 2014). 

For this reason, we consider weekly, biweekly and monthly loss maxima series. As previously 

                                                      
58  Despite the provision of the largest data pool for cyber risk, there is a possibility of bias in the data completeness 

(backfilling bias) so that the data collected more recently might be relatively less complete than the data from 
an older period. However, the impact of such bias might be small as the database is continuously updated daily 
using reliable data source standards (see, e.g., Eling and Wirfs, 2019, for a similar argumentation with SAS 
OpRisk database). 

59  We do not take into account time frames shorter than a week or longer than a month because 1) the size of 
observations is generally small for timeframes shorter than a week, so that the maxima distribution is not 
significantly different from the entire spectrum of the loss density, and 2) the number of observations for 
timeframes longer than a month, particularly for sub-periods, is not sufficient. 
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mentioned, we attempt to split the data period into two parts based on the trend of the loss 

severity with a statistical test for a structural break in the entire loss density (see Appendix B). 

We find that there is a significant change in the loss size between 2013 and 2014, which leads 

us to split the data into the pre- and post-2014 periods. This change can be evidenced by the 

historical extreme loss sizes in Table B2, where most extreme losses occurred over last five 

years (i.e., after 2014). Panel A of Table 2 describes the statistics for the loss maxima of the 

complete dataset, where it is observed that no loss occurrence exists in at least one biweekly 

period, whereas an economic entity can be faced with a breach at least once a month based on 

the data. Moreover, this historical data show that the largest monthly loss to an entity could be 

at least the size of 18,000 records. The losses by malicious risks are in general severer than 

those by negligent risks, which is observed in panels B and C of Table 2. 

Table 2. Descriptive Statistics 

Panel A: Complete dataset (number of breached records) 
Data Block mean SD skewness kurtosis Max median min 
Entire Weekly 13.53m 132.29m 17.97 372.20 3,000m   37,000  0   

Biweekly 26.59m 186.14m 12.67 184.60 3,000m  130,000  0   
Monthly 55.90m 272.03m 8.52 82.85 3,000m  625,000  18,000  

Pre-
2014 

Weekly 1.69m 13.84m 13.97 227.74 250m  36,500  0 
Biweekly 3.24m 19.43m 9.84 112.46 250m  100,000  0   
Monthly 6.13m 26.78m 7.41 61.72 250m  310,500  32,000  

Post-
2014 

Weekly 34.26m 219.31m 10.76 132.01 3,000m  38,000  0 
Biweekly 67.52m 306.50m 7.53 64.17 3,000m  309,079  1,359  
Monthly 145.47m 442.12m 4.95 27.19 3,000m  3,960,000  18,000  

Panel B: Malicious risk 
Entire Weekly 10.58m 121.59m 21.28 503.54 3,000m 10,868 0 

Biweekly 20.91m 171.32m 15.02 250.08 3,000m 59,710 0 
Monthly 44.01m 251.08m 10.12 112.74 3,000m 350,000 0 

Pre-
2014 

Weekly 2.04m 15.83m 11.75 156.82 250m 5,389 0 
Biweekly 3.98m 22.22m 8.25 76.56 250m 43,764 0 
Monthly 7.60m 30.97m 5.99 39.05 250m 176,500 0 

Post-
2014 

Weekly 25.48m 201.72m 12.82 180.44 3,000m 24,188 0 
Biweekly 50.68m 283.02m 8.99 88.08 3,000m 220,000 0 
Monthly 109.54m 412.19m 5.93 37.69 3,000m 2,050,000 18,000 

Panel C: Negligent risk 
Entire Weekly 3.58m 53.22m 23.60 594.15 1,370m 11,300 0 

Biweekly 7.10m 75.09m 16.64 294.69 1,370m 38,580 0 
Monthly 15.00m 110.42m 11.18 132.46 1,370m 128,000 565 

Pre-
2014 

Weekly 0.54m 5.24m 14.00 201.55 80m 14,875 0 
Biweekly 1.05m 7.39m 9.81 98.09 80m 43,000 0 
Monthly 2.23m 10.81m 6.50 42.16 80m 151,000 565 

Post-
2014 

Weekly 9.03m 88.63m 14.12 210.88 1,370m 7,693 0 
Biweekly 17.71m 124.69m 9.89 102.97 1,370m 19,898 684 
Monthly 37.98m 182.94m 6.51 43.98 1,370m 66,399 911 

Note: m stands for million. 
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4 Empirical estimation 

4.1 Time series analysis of extremes 

First, we test whether there exists a dynamic feature of maximum cyber losses through the 

following steps. 

Step 1: Detect the evidence of a dynamic feature and pre-select potential fit models for the data. 

Step 2: Estimate the parameters and the likelihoods of the potential models and conduct 

statistical tests to determine the best fit model. 

Step 3: Check whether the estimated model is appropriate by carrying out diagnostic tests 

suggested by Box and Jenkins (1976). 

Step 1 typically consists of the graphical identification using time series plots of the data and 

autocorrelation function plots. As observed in the right graph of Figure 1, a clear distinction in 

the trend exists between pre-2014 and post-2014, and a cluster of large losses is observed, 

especially in the post-2014 period, whereas a cluster of small losses is found in the pre-2014 

period.59F

60  This trend showing evidence of temporal dependency is supported by the 

autocorrelation function in the lower panel of Figure C1, which confirms the presence of serial 

correlation in the maximum loss process, particularly in the complete data as well as in bivariate 

cases on a shorter time horizon (weekly and biweekly). 

Testing for stationarity 

Prior to investigating the fitted model for autocorrelation, we conduct three statistical tests to 

see whether the cyber maxima processes are stationary: augmented Dickey-Fuller (ADF) test 

(Said and Dickey, 1984), Phillips-Perron (PP) test (Phillips and Perron, 1988) and 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski et al., 1992). The null 

hypothesis of the first two tests indicates the presence of a unit root, whereas that of the KPSS 

test addresses the stationarity of a series. Thus, if a cyber loss maxima series is stationary, the 

conclusions of ADF and PP tests would be opposite that of the KPSS test. Table C1 indicates 

that all series tested for the entire, pre-2014 and post-2014 periods can be regarded as stationary 

series confirmed by at least two tests. The stationarity of the cyber loss maxima series with a 

mean-reverting process is graphically observed in the upper panel of Figure C1, where no 

                                                      
60  Appendix B indicates that a clear distinction exists between pre-2014 and post-2014 in severity trend and 

between pre-2010 and post-2010 in frequency trend over the data period. This finding is supported by three 
statistical tests investigating the presence of a structural break in the time series data. See Appendix B for more 
detail. 
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significant trend is found. Note that our separation of the time period with a structural break is 

based on the entire spectrum of the loss severity density, and the maxima series for three data 

periods turns out to be stationary independent of the structural break in the entire density. The 

separation in time period is important in the cyber risk modeling because it can help capture the 

magnitude of a loss event due to the risk of change over time. 

Testing for autocorrelation and heteroscedasticity in extremes 

With stationary maximum cyber losses, Step 2 leads us to test the autoregressive model with a 

range of lags to find the best fit for the loss process. The autoregressive model with p lags for 

the maximum cyber loss process is defined as: 

𝑦௧ = 𝜙ଵ𝑦௧ିଵ + ⋯ + 𝜙௣𝑦௧ି௣ + 𝜀௧, (19) 

where 𝜙௜, 𝑖 = 1, … , 𝑝, is the autocorrelation coefficient and 𝜀௧ ~ 𝑁(0, 𝜎ଶ) is the error term with 

homogeneous volatility over time under the normality condition. 

As the maximum cyber losses are proven to be stationary, the autocorrelation coefficient, 

𝜙௜ (𝑖 = 1, … , 𝑝), should be smaller than 1. Three information criteria are used to determine the 

best fit model: the Akaike information criterion (AIC), the Bayesian information criterion (BIC), 

and the corrected Akaike information criterion (AICc).60F

61 AICc is especially significant when 

the sample size is small because, in such a case, AIC might overfit by selecting the model with 

the most parameters (Hurvich and Tsai, 1989). The testing procedure is carried out with up to 

24 lags to determine whether it is a long memory series; Panels A and B of Table C2 display 

the fitted models and three measures for different maximum loss vectors over three data 

periods.61F

62  

As evident in Figure C1, complete dataset and malicious variables are autocorrelated, whereas 

negligent variables have no temporal dependency. Furthermore, from the malicious variables, 

temporal dependency can exist on a shorter time horizon as loss occurrences might be affected 

by a common shock in a shorter timeframe. For the post-2014 loss maxima, the same 

                                                      
61  The three criteria can be mathematically expressed as (Akaike, 1973; Schwarz, 1978; Hurvich and Tsai, 1989): 

𝐴𝐼𝐶 ≔ −2𝐿𝑜𝑔𝑙𝑖𝑘(Θ) + 2𝑘 
𝐵𝐼𝐶 ≔ −2𝐿𝑜𝑔𝑙𝑖𝑘(Θ) + 𝑘 ∙ ln (𝑛) 

𝐴𝐼𝐶𝑐 ≔ 𝐴𝐼𝐶 +
2𝑘ଶ + 2𝑘

𝑛 − 𝑘 − 1
 

 where 𝐿𝑜𝑔𝑙𝑖𝑘(Θ) is the log-likelihood function with a parameter set of Θ = (θଵ, … , θ௞), k is the number of 
parameters and n is the number of observations. 

62  The figures in the table are scaled down by dividing the losses by 1 million because, with a large number of 
losses, the inverse of the Hessian matrix might crash when calculating the covariance matrix of the coefficients. 
The results are indifferent from the adjustment of the scale.  
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specification of autoregressive models is identified for the complete dataset, whereas no 

autocorrelation is observed in the bivariate setting. In contrast, weekly and biweekly series of 

the complete and malicious data are found to be serially correlated, particularly between small 

losses for the pre-2014 period.  

A time series can be characterized by volatility clustering, which features periods of low 

volatility followed by periods of high volatility. In this case, the error term in equation (19) is 

changing volatility over time; hence, the volatility at time t would be affected by the past values 

of the volatility. Given the fitted autoregressive models in panels A and B of Table C2 are 

applied, the presence of heteroscedasticity is investigated using the ARCH test with different 

lags developed by Engle (1982).62F

63 The test is based on the fitted autoregressive models; thus, 

we test variables that have temporal dependency in the series in panel C of Table C2. The 

number of lags is determined by an integer sequence of 1:min(24,n) with a step of 4, matching 

the lagged effects of considered periods (e.g., four weeks are equivalent to one month). The 

results verify the absence of autocorrelation of innovations for the entire, pre-2014 and post-

2014 periods, thereby concluding homoscedasticity of the error term with i.i.d. assumption. 

As a final step, we check the fitted models (see panels A and B of Table C2) by looking at the 

residuals using two diagnostic tests: Box-Pierce test and Ljung-Box test.63F

64 The test results in 

Table C3 confirm that the residuals from the fitted models are serially correlated for three 

periods by rejecting the null hypothesis, except for the maximum malicious loss process on a 

biweekly basis (entire period) that has, however, a sufficiently low p-value of the tests. 

                                                      
63  Suppose the maximum cyber loss is following AR(p) defined by the following auxiliary regression: 

𝑦௧ = 𝜙ଵ𝑦௧ିଵ + ⋯ + 𝜙௣𝑦௧ି௣ + 𝜀௧ . 
 The squared residuals are regressed on p of its own lags, which is constructed by 

𝜀௧
ଶ = 𝛼଴ + 𝛼ଵ𝜀௧ିଵ + ⋯ + 𝛼௣𝜀௧ି௣ + 𝑢௧ , 

 where 𝑢௧~𝑖. 𝑖. 𝑑. is white noise. 
 The null and alternative hypotheses of the test are described as: 

𝐻௢: 𝛼଴ = 𝛼ଵ = ⋯ = 𝛼௣ = 0, 
𝐻ଵ: 𝛼଴ ≠ 0 𝑜𝑟 𝛼ଵ ≠ 0 𝑜𝑟 ⋯ 𝑜𝑟 𝛼௣ ≠ 0. 

 The test statistic is defined as the number of observations multiplied by the coefficient of multiple correlation 
from the auxiliary regression, which follows 𝜒ଶ(𝑝). 

64  Two tests are closely linked to each other as follows (Box and Pierce, 1970; Ljung and Box, 1978): 

𝐵𝑃ொ = 𝑛 ෍ 𝜌ො௞
ଶ

௣

௞ୀଵ
 

𝐿𝐵ொ = 𝑛(𝑛 + 2) ෍
𝜌ො௞

ଶ

𝑛 − 𝑘

௣

௞ୀଵ
, 

 where 𝑛 is the number of observations, 𝑝 is the number of lags, and 𝜌ො௞ is the sample autocorrelation at lag k. 
 The null hypothesis of two tests is that the residuals are independent. Thus, if temporal dependency exists in 

the residuals, the null hypothesis would be rejected. 
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4.2 Fitting extreme value distribution  

As we discussed in Section 4.1, the maximum cyber loss process is stationary and serially 

dependent, but not heteroscedastic. We fit the GEV distribution for stationary loss maxima and 

investigate which type of the distribution the process follows. In panel A of Table D1 (Appendix 

D), we estimate distribution parameters using the maximum likelihood estimation method and 

determine negative log-likelihood and Akaike information criterion. We also perform two 

goodness-of-fit tests to check whether the fitting is good: Kolmogorov-Smirnov (K-S) and 

Anderson-Darling (A-D).64F

65 All variables considered in three periods demonstrate a positive 

value of the shape parameter ( 𝛾 > 0 ), showing that all maximum cyber losses in these 

timeframes are heavy-tailed by following type II (Fréchet) of GEV distribution. Importantly, 

the size of the shape parameter for the post-2014 period increased by 47.5%65F

66 on average 

compared to that for the pre-2014 period, indicating a heavier tail of the cyber loss maxima in 

recent years. This result clearly demonstrates that the magnitude of an extreme cyber event 

continues to grow, thereby implying the necessity of a modeling framework for such an event. 

However, several maxima series do not perfectly fit GEV distribution, as proven by two 

goodness-of-fit tests (see panel A of Tables D1 and D2). This result is also evident in the 

graphical diagnosis using the QQ plot, probability density plot and cumulative density plot 

displayed in Figure D1, where the empirical lines do not exactly match the theoretical lines. In 

particular, looking at the probability and the cumulative density plots, we observe significant 

deviations between empirical values and theoretical values for the weekly malicious series. The 

result of the diagnosis can lead us to reject GEV estimation for these series, but test other types 

of skewed distribution. 

To identify a better fit, we check the following right-skewed distributions66F

67 : log-normal, 

gamma, Cauchy, inverse Gaussian, Burr XII, and generalized Pareto. Panel B of Table D1 

displays Akaike information criteria for the distributions to be compared. The Fréchet type of 

                                                      
65  The tests are specified as follows (D’Agostino and Stephens, 1986): 

𝑇௄ௌ = sup|𝐹௡(𝑥) − 𝐹(𝑥)|, 

𝑇஺஽ = n න ൫𝐹௡(𝑥) − 𝐹(𝑥)൯
ଶ

𝑑𝑥
ஶ

ିஶ

, 

 where 𝐹௡(𝑥) is the empirical distribution of a random variable, x, and 𝐹(𝑥) is the fitted distribution function 
of x. The null hypothesis of the above tests is as follows: 

𝐻଴: 𝑋~𝐹ఏ(𝑥: 𝜃), 
 where 𝜃 is a set of parameters for the distribution F. 
66  This number comes from the calculation based on the shape parameters of fitted GEV loss series and fitted 

GPD series that fail to fit GEV.  
67  They are used to model non-negative variables that are usually right-tailed and widely applied in the literature 

(see, e.g., Frachot, Georges and Roncalli, 2001; Moscadelli, 2004; Fu and Moncher, 2004; Shevchenko, 2011; 
Eling, 2012; Frees, Lee and Yang, 2016; Eling and Jung, 2018). 
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GEV distribution as the fitted model for the cyber loss maxima is also a good fit compared to 

other right-tailed distributions as it shows the lowest level of AIC. However, as demonstrated 

by the graphical depiction, GPD can be a better fit for seven series of loss maxima (see 

Appendix D) according to the goodness-of-fit test in panel C of Table D1 and graphical 

depiction in Figure D2. Therefore, we can conclude that the cyber loss maxima for the 

considered timeframes follow the Fréchet type of GEV distribution in general, but maxima 

series of malicious risk factors for shorter timeframes fit GPD better. 

4.3 Dependence structure of extremes 

The bivariate extreme risks defined in Table 1 are possible risk factors considered when 

underwriting cyber-insurance. Two risk factors are clearly distinct with respect to the nature of 

loss occurrence: Malicious risk can be a source of systemic risk affecting a wide range of 

systems in the interconnected network environment, and negligent risk could be limited to a 

loss event involving a single entity. Therefore, from the insurer’s perspective, malicious risk 

needs to be considered as the more significant factor in a potential cyber-risk pool. Indeed, 

many policies traded in the current market (e.g., the U.S. market) mainly cover the losses by 

malicious attacks (Romanosky et al., 2017). However, negligent risk should not be disregarded 

as this risk shows a similar pattern in loss severity to that of malicious risk, as seen in Figure 

B1; hence, it is also expected to extend the coverage by underwriting the loss by negligent risk 

source. In this section, we assume that a cyber-insurer pools two possible cyber-insurance lines 

(malicious vs. negligent) that are heterogeneous in the risk source underwritten in the policy. 

When estimating the size of risk that an insurer could face, the insurer can consider two 

possibilities in pooling: i.i.d. assumption on risk factors (lines of business) and dependency in 

risk factors. Obviously, the first algorithm is more tractable for pooling the risks and carrying 

out the estimation procedure both theoretically and practically. However, statistical properties 

of risk factors are usually heterogeneous, especially in the tail behavior, and a statistically 

significant dependence structure might exist in losses. In addition, the i.i.d. assumption might 

underestimate the level of risk, which does not reflect any correlated risk, whereas the 

dependence structure in a risk pool can provide a diversification benefit compared to the sub-

additive assumption on the risk factors. Based on the finding in the previous section that 

maximum cyber losses follow the generalized extreme value distribution with the Fréchet 

family, we fit the loss maxima in the bivariate setting into an extreme dependency. 
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First, when modeling extreme dependency, it is necessary to test whether the copula represented 

by Sklar’s theorem (1959) can also be expressed by the Pickands dependence function A in 

equation (14), positing the null hypothesis in the following67F

68: 

𝐻଴: 𝐶 ∈ 𝐶௘௩, (20) 

where 𝐶௘௩ stands for an extreme value copula with the Pickands dependence function, A. 

Thus, if the null hypothesis is rejected at a critical level, the copula function between variables 

cannot be represented by an extreme value copula, implying that an extreme dependency (in 

the right tail) does not exist. The test result is illustrated in panel A of Table E1 (Appendix E), 

showing that dependency in the weekly and biweekly setting does not present the extreme trend 

(except for the biweekly maxima of the post-2014 cyber loss). This might result from the fact 

that the level of maxima on a weekly or biweekly basis is not significantly extreme, especially 

compared to other series on a longer time basis (see Table 2). However, the monthly maxima 

series turns out to be extremely dependent so that extreme value copulas fit well with Pickands 

dependence functions. 

Panel B of Table E1 provides Akaike information criteria and the results of the goodness-of-fit 

test68F

69 for copulas to determine the most appropriate function for the dependence structures. 

Based on the results in panel A, we fit extreme value copulas into three maxima series with 

extreme dependency and also take into consideration other types of copula family for the series 

not showing extreme dependency. For series with extreme dependency, four copula functions 

fit each extreme dependency based on the lowest AIC and the goodness-of-fit test results. For 

series that are not extremely dependent, we find a clear tendency that lower dependency with 

                                                      
68  We employ the nonparametric rank-based test for bivariate extreme value dependency developed by 

Kojadinovic and Yan (2010). The test statistic is formulated by comparing the empirical copula 𝐶௡ 
(nonparametric copula estimation) with a nonparametric copula estimation, 𝐶஺೙,೎

, under extreme value 

dependency defined in equation (14) with the Pickands dependence function, 𝐴௡,௖. The test statistic is described 
as: 

𝑆௡ = න න 𝑛ห𝐶௡(𝑢, 𝑣) − 𝐶஺೙,೎
(𝑢, 𝑣)ห

ଶ
𝑑𝑢𝑑𝑣

ଵ

଴

ଵ

଴

. 

69  The goodness-of-fit test for extreme value copulas is developed by Genest et al. (2011). Suppose there exists 
a bivariate random sample (𝑀௜

௑ , 𝑀௜
௒), 𝑖 = 1, … , 𝑛  from some unknown continuous distribution G, whose 

underlying copula is an extreme value copula with Pickands dependence function A. The null hypothesis to 
test whether the underlying extreme value copula is appropriately specified is as follows (Genest et al., 2011): 

𝐻଴: 𝐴 ∈ 𝒜 = {𝐴ఏ: 𝜃 ∈ Θ}, 
 where 𝒜 is a set of parametric extreme value copulas with the parameter, 𝜃. 
 The test statistic developed by Genest et al. (2011) is based on the Cramer-von-Mises statistic by comparing a 

nonparametric estimator 𝐴௡ with a parametric estimator 𝐴ఏ೙
 as follows: 

𝑆௡ = න 𝑛 ∙ ห𝐴௡(𝑡) − 𝐴ఏ೙
(𝑡)ห

ଶ
𝑑𝑡

ଵ

଴

. 



Essay II  Probable maximum cyber loss 

68 
 

Clayton copula is observed from the weekly setting, which has relatively smaller loss maxima. 

In contrast, longer-range series (biweekly) and the setting for the more recent period (post-2014) 

demonstrate upper dependency and symmetry fitting the Joe and Frank copulas, respectively, 

which could be important for insurers concerned about the correlated risk triggering a huge 

extreme loss. 

5 Probable maximum cyber loss and reinsurance design 

The modeling procedure in the previous sections illustrates that cyber loss maxima series are 

stationary, that short-range temporal dependency (weekly and biweekly) exists, that GEV 

distribution fits the series well, and extreme dependency exists for monthly series that can fit 

extreme value copula models. With the outcome from the procedure, in this section we estimate 

a potential level of the worst risk using a quantile-based measure called probable maximum 

cyber loss (PMCL) and propose a reinsurance portfolio with public intervention. 

5.1 Probable maximum cyber loss 

The probable maximum cyber loss can be defined as the worst cyber loss likely to happen as 

determined using the following expressions: 

Pൣ𝑀෩௡ ≤ 𝜉௣൧ = 1 − 𝑝, (21) 

𝜉௣ = 𝐺ெ෩೙

ఏ ିଵ
(1 − 𝑝) (22) 

for some small 𝑝 ∈ [0,1], where 𝑀෩௡ is a series of the cyber loss maxima, 𝜉௣  is the probable 

maximum cyber loss, and 𝐺ெ෩೙

ఏ  is the probability function of the cyber loss maxima series with 

the parameter of 𝜃 based on equation (11). 

The above quantile-based measure is based on Value-at-Risk (VaR) at the quantile 1 − 𝑝, but 

the loss vector consists of the maximum values for a certain time period, indicating a probable 

worst loss of extreme cases likely to occur 𝑝 times out of 100 corresponding time units (e.g., 

years, months and days). To show how large the estimates of PMCL are, our estimates are 

compared with the measures from three recent references: Edwards et al. (2016), Wheatley et 

al. (2016), and Eling and Jung (2018). These authors use well-known right-skewed distributions 

to estimate extreme cyber loss, such as lognormal and generalized Pareto models.69F

70  It is 

                                                      
70  For the sake of comparison, we implement another extreme value model, Peaks-over-Threshold (POT), with 

the same dataset. We consider the POT model with lognormal distribution in the body and generalized Pareto 
distribution in the tail, which is widely used for cyber risk analysis in the literature (Wheatley et al., 2016; 
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important to note that the generalized Pareto model in the tail theoretically incorporates the 

infinite moment of the distribution function, which means that the maximum level is by 

definition unmeasurable. However, Wheatley et al. (2016) employ a doubly truncated Pareto 

distribution to model the large breach sizes—a function that distinguishes itself from the model 

with the infinite moment. 

Table 3 displays monthly PMCL estimates with the fitted GEV distributions70F

71 and the estimates 

of extreme losses derived from three references. The quantile, 1 − 𝑝, is set at 91.7%, 97.2% and 

98.3%, indicating the worst case likely to happen once every one, three and five years, 

respectively. For example, considering the composite dataset over the entire period, we find 

that the maximum loss amount within the next year is likely to be around 61.79 million data 

breaches. The size of the maximum loss becomes much bigger over the longer time period, 

showing 692.2 million and 2,053 million breaches within the next three and five years 

respectively. This breach size might happen to a single entity or multiple parties based on the 

property of the database, which requires the industry- or national-level reaction to a possible 

systemic risk. A single insurer cannot afford to recover this size of loss; rather, co-insurance or 

a collective reinsurance plan seems more appropriate. Thus, in the next section, we attempt to 

practically design a reinsurance portfolio with public intervention, which is expected to provide 

insights into potential sizes of premiums and economic burdens to involved parties. 

One of the key results in Table 3 shows that, compared to the estimate in the literature, a 

cyberattack successfully occurring once every five years could lead to the loss of 2,053 million 

data records in the U.S., which is around seven times larger than the expected maximum size 

(= 300 million71F

72) that Wheatley et al. (2016) predicted for in the next five years. Compared to 

Edwards et al.’s (2016) estimate, we can observe that the gap increases to five times for the 

next three years. However, the largest level of Edwards et al. (2016) does not result from their 

estimation process, but from the largest level in their dataset; therefore, the gap between our 

estimate and their potential estimate might be much bigger (GEV vs. lognormal).  

                                                      
Eling and Jung, 2018; Eling and Wirfs, 2019). This comparison can be a good complement to the idea of the 
possibility of cyber dragon kings beyond Pareto-based estimation by the recent literature with a slightly older 
dataset than ours. The fit results with the estimated parameters for POT are described in Table G1 of Appendix 
G, and the graphical description is presented in Figure G1. The model is not block-based, but considers the 
entire spectrum of the cyber loss. 

71  In order to make a reasonable comparison in this application, we estimate PMCL with monthly series that fit 
the extreme dependence model across three time periods (entire, pre-2014, and post-2014). 

72  Wheatley et al. (2016) find that the maximum breach size grows over time at the rate of 𝑡଴.଼ସ and expect to see 
such growth reach 50% over the next five years, resulting in 300 million (200 million × 150%) maximum 
breaches. 
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Table 3. Comparison of Extreme Loss Prediction 

Panel A: PMCL estimates (million breach) 
 Composite Malicious Negligent Dependence 

Next 1 yr 
Entire Period 61.79 85.22 6.33 142.83 
Pre-2014 8.53 17.18 2.99 26.73 
Post-2014 1,333.90 785.04 18.26 1,347.07 

Next 3 yrs 
Entire period 692.21 1,539.94 52.46 2,241.70 
Pre-2014 50.72 227.04 15.19 284.48 
Post-2014 62,693.28 20,533.20 313.14 33,004.61 

Next 5 yrs 
Entire period 2,053.21 5,987.12 140.76 8,723.67 
Pre-2014 117.62 784.80 32.63 876.31 
Post-2014 371,964.44 98,198.51 1,179.38 132,992.70 

Panel B: Estimates of the recent literature (million breach) 
 Edwards et al. (2016) 

(Lognormal) 
Wheatley et al. (2016) 

(Truncated Pareto) 
Eling and Jung (2018) 

(Correlated risk) 
Data period Jan, 2005 – Feb, 2015 Jan, 2007 – Apr, 2015 Jan, 2005 – Dec, 2016 

Data source PRC Open Security 
Foundation & PRC 

PRC 

Breach size 
estimate 

130.00 300.00 1,053.11 

Time prediction Next 3 yrs Next 5 yrs 1 out of 200 cases (99.5%) 

Panel C: Threshold-based estimation (Pareto density in the tail) (million breach) 
 99% 99.5% 99.9% 
Entire Composite 10.81 263.64 1,001.86 

Malicious 8.18 382.35 1,407.30 
Negligent 0.50 110.21 478.38 

Pre-2014 Composite 0.94 29.91 111.47 
Malicious 4.24 46.58 149.14 
Negligent 1.22 13.87 56.66 

Post-2014 Composite 2.43 315.90 1,240.32 
Malicious 34.19 524.63 1,761.11 
Negligent 0.63 202.33 734.77 

Note: PMCL estimates in panel A are based on the monthly maxima series, which demonstrate stationarity, GEV fit and 
extreme dependency. Panel C shows extreme loss estimates based on the raw data on a daily basis and, thus, the value-at-
risk measures. 

One might argue that our dataset includes more recent observations than the dataset in the 

literature, which can account for this difference to some extent. For the sake of fair comparison, 

we implement the POT method with lognormal distribution in the body and generalized Pareto 

distribution in the tail, as used in most literature. We derive the risk measures (Value-at-Risk) 

at three extreme quantiles (i.e., 99%, 99.5% and 99.9%) and simply compare them with our 

estimates in three time horizons. Based on this comparison, our estimates from the composite 

risk for the entire data period are on average 3.46 times larger than the POT estimates from the 

same risk type, and a huge gap between estimates from the post-2014 period exists. Thus, the 
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POT method heavily underestimates the change in the magnitude of risk over time, showing 

almost 98% of the underestimation on average compared to our approach. 

Our result further highlights that PMCL by a malicious cyberattack could be even more extreme 

than the one by a negligent risk—almost 28.5 times bigger for the entire period. This might 

result from the fact that a loss by a negligent risk is relatively limited in the effect on a single 

business entity, whereas a loss event by a malicious risk is usually triggered by an infectious 

attack simultaneously affecting multiple agents. Thus, a malicious case could cause a silent 

cyber risk in numerous P&C policies (systemic risk in non-life insurance business) so that 

insolvency issues might be raised for an insurer. Furthermore, this difference is prominent for 

cyber-insurers required to consider cyber risk classification in the underwriting process to set 

the coverage limit. 

The structural break leads to the finding that the PMCL estimates for the post-2014 period are 

on average 433 times larger than those for the pre-2014 period—a gap that is the numerical 

realization of the right panel in Figure 1. It demonstrates that cyber loss process is changing 

quickly over time as the information technology is more advanced and dependency on such 

technology is rapidly increasing. Thus, insurers must develop an underwriting process that can 

capture rapidly changing risk dynamics over time. Otherwise, insurers would fail to predict the 

size of an extreme loss in the coming years, which could be much larger than the size for the 

post-2014 period. In this regard, our statistical procedure can provide insights for considering 

temporal dependency and the distributional property of cyber loss maxima, thereby leading 

insurers in the right approach. 

Based on the assumption that a cyber-insurer is pooling two possible cyber risk factors, the 

PMCL estimates with the correlated risk are on average 3.27 times larger than those without 

the correlated risk for the entire data period. Comparing Eling and Jung’s (2018) estimate with 

the correlated risk, we observe that our estimates for the next three and five years are almost 

fivefold. Overall, the defined probable maximum loss by cyber risk outweighs the extreme loss 

estimates in the recent literature with lognormal and Pareto-based models. This finding implies 

that a fundamental change in modeling to estimate a possible extreme cyber loss is needed for 

(re)insurers and regulators in order to be able to predict a cyber dragon king to the industries. 

5.2 Design of cyber-reinsurance portfolio with public intervention 

As previously mentioned, an extreme event might trigger a number of claims simultaneously, 

possibly leading a potential cyber-insurer to become insolvent. Furthermore, the nature of risk 
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is heterogeneous depending on the source of risk, network environment, the security level, and 

other cyber-specific factors; hence, a variation in the loss ratio could occur due to the 

fluctuations of the claim severity (Eling and Toplek, 2009). Our finding implies that the size of 

such a catastrophic cyber loss might be uncontrollable for the private sector (e.g., for a single 

insurer).  

Using a database of 477 organizations across 15 nations, the Ponemon Institute (2018) found 

that the financial service industry (e.g., banking) is most exposed to data breach risk and has 

one of the highest per capita costs (= $208 per breached record on average). If a catastrophic 

cyber loss occurred in the financial industry, the cost of claims imposed on a cyber-insurer 

might result in the insurer’s insolvency with insurance runs. For example, if Wheatley et al.’s 

(2016) 300 million maximum breach size occurred, the economic damage estimated using the 

average cost for the financial industry (= $208) would be $62.4 billion, which is almost 

equivalent to the shareholders’ equity of Allianz Group in the 1st quarter of 2019 (= $67.2 

billion), one of the biggest cyber-insurers in the U.S. market.7 2F

73 Thus, the “too-big-to-fail” 

problem could exist under the current circumstances surrounding the cyber-insurance market, 

thereby requiring the consideration of potential cyber-reinsurance and possible backstop by the 

government in the form of deposit insurance, where the government plays the role of the last 

resort to guarantee a certain amount of the loss.73F

74 We call this cyber-deposit insurance. 

Based on this idea, we design a cyber-deposit insurance that requires the government to be 

responsible for the loss amount above our PMCL estimate, which is the coverage limit of a 

proportional reinsurance treaty with a reinsurer. 74F

75 The proportional reinsurance is based on 

                                                      
73  The number of breached records, for example 300 million, is not necessarily the number of customers breached, 

but can be total records including cases where multiple customers lose more than two records from different 
types. Furthermore, the $208 cost for each record is an average figure, meaning the cost could vary by type of 
information breached at the individual level. Thus, $62.4 billion is a rough idea of the size of economic damage 
by a single cyber event to a banking entity that is a global-level player in the industry. 

74  The huge risk of change, underdevelopment of modeling and pricing schemes, and scarcity of data have played 
a significant role of preventing the reinsurance market from offering sufficient capacity, which might cause 
insurers to be reluctant to enter or withdraw from the cyber-insurance market. This circumstance can drive 
more demand for the establishment of state-backed programs (national level), such as the California Earthquake 
Authority (CEA), the Terrorism Risk Insurance Act (TRIA) in the U.S., and the National Flood Insurance 
Program (NFIP) from other catastrophe risk cases (Kunreuther, 2015). To consider this possibility, we design 
a government-involved reinsurance portfolio in this section. 

75  An extreme risk event is traditionally covered by both insurers and reinsurers together under a conventional 
two-stage process, where loss distributions are estimated using catastrophe modeling and calibration in the first 
stage and the negotiation of the price between insurers and reinsurers in the second stage (Chang and Chang, 
2017). The linkage between extreme value theory and the reinsurance can be found in a specific type of contract, 
known as catastrophe excess-of-loss coverage (CatXL), as described in Embrechts, Mikosch and Kluppelberg 
(1997, p. 503) and Eling and Toplek (2009). The contract is a non-proportional form that requires a reinsurer 
to be responsible for the loss amount above a certain catastrophic level (retention level for the ceding company) 
up to a certain limit. Specifically, extreme value theory is connected to the pricing with regard to the reference 
loss defined as a value that helps determine a CatXL coverage level. The reference loss chosen characterizes 
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sharing a fixed percentage of the loss from a particular risk with the reinsurance market, called 

a quota share treaty. In this situation, the reinsurance market is responsible for its share 1 − 𝑞 

of the amount up to the coverage limit while the insurer takes up the share 𝑞 of the amount. In 

this portfolio design, we denote the coverage limit of the quota share treaty by 𝑈 and the loss 

amount by 𝐿.75F

76 Figure 3 illustrates the portfolio structure for a potential cyber-insurer. The 

graph below presents the amount of loss that each party needs to take up in the portfolio. 

 
Figure 3. The structure of reinsurance portfolio for a cyber-insurer. The portfolio consists of a 
proportional reinsurance contract (quota share) with the reinsurance market and a non-proportional 
cyber-deposit insurance with the government above the coverage limit of the quota share treaty. 

With the portfolio design in Figure 3, we calculate the aggregate premium size for the reinsurer 

and the insurer from a potential cyber risk pool by means of two premium principles with a 

loading factor: expectation premium and standard deviation premium, defined as (Embrechts, 

2000): 

                                                      
rare, but possible, extreme loss, which is in line with our definition of probable maximum cyber loss. Here we 
utilize the CatXL design for the cyber-deposit insurance with the government. 

76  The optimal reinsurance policy has been studied in the literature (see, e.g., Kaluszka, 2001, 2005; Gajek and 
Zagrodny, 2004; Guerra and Centeno, 2008). Among them, we utilize a combination of CatXL and quota share 
based on Embrechts, Mikosch and Kluppelberg (1997) with extreme value theory and Kaluszka (2005). Our 
reinsurance portfolio might not satisfy optimality, but it can provide insights for a possible reinsurance contract 
with the PMCL. 
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Expectation principle: 𝐻(𝑋) = (1 + 𝛿) ∙ 𝐸(𝑋), (23)                                 

Standard deviation principle: 𝐻(𝑋) = 𝐸(𝑋) + 𝛿 ∙ ඥ𝑉𝑎𝑟(𝑋), (24) 

where 𝐻(∙) is a premium function of loss 𝑋 and 𝛿 is a loading factor.7 6F

77 The aggregate premium 

calculated indicates the total amount that both the ceding company (insurer) and the ceded 

company (reinsurer) need to collect from the insureds in the pool for itself. The ceding company 

then pays the aggregate premium to the ceded company up to the agreed share (= 1 − 𝑞). The 

principles have been used for the optimal reinsurance problem in, for example, Kaluszka (2005) 

and Guerra and Centeno (2010). For the cyber-deposit insurance with the government, we 

provide the average size of loss per exposure that the government can potentially face.77F

78  

Table 4 shows the premium estimates for the reinsurer and the insurer and the estimated size of 

loss that the government can embrace. We derive the outcomes based on the PMCL estimates 

for the next one year (one-year contract) as the coverage limit (= U); for the sake of comparison, 

we calculate the measures using the estimates of maximum cyber loss from two references 

(Edwards et al., 2016; Wheatley et al., 2016). We find nearly $627 million and $209 million in 

premium sizes that the reinsurer and insurer need to collect, respectively, per month from their 

cyber risk pool in the U.S. based on the total loss data (= Comp) for the entire period. The 

projected annual premium (= $10.03 billion) under the assumption of the simple arithmetic 

annualization is almost 60% larger than the value of cyber-insurance premiums worldwide for 

2019 (= $6.2 billion), as estimated in the industry (PwC, 2016). Thus, applying our approach 

to the estimation of PMCL can meet many industries’ commercial needs for protection by 

extending the coverage limit, leading more insurers and reinsurers to enter the competition in 

underwriting cyber risk. If insurers are more confident in their underwriting competence due to 

                                                      
77  Romanosky et al. (2017) use a content analysis tool to investigate 100 cyber-insurance policies and show the 

current market situation and insurance designs. They find that 50% of the policies they examined provide a flat 
rate of premium equivalent to equation (23), which does not differentiate the premium rate by firm size or 
revenue. They also observe that the loading factor, 𝛿, in equations (23) and (24) proportionally increasing the 
premium level is usually set between 25% and 35%, which represents the transaction cost (administration cost) 
for underwriting cyber-insurance. Following them, we assume a loading of 0.25, which is applied to the 
premium calculation for the reinsurer and the insurer in the portfolio for simplicity. Romanosky et al. also 
observe that all considered policies set the deductible and the coverage limit in accordance with company-
specific parameters, implying that full coverage does not exist in the market. They find it surprising that many 
policies are priced by means of a simple, flat pricing scheme—that is, an expectation principle with a loading. 

78  A typical deposit insurance in the banking sector is priced by a flat-rate system, imposing a given rate per unit 
of deposits to all insureds. However, the flat-rate premium cannot resolve the moral hazard problem inherent 
in the provision of deposit insurance. In other words, deposit insurance can reduce the cost of pursuing riskier 
strategies and incentivize excessive risk-taking. Although a risk-based pricing scheme has been developed to 
resolve this issue, in this application we do not implement any pricing scheme of deposit insurance, but rather 
provide an empirical benchmark on the average loss that the government needs to bear. 
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sufficient data and accumulated knowledge, our approach can scale up the capacity of the cyber-

insurance market with higher limits. 

This increase in the capacity needs to be backed by the government for a case when the 

possibility of a loss beyond our PMCL estimates might still exist. This possibility could be 

realized in a situation where a tremendous range of parties around the globe are affected by a 

malicious attack. In addition, this possibility becomes more feasible as internet-based 

technology evolves more, as already evidenced by the huge increase in the size of our PMCL 

estimates from pre-2014 to post-2014. Our results indicate that the government needs to take 

up on average $2.1 billion in losses per exposure beyond our PMCL estimate based on the total 

loss data (= Comp) for the entire data period. 

Table 4. Reinsurance Pricing Results 

Panel A: Aggregate premium size for the reinsurer and the insurer (on a monthly basis) 

($ million) 
Expectation principle Standard deviation principle 

Comp Mal Neg Comp Mal Neg 

Reinsurer 

Entire 627.01 768.20 112.73 813.60 1,012.63 124.01 

Pre-2014 248.88 231.42 100.35 258.18 283.65 101.56 

Post-2014 2,212.40 4,316.11 150.21 4,344.84 6,773.16 184.50 

Reference 1 915.12 895.18 572.36 1,350.71 1,264.95 1,008.29 

Reference 2 1,436.40 1,291.78 886.52 2,390.52 2,125.88 1,707.68 

Insurer 

Entire 209.00 256.07 37.58 271.20 337.54 41.34 

Pre-2014 82.96 77.14 33.45 86.06 94.55 33.85 

Post-2014 737.47 1,438.70 50.07 1,448.28 2,257.72 61.50 

Reference 1 305.04 298.39 190.79 450.24 421.65 336.10 

Reference 2 478.80 430.59 295.51 796.84 708.63 569.23 

Panel B: The average size of loss per exposure for the government 
($ million) Comp Mal Neg 

Govern-
ment 

Entire 2,091.21 (17,669.3)  1,959.31 (20,945.6)  1,285.63 (11,296.5) 

Pre-2014 486.94 (3,197.2) 200.88 (2,182.0)  210.58 (1,672.3) 

Post-2014 282.05 (10,233.0)  2,235.36 (25,920.6)  698.41 (8,953.4) 

Reference 1 1,783.89 (16,564.4)  1,823.87  (20,351.2) 795.35 (9,565.1)  

Reference 2 1,227.85 (14,188.7) 1,400.83 (18,301.8)  460.26  (7,834.9) 
Note: References 1 and 2 indicate the outcomes based on the estimates of maximum loss by Edwards et al. (2016) (= 130 
million records breached) and Wheatley et al. (2016) (= 300 million records breached), respectively. The parameters 
assumed for pricing are listed in the following: 𝛿 = 0.25; 𝑞 = 0.25; deductible for individual exposure = $500,000. The 
coverage limits are set by the PMCL estimates likely to happen in the next one year (see Table 3) and diversified depending 
on the data period and the type of risk. The figures in panel B indicate the mean and standard deviation (in parentheses) of 
the losses per exposure beyond our PMCL estimates. Appendix F provides the specification of the design in more detail. 

The result further illustrates that differentiating the coverage limits depending on the risk type 

is significant for estimating the size of the premium. The premium level covering only the 

malicious risk is much higher (14.3 times higher on average from both expectation and standard 
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deviation principles) than the level covering negligent risk. Both risk types are covered in the 

current cyber-insurance market, falling into specific property-casualty lines of business 

(Romanosky et al., 2017). In contrast, despite different time spans for the coverage limit 

between our estimate (next one year) and the estimates from the references (next three years 

and five years, respectively), the difference between the two risk types significantly decreases 

to 1.38 times larger for the malicious risk when adapting identical coverage limit from the two 

references to heterogeneous risk types. 

In addition, the premium sizes based on the post-2014 database are almost 11.9 times larger on 

average than those based on the pre-2014 database across risk types and premium principles. 

This finding suggests that there is a need to establish a risk-adjusted pricing scheme for cyber 

risk, particularly considering time-varying risk dynamics of extreme cases. If the market stays 

in a classical manner with long-range historical data for pricing, it might heavily underestimate 

the premium size for cyber risk. Moreover, adapting the volatility of the losses into pricing 

increases the premium level in general, as shown by the deviation between the expectation 

principle and the standard deviation principle. 

Discussion of public intervention  

The proposed design in Section 5.1 consists of three layers7 8F

79 to deal with potential cyber losses. 

The first layer is taken by the primary insurer, who collects the premium from (organizational) 

insureds in the cyber risk pool. The second layer then goes to a reinsurer with an agreed 

coverage limit based on our statistical estimation and a contractual quota. The government is 

responsible for the last layer, as it absorbs losses above the coverage limit of the reinsurance 

contract. However, one might question whether public intervention is essential against a 

catastrophic cyber event that might have to be covered solely by the private sector. To answer 

this question, the suggested three-layer scheme can be more realistically applied to the banking 

industry, where customer information/records might be monetarily more valuable than those in, 

for example, the retail industry, thereby causing a severer systemic risk for society. In this case, 

                                                      
79  A similar form as our three-layer program can be found in examples that the French government established a 

pool for terrorism coverage in 2002 (Kunreuther, 2002) and the Terrorism Risk Insurance Act (TRIA) passed 
by the U.S. Congress in November 2002, which provides a federal insurance backstop for U.S. property and 
casualty insurers against terrorism risk (Brown et al., 2004). Apart from the U.S. case, a number of countries 
are currently operating the three-layer government-backed program particularly against terrorism risk (e.g., 
Pool Re in the U.K., Terrorism Reinsurance & Insurance Pool [TRIP] in Belgium, and Dutch Terrorism 
Reinsurance Pool [NHT] in the Netherlands). In addition, some studies in the catastrophe risk context also 
describe that the government can provide a guarantee of the last resort (see, e.g., Brown et al., 2004; Smetters, 
2005; Charpentier and Le Maux, 2014; Kunreuther, 2015). 
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public intervention against the extreme cyber event could be considered as a form of deposit 

insurance by the government with a premium in return. 

In our design for the three-layer program, the premiums and the size of loss taken up by the 

government clearly rely on the level of the coverage limit, which in our case is defined as the 

PMCL estimate. This dependence is illustrated in Figure 4, where plots also play the role of a 

robustness check by conducting sensitivity analyses on any change in premiums and the average 

loss per exposure (for the government) above the coverage limit. The higher the coverage limit, 

the more the reinsurer and the insurer should be paid by potential insureds and the less the 

government needs to absorb. Organizations willing to purchase cyber-insurance could be more 

burdened to pay the premium as they face a larger loss as the network environment becomes 

more complicated, which can be observed by the huge difference between pre-2014 and post-

2014 in Table 3.  

However, providing the financing guarantee from the government enables an insurer to increase 

the insurability of cyber risk and makes it more feasible to offer a reasonably priced policy to 

insureds. Thus, a social discussion between (re)insurers and responsible government parties is 

encouraged to agree on the limit level to determine the size of financial backstop (deposit 

insurance) by the government as well as the corresponding premium size to be paid to the 

government. However, prior to this discussion, a certain amount of funds might be required for 

dragon king-size cyber claims, particularly in order to avoid the insurer’s insolvency. These 

funds should be regulated so as to be available only for extreme cyber claims, which can prevent 

the insurer from cross-subsidizing catastrophic claims from other lines (Jaffee and Russell, 

1997). 

An alternative route to optimize public intervention against cyber risk could be a comprehensive 

offer for cyber risk management by an insurer already incorporated in some current cyber 

policies; such an offer can reduce the need for financing future loss by the public sector. This 

type of offer can include a prevention/protection measure implemented by the collaboration 

between the insurer and an IT security firm and a warning system/process with the interaction 

between the insured and the insurer. In addition, the government can construct a security system 

as a public good for industries, which can serve as boundary protection for companies. Another 

possible design is a contract with industry loss warranties (ILWs), especially for our dataset, 
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which incorporates information on industry-level losses in the U.S.79F

80 ILWs are particularly 

relevant when a limited supply capacity in the reinsurance and retrocession markets against 

extreme events exists (Gatzert and Schmeiser, 2012); hence, it could be an optimal industry-

level solution for managing extreme cyber losses. 

 

Figure 4. Sensitivity analysis of premiums and the average loss per exposure over the coverage limit 
with the data of the composite risk type for the entire period. Insurer and reinsurer lines display the 
premium estimates read on the left axis, which consistently describes the upward movement over 
increasing coverage limits. The government line illustrates the average loss per exposure read on the 
right axis, showing the downward movement over increasing coverage limits. 

6 Conclusion 

Regulators might have to be concerned about how to prevent insurers from becoming insolvent 

due to an uncontrollable cyber disaster triggering a huge accumulation risk. To set a capital 

requirement on cyber risk, they usually implement a threshold-based method to estimate the 

size of an extreme event based on what most literature suggests. Although the estimation 

procedure of an extreme cyber loss in the literature is well constructed and turns out to be robust, 

a possible catastrophic event much beyond the measure by this procedure is still likely to occur. 

Such an event, called a dragon king (Sornette and Ouillon, 2012) or black swan (Taleb, 2007), 

                                                      
80  Industry loss warranties (ILWs) provide a fixed indemnity in case an industry-wide loss surpasses an agreed-

upon threshold level, which varies by location, type of a loss event, line of business, and duration (Gatzert and 
Schmeiser, 2012). For more details on contract design and pricing approach, see Gatzert and Schmeiser (2012). 
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could lead to unpredictable level of cyber loss across multiple parties, resulting in a significant 

societal cost. This paper studies how to systematically estimate this type of event based on an 

empirical database (PRC) widely used in the cyber risk context. We model the cyber loss 

maxima in three different timeframes (weekly, biweekly, and monthly) using time series 

analysis, extreme value distribution fitting, and extreme value copula modeling. This procedure 

is developed to estimate probable maximum cyber loss (PMCL), which accounts for the worst 

cyber loss likely to happen once every specified time unit. The analysis is conducted for three 

data periods (entire period, pre-2014 and post-2014), with a structural break between pre-2014 

and post-2014 identified by the graphical diagnosis and the statistical tests. 

We identify that the maxima series of cyber loss are stationary and serially correlated, 

particularly short-range time series (weekly and biweekly). Cyber loss maxima series follow 

the Fréchet type of generalized extreme value distribution, demonstrating the heavy-tailedness 

of the cyber loss maxima. In addition, two risk categories of cyber loss, malicious and negligent, 

tend to be extremely dependent for the longer time period (monthly), implying that the maxima 

series of the two risk factors are dependent, especially in the extreme upper tail. This estimation 

leads to the findings in the application to probable maximum cyber loss that our estimates likely 

to happen in the next five years are around seven times larger than the expected maximum size 

(= 300 million breaches) predicted by Wheatley et al. (2016) with a widely used Pareto-based 

estimation. This difference implies that a threshold-based (Pareto) estimation might 

significantly undervalue the risk size and lead insurers to set a substantially low coverage limit, 

thereby keeping organizations from deciding on cyber-insurance. This implication is supported 

with our dataset by the comparison between the PMCL estimates and those based on the POT 

method, showing that the PMCL estimates are on average 3.46 times larger. 

We further find that the loss by a malicious attack could be much more extreme than that by a 

negligent risk, showing around 28.5 times larger for the entire data period. This result can be 

reasonably interpreted by the fact that a single business entity is usually affected by negligent 

risk, whereas multiple entities can be simultaneously affected by malicious risk with an 

infectious attack. Thus, a malicious case is more likely to cause a silent cyber risk in numerous 

P&C policies than a negligent case. Therefore, we propose that a cyber-insurer needs model 

and price cyber risk by classifying the risk factors upon the market demand. Furthermore, the 

PMCL estimates based on the post-2014 database are on average 433 times larger than those 

based on the pre-2014 database, thereby indicating that the cyber risk landscape has been 

changing quickly over time with rapidly developing information technology and explosively 
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expanding interconnected network environments. Thus, insurers must develop an underwriting 

process that can capture rapidly changing risk dynamics over time. 

Applying PMCL estimates, we propose a possible risk transfer design with public intervention, 

where a primary insurer agrees on a quota share treaty with a reinsurer and a CatXL-based 

deposit insurance with the government is provided against losses above the coverage limit of 

the reinsurance contract. Our proposal leads to the findings that, with two premium principles 

(expectation and standard deviation), the aggregate premium level estimated for both the insurer 

and the reinsurer is already 60% larger than the value of cyber-insurance premiums worldwide 

for 2019 estimated in the industry. Thus, the current capacity of the cyber-insurance market is 

heavily limited, with a significantly low coverage limit. In addition, the government might 

encounter on average $2.1 billion claims per exposure beyond the coverage limit (PMCL) in 

the cyber-deposit insurance based on the total loss of data for the entire data period.  

It seems obvious that extreme cases of cyber loss are penetrating our daily life and business. 

Current and potential cyber-insurers are more likely to face the possibility of extreme claims 

that might not be controllable. In this study, we suggest a first step for preventing a possible 

disastrous situation by providing extreme cyber risk pooling with a statistical process and the 

extreme risk measurement, probable maximum cyber loss (PMCL). The results of the paper are 

important for risk managers and actuaries designing cyber-insurance policies in primary 

insurers and reinsurers and for policymakers concerned about the social cost of the next extreme 

cyber loss. However, the dynamic nature of cyber risk as a significant risk of change can make 

the historical data less important for future predictions; therefore, (re)insurers need to develop 

a dynamic pricing/reserving method as more events occur. Furthermore, it would be fruitful to 

improve the estimation by identifying the relevant factors potentially affecting the extreme 

cyber cases in the model. This approach could explain the limitation of this paper as this study 

lacks a scenario-based analysis, thereby possibly showing the differences in extreme cases 

between scenarios. 
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Appendix A. Overview of literature and comparison with the present paper  

Table A1. Summary of Literature about the Statistical Analysis on Extremes of Cyber Risk 
 MS10 EHF16 WMS16 EJ18 EW19 HWS19 Present paper 

M
od

el
in

g 
pe

rs
pe

ct
iv

e 

Focus of 
Study 

Statistical modeling of 
cyber risk 

Statistical modeling of 
cyber risk 

Statistical modeling of 
cyber risk 

Dependence modeling of 
cyber risk 

Statistical modeling of 
cyber risk 

Statistical modeling of 
cyber risk 

Statistical modeling of 
cyber risk 

Time 
variation 

NA NA NA NA NA NA Weekly, biweekly & 
monthly 

Data type & 
period 

Open Security 
Foundation (breached 
loss) 

PRC data (breached loss) Open Security 
Foundation & PRC 
(breached loss) 

PRC data (breached loss) 
 

SAS database 
(operational data) 

Open Security 
Foundation & PRC 
(breached loss) 

PRC data (breached loss) 
 

Jan 2000 – Nov 2008 Jan 2005 – Sept 2015 Jan 2007 – Apr 2015 Jan 2005 – Dec 2016 Jan 1995 – Mar 2014 Jan 2007 – Sept 2017 Jan 2005 – Dec 2018 

Methodology Power law tail 
distribution 

Lognormal and negative 
binomial distributions 

POT with double 
truncated-Pareto 

Collective risk model & 
d-dimensional copula 
method 

POT and GLM (dynamic 
EVT model) 

POT with lognormal and 
truncated-Pareto 

Temporal dependency, 
block maxima & 
extreme value copula 
method 

Dependency 
modeling 

NA NA NA Multi-dimensional model 
(vine copula) for cyber 
loss 

NA NA Extreme value copulas 

O
ut

co
m

e 

Main points  Identify statistical 
properties of cyber risks 
by looking at power-
law tail distribution 
(personal identity 
losses) 

 Find the existence of a 
size effect that the 
largest possible ID 
losses per event grow 
faster-than-linearly with 
the organization size. 

 Fit the severity of data 
breach losses with 
lognormal distribution 
and the frequency with 
negative binomial. 

 Predict the likelihood of 
a cyber loss occurrence 
above a certain level in 
the next three years 
based on their model. 

 Model the severity of 
personal data breaches 
using extremely heavy-
tailed truncated Pareto 
distribution. 

 Find the tail exponent 
parameter decreasing 
over time, meaning that 
the size is heavier over 
time. 

 Classify information on 
data breach events into 
different cross-sectional 
settings and analyze it 
in different dependent 
structures. 

 Show how different 
high-dimensional 
dependence 
constructions influence 
on cyber-insurance 
premiums and risk 
measures. 

 Identify cyber losses 
from operational risk 
database and apply 
actuarial models to 
analyze extreme cyber 
losses. 

 Identify the impacts of 
covariates (country, 
industry, size and so 
on) on the loss using 
dynamic EVT method 
with heavy-tailed 
distributions. 

 Complement the results 
from Wheatley et al. 
(2016) by using updated 
dataset by September 
2017. 

 Fit the frequency of 
bigger breaches with 
negative binomial and 
the severity with POT 
with truncated-Pareto. 

 Investigate the 
statistical features of 
data breach losses from 
a variety of time blocks 
and model extreme 
dependency of cyber 
loss maxima. 

 Estimate the probable 
maximum cyber loss 
with loss maxima and 
propose a reinsurance 
portfolio with public-
private partnership. 

Limitation & 
Implication 

The dataset is not up-to-
date (2000 – 2008) so that 
the current trend is not 
reflected.  

It might have reached a 
meaningful finding if the 
study had considered 
some extreme value 
distributions. 

EVT method used in the 
study might not be able to 
capture a possible severer 
event beyond the usual 
degree of freedom. 

A comprehensive analysis 
of the dependence 
structure of data breach 
risks is suggested. 

The data are derived from 
the operational risk 
database with a certain 
classification standard. 

Their suggestion on 
insurance pricing scheme 
is not supported by any 
empirical estimation. 

Modeling cyber loss 
maxima while 
considering time variation 
is critical to figure out 
cyber loss dragon king. 

Note: The references introduced in the table are specified in the following. MS10: Maillart and Sornette (2010); EHF16: Edwards, Hofmeyr and Forrest (2016); WMS16: Wheatley, Maillart and Sornette (2016); EJ18: 
Eling and Jung (2018); EW19: Eling and Wirfs (2019); Hofmann, Wheatley and Sornette (2019). The bold indicates the contributing points of the present paper to the literature. 
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Brief description on the literature 

The studies in Table A1 are more specifically described here. Maillart and Sornette (2010) 

estimate a power-law tail distribution to fit the data of personal identity losses, thereby 

concluding that the extremely right-skewed cyber losses are identified. Edwards et al. (2016) 

investigate the distributional properties of cyber loss frequency and severity using a PRC 

dataset between 2005 and 2015. They find that negative binomial fits well the frequency of 

cyber loss and lognormal distribution for the severity. The authors further estimate the loss 

probability of the largest breach size (130 million) in the next three years to be around 16%. 

Using a larger amount of data on personal ID breaches than that of Maillart and Sornette (2010), 

Wheatley, Maillart and Sornette (2016) fit an extremely heavy-tailed truncated Pareto 

distribution by finding a decreasing tail parameter over time (from 2007 to 2015). They identify 

that the possible maximum size of cyber loss could be 200 million breaches at a growth rate of 

𝑡଴.଼ସ. 

Eling and Jung (2018) identify lognormal, Burr and the Peaks-over-Threshold (POT) with 

lognormal in the body and GPD tail in the tail as the best fit for the monthly severity of cyber 

risk using the data from Privacy Rights Clearinghouse (PRC) between 2005 and 2016. Eling 

and Wirfs (2019) use an operational risk database from SAS to derive cyber-related operational 

losses and analyze them using the POT technique with generalized Pareto distribution (GPD) 

above the threshold. Lastly, Hofmann et al. (2019) conduct distribution fitting for the frequency 

and severity of large breaches in a similar manner as Wheatley et al. (2016), using an updated 

dataset through September 2017. The authors determine that the frequency and severity of large 

breaches are growing over time, and there exists a huge gap (10 times) between the predicted 

risk size of the recent period and that of the older period.
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Appendix B. Test for structural break and extreme events over last decade 

As can be observed in Figure 1, structural breaks in frequency and severity trends might exist. 

To examine this possibility, we conduct three statistical tests that can prove the presence of a 

break: OLS-based cumulative sum test (OLS-CUSUM), recursive cumulative sum test (Rec-

CUSUM), and Chow test.80F

81 Figure B1 highlights the graphical description of structural breaks 

in frequency and severity trends and the trends from two distinct periods. The test results in 

Table B1 confirm that the clear distinctions in frequency and severity between the two periods 

are presented by rejecting the null hypothesis. In particular, as seen on the right plot of Figure 

B1, a significant increase in the severity of cyber loss has taken place since 2014, showing that 

almost 0.1 million breaches increase every 50 days. 

     
Figure B1. Structural breaks and trends of frequency and severity of cyber risk over the period between 
2005 and 2018. Rolling windows for 50 days are applied to both data to see the cluster. 
 

Table B1. Testing Structural Breaks in Frequency and Severity Trends 

   Test  Trend 
 Structural 

break 
 OLS-

CUSUM 
Rec-

CUSUM Chow 
 

Intercept Slope 

Frequency Mar 2010 
 

10.853*** 7.443*** 1,203.289*** 
 1: 2.30 

2: -45.38 
1: 0.003 
2: 0.008 

Severity Jan 2014 
 

5.890*** 3.851*** 73.059*** 
 1: -42m 

2: -1.9b 
1: 3,888 
2: 0.1m 

Note: Tests are implemented via R package, strucchange. m and b stand for million and billion respectively. *, ** and 
*** indicate that the p-value is less than the significance levels, 10%, 5% and 1%, respectively. 

                                                      
81  These tests are designed to examine the null hypothesis of no structural change, 𝐻଴: 𝛽௜ = 𝛽଴, where 𝛽௜ , 𝑖 =

1, … , 𝑛, is the vector of regression coefficients and the alternative hypothesis is that the coefficient vector varies 
over time. For more detail on the test specifications, see Kleiber et al. (2002).  
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Extreme events over the last decade 

Some notoriously extreme losses (above 100 million breached records) due to cyberattacks 

(hacking) shown in Table B281F

82 have occurred simultaneously in different geographical regions 

and network systems (multiple entities in the column of breached entity), accounting for 0.3% 

of the total number of losses (= 6,780). Furthermore, most extreme losses have arisen over last 

five years (16 out of 20 events in Table B2), especially in the general business field, implying 

that such maximum losses are more likely to occur and disrupt businesses in the near future. 

This trend is supported by Figure B2, where the frequency of cyber losses soared in 2010 and 

has remained stable so far. Therefore, we can pose a question as to whether much severer losses 

cluster over time and, if so, how they could be modeled and predicted. This analysis is important 

not only for risk managers in primary cyber-insurers, but also for reinsurers looking for an 

opportunity to be involved in the cyber-insurance market. Moreover, it supports our analysis 

for post-2014 cyber losses, which can reflect the recent trend of loss severity in the fast-

changing technological environment. 

Table B2. List of Extreme Cyber Losses from 2005 to 2018 

Date Breached entity Risk type Industry Breach records (million) 
Dec 14, 2016 Yahoo HACK Business 3,000.0 
Mar 8, 2017 Multiple entities DISC  Business 1,370.0 
Aug 5, 2014 Multiple entities HACK Business 1,000.0 
Sep 22, 2016 Yahoo HACK Business 500.0 
Nov 16, 2016 FriendFinder HACK Business 412.0 
May 31, 2016 MySpace HACK Business 360.0 
Jul 3, 2018 Exactis DISC Business 340.0 
Nov 30, 2018 Marriott International HACK Business 327.0 
Apr 2, 2011 Epsilon HACK Business 250.0 
Jun 19, 2017 DeepRootAnalytics DISC Business 198.0 
Dec 28, 2015 Multiple entities DISC Business 191.0 
Jun 6, 2012 LinkedIn HACK Business 167.0 
Mar 30, 2018 Under Armour HACK Business 150.0 
Sept 7, 2017 Equifax HACK Financial service 145.5 
May 21, 2014 eBay HACK Business 145.0 
Jan 20, 2009 Multiple entities HACK Financial service 130.0 
Jun 27, 2018 NameTests DISC Business 120.0 
May 17, 2016 LinkedIn HACK Business 117.0 
Oct 11, 2018 MindBody - FitMetrix DISC Business 113.5 
Apr 27, 2011 Sony HACK Business 101.6 
Note: The list is based on the data from PRC and sorted by the loss amount (breached records). In terms of risk type, HACK 
stands for a hacking risk (cyberattack) and DISC indicates an unintended disclosure of private data. In the industry column, 
“business” incorporates any type of business entity apart from retail/merchant including online retail and financial service 
providers, whereas “financial service” contains information from the banking and insurance sectors. 

                                                      
82  The losses in Table B2 indicate data breached records that occurred in the U.S. over the last 14 years. Other 

types of losses, for example direct economic loss by a malicious hacking, are not counted in this dataset. 
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Figure B2: The plot of frequency in different time blocks. 



Essay II  Probable maximum cyber loss 

 
 

Appendix C. Time-series analysis 

  Entire period Pre-2014 Post-2014 
  Comp Mal Neg Comp Mal Neg Comp Mal Neg 
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Figure C1: Time-series and autocorrelation plots for the entire period.
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Table C1. Testing Results for Stationarity 

  Complete 
  Weekly Biweekly Monthly 
Entire ADF -8.76*** -4.86*** -4.89*** 
 PP -749.85*** -377.90*** -184.09*** 
 KPSS 0.109 0.105 0.114 
Pre-2014 ADF -7.37*** -5.80*** -4.90*** 
 PP -522.13*** -163.37*** -105.20*** 
 KPSS 0.071 0.067 0.068 
Post-2014 ADF -6.07*** -2.98 -2.74 
 PP -264.88*** -137.82*** -62.39*** 
 KPSS 0.113 0.110 0.109 
  Malicious 
  Weekly Biweekly Monthly 
Entire ADF -8.36*** -6.29*** -5.32*** 
 PP -764.81*** -385.40*** -157.59*** 
 KPSS 0.055 0.054 0.056 
Pre-2014 ADF -7.46*** -6.00*** -5.12*** 
 PP -499.24*** -181.72*** -103.67*** 
 KPSS 0.058 0.054 0.050 
Post-2014 ADF -5.80*** -3.94** -3.52** 
 PP -269.03*** -139.82*** -55.48*** 
 KPSS 0.089 0.084 0.081 
  Negligent 
  Weekly Biweekly Monthly 
Entire ADF -8.73*** -6.05*** -5.34*** 
 PP -715.13*** -355.81*** -174.45*** 
 KPSS 0.111 0.111 0.116 
Pre-2014 ADF -7.85*** -6.03*** -4.86*** 
 PP -465.72*** -232.53*** -106.10*** 
 KPSS 0.082 0.084 0.084 
Post-2014 ADF -6.16*** -4.85*** -3.62** 
 PP -253.06*** -130.16*** -61.39*** 
 KPSS 0.051 0.052 0.053 
Note: *,** and *** indicate that the p-value is less than the significance levels, 10%, 5% and 1% respectively. 
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Table C2. Results of Fitting Autoregressive Model 

Panel A: Fitted autoregressive model (Full series)     
  Entire period 
Data Block Model AIC BIC AICc 
Complete Weekly AR(12) 9086.33 9150.65 9086.84 

Biweekly AR(6) 4797.92 4829.14 4798.23 
Monthly AR(3) 2328.69 2344.31 2328.94 

Malicious Weekly AR(4) 9094.00 9121.57 9094.08 
Biweekly AR(2) 4806.25 4821.86 4806.32 
Monthly AR(0) 2336.41 2342.66 2336.44 

Negligent Weekly AR(0) 7887.98 7897.17 7887.99 
Biweekly AR(0) 4202.95 4210.76 4202.96 
Monthly AR(0) 2060.41 2066.66 2060.44 

Panel B: Fitted autoregressive model (Pre- and Post-2014 series) 
  Pre-2014 Post-2014 
Data Block Model AIC BIC AICc Model AIC BIC AICc 
Complete Weekly AR(3) 3777.47 3798.23 3777.55 AR(12) 3527.60 3577.50 3529.07 
 Biweekly AR(1) 2049.85 2060.23 2049.90 AR(6) 1861.52 1884.52 1862.43 
 Monthly AR(0) 1019.63 1025.00 1019.67 AR(3) 898.25 908.72 898.98 
Malicious Weekly AR(3) 3919.96 3940.73 3920.05 AR(0) 3513.88 3521.01 3513.90 
 Biweekly AR(1) 2120.70 2131.08 2120.75 AR(0) 1853.88 1859.63 1853.91 
 Monthly AR(0) 1051.01 1056.38 1051.05 AR(0) 895.84 900.03 895.91 
Negligent Weekly AR(0) 2894.64 2902.94 2894.65 AR(0) 3084.56 3091.69 3084.58 
 Biweekly AR(0) 1609.92 1616.84 1609.94 AR(0) 1639.14 1644.89 1639.17 
 Monthly AR(0) 823.60 828.97 823.64 AR(0) 798.36 802.55 798.43 

Panel C: Test for conditional volatility (only for autoregressive series) 
  Entire period 
 Complete Malicious 
# Lags Weekly Biweekly Monthly Weekly Biweekly 
Lag=4 0.712 0.307 0.172 0.685 0.283 
Lag=8 0.726 0.656 0.266 0.695 0.488 
Lag=12 1.554 1.432 0.329 1.176 0.511 
Lag=16 1.578 1.554 0.394 1.186 0.559 
Lag=20 1.594 1.574 0.445 1.199 0.580 
Lag=24 3.031 1.609 0.483 1.209 0.605 

# Lags 

Pre-2014 Post-2014 
Complete Malicious Complete 

Weekly Biweekly Weekly Biweekly Weekly Biweekly Monthly 
Lag=4 0.137 0.076 0.659 0.317 0.200 0.097 0.066 
Lag=8 0.196 0.123 0.705 0.437 0.244 0.211 0.178 
Lag=12 0.223 0.178 0.768 0.552 0.484 0.409 0.353 
Lag=16 0.244 0.233 0.824 0.651 0.526 0.470 0.552 
Lag=20 0.272 0.275 0.876 0.758 0.565 0.559 0.749 
Lag=24 0.300 0.328 0.941 0.864 0.985 0.654 0.951 
Note: AR stands for autoregressive model, and AIC, BIC, and AICc for Akaike information criterion, Bayesian information 
criterion, and the corrected AIC, respectively. In panel B, the null hypothesis of the test is the presence of homoscedasticity 
in the error term. Panel C shows the results of Portmanteau-Q test for heteroscedasticity. *, ** and *** indicate that the p-
value is less than the significance levels, 10%, 5% and 1%, respectively. 
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Table C3. Diagnostic Tests on the Residuals of the Fitted Models 

   Entire period 
  Complete Malicious 
  Weekly Biweekly Monthly Weekly Biweekly 
Box-
Pierce 

Statistic 142.84*** 73.41*** 35.99*** 10.03** 4.46 
P-value <0.001 <0.001 <0.001 0.040 0.108 

Ljung-
Box 

Statistic 145.54*** 75.01*** 37.07*** 10.11** 4.51 
P-value <0.001 <0.001 <0.001 0.039 0.105 

 Pre-2014 Post-2014 
Complete Malicious Complete 

Weekly Biweekly Weekly Biweekly Weekly Biweekly Monthly 
Box-
Pierce 

Statistic 34.06*** 16.05*** 18.99*** 8.45*** 50.54*** 23.69*** 11.08** 
P-value <0.001 <0.001 <0.001 0.004 <0.001 <0.001 0.011 

Ljung-
Box 

Statistic 34.43*** 16.26*** 19.19*** 8.55*** 53.29*** 25.17*** 12.05*** 
P-value <0.001 <0.001 <0.001 0.003 <0.001 <0.001 0.007 

Note: *,** and *** indicate that the p-value is less than the significance levels, 10%, 5% and 1% respectively. 
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Appendix D. GEV fitting results 

Table D1. Distribution Fitting Results (Entire period) 

Panel A: GEV fitting results 
  Statistics Estimated parameter 
Data Block Loglik AIC K-S A-D Loc Scale Shape 

Comp 

Weekly -9,714.6 19,435.2 0.030 0.802 14,527.2 33,853.7 2.272 

Biweekly -5,378.3 10,762.7 0.035 0.567 66,749.2 143,848.1 2.115 

Monthly -2,729.3 5,464.7 0.058 0.667 318,979.0 305,943.1 1.661 

Mal 

Weekly -8,444.1 16,894.2 0.457*** 296.64*** 9.874 39.804 4.025 

Biweekly -5,088.0 10,182.0 0.103*** 7.785*** 10,817.1 39,807.2 3.670 

Monthly -2,652.3 5,310.7 0.043 0.459 132,562.1 354,270.3 2.636 

Neg 

Weekly -8,681.8 17,369.6 0.035 1.626 4,970.6 10,172.7 1.922 

Bi-weekly -4,777.6 9,561.3 0.036 0.429 17,671.6 33,863.1 1.817 

Monthly -2,416.6 4,839.3 0.036 0.182 64,312.6 123,339.0 1.865 

Panel B: Comparison with other distributions (AIC) 
Data Block GEV L-norm Gamma Cauchy IG Burr GPD 

Comp 

Weekly 19,435.2 19,458.9 20,353.8 20,730.2 22,679.2 31,379.5 19,456.8 

Biweekly 10,762.7 10,814.0 11,229.7 11,395.9 12,625.8 17,987.2 10,784.4 

Monthly 5,464.7 5,503.7 5,665.2 5,776.0 5,473.7 5,920.2 5,480.1 

Mal 

Weekly 16,894.2 16,819.3 17,453.1 19,599.5 19,402.2 24,842.2 15,665.4 

Biweekly 10,182.0 10,063.5 10,343.0 11,033.2 11,965.8 15,957.8 9,780.3 

Monthly 5,310.7 5,398.2 5,415.3 5,665.8 6,344.0 8,812.9 5,359.8 

Neg 

Weekly 17,369.6 17,434.9 18,285.4 18,391.1 20,242.0 27,201.5 17,410.0 

Biweekly 9,561.3 9,602.3 10,086.9 10,046.9 11,264.1 15,632.5 9,625.1 

Monthly 4,839.3 4,859.4 5,078.6 5,080.8 4,902.9 5,251.7 4,848.3 

Panel C: GPD fitting results for weekly and bi-weekly malicious series 
Block Loglik AIC K-S Theshold Scale Shape 

Weekly -7,830.6 15,665.4 0.000 0.99 6,661.3 3.033 

Bi-weekly -4,888.1 9,780.3 0.016 0.99 26,831.8 2.971 

Note: *, ** and *** indicate that the p-value is less than the significance levels, 10%, 5% and 1%, respectively. K-S and A-
D stand for Kolmogorov-Smirnov test and Anderson-Darling test, respectively, and Loc stands for the location parameter. 
In panel B, L-norm, IG, and GPD stand for lognormal, inverse Gaussian, and generalized Pareto distribution, respectively. 
Note that there is no location parameter in panel C for GPD fitting because the mean of GPD distribution in the tail is 
theoretically infinite (Maillart and Sornette, 2010). 
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Table D2. Distribution Fitting Results (Pre- and Post-2014 series) 

Panel A: GEV fitting results 
  Pre-2014 Post-2014 
  Statistics Estimated parameter Statistics Estimated parameter 
Data Block Loglik AIC K-S A-D Loc Scale Shape Loglik AIC K-S A-D Loc Scale Shape 

Comp 

Weekly -6,015.5 12,037.0 0.052 1.834 13,333.1 26,773.1 1.891 -3,660.3 7,326.7 0.060 1.422 21,737.7 55,029.1 2.517 

Biweekly -3,263.0 6,532.0 0.044 0.384 55,127.6 91,119.2 1.547 -2,059.7 4,125.5 0.063 0.755 94,397.7 268,725.4 2.875 

Monthly -1,624.6 3,255.2 0.044 0.185 199,985.4 285,713.4 1.576 -1,114.2 2,234.5 0.452*** 20.18*** 22,369.3 24,672.2 5.647 

Mal 

Weekly -4,725.4 9,456.8 0.413*** 258.32*** 18,051.3 161,019.8 8.920 -3,406.9 6,819.8 0.280*** 41.10*** 18,532.7 131,906.4 7.117 

Biweekly -3,077.4 6,160.7 0.147*** 10.98*** 4,022.4 16,328.0 4.054 -1,988.4 3,982.9 0.071 0.802 46,214.5 127,354.8 2.736 

Monthly -1,585.6 3,177.2 0.080 0.591 60,882.8 143,610.6 2.287 -1,050.2 2,106.4 0.079 0.567 640,346.7 1,828,094.4 2.915 

Neg 

Weekly -5,612.4 11,230.8 0.070** 3.695** 5,507.9 11,446.0 1.933 -3,070.7 6,147.3 0.071 1.899 4,805.4 8,715.6 1.745 

Biweekly -3,051.2 6,108.5 0.043 0.351 23,078.8 38,682.9 1.504 -1,699.0 3,403.9 0.064 0.698 11,190.7 23,419.5 2.190 

Monthly -1,528.3 3,062.6 0.047 0.186 82,423.4 127,506.6 1.438 -878.9 1,763.9 0.088 0.454 41,810.5 103,181.8 2.487 

Panel B: Comparison with other distributions (AIC) 
Data Block GEV L-norm Gamma Cauchy IG Burr GPD GEV L-norm Gamma Cauchy IG Burr GPD 

Comp 

Weekly 12,037.0 12,122.0 12,443.7 12,658.1 14,142.8 19,418.8 12,187.1 7,326.7 7,371.5 7,669.8 7,973.3 8,280.7 11,978.1 7,336.0 

Biweekly 6,532.0 6,559.9 6,809.7 6,784.2 7,663.6 11,035.5 6,546.7 4,125.5 4,140.3 4,248.1 4,483.5 4,195.8 4,381.5 4,131.9 

Monthly 3,255.2 3,281.9 3,390.4 3,381.8 3,254.0 3,613.0 3,274.1 2,234.5 2,169.9 2,192.4 2,331.6 2,220.0 2,310.1 2,168.6 

Mal 

Weekly 9,456.8 10,002.5 10,342.9 11,870.8 11,390.3 14,390.3 9,130.6 6,819.8 6,754.1 6,975.7 7,581.6 7,938.0 10,429.1 6,506.8 

Biweekly 6,160.7 6,067.6 6,207.3 6,630.3 7,176.4 9,497.9 5,845.2 3,982.9 3,983.3 4,098.0 4,320.5 4,653.2 6,557.0 3,990.0 

Monthly 3,177.2 3,266.2 3,227.2 3,349.3 3,788.5 5,214.9 3,225.1 2,106.4 2,114.6 2,139.5 2,241.4 2,141.2 2,247.9 2,109.3 

Neg 

Weekly 11,230.8 11,132.4 11,424.8 11,834.4 13,087.3 17,409.2 10,647.9 6,147.3 6,229.7 6,677.9 6,501.2 7,009.4 9,902.6 6,195.2 

Biweekly 6,108.5 6,130.1 6,304.5 6,353.9 7,296.2 10,040.6 6,187.7 3,403.9 3,452.3 3,647.6 3,642.2 3,409.5 3,682.3 3,412.8 

Monthly 3,062.6 3,066.7 3,168.7 3,177.6 3,117.3 3,372.1 3,065.2 1,763.9 1,775.0 1,839.2 1,898.1 1,781.4 1,883.6 1,772.9 

Panel C: GPD fitting results for malicious loss series 
Data Block Loglik AIC K-S Threshold Scale Shape Data Block Loglik AIC K-S Theshold Scale Shape 

Mal 
Weekly -4,563.2 9,130.6 0.000 0.99 4,813.9 2.755 Comp Month 1,087.3 2,179.4 0.138 0.99 859,777.4 3.460 

Biweekly -2,920.6 5,845.2 0.035 0.99 21,057.8 2.442 
Mal Week 3,251.4 6,642.8 0.012 0.99 11,668.7 3.240 

Neg Weekly -5,321.9 10,647.9 0.008 0.99 13,802.5 1.535 

Note: *, ** and *** indicate that the p-value is less than the significance levels, 10%, 5% and 1%, respectively. K-S and A-D stand for Kolmogorov-Smirnov test and Anderson-Darling test, respectively, and Loc 
stands for the location parameter. In panel B, L-norm, IG, and GPD stand for lognormal, inverse Gaussian, and generalized Pareto distribution, respectively. Note that there is no location parameter in panel C for GPD 
fitting because the mean of GPD distribution in the tail is theoretically infinite (Maillart and Sornette, 2010). 
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Figure D1: Graphical diagnosis of GEV fitting results. Each data type incorporates three different plots to check whether the fitting is good: QQ plot, probability 
density plot and cumulative density plot.  
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Figure D2: Graphical diagnosis of GPD fitting for seven series that fail to fit GEV.
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Appendix E. Numerical results of dependence modeling 

Table E1. Dependence Model Fitting Results 

Panel A: Test for extreme dependency with Pickands function 
 Entire period Pre-2014 Post-2014 

 Weekly Biweekly Monthly Weekly Biweekly Monthly Weekly Biweekly Monthly 

Pickands test 0.338*** 0.027* 0.025 0.381*** 0.032** 0.027 0.042** 0.024 0.024 

Panel B: Bivariate extreme value copulas 
Family Copula Weekly Biweekly Monthly Weekly Biweekly Monthly Weekly Biweekly Monthly 
Extreme 
Value 

GH - - 1.702 
(0.192) 

- - -0.381 
(0.086) 

- -0.865 
(0.142) 

1.989 
(0.327**) 

Galambos - - 1.646 
(0.189) 

- - -0.102 
(0.086) 

- -0.971 
(0.136) 

1.890 
(0.242) 

Tawn 
 

- - 1.593 
(0.189) 

- - -0.362 
(0.098) 

- -0.484 
(0.205) 

2.000 
(0.375**) 

Husler-
Reiss 

- - 1.617 
(0.186) 

- - 0.054 
(0.103) 

- -1.032 
(0.131) 

1.870 
(0.227**) 

Elliptical Gauss 1.733 
(0.043**) 

1.995 
(0.026) 

- 1.996 
(0.029) 

1.921 
(0.031) 

- 0.739 
(0.028) 

- - 

t 3.790 
 (0.415***) 

4.014 
(0.040) 

- 3.665 
(0.492***) 

3.675 
(0.045**) 

- 2.808 
(0.045) 

- - 

Archi-
mean 

Clayton -2.410 
(0.054**) 

1.968 
(0.027) 

- 0.593 
(0.027) 

0.865 
(0.028) 

- 1.315 
(0.024) 

- - 

Frank 1.973 
(0.043**) 

1.709 
(0.024) 

- 1.999 
(0.029) 

1.212 
(0.030) 

- -0.013 
(0.023) 

- - 

Joe 2.000 
(0.044*) 

1.632 
(0.030) 

- 2.000 
(0.029) 

0.440 
(0.040) 

- 1.957 
(0.055**) 

- - 

Panel C: Parameter estimation 
 Weekly Biweekly Monthly Weekly Biweekly Monthly Weekly Biweekly Monthly 

Size of parameter 0.105 1.024 0.090 0.080 1.051 1.109 0.524 0.675 0.221 

Note: *, ** and *** indicate that the p-value is less than the significance levels, 10%, 5% and 1%, respectively. In panel B, the figures without parentheses indicate Akaike information criteria and 
the figures in parentheses account for the statistics of the goodness-of-fit test for extreme value copulas. Bold indicates the best fit model for the corresponding series. 
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Appendix F. Additional description on reinsurance design 

Prior to pricing an insurance policy using the premium principles in Section 5.2, we need to 

model the loss process, 𝑋 , which is a compound process using the collective risk model. 

Specifically, we use the combination of the Monte Carlo method with POT for severity 

reflecting the heavy-tailedness of cyber risk and the bootstrapping method for frequency to 

generate a compound loss process. The compound process is described as 

𝜆௧ = ෍ 𝑋௜,௧

ே೟

௜ୀଵ

, (F.1) 

where 𝑡 = 1,2, … is discrete time on a monthly basis, 𝑋௜,௧ is a monthly severity process, and 𝑁௧ 

is a monthly count process. We assume that the monthly severity process and the monthly count 

process are independent and each process is independent and identically distributed (i.i.d.). 

One of the key issues in cyber risk (particularly, data breach risk) is how to measure the 

economic cost of the breach (Eling and Jung, 2018). A standard measurement method has not 

yet been developed in either academia or industry as a number of factors can affect the 

translation from a data breach to its economic cost (e.g., company size, industry, revenue, type 

of information breached, and other company-specific factors). In this application, we apply the 

2018 estimate of the average cost of data breach loss across industry by the Ponemon Institute 

(2018), which is $148 per record, to define the loss in monetary units. 

We then use equations (23) and (24) to derive the premium estimates for the reinsurer and the 

insurer in the portfolio. We assume the quota level to be 25%, as used in some examples (see, 

e.g., Federal Insurance Office, 2014), and the assumed quota is applied to the premium 

estimation by equation (23). The contract duration is assumed to be one year for the portfolio; 

hence, the coverage limit for CatXL is set by the PMCL estimates likely to happen in the next 

year, as shown in Table 3. We diversify the limit for different risk types (malicious vs. negligent) 

and data period (entire vs. pre-2014 vs. post-2014) as done in Table 3. We also assume the fixed 

level of deductible for individual exposure, $500,000, which is around the mean value in the 

current cyber-insurance market, where the deductible usually varies between $5,000 and $1 

million with the asset value of an insured (Romanosky et al., 2017). Thus, we only consider the 

loss amount above the deductible per exposure in the reinsurance portfolio.
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Appendix G. Fitting Peaks-over-Threshold 

In this section, we illustrate the numerical result of POT fitting and the graphical diagnosis on 

the fitting result. POT in this practice consists of lognormal distribution in the body below the 

99% threshold and the generalized Pareto distribution in the tail above the threshold. We check 

two other models with gamma distribution and Weibull distribution in the body for the sake of 

comparison and find that the model with lognormal distribution in the body generates the lowest 

AIC. Although it fails to show a perfect fit in the graphical diagnosis (see Figure G1), we use 

the POT model with lognormal distribution in the body to compare with our GEV approach. 

The results in Table G1 show that the loss processes for the post-2014 period generally have a 

higher tail index (shape parameter) than those for the pre-2014 period do (particularly for the 

complete and malicious risk). This result is reflected in panel C of Table 3 in Section 5.1 by the 

estimated loss size, which indicates that the predicted amounts based on the post-2014 database 

are on average 9.3 times larger than those based on the pre-2014 database across three quantiles. 

The difference between malicious and negligent risks turns out to be significant as the estimates 

of malicious risk are on average 10.2 times bigger than those of negligent risk across three data 

periods. However, the extreme loss estimates by POT are not comparable in size with PMCL 

estimates in Table 3, showing that POT estimations might underestimate the size of dragon king 

loss for the future prediction.  

Table G1. POT (Lognormal-GPD) Estimation 

  
Statistics 

Parameters  
(body-Lognormal) 

Parameters 
(tail-GPD, 99% threshold) 

Period Data-type Loglik AIC Mean SD Scale-Tail Shape-Tail 
Entire Composite 62,621.8 -125,239.6 7.923 2.689 335.5 m 0.178 

Malicious 22,040.2 -44,076.4 8.166 3.344 503.3 m 0.190 
Negligent 40,421.8 -80,839.6 7.804 2.297 170.7 m 0.249 

Pre-
2014 

Composite 36,362.9 -72,721.8 7.913 2.522 42.0 m 0.184 
Malicious 10,438.7 -20,873.5 7.873 3.180 55.8 m 0.149 
Negligent 25,846.7 -51,689.3 7.939 2.254 16.3 m 0.288 

Post-
2014 

Composite 26,239.0 -52,474.1 7.948 2.948 484.0 m 0.188 
Malicious 11,581.8 -23,159.5 8.443 3.472 661.8 m 0.162 
Negligent 14,528.8 -29,053.5 7.602 2.479 282.5 m 0.153 

Note: SD and m stand for standard deviation and million respectively. 
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Figure G1: Graphical diagnosis on POT (lognormal-GPD) fitting results for the entire, pre-2014 and post-2014 periods. Each data type incorporates four different 
plots to check whether the fitting is good: Return level plot (upper-left), QQ plot (upper-right), P-P plot (lower-left) and density plot (lower-right). 
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Essay III 

Decision-making on cyber risk management: Interaction 
between market insurance and risk control measures 
under prospect theory  

 

 

Abstract 

This paper studies decision-making on cyber risk management in the presence of interdependent 

risk, comparing market insurance, self-protection and self-insurance. Our economic decision 

model reflects interdependent risk and loss aversion, a combination that—to the best of our 

knowledge—has not been examined in the literature, but is increasingly relevant in an 

interconnected world. We find that an agent with self-protection as the reference point is likely 

to not invest in other risk management activities (market insurance and self-insurance), 

providing support for the anecdotal evidence of a fatalistic behavior with respect to cyber risks 

(i.e., a perceived underinvestment in cyber risk management, which becomes rational in our 

decision model). However, we empirically show that the demand for additional risk 

management activities might increase as agents are exposed to increasing frequency rate year-

by-year. The focus of our paper is the increasingly relevant field of cyber risk, but the results 

can be generalized to any other interdependent risk. 
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1 Introduction 

The “WannaCry” ransomware attack in 2017 affected more than 200,000 computers running 

the Microsoft Windows operating system in 150 countries within one day; the estimated total 

monetary loss reached almost $4 billion (Berr, 2017). Deep Root Analytics, a data analysis 

company in the U.S., exposed a database including the personal information of 200 million 

American voters online in 2017 (Grenoble, 2017), a disclosure very different from the 

“WannaCry” attack, but a realistic threat and concern for firms, policy-makers and 

individuals.82F

83 Such extreme events are less likely to occur than the smaller cyber events of daily 

life (Eling and Wirfs, 2019), but can trigger huge, catastrophic consequences. 

One of the key specifics in cyber risk to trigger a systemic loss is the interconnection in the 

network environment. For instance, anonymous attackers successfully paralyzed a number of 

web services operated by Domain Name System and hijacked millions of internet-connected 

household appliances in October 2016 (Perlroth, 2016). This distributed denial of service attack 

was possible due to the spread of networked home electronics. The success rate of this kind of 

attack and the size of loss are expected to grow as the Internet of Things expands and the 

interconnection becomes more complicated (Ernst & Young, 2015). 

Cyber events in the interconnected network environment might significantly disrupt businesses 

in a range of fields, leading to an increase in the awareness of cyber risk among policy-makers, 

regulators and decision-makers in firms.83F

84 This should motivate decision-makers to invest 

substantial resources in cyber risk management, including the option to buy insurance to 

transfer this risk. However, several surveys reveal a perception that decision-makers regard 

cyber events (e.g., hacking, unintended disclosure or intentional breach by an insider) as rather 

unrealistic to themselves, until they finally experience a loss.84F

85 

                                                      
83  Other examples are the data breaches resulting from the hacking of Yahoo in 2013 (three billion accounts) and 

FriendFinder in 2016 (412 million users); see Armerding (2018) for the biggest data breach events in history. 
84  For example, PricewaterhouseCoopers (2017) conducts a survey with 9,500 decision-makers across 122 

countries and documents the increasing awareness of potential consequences by cyber events. The estimated 
global loss of cybercrime is in an area of $600 billion (see, e.g., CSIS, 2018). 

85  For instance, de Smidt and Botzen (2018) conducted a survey with 172 professional decision-makers in the 
Netherlands and call this type of perception “not-in-my-organization effect” (p. 247). Jalali et al. (2019) also 
argue that many organizations constantly ignore or underestimate cyber risk. This sort of perception can be 
called “optimism bias” against a catastrophe event (or a negative event), as defined by Weinstein (1980). The 
author finds evidence of unrealistic optimism—namely agents believe that it is less likely for them to 
experience negative events than for others. This bias has also been studied in the insurance context, where, for 
example, people are more likely to insure against modest risk with high probability than against extreme risk 
with low probability (see, e.g., Schanz, 2019, for an overview of behavioral biases in the insurance research). 
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Some decision-makers also seem to have a fatalistic behavior toward cyber risk. Even if a threat 

becomes more realistic, no single party can be fully secure anyway (no matter what cyber risk 

management strategy is implemented); thus, decision-makers might perceive that the threat will 

not happen to them. Two recent surveys by the U.K. Government (DCMS, 2018) and EIOPA 

(2018) support this observation by showing that the most common reason not to take up cyber-

insurance is that the decision-makers do not see themselves at high risk.  

Extant literature about how agents make decisions facing (cyber) risk has already documented 

several results with respect to self-protection and the purchase of (cyber-) insurance.85F

86 However, 

all the above studies assume decision-makers under risk aversion, which—as indicated above—

might not very well describe the actual behavior of market participants. Furthermore, no study 

has investigated a behavioral bias like the unrealistic optimism in the presence of 

interdependent risk. 

To fill this gap in the literature, we study decision-making on interdependent cyber risk in the 

context of prospect theory (Kahneman and Tversky, 1979). We assume that agents are more 

averse against a loss than against a gain by comparing possible outcomes with a reference 

point.86F

87 The reference points considered in this paper rely on two possible instruments: self-

protection and self-insurance. Self-protection is the key to describe the status quo of business 

parties in the network environment to build a realistic set-up in the cyber risk context. It also 

plays the role of a public good (Lohse, Robledo and Schmidt, 2012), which can affect the loss 

probability of other agents in the interconnected network environment. In contrast, self-

insurance does not affect the risk of others, but rather reduce the loss amount that the agent can 

face with as a private good (Ehrlich and Becker, 1972). 

We develop a conceptual model by comparing potential decisions on market insurance, self-

insurance, and both options in the presence of self-protection with the reference points under 

                                                      
86  With respect to insurance in general see Ehrlich and Becker, 1972; Hofmann, 2007; Mürmann and Kunreuther, 

2008; Alary, Gollier and Treich, 2013. With respect to cyber insurance, the level of investment in the security 
system and the demand of insurance are modeled ( see, e.g., Gordon and Loeb, 2002; Lelarge and Bolot, 2009; 
Shetty et al., 2010; Öğüt, Raghunathan and Menon, 2011; Hofmann and Ramaj, 2011; Wang, 2017). Several 
studies analyze the impact of interdependency between network systems on loss probability (see, e.g., Lelarge 
and Bolot, 2009; Shetty et al., 2010; Öğüt, Raghunathan and Menon, 2011; Hofmann and Ramaj, 2011). Some 
studies incorporate the lack of proving the loss occurrence by an insurer, which can be linked with the presence 
of information asymmetry (see, e.g., Lelarge and Bolot, 2009; Öğüt, Raghunathan and Menon, 2011), which 
is not the focus of this paper. One relevant study to our focus is Verendel (2008), who uses prospect theory to 
explain decisions on cybersecurity control. However, the author only considers decisions on self-protection 
measures, not market insurance and self-insurance. In addition, the possibility of interdependency in risks is 
not taken into account. 

87  Mersinas et al. (2016) carried out an experiment with 117 participants, including 59 IT security professionals 
and 58 students, and observed a behavioral bias in line with Kahneman and Tversky’s (1979) finding that IT 
risk managers switch their risk preferences from risk aversion to risk seeking when they experience a loss. 
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interdependent risk.87F

88 Based on the reference points and the model framework, we find that an 

agent with the reference point of self-protection as an essential effort against cyber risk is likely 

to not invest in additional risk management measures (market insurance and self-insurance). 88F

89 

A fatalism with respect to cyber losses (thus, a demand side anomaly) is that agents stay 

uninsured despite increasing awareness, so the presence of cyber risk becomes rational in our 

decision model.89F

90  We also provide an empirical explanation of our theoretical findings 

considering the historical frequency rate of cyber losses. 

Our findings are important for better understanding the nature of cyber risks and their 

consequences for decision-making on cyber risk management. The results are useful for risk 

managers and IT professionals in firms and insurance companies that are developing cyber-

insurance policies. For firms, the results are important not only for decisions on internal risk 

management, but also for new requirements of reporting cyber incidents because the 

requirement emphasizes the importance of risk control measures (Eling and Wirfs, 2019).90F

91 

Furthermore, this paper contributes not only to the growing literature on cybersecurity in the 

business and economics domain (e.g., Nagurney and Shukla, 2017), but also to the general 

business and economics literature in that it applies a descriptive decision model (prospect theory) 

in the presence of interdependent risk.91F

92  

                                                      
88  Table A1 in Appendix A categorizes the models for decision-making under risk into whether they consider 

risk control measures and loss aversion under the presence of interdependent risk and illustrates the positioning 
of this study. As observed in the table, no study has looked at loss aversion (prospect theory) under 
interdependent risk. We further clarify our contribution in Table A2 by comparing our paper with two studies 
on insurance decision under loss aversion. 

89  Eckles and Volkman-Wise (2019) attempt to explain, using prospect theory-type preferences, several 
phenomena that cannot be explained by the expected utility theory. In particular, the phenomena studied in the 
paper are the preference for low deductibles, the lack of demand for catastrophe insurance and the over-demand 
to insure small losses. Furthermore, they find that agents under loss aversion (𝜆 > 1, where 𝜆 is the loss 
aversion parameter) tend to demand less insurance than agents under the expected utility theory. Our finding 
is exactly in line with their finding that agents with prospect theory-type preferences (loss aversion) are willing 
to take on more risk to avoid losses.  

90  To argue that the behavior described in our decision model is rational, one might have to question whether loss 
aversion is rational. Tversky and Kahneman (1991) clarify it by concluding that the reference-dependent 
decision under loss aversion can be justified as a rational behavior when the consequences by the corresponding 
effect of the reference point on the decision are indeed experienced. This idea has also been employed in other 
contexts, such as decision-making about pension/old-age provision by Binswanger (2007), where the study 
evaluates normative decisions using loss aversion assumption (specifically, the lexicographic loss aversion 
model). 

91  In the U.S., reporting requirements for data breaches have been introduced in many states since 2002 (NCSL, 
2019). In the European Union such reporting requirements will apply from 2018 (European Union, 2016). 
After their enforcement, more data and information will be available. This has already happened with data 
samples in the U.S. as the Privacy Rights Clearinghouse “Chronology of Data Breaches” (PRC, 2019). 

92  Apart from cyber risk context, Kunreuther and Pauly (2018) find a perception that many uninsured individuals 
decide to take up insurance only after suffering a loss. In particular, this perception can be observed from the 
fact that, for the low-probability, high-consequence (LP-HC) events, individuals rarely experience a loss event 
either personally or socially by observing first-hand other people’s losses from disasters. This perception can 
be explained by our framework because interdependent risk is also a matter for disaster risk or disease risk 
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The remainder of this paper is organized as follows: We provide a brief illustration on our 

descriptive decision model (prospect theory) in Section 2 and develop our model framework by 

describing interdependent risk, market insurance and reference points in Section 3. This 

framework is used to show how agents make decisions on market insurance and risk control 

measures with different reference points in Section 4. Finally, Section 5 presents the conclusion. 

2 Theoretical background: Prospect theory 

The expected utility theory is based on the assumption that an individual makes a decision under 

risk by maximizing her expected utility over some final states of wealth (von Neumann and 

Morgenstern, 1953); the two economic states typically considered in the insurance domain are 

determined by a loss occurrence. A pre-defined (concave) utility function depending on the risk 

preferences is used to determine the utility level; however, the theory assumes dependence on 

the final wealth for the utility level, which largely simplifies the analysis on individual choice 

over risky prospects (Tversky and Kahneman, 1991).  

Prospect theory developed by Kahneman and Tversky (1979) is based on the assumption that 

an individual dislikes a loss more than she likes a gain of a comparable size; hence, the level of 

utility in an economic situation is determined by the gain-loss domain. An individual makes a 

decision on the purchase of insurance based not on the final wealth, but on gains and losses 

compared to a reference point. This implies that gains and losses count the opportunity cost by 

comparing a potential decision with the reference point. Tversky and Kahneman (1992) 

complement their initial model (Kahneman and Tversky, 1979) by taking into account the 

cumulative functional form separately to gains and losses, thereby resolving two possible 

problems of the first model: lack of the explanation on stochastic dominance and lack of ability 

to accommodate a large number of outcomes. 

We consider an individual facing two possible outcomes in an economic situation, 𝑥ଵ and 𝑥ଶ. 

The individual has the loss probability, p, and makes decisions using a value function (hereafter, 

KT value function) and a probability weighting function (hereafter, KT weighting function). 

The probability weighting function is a non-linear form reflecting overweight on less likely 

events and underweight on more likely events. The function features rank-dependent weighting, 

and the violation that the sum of the subjective probability by the function is not 1. The 

                                                      
(e.g., cancer) so that vulnerability of an individual (or property) can affect the neighborhood; hence, our 
framework can be generalized to this context. 
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mathematical expressions of the value function and non-linear weighting functions are (Tversky 

and Kahneman, 1992): 

𝑣(𝑥) = ൜
𝑥ఈ

−𝜆(−𝑥)ఈ         
𝑖𝑓 𝑥 ≥ 0
𝑖𝑓 𝑥 < 0

 , (1) 

𝜃ା(𝑝) =
𝑝ఊ

(𝑝ఊ + (1 − 𝑝)ఊ)ଵ/ఊ
 , (2) 

𝜃ି(𝑝) =
𝑝క

(𝑝క + (1 − 𝑝)క)ଵ/క
 , (3) 

where 𝛼 ∈ [0,1] is a parameter to determine the diminishing sensitivity for concavity in the gain 

domain and for convexity in the loss domain, 𝜆 is a loss aversion parameter, and 𝛾 and 𝜉 are 

probability weighting parameters differentiated depending on the gain or loss state. Tversky 

and Kahneman (1992) propose the values of 𝛼  (= 0.88) and 𝜆  (= 2.25) with the median 

parameters found from their experimental study. In this value function (see Figure 1), a loss is 

defined by a negative value of 𝑥, whereas a gain is defined by a positive value. The diminishing 

sensitivity, 𝛼, indicates that an individual is risk averse in the gain state (𝑥 ≥ 0) and risk seeking 

(i.e., loss averse) in the loss state (𝑥 < 0)—that is, 𝑣ି
ᇱᇱ > 0, 𝑣ା

ᇱᇱ < 0,  where 𝑣ି
ᇱᇱ is the second 

order condition in the loss domain and 𝑣ା
ᇱᇱ is the second order condition in the gain domain. The 

reference point at the origin in Figure 1 is not differentiable (inflection point), and the higher 

curvature appears in the loss state than in the gain state.  

The expected value of the “prospect” (an economic situation) is determined by the combination 

of the value function and the weighted probability as follows: 

𝑉 = 𝜃ା(𝑝) ∙ 𝑣(𝑥ଵ) + 𝜃ି(𝑞) ∙ 𝑣(𝑥ଶ), (4) 

where 𝑥ଵ  and 𝑥ଶ  indicate outcomes of two states (gain and loss) and 𝑝  and 𝑞  are the 

corresponding probabilities. The expected value of the “prospect” can be defined as subjective 

expected value for the decision-making, which is conceptually equivalent to the expected utility 

theory. The probability applied to the states is the subjective probability measure analytically 

calculated using the probability weighting function. According to the theory, very small 

probabilities are either overweighted or rounded to 0 (Kunreuther and Michel-Kerjan, 2014; 

Schmidt, 2016). 
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Figure 1. The shape of the value function. The curvature of the gain 
state is concave, whereas that of the loss state is convex. 𝜆 is the 
parameter of the loss aversion, showing how convex the curvature is. 

3 Model framework 

3.1 Modeling interdependency with self-protection 

Economic agents92F

93 nowadays operate their business in an interconnected network environment, 

represented in Figure 2 with nodes as atomic elements controlled by agents (Böhme and 

Schwartz, 2010). If one agent were breached in an attack, there would be a high likelihood that 

the remaining agents in the environment would be breached as well.93F

94 This indirect risk to the 

other agents results in externality and is of importance in the network environment, because a 

systemic risk by a global hacking attack or virus can take place. 

 
Figure 2. Interconnected network environment between agent i and agent j. 

                                                      
93  Following Böhme and Schwartz (2010), we use “agent” to describe possible economic entities looking for 

cyber-insurance. Potential agents of cyber-insurance include firms, individual clients and governmental and 
non-governmental institutions, according to Böhme and Schwartz (2010).  

94  Hofmann (2007) and Mürmann and Kunreuther (2008) also parameterize both direct and indirect risks into the 
model to reflect the possibility of contagion risk from other sources. However, neither study considers the 
degree of interdependency, counting only the presence of interdependency. 
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For simplicity, suppose that there are two agents (i and j) in the network. Each agent makes a 

monetary effort on enhancing the security system denoted by 𝑠௜ and 𝑠௝. These efforts represent 

all possible management activities by the agents to improve their security levels, such as the 

financial investment in updating the security software, cybersecurity training for employees, 

the production of a manual for possible scenarios and regular investigations into security. In the 

insurance context, this kind of effort is called self-protection, which can reduce the loss 

probability (Ehrlich and Becker, 1972). The loss probability of each agent is characterized by a 

defense function with the self-protection effort defined by Böhme and Schwartz (2010)94F

95 

𝑝 = 𝐷(𝑠, 𝐺), (5) 

where G is a function of network topology indicating 0 when the network is connected and 1 

when it is disconnected and 𝐷(𝑠, 𝐺) ∈ [0,1]. In this paper, we consider the interconnected 

network environment, leading to 𝐷(𝑠) = 𝐷(𝑠, 𝐺) . The defense function 𝐷(∙)  satisfies the 

following assumption: 

Assumption 1: 

(i) The loss probability decreases with the increasing level of the security investment: 

𝜕𝐷(𝑠)

𝜕𝑠
< 0. (6) 

(ii) Increasing marginal loss probability over the marginal self-protection level is 

present: 

𝜕ଶ𝐷(𝑠)

𝜕𝑠ଶ
> 0. (7) 

(iii) The loss probability cannot reach zero despite the substantial capacity of the agent 

to invest in security: 

lim
௦→ஶ

𝐷(𝑠) > 0. (8) 

Assumption 1 describes that the defense function is convex and assumes positive externality; 

however, the risk will not disappear even if the agent spends infinite amounts for self-protection. 

In other words, the rate of risk reduction slows down as the level of self-protection is higher; 

hence, no security measure can fully eliminate the risk. 

                                                      
95  The loss probability in the cyber risk context is also called vulnerability, which indicates the probability that a 

breach attack is successful (Gordon and Loeb, 2002; Wang, 2017). We stay with the term loss probability, 
meaning that the loss occurs when a system is breached. 
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At the core of the model is interdependent risk. Mürmann and Kunreuther (2008) provide a 

theoretical background on the optimal level of self-protection and insurance in the presence of 

interdependent risk.9 5F

96 Here, following Hofmann (2007) and Mürmann and Kunreuther (2008), 

we consider the presence of interdependent risk, but all agents invest in the security system for 

self-protection. The probability of cyber loss for agent i in this setting can be defined as 

𝑝௜ = 𝐷௜(𝑠௜) + ൫1 − 𝐷௜(𝑠௜)൯ × 𝐷௝൫𝑠௝൯ ∈ [0,1]. (9) 

The loss probability of agent i (= 𝑝௜) is affected by the externality from interconnected agent j 

with its defense function, 𝐷௝൫𝑠௝൯ . This implies that the size of self-protection by agent j 

influences the loss probability of agent i. Following Mürmann and Kunreuther (2008), we also 

assume that the externality is perfect in our model, which means that the incurred loss in one 

policyholder spreads to the other policyholder with certainty. Given Assumption 1, the 

following assumption also holds: 

Assumption 2:96F

97 

(i) Diminishing loss probability with interdependent risk over increasing self-

protection level: 

𝜕𝑝௜

𝜕𝑠௜
< 0. (10) 

(ii) Increasing marginal loss probability with interdependent risk over increasing 

marginal self-protection level: 

𝜕ଶ𝑝௜

𝜕𝑠௜
ଶ > 0. (11) 

(iii) The loss probability with interdependent risk does not disappear despite the agent’s 

substantial capacity to invest in self-protection: 

lim
௦೔→ஶ

𝑝௜(𝑠௜) > 0. (12) 

                                                      
96  Mürmann and Kunreuther (2008) call the interdependent risk contamination between agents and consider the 

case of no contamination in comparative statics. However, no contamination between agents is not the case for 
the cyber risk context, especially in the hyper-connected world with the Internet of Things. Therefore, we do 
not take into account the case of no contamination in our model. 

97  Given that assumption 1 holds, assumptions (2-i) and (2-ii) can be derived in the following way: 
𝜕𝑝௜

𝜕𝑠௜

= 𝐷௜
ᇱ(𝑠௜) − 𝐷௝൫𝑠௝൯ ∙ 𝐷௜

ᇱ(𝑠௜) = ቀ1 − 𝐷௝൫𝑠௝൯ቁ ∙ 𝐷௜
ᇱ(𝑠௜) < 0, 

𝜕ଶ𝑝௜

𝜕𝑠௜
ଶ = ቀ1 − 𝐷௝൫𝑠௝൯ቁ ∙ 𝐷௜

ᇱᇱ(𝑠௜) > 0, 
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3.2 Market insurance design and self-insurance 

The cyber-insurance market, particularly in the U.S. where the market is currently most 

developed, typically provides policies with deductibles, premiums between $10,000 and 

$100,000, and cover limits between $10 million and $50 million (Romanosky et al., 2017). The 

deductibles are, generally speaking, as low as $5,000 and reach amounts between $500,000 and 

$1 million for insureds, whose asset values are around $1 billion or more.97F

98 We denote the 

deductible with 𝑑  and additionally consider a loading factor (= 𝛿) proportional to the loss 

probability to account for cost in underwriting cyber-insurance. The price of cyber-insurance 

relies on the level of self-protection. Note that the presence of information asymmetry possibly 

leading to adverse selection and moral hazard is not taken into account in this study. The 

indemnity 𝐼 and the premium 𝜋 with the deductible are defined as (Zweifel and Eisen, 2012, 

Chapter 3) 

𝐼 = max[𝐿 − 𝑑, 0] ∙ 𝛽 = (𝐿 − 𝑑)ା ∙ 𝛽, (13) 

𝜋 = (1 + 𝛿) × 𝑝௜ × 𝐼, (14) 

where 𝐿 is a loss and 𝛽 is the coverage of a proportional insurance with the loading factor 𝛿. 

Self-insurance does not influence loss probability (Ehrlich and Becker, 1972), meaning that loss 

probability in the presence of interdependent risk is not affected by the implementation of self-

insurance.9 8F

99 Following Böhme and Schwartz (2010), we embed self-insurance into our model 

by denoting the level of self-insurance for agent i with 𝑔௜ ∈ [0,1] and a cost function of self-

insurance by 𝐾(𝑔௜). We assume that the cost function of self-insurance is concave with respect 

to 𝑔௜ (𝐾ᇱ(𝑔௜) > 0, 𝐾ᇱᇱ(𝑔௜) < 0).  

3.3 Reference points 

A key approach to analyze decision-making under loss aversion is to set the reference point 

(Tversky and Kahneman, 1991). A decision-maker makes use of the reference point by 

comparing it with a potential decision, thereby framing the gain and loss of the decision. For 

example, for insurance decision-making, the reference point is compared with an insurance plan 

                                                      
98  Romanosky et al. (2017) analyzed 100 cyber-insurance policies and documented that cyber-insurance carriers 

are mainly concerned about the correlated risk (interdependent risk between network systems), leading to a 
systemic risk but not so much the possible information asymmetry. 

99  Self-insurance in this paper can be described by a loss reduction activity as part of the risk control plan 
(Hofmann and Peter, 2016). Several forms of self-insurance have been implemented in practice. For example, 
Ehrlich and Becker (1972) regard sprinkler systems as a self-insurance measure to reduce the size of a loss 
from fires. In the context of cyber risk, Grossklags et al. (2008) exemplify self-insurance activity with having 
good backups or conducting regular backups. 
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that could be bought. We consider two possible reference points under prospect theory: status 

quo with self-protection and status quo with both self-protection and self-insurance. The 

reference point based on self-protection is cyber-specific because all business parties are 

connected via computerized operations and today’s network systems require regular security 

updates. 

Status quo with self-protection as a public good 

As a reference point, we assume that all agents make investments in regular security updates to 

protect against possible cyber-attacks. This self-protection effort reduces loss probability. It 

could also be that the government requires all economic parties to enhance their security 

systems to a certain level. This definition of the reference point is material in that the positive 

externality from concurrent efforts in the interconnected network environment matters to social 

welfare. Therefore, this positive externality plays a role in promoting the public good.99F

100 

We compare two scenarios with this reference point: decisions on market insurance with self-

protection and decisions on self-insurance with self-protection. All scenarios assume that the 

self-protection measure is implemented in any decision circumstance to build a realistic setting.  

Status quo with both self-protection and self-insurance 

Here the agent makes an investment in enhancing its security system to protect itself against a 

possible cyber-attack and conducts a self-insurance plan simultaneously with self-protection. 

The self-insurance plan can reduce the magnitude of a loss, particularly for a potential extreme 

cyber case, but it does not serve as a public good because it reduces the size of a loss only for 

those who invest in self-insurance. It can thus be regarded as a private good (Grossklags et al., 

2008), which provides a benefit only for the agent implementing the plan. Simultaneous 

implementations on risk control measures might impose a significant cost to the agent, but 

reduce the loss probability and size. This definition of the reference point is material in that it 

can show interaction between market insurance and both risk control measures. 

In addition, a safe option with the maximum effort as the reference point is plausible for a 

prospective cyber-insured, which could offer a boundary value to the insured in decision-

making. Schmidt (2016) defines the safe option as the purchase of insurance with full coverage; 

however, full insurance is not a realistic option in the current cyber-insurance market, as 

                                                      
100  To the best of our knowledge, there has been no literature to investigate decision-making on self-protection 

under prospect theory. However, several studies identify the equilibrium under expected utility theory that the 
interdependent nature of risk leads one to underinvest in self-protection when there exists a positive externality 
from another’s self-protection measure and a limiting insurance coverage can improve individual or social 
welfare (Hofmann, 2007; Mürmann and Kunreuther, 2008). 
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discussed in Section 3.2. (because of cover limits and deductibles). Thus, we set the safe option 

as the possible maximum effort on risk controls by agents.100F

101  We compare one possible 

scenario with this reference point: decisions on market insurance only with self-protection. In 

this case, we assume that market insurance is the substitute for self-insurance and the agent 

continues to maintain self-protection efforts as the basic risk management tool. Table 1 

summarizes the parameters of the model. We focus on a model with two states of the world, 

either a loss state or a no-loss state, whose components are illustrated in Table 2.101F

102  

Table 1. Model Parameters 

Notation Explanation 
𝒗(∙) Value function 
𝑾 Initial wealth 
𝑳 Loss amount 
𝑫𝒊(𝒔𝒊) The defense function for agent i as a function of the self-protection level 

(𝑠௜ ∈ [0, 𝑊]) 
𝑫𝒋(𝒔𝒋) The defense function for agent j as a function of the self-protection level 

(𝑠௝ ∈ [0, 𝑊]) 
𝒑𝒊 The loss probability of agent i in the presence of interdependent risk 
𝒅 Deductible (0 ≤ 𝑑) 
𝛅 Proportional loading factor (𝛿 ∈ [0,1]) 
𝜷 Insurance coverage (𝛽 ∈ [0,1]) 
𝑰 Indemnity with deductible 
𝝅 Cyber-insurance premium 
𝒈𝒊 The level of self-insurance (𝑔௜ ∈ [0,1]) 
𝑲(𝒈𝒊) A cost function of self-insurance 

In summary, the following points reflect the features embedded in our framework, which affect 

the decision-making on cyber risk management and the current cyber-insurance market: 

1. The presence of interdependent risk in the network environment. 

2. Realistic design for insurance in the current cyber-insurance market: no available full 

coverage (deductible and partial coverage). 

3. Self-protection (essential risk control measure in the interconnected business 

environment) as the reference point. 

However, our model can also be generalized to any decision-making problem in the presence 

of interdependent risk under loss aversion. 

 

 

                                                      
101  As supporting evidence, Baillon et al. (2016) empirically tested with 139 participants what reference points 

they would choose for decision-making and found that the status quo and the maximum outcome that they can 
achieve are most often selected as the reference point. 

102  We apply the structure of tables in Schmidt (2016) to Table 2 for a clear overview of the model framework. 
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Table 2. Model Components 

Reference point 1: Status quo with self-protection (public good) 
 Case 1: Comparison with market insurance (+ self-protection) 
State No-loss Loss 
Probability 1 − 𝑝௜  𝑝௜  
Reference point 𝑊 − 𝑠௜ 𝑊 − 𝑠௜ − 𝐿 
Final wealth 𝑊 − 𝑠௜ − 𝜋 𝑊 − 𝑠௜ − 𝜋 − 𝐿 + 𝐼 
Gain/Loss −𝜋 𝐼 − 𝜋 
 Case 2: Comparison with self-insurance (+ self-protection) 
State No-loss Loss 
Probability 1 − 𝑝௜  𝑝௜  
Reference point 𝑊 − 𝑠௜ 𝑊 − 𝑠௜ − 𝐿 
Final wealth 𝑊 − 𝐾(𝑔௜) − 𝑠௜ 𝑊 − 𝐾(𝑔௜) − (1 − 𝑔௜) ∙ 𝐿 − 𝑠௜  
Gain/Loss −𝐾(𝑔௜) 𝑔௜ ∙ 𝐿 − 𝐾(𝑔௜) 

Reference point 2: Status quo with self-protection and self-insurance (public good + private good) 
 Case 3: Comparison with market insurance (+ self-protection) 
State No-loss Loss 
Probability 1 − 𝑝௜  𝑝௜  
Reference point 𝑊 − 𝑠௜ − 𝐾(𝑔௜) 𝑊 − 𝑠௜ − 𝐾(𝑔௜) − (1 − 𝑔௜) ∙ 𝐿 
Final wealth 𝑊 − 𝑠௜ − 𝜋 𝑊 − 𝑠௜ − 𝜋 − 𝐿 + 𝐼 
Gain/Loss 𝐾(𝑔௜) − 𝜋 𝐼 − 𝜋 + 𝐾(𝑔௜) − 𝐿 ∙ 𝑔௜ 

4 Decision-making on cyber risk management under loss aversion 

In the expected utility theory, the utility level in any state is determined by the final wealth, 

which mostly provides a positive value of utility for the state. On the contrary, the value 

function in prospect theory consists of a positive value from the gain domain and a negative 

value from the loss domain in accordance with a reference point. Thus, a decision-making 

problem can be solved by determining the sign of the value function. In other words, if the value 

function turns out to be positive, a potential decision is preferred over a reference point, whereas 

the reference point is preferred over the decision if the value function is negative.102F

103 

1. 𝑉 > 0 A decision is preferred. 

2. 𝑉 ≤ 0 A reference point is preferred. 

We assume that the decision-maker is a value maximizer with the KT value function to find the 

optimal decision on risk controls and market insurance, thereby solving the following 

optimization problem: 

max
௭∈ℋ

𝑉(𝑧), (15) 

where 𝑧 = (𝑝, 1 − 𝑝, 𝑥ଵ, 𝑥ଶ) in equation (4) and ℋ is a decision space under prospect theory. 

                                                      
103  Andalib et al. (2018) also use the sign of the value function to figure out the desirability of the choice. In other 

words, if the value function is negative, the choice (the scenario in our case) is undesirable. Finding the sign 
of the value function with the reference point of the average project costs, they evaluate an investment project 
upon the framework of the real options valuation. 
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As a benchmark case, the optimal demand for market insurance under the expected utility 

theory can be examined. Eckles and Volkman-Wise (2019) compare the expected utility theory 

and prospect theory by taking a power law utility function similar to CRRA utility for the former. 

This function is comparable with the value function in the gain domain with risk aversion 

(equation 1), and the diminishing sensitivity parameter, 𝛼, can be regarded as the risk aversion 

parameter in [0,1]. Following Eckles and Volkman-Wise (2019), we derive the optimal decision 

on market insurance under the expected utility theory with our model framework. The model 

set-up in Eckles and Volkman-Wise (2019) takes into account the deductible with a loading 

factor as in this paper, but does not count a self-protection measure.  

Our finding is consistent with their finding that agents with self-protection effort under the 

expected utility theory will purchase full insurance given if a fair premium is provided, whereas 

partial insurance is preferred in the presence of a loading factor (see Appendix B.1). However, 

it provides no evidence of agents’ behavioral bias toward extreme cyber events, considering 

them to be unrealistic so they tend to underinvest in risk control measures. In what follows, we 

establish a conceptual framework under loss aversion assumption in contrast with the classical 

decision model by evaluating loss and gain compared to the reference point considering the 

current market circumstance to rationalize this market behavior. 

4.1 Case 1: Comparison with the decision on market insurance 

The reference point is set as the status quo with self-protection in this case; hence, positive 

externality works in the interconnected network environment. A public good potentially 

functions for all relevant parties in the network, and agent i intends to evaluate the optimal 

decision on self-protection and the purchase of market insurance by comparing two options. In 

this case, agent i recognizes the no loss state as a loss due to the premium payment, whereas 

she recognizes the loss state as a gain because of the indemnity payment. With the gain and loss 

values in Table 2, the expected value under prospect theory is defined as 

𝑉 = (1 − 𝑝௜) ∙ 𝑣(−𝜋) + 𝑝௜ ∙ 𝑣(𝐼 − 𝜋). (16) 

Clearly, it needs to hold that the indemnity is larger than the premium to derive a gain and a 

loss of the decision on market insurance (𝐼 > 𝜋) where the loss is bigger than the deductible 

level, leading to the condition 𝑝௜ <
ଵ

ଵାఋ
.103F

104 If purchasing market insurance is preferred, the value 

                                                      
104  To recognize the loss state as a gain, the outcome of the loss state (= 𝐼 − 𝜋) must be positive; thus, 𝐼 − 𝜋 =

(𝐿 − 𝑑)ା ∙ 𝛽 − (1 + 𝛿) ∙ 𝑝௜ ∙ (𝐿 − 𝑑)ା ∙ 𝛽 > 0, leading to 1 − (1 + 𝛿) ∙ 𝑝௜ > 0.   
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function must be positive. Applying the KT value function to equation (16), the preferred 

decision on market insurance is defined as 

𝑉 = −𝜆 ∙ (1 − 𝑝௜) ∙ 𝜋ఈ + 𝑝௜ ∙ (𝐼 − 𝜋)ఈ > 0. (17) 

Equation (17) can be rewritten as (see Appendix B.2): 

ቈ
1 − (1 + 𝛿) ∙ 𝑝௜

(1 + 𝛿) ∙ 𝑝௜
቉

ఈ

> 𝜆 ∙
1 − 𝑝௜

𝑝௜
. (18) 

Inequality (18) holds only if the loading factor is small enough, KT parameters (= 𝜆, 𝛼) are also 

small enough, and the loss probability is large enough.10 4F

105 This implies that market insurance 

with self-protection effort is only preferred for agents, who have less loss aversion (lower 𝜆) 

and more diminishing sensitivity to the reference point (lower 𝛼) when a loss is more likely to 

occur (higher p).105F

106 This result is in line with Schmidt’s (2016) finding, where the author sets 

no insurance (the status quo) as the reference point. To provide a clearer idea on these conditions, 

we derive a numerical example with particular values of parameters, shown in Table 3. We set 

the loading factor in the range between 10% and 30%106F

107 and consider different KT parameters 

to identify the criteria to satisfy inequality (18).107F

108  

We find that an agent with higher loss aversion (higher 𝜆) and less diminishing sensitivity to 

the reference point (higher 𝛼) tends to not make decisions on purchasing cyber-insurance. This 

tendency is more prominent as the loading factor is higher. Even for an agent with the opposite 

propensity (lower loss aversion and more diminishing sensitivity), market insurance is an 

attractive option for risk transfer only when the loss probability is high enough. This finding 

demonstrates a behavior that the agent is inclined to stay with self-protection, which is an 

essential measure in the interconnected business environment. The agent only considers market 

                                                      
105  In addition, it is observed that although inequality (18) depends on the size of the loading factor potentially 

associated with the coverage level, it is indifferent from the size of deductible, implicitly derived by cancelling 
out the indemnity from the loss and gain of the state. 

106  The parameter for diminishing sensitivity (= α) determines the size of curvature of the value function, where 
the lower level of the parameter leads to a higher curvature around the reference point in both gain and loss 
states as described in the left panel of Figure 3. The lower level of the parameter addresses more diminishing 
sensitivity to the reference point, meaning that the marginal increase in utility (value) is much larger nearer the 
reference point. 

107  Romanosky et al. (2017) observe that the safety loading is usually set between 25% and 35% in the U.S. cyber 
insurance market, the size of loading that varies between 10% and 30% in other property and casualty lines as 
evidenced in, for example, Cummins et al. (2006) for property insurance (18% to 26% between 1997 and 2004) 
in the U.S. and Insurance Europe (2015) for motor insurance (23.2% on average between 2005 and 2013) in 
Europe. 

108  Inequality (18) with no loading factor is identical to Proposition 1 in Schmidt (2016), where the value of the 
decision is positive if 𝑝௜ > 𝜆ଵ/(ଵିఈ)/(1 + 𝜆ଵ/(ଵିఈ)) . As Schmidt (2016) concludes, purchasing market 
insurance is not preferred (negative value of the decision) for most realistic cases that have low loss probability. 
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insurance unfairly priced in the current market if a loss occurrence is nearly certain with the 

amount above the deductible level. The following proposition summarizes this finding. 

Proposition 1: Suppose an agent with the KT value function (𝛼 ∈ [0,1] and 𝜆 ≥ 1) makes a 

decision about purchasing market insurance with continuous effort on self-protection by 

comparing it to its status quo only with self-protection. The agent is willing to purchase market 

insurance if both conditions are satisfied; thus, inequality (18) holds, and the loading factor is 

lower than ଵିఈ

ఈ
. 

Proof. See Appendix B.2. ∎ 

Table 3. Criteria for Market Insurance in Case 1 

𝛿 = 0.1 
𝛼 

0.1 0.3 0.5 0.7 0.88 

𝜆 

1.25 T (𝑝௜ ≥ 0.57) T (𝑝௜ ≥ 0.61) T (𝑝௜ ≥ 0.69) F F 
1.75 T (𝑝௜ ≥ 0.66) T (𝑝௜ ≥ 0.73) F F F 
2.25 T (𝑝௜ ≥ 0.72) T (𝑝௜ ≥ 0.81) F F F 
2.75 T (𝑝௜ ≥ 0.77) F F F F 
3.00 T (𝑝௜ ≥ 0.78) F F F F 

𝛿 = 0.2 0.1 0.3 0.5 0.7 0.88 

𝜆 

1.25 T (𝑝௜ ≥ 0.58) T (𝑝௜ ≥ 0.64) F F F 
1.75 T (𝑝௜ ≥ 0.67) F F F F 
2.25 T (𝑝௜ ≥ 0.73) F F F F 
2.75 T (𝑝௜ ≥ 0.78) F F F F 
3.00 F F F F F 

𝛿 = 0.3 0.1 0.3 0.5 0.7 0.88 

𝜆 

1.25 T (𝑝௜ ≥ 0.58) F F F F 
1.75 T (𝑝௜ ≥ 0.68) F F F F 
2.25 F F F F F 
2.75 F F F F F 
3.00 F F F F F 

Note: The table shows the results in three cases (10%, 20% and 30%) of loading factor as an example. As the loading factor 
is bigger, criteria for market insurance shrink further. T indicates that inequality (18) holds with the level of the loss 
probability in parentheses, whereas F indicates the nonsatisfaction of inequality (18). The loss probability with the validity 
of inequality (18) should be lower than 91% (=1/(1+𝛿)). 

We next investigate how the self-protection measure affects the value of the decision. The 

optimization problem for the agent with equation (16) can be resolved with respect to the level 

of self-protection. The following proposition reveals the decision on self-protection effort when 

the agent is considering an insurance option in the decision-making process. 

Proposition 2: Suppose that an agent in the interdependent network environment is a value 

maximizer with the expected value in equation (16). The marginal value of the agent decreases 

over the level of self-protection if the following condition is satisfied: 
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𝛼

1 + 𝛼
< 𝑝௜ <

1

(1 + 𝛼)(1 + 𝛿)
, (19) 

where 𝛼 indicates the parameter of diminishing sensitivity homogeneous in both gain and loss 

spaces, as shown by Tversky and Kahneman (1992). Conversely, increasing marginal value is 

observed over the level of self-protection if the following condition is satisfied: 

1

(1 + 𝛼)(1 + 𝛿)
< 𝑝௜ <

𝛼

1 + 𝛼
. (20) 

Proof. See Appendix B.3. ∎ 

Proposition 2 leads to the link between the level of self-protection and insurance premium that 

the decreasing marginal value with the level of self-protection holds when the loading factor is 

smaller than ଵିఈ

ఈ
, whereas the increasing marginal value holds with a higher loading factor (see 

Appendix B.3). For instance, applying the KT parameter (𝛼 = 0.88), we identify that increasing 

the self-protection effort results in declining marginal value if the loading on the insurance 

premium is lower than 13.6%. Intuitively, it describes a relationship that, by comparing the 

insurance decision with the reference point of self-protection, the agent in the KT prospect 

theory world is more incentivized to increase self-protection if a highly loaded premium is given. 

This supports the finding in Table 3 in that inequality (18) does not hold as the loading factor 

is higher, showing that the value of the decision on market insurance becomes negative.  

As illustrated in the right panel of Figure 3, the area above the line indicates a positive marginal 

value reflecting an incentive to increase self-protection with highly loaded insurance scenarios. 

Proposition 2 also holds when the first order condition is investigated with respect to the level 

of self-protection by interconnect agent j.108F

109  Thus, the self-protection measure and the 

insurance decision are substitutes for an agent with the reference point of self-protection, which 

is counter to Ehrlich and Becker (1972) under expected utility theory. In addition, positive 

externality from self-protection as a public good is more effective, particularly in a situation 

where agents cannot find affordable insurance policy in the market.  

                                                      
109  The optimization problem is symmetrical between agent i and interconnected agent j, meaning that the result 

of the first order condition with respect to the level of self-protection by the interconnected agent is identical 
to that with respect to agent i’s self-protection level. 
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Figure 3. The description on varying diminishing sensitivity and the marginal productivity of self-
protection measure when considering market insurance. The left panel displays the KT value function 
with different sizes of the parameter for diminishing sensitivity, and the right panel shows the sign of 
the marginal value with respect to the effort on security to describe the incentive for self-protection. 

Following Schmidt (2016), we graphically describe indifference curves of both decision 

outcomes: maintaining the status quo and purchasing market insurance. We find the marginal 

productivity of the self-insurance coverage by solving the optimization problem with regard to 

𝛽 as follows: 

𝜕𝑉

𝜕𝛽
= (1 − 𝑝௜) ∙ 𝑣଴

ᇱ ∙ (−𝜋ᇱ) + 𝑝௜ ∙ 𝑣ଵ
ᇱ ∙ [(1 − (1 + 𝛿) ∙ 𝑝௜) ∙ 𝐼ᇱ] = 0, (21) 

where 𝑣଴
ᇱ  and 𝑣ଵ

ᇱ  indicate the marginal values in loss and gain domains, respectively. 

The optimization problem in equation (21) can be solved by satisfying the following first order 

condition: 

−
(1 − 𝑝௜) ∙ 𝑣଴

ᇱ

𝑝௜ ∙ 𝑣ଵ
ᇱ =

(1 − (1 + 𝛿) ∙ 𝑝௜) ∙ 𝐼ᇱ

−𝜋ᇱ
=

d𝑥ଵ

d𝑥଴
< 0, (22) 

where d𝑥଴ and d𝑥ଵ are marginal values in the loss and gain domains, respectively, and 𝐼ᇱ, 𝜋ᇱ >

0. 

In both loss and gain domains, the marginal utilities, 𝑣଴
ᇱ  and 𝑣ଵ

ᇱ , are positive as observed in 

Figure 1. The right hand side of equation (22) addresses the slope of the indifference curve 

maximizing the expected value; thus, the above condition implies a negative slope of the 

indifference curve in a (𝑥଴, 𝑥ଵ)-space when considering the decision on market insurance in the 

existence of self-protection. According to Lemma 1 in Schmidt (2016), the curvature of the KT 

value function can be determined by the sign of the value, 𝑉, showing the opposite sign between 

the value function and the second order condition. Thus, assuming that 𝑝௜ <
ଵ

ଵାఋ
 holds, the 

indifference curve is concave (linear or convex, respectively) if 𝑉 > 0 (= or < 0, respectively), 
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meaning that inequality (18) holds. We depict the indifference curves of both cases, where 

staying with self-protection only is optimal and purchasing market insurance is preferred, as 

shown in Figure 4.  

 

Figure 4. Indifference curves based on Proposition 1. 𝑥଴ is the outcome in the loss state, and 𝑥ଵ is the 
outcome in the gain state. The left panel displays indifference curves describing the optimality of staying 
on the reference point, whereas the right panel shows the indifference curve of the preference for market 
insurance. We follow Schmidt (2016) for these plots. 

The (𝑥଴, 𝑥ଵ)-space lies in the second quadrant because the loss state (𝑥଴) is negative and the gain 

state (𝑥ଵ) is positive to achieve Proposition 1. In the left panel, staying with the reference point 

is optimal so that the indifference curve through the origin is either linear (V = 0) or convex (V 

< 0) above the point indicating the preference for market insurance. The right panel explains 

the optimality of the preference for market insurance with the concave indifference curve (V > 

0), which lies above the origin. 

4.2 Case 2: Comparison with the decision on self-insurance as a private good 

In this case, we compare the decision for self-insurance on top of self-protection measure with 

the reference point. Agent i recognizes the no loss state as the occurrence of a loss due to the 

cost for self-insurance. The expected value of this case is defined as 

𝑉 = (1 − 𝑝௜) ∙ 𝑣൫−𝐾(𝑔௜)൯ + 𝑝௜ ∙ 𝑣൫𝑔௜ ∙ 𝐿 − 𝐾(𝑔௜)൯. (23) 

For the self-insurance plan to be effective in this decision-making, 𝑔௜ ≥
௄(௚೔)

௅
 needs to hold so 

that the expected value is determined in both loss and gain states (see Appendix B.4). In other 

words, this condition implies that the self-insurance coverage above a certain level is required 

to achieve the validity of the decision-making problem in self-insurance under loss aversion. 
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We evaluate the necessary condition on the positive value addressing the tendency for self-

insurance. The preferred decision on self-insurance is defined as 

𝑉 = −𝜆 ∙ (1 − 𝑝௜) ∙ 𝐾(𝑔௜)
ఈ + 𝑝௜ ∙ ൫𝑔௜ ∙ 𝐿 − 𝐾(𝑔௜)൯

ఈ
> 0. (24) 

We rewrite equation (24) as follows (see Appendix B.4): 

𝑝௜ >
1

൬
𝑔௜ ∙ 𝐿
𝐾(𝑔௜)

− 1൰
ఈ

/𝜆 + 1

, 
(25) 

where ௚೔∙௅

௄(௚೔)
 accounts for the ratio between the self-insurance endowment and its cost; thus, 

௚೔∙௅

௄(௚೔)
− 1 can be said to be the net margin of self-insurance. Under the assumption that self-

insurance is effective in this case (i.e., 𝑔௜ ≥
௄(௚೔)

௅
), net margin should be positive.  

Net margin of self-insurance depends on the magnitude of a loss so that a larger loss results in 

a bigger net margin.10 9F

110 As can be observed in Table 4, a more loss averse agent (higher 𝜆) with 

less diminishing sensitivity to the reference point (higher 𝛼) is more likely to not invest in self-

insurance, and this propensity is stronger as the net margin of self-insurance becomes lower 

(i.e., the criterion on the loss probability in inequality (25) is higher). However, the criterion on 

the loss probability to prefer self-insurance is still high in any case (at least above 0.5). This 

finding is clarified in Proposition 3. 

Proposition 3: Suppose an agent with the KT value function (𝛼 ∈ [0,1] and 𝜆 ≥ 1) decides to 

implement self-insurance with continuous effort on self-protection by comparing it to its status 

quo only with self-protection. The agent is willing to implement self-insurance if both 

conditions are satisfied—namely, inequality (25) holds, and 𝑔௜ ≥
௄(௚೔)

௅
. 

Proof. See Appendix B.4. ∎ 

In order to find the marginal productivity of the self-insurance coverage, an optimization 

problem with regard to 𝑔௜ reveals 

                                                      
110  Let us denote the net margin function by 𝐴(𝐿, 𝑔௜) =

𝑔𝑖∙𝐿

𝐾൫𝑔𝑖൯
− 1. The first order condition of net margin with 

respect to the loss variable is 
𝜕𝐴(𝐿, 𝑔௜)

𝜕𝐿
=

𝑔௜

𝐾(𝑔௜)
> 0. 

 It shows that self-insurance can be more effective when the size of a loss is substantial. 
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𝜕𝑉

𝜕𝑔௜
= (1 − 𝑝௜) ∙ 𝑣଴

ᇱ ∙ [−𝐾(𝑔௜)
ᇱ] + 𝑝௜ ∙ 𝑣ଵ

ᇱ ∙ (𝐿 − 𝐾(𝑔௜)
ᇱ) = 0, (26) 

where 𝑣଴
ᇱ  and 𝑣ଵ

ᇱ  indicate the marginal values in loss and gain domains, respectively. 

The optimization problem in equation (26) can be solved by satisfying the following first order 

condition: 

−
(1 − 𝑝௜) ∙ 𝑣଴

ᇱ

𝑝௜ ∙ 𝑣ଵ
ᇱ =

𝐿 − 𝐾(𝑔௜)
ᇱ

−𝐾(𝑔௜)
ᇱ

=
d𝑥ଵ

d𝑥଴
< 0, (27) 

where d𝑥଴ and d𝑥ଵ are marginal values in the loss and gain domains, respectively. 

Table 4. Criteria for Self-insurance in Case 2 

Net margin=10% 
𝛼 

0.1 0.3 0.5 0.7 0.88 

𝜆 

1.25 0.611 0.714 0.798 0.862 0.905 
1.75 0.688 0.777 0.847 0.898 0.930 
2.25 0.739 0.818 0.877 0.919 0.945 
2.75 0.776 0.846 0.897 0.932 0.954 
3.00 0.791 0.857 0.905 0.938 0.958 

Net margin=50% 0.1 0.3 0.5 0.7 0.88 

𝜆 

1.25 0.573 0.606 0.639 0.670 0.697 
1.75 0.652 0.683 0.712 0.740 0.763 
2.25 0.707 0.735 0.761 0.785 0.805 
2.75 0.747 0.772 0.795 0.817 0.835 
3.00 0.763 0.787 0.809 0.830 0.847 

Net margin=100% 0.1 0.3 0.5 0.7 0.88 

𝜆 

1.25 0.556 0.556 0.556 0.556 0.556 
1.75 0.636 0.636 0.636 0.636 0.636 
2.25 0.692 0.692 0.692 0.692 0.692 
2.75 0.733 0.733 0.733 0.733 0.733 
3.00 0.750 0.750 0.750 0.750 0.750 

Note: The table shows the critical values of the loss probability to achieve inequality (25) with varying possible values of 
net margin as examples (the condition holds if the loss probability is higher than the critical value for each case). The bigger 
the net margin is, the lower the loss probability level is in inequality (25). However, the level of the loss probability to 
satisfy a positive value of the decision on self-insurance is considerably high for all three cases. 

In both loss and gain domains, the marginal values, 𝑣଴
ᇱ  and 𝑣ଵ

ᇱ , are positive as observed in Figure 

1, and the marginal cost of self-insurance (= 𝐾(𝑔௜)ᇱ) is also positive due to the concavity. Thus, 

based on the assumption that 𝑔௜ ≥
௄(௚೔)

௅
 holds, the indifference curve is concave (linear or 

convex respectively) if 𝑉 > 0 (= or < 0 respectively), meaning that inequality (25) holds.  

As in Figure 4, we again depict indifference curves of both cases, where staying only with self-

protection is optimal and implementing self-insurance is preferred (see Figure 5). We only focus 

on the second quadrant, where the loss state (𝑥଴) is negative and the gain state (𝑥ଵ) is positive 

to achieve Proposition 3. The reference point is optimal in the left panel, with either the linear 
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(V = 0) or convex (V < 0) indifference curve above the point indicating the preference for self-

insurance. In contrast, self-insurance is preferred in the right panel with the concave 

indifference curve (V > 0), which lies above the origin. The finding in this section also supports 

the evidence of a fatalistic behavior that the agent is inclined to stay with self-protection as a 

basic effort required in the interconnected business environment. The agent takes into 

consideration self-insurance coverage above a certain level only if the loss probability is 

substantial. 

 

Figure 5. Indifference curves based on Proposition 3. The left panel displays indifference curves 
describing the optimality of staying on the reference point, whereas the right panel shows the 
indifference curve of the preference for self-insurance. We follow Schmidt (2016) for these plots. 

Figure 6 illustrates inequality (25) by varying the diminishing sensitivity parameter (= 𝛼) and 

the self-insurance level (= 𝑔௜) under the assumption that 𝑔௜ ≥
௄(௚೔)

௅
 is satisfied. We isolate the 

effects of other parameters by setting examples—namely, panel A: 𝐿 = 100,000 , 𝐾(𝑔௜) =

10,000 , 𝜆 = 2.25 ; panel B: 𝐿 = 100,000 , 𝐾(𝑔௜) = 10,000 , 𝑔௜ = 0.2 ; panel C: 𝐿 = 100,000 , 

𝐾(𝑔௜) = 10,000, 𝛼 = 0.88. For each example, we focus on the interaction of varying parameters 

with the loss probability. The result supports the finding that, below a certain level of the loss 

probability, an agent is not willing to implement a self-insurance plan, although the level varies 

with the parameters. In panels B and C, we vary the loss aversion parameter (= 𝜆) above one to 

reflect a loss averse agent—that is, if 𝜆 < 1, she is less averse against a loss than against a gain. 

For instance, as panel A indicates, an agent with an already high loss aversion (= 2.25) is more 

indifferent from the level of self-insurance coverage as she has more diminishing sensitivity to 

the reference point (lower 𝛼). In addition, panels B and C show that an agent with higher loss 

aversion (higher 𝜆) tends to give up more self-insurance on controlling risk, thereby showing a 
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more distinct behavioral bias. Here, higher loss aversion addresses higher risk seeking in the 

loss domain, as described in Section 2. 

Panel A: (𝑔௜ , 𝛼)-space Panel B: (𝛼, 𝜆)-space Panel C: (𝑔௜ , 𝜆)-space 

   

Figure 6. Three-dimensional plots representing Proposition 2. 

4.3 Case 3: Status quo with self-protection and self-insurance 

An agent could make the maximum effort by itself, which can provide a safe option without 

any transfer measure. Based on this possible maximum effort, the agent evaluates decision-

making outcome by switching from self-insurance to market insurance when self-protection 

continues to be implemented as a basic management option. This evaluation is relevant under 

the assumption that market insurance and self-insurance are substitutes for each other; hence, 

the agent might take into account the difference in the cost and the value of the decision between 

two options. The expected value of this case is defined as 

𝑉 = (1 − 𝑝௜) ∙ 𝑣(𝐾(𝑔௜) − 𝜋) + 𝑝௜ ∙ 𝑣(𝐼 − 𝑔௜ ∙ 𝐿 + 𝐾(𝑔௜) − 𝜋). (28) 

To see the indifference curve in the second quadrant, the signs of the gain and the loss should 

be opposite each other, which splits equation (28) into two cases: 1) 𝐾(𝑔௜) − 𝜋 ≤ 0, 𝐼 − 𝑔௜ ∙ 𝐿 +

𝐾(𝑔௜) − 𝜋 > 0 and 2) 𝐾(𝑔௜) − 𝜋 > 0, 𝐼 − 𝑔௜ ∙ 𝐿 + 𝐾(𝑔௜) − 𝜋 ≤ 0.110F

111  

The first case indicates that market insurance charges a higher premium to provide higher 

coverage for loss than the cost of self-insurance with lower coverage.1 11F

112 The second case is the 

                                                      
111  As the size of the deductible gets closer to 0, the first case is more likely to appear, which can be shown as 

1) 𝐾(𝑔௜) − 𝜋 = 𝐾(𝑔௜) − (𝐿 − 𝑑)ା ∙ 𝛽 ∙ (1 + 𝛿) ∙ 𝑝௜ ≤ 0, 
2) 𝐼 − 𝑔௜ ∙ 𝐿 + 𝐾(𝑔௜) − 𝜋 = 𝐼 − 𝜋 + [𝐾(𝑔௜) − 𝑔௜ ∙ 𝐿] = (1 − (1 + 𝛿) ∙ 𝑝௜) ∙ (𝐿 − 𝑑)ା ∙ 𝛽 > 0. 

 It can result in higher critical values of the loss probability, as in panel A of Table 5, which implies that an 
agent is less likely to switch its self-insurance plan to market insurance when the premium level and the size 
of indemnity become higher, but the transition to market insurance is not effective (low net margin). 

112  To prove this, the following inequality should hold 
|𝐼 − 𝑔௜ ∙ 𝐿| > |𝐾(𝑔௜) − 𝜋|, 

 where 𝐼 − 𝑔௜ ∙ 𝐿 > 0 as 𝐾(𝑔௜) − 𝜋 ≤ 0 and 𝐼 − 𝑔௜ ∙ 𝐿 + 𝐾(𝑔௜) − 𝜋 > 0. Then, the right side of this inequality 
can be rewritten 
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opposite instance, where self-insurance with more coverage costs higher than market insurance 

with lower coverage does. The following proposition summarizes decision-making outcomes 

of two possible cases in this scenario. 

Proposition 4: Suppose an agent with the KT value function (𝛼 ∈ [0,1] and 𝜆 ≥ 1) decides to 

purchase market insurance with continuous effort on self-protection by comparing it to the 

maximum effort (self-protection and self-insurance). The agent is willing to purchase market 

insurance instead of self-insurance if the following conditions are satisfied: 

For market insurance  

i) Positive net effect of the transition from 
self-insurance to market insurance: 

൤
𝐼 − 𝑔௜ ∙ 𝐿

𝜋 − 𝐾(𝑔௜)
− 1൨

ఈ

> 𝜆 ∙
1 − 𝑝௜

𝑝௜
 

ii) Positive net effect of staying with self-
insurance: 

൤
𝑔௜ ∙ 𝐿 − 𝐼

𝐾(𝑔௜) − 𝜋
− 1൨

ఈ

<
1

𝜆
∙

𝑝௜

1 − 𝑝௜
 

Proof. See Appendix B.5. ∎ 

The equations in the parentheses on the left hand side can explain the net effect of choosing a 

particular insurance type; the equation in the first condition addresses the net effect of the 

transition from self-insurance to market insurance, whereas the one in the second condition 

indicates the net effect of staying with self-insurance. These net effects are all positive with the 

inequality assumptions from equation (28). Table 5 shows the criteria for the loss probability 

that makes the conditions of Proposition 4 hold. For the first condition in panel A, the numerical 

results are identical to those in Table 4 (Case 2). This result implies that a more loss averse 

agent (higher 𝜆) with less diminishing sensitivity to the reference point (higher 𝛼) is more likely 

to stay with self-insurance; this tendency is stronger as the net effect of the transition from self-

insurance to market insurance decreases. The results in panel B of Table 5 from the second 

condition are exactly in line with this finding by showing the reverse outcomes in that a more 

loss averse agent (higher 𝜆) with less diminishing sensitivity to the reference point (higher 𝛼) 

is more likely to take up market insurance instead of self-insurance; it tends to be stronger as 

the net effect of staying with self-insurance decreases. 

 

 

 

                                                      
𝐼 − 𝑔௜ ∙ 𝐿 = (𝛽 − 𝑔௜) ∙ 𝐿 − 𝑑 ∙ 𝛽 > 0. 

 Thus, 𝛽 − 𝑔௜ > 0 should hold. 
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Table 5. Criteria for Replacing Self-insurance by Market Insurance in Case 3 

Panel A: The critical values of the loss probability in the first condition of Proposition 4 

Net effect=10% 
𝛼 

0.1 0.3 0.5 0.7 0.88 

𝜆 

1.25 T(𝑝௜ ≥ 0.61) T(𝑝௜ ≥ 0.71) T(𝑝௜ ≥ 0.80) T(𝑝௜ ≥ 0.86) T(𝑝௜ ≥ 0.91) 
1.75 T(𝑝௜ ≥ 0.69) T(𝑝௜ ≥ 0.78) T(𝑝௜ ≥ 0.85) T(𝑝௜ ≥ 0.90) T(𝑝௜ ≥ 0.93) 
2.25 T(𝑝௜ ≥ 0.74) T(𝑝௜ ≥ 0.82) T(𝑝௜ ≥ 0.88) T(𝑝௜ ≥ 0.92) T(𝑝௜ ≥ 0.95) 
2.75 T(𝑝௜ ≥ 0.78) T(𝑝௜ ≥ 0.85) T(𝑝௜ ≥ 0.90) T(𝑝௜ ≥ 0.93) T(𝑝௜ ≥ 0.95) 
3.00 T(𝑝௜ ≥ 0.79) T(𝑝௜ ≥ 0.86) T(𝑝௜ ≥ 0.91) T(𝑝௜ ≥ 0.94) T(𝑝௜ ≥ 0.96) 

Net effect=50% 0.1 0.3 0.5 0.7 0.88 

𝜆 

1.25 T(𝑝௜ ≥ 0.57) T(𝑝௜ ≥ 0.61) T(𝑝௜ ≥ 0.64) T(𝑝௜ ≥ 0.67) T(𝑝௜ ≥ 0.70) 
1.75 T(𝑝௜ ≥ 0.65) T(𝑝௜ ≥ 0.68) T(𝑝௜ ≥ 0.71) T(𝑝௜ ≥ 0.74) T(𝑝௜ ≥ 0.76) 
2.25 T(𝑝௜ ≥ 0.71) T(𝑝௜ ≥ 0.74) T(𝑝௜ ≥ 0.76) T(𝑝௜ ≥ 0.79) T(𝑝௜ ≥ 0.81) 
2.75 T(𝑝௜ ≥ 0.75) T(𝑝௜ ≥ 0.77) T(𝑝௜ ≥ 0.80) T(𝑝௜ ≥ 0.82) T(𝑝௜ ≥ 0.84) 
3.00 T(𝑝௜ ≥ 0.76) T(𝑝௜ ≥ 0.79) T(𝑝௜ ≥ 0.81) T(𝑝௜ ≥ 0.83) T(𝑝௜ ≥ 0.85) 

Net effect=100% 0.1 0.3 0.5 0.7 0.88 

𝜆 

1.25 T(𝑝௜ ≥ 0.56) T(𝑝௜ ≥ 0.56) T(𝑝௜ ≥ 0.56) T(𝑝௜ ≥ 0.56) T(𝑝௜ ≥ 0.56) 
1.75 T(𝑝௜ ≥ 0.64) T(𝑝௜ ≥ 0.64) T(𝑝௜ ≥ 0.64) T(𝑝௜ ≥ 0.64) T(𝑝௜ ≥ 0.64) 
2.25 T(𝑝௜ ≥ 0.69) T(𝑝௜ ≥ 0.69) T(𝑝௜ ≥ 0.69) T(𝑝௜ ≥ 0.69) T(𝑝௜ ≥ 0.69) 
2.75 T(𝑝௜ ≥ 0.73) T(𝑝௜ ≥ 0.73) T(𝑝௜ ≥ 0.73) T(𝑝௜ ≥ 0.73) T(𝑝௜ ≥ 0.73) 
3.00 T(𝑝௜ ≥ 0.75) T(𝑝௜ ≥ 0.75) T(𝑝௜ ≥ 0.75) T(𝑝௜ ≥ 0.75) T(𝑝௜ ≥ 0.75) 

Panel B: The critical values of the loss probability in the second condition of Proposition 4 

Net effect=10% 
𝛼 

0.1 0.3 0.5 0.7 0.88 

𝜆 

1.25 T(𝑝௜ ≥ 0.50) T(𝑝௜ ≥ 0.39) T(𝑝௜ ≥ 0.28) T(𝑝௜ ≥ 0.20) T(𝑝௜ ≥ 0.14) 
1.75 T(𝑝௜ ≥ 0.58) T(𝑝௜ ≥ 0.47) T(𝑝௜ ≥ 0.36) T(𝑝௜ ≥ 0.26) T(𝑝௜ ≥ 0.19) 
2.25 T(𝑝௜ ≥ 0.64) T(𝑝௜ ≥ 0.53) T(𝑝௜ ≥ 0.42) T(𝑝௜ ≥ 0.31) T(𝑝௜ ≥ 0.23) 
2.75 T(𝑝௜ ≥ 0.69) T(𝑝௜ ≥ 0.58) T(𝑝௜ ≥ 0.47) T(𝑝௜ ≥ 0.35) T(𝑝௜ ≥ 0.27) 
3.00 T(𝑝௜ ≥ 0.70) T(𝑝௜ ≥ 0.60) T(𝑝௜ ≥ 0.49) T(𝑝௜ ≥ 0.37) T(𝑝௜ ≥ 0.28) 

Net effect=50% 0.1 0.3 0.5 0.7 0.88 

𝜆 

1.25 T(𝑝௜ ≥ 0.54) T(𝑝௜ ≥ 0.50) T(𝑝௜ ≥ 0.47) T(𝑝௜ ≥ 0.44) T(𝑝௜ ≥ 0.40) 
1.75 T(𝑝௜ ≥ 0.62) T(𝑝௜ ≥ 0.59) T(𝑝௜ ≥ 0.55) T(𝑝௜ ≥ 0.52) T(𝑝௜ ≥ 0.49) 
2.25 T(𝑝௜ ≥ 0.68) T(𝑝௜ ≥ 0.65) T(𝑝௜ ≥ 0.61) T(𝑝௜ ≥ 0.58) T(𝑝௜ ≥ 0.55) 
2.75 T(𝑝௜ ≥ 0.72) T(𝑝௜ ≥ 0.69) T(𝑝௜ ≥ 0.66) T(𝑝௜ ≥ 0.63) T(𝑝௜ ≥ 0.60) 
3.00 T(𝑝௜ ≥ 0.74) T(𝑝௜ ≥ 0.71) T(𝑝௜ ≥ 0.68) T(𝑝௜ ≥ 0.65) T(𝑝௜ ≥ 0.62) 

Net effect=100% 0.1 0.3 0.5 0.7 0.88 

𝜆 

1.25 T(𝑝௜ ≥ 0.56) T(𝑝௜ ≥ 0.56) T(𝑝௜ ≥ 0.56) T(𝑝௜ ≥ 0.56) T(𝑝௜ ≥ 0.56) 
1.75 T(𝑝௜ ≥ 0.64) T(𝑝௜ ≥ 0.64) T(𝑝௜ ≥ 0.64) T(𝑝௜ ≥ 0.64) T(𝑝௜ ≥ 0.64) 
2.25 T(𝑝௜ ≥ 0.69) T(𝑝௜ ≥ 0.69) T(𝑝௜ ≥ 0.69) T(𝑝௜ ≥ 0.69) T(𝑝௜ ≥ 0.69) 
2.75 T(𝑝௜ ≥ 0.73) T(𝑝௜ ≥ 0.73) T(𝑝௜ ≥ 0.73) T(𝑝௜ ≥ 0.73) T(𝑝௜ ≥ 0.73) 
3.00 T(𝑝௜ ≥ 0.75) T(𝑝௜ ≥ 0.75) T(𝑝௜ ≥ 0.75) T(𝑝௜ ≥ 0.75) T(𝑝௜ ≥ 0.75) 

Note: The table shows the criteria for the loss probability to achieve the conditions of Proposition 4 with varying possible 
values of net effect as examples (the conditions hold if the loss probability is higher than the critical value for each case). T 
indicates that two conditions of Proposition 4 in panels A and B hold with the level of the loss probability in the 
corresponding parentheses. The net effect in panel A indicates the effect of the transition from self-insurance to market 
insurance, and the one in panel B accounts for the effect of staying with self-insurance. 

In Figure 7, we again draw indifference curves of both decision outcomes—namely, 

maintaining self-insurance and replacing it by market insurance. The marginal productivity of 

market insurance can be obtained by solving the optimization problem in terms of 𝛽 with two 

cases in loss and gain domains as follows: 
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1) 𝐾(𝑔௜) − 𝜋 ≤ 0 and 𝐼 − 𝑔௜ ∙ 𝐿 + 𝐾(𝑔௜) − 𝜋 > 0: 

𝜕𝑉

𝜕𝛽
= (1 − 𝑝௜) ∙ 𝑣଴

ᇱ ∙ (−𝜋ᇱ) + 𝑝௜ ∙ 𝑣ଵ
ᇱ ∙ [(1 − (1 + 𝛿) ∙ 𝑝௜) ∙ 𝐼ᇱ] = 0, (29) 

2) 𝐾(𝑔௜) − 𝜋 > 0 and 𝐼 − 𝑔௜ ∙ 𝐿 + 𝐾(𝑔௜) − 𝜋 ≤ 0: 

𝜕𝑉

𝜕𝛽
= (1 − 𝑝௜) ∙ 𝑣଴

ᇱ ∙ [(1 − (1 + 𝛿) ∙ 𝑝௜) ∙ 𝐼ᇱ] + 𝑝௜ ∙ 𝑣ଵ
ᇱ ∙ (−𝜋ᇱ) = 0, (30) 

where 𝑣଴
ᇱ  and 𝑣ଵ

ᇱ  indicate the marginal values in loss and gain domains respectively. 

These optimization problems are solved by satisfying the following first order conditions: 

1) 𝐾(𝑔௜) − 𝜋 ≤ 0 and 𝐼 − 𝑔௜ ∙ 𝐿 + 𝐾(𝑔௜) − 𝜋 > 0: 

−
(1 − 𝑝௜) ∙ 𝑣଴

ᇱ

𝑝௜ ∙ 𝑣ଵ
ᇱ =

(1 − (1 + 𝛿) ∙ 𝑝௜) ∙ 𝐼ᇱ

−𝜋ᇱ
=

d𝑥ଵ

d𝑥଴
< 0, (31) 

2) 𝐾(𝑔௜) − 𝜋 > 0 and 𝐼 − 𝑔௜ ∙ 𝐿 + 𝐾(𝑔௜) − 𝜋 ≤ 0: 

−
(1 − 𝑝௜) ∙ 𝑣଴

ᇱ

𝑝௜ ∙ 𝑣ଵ
ᇱ =

−𝜋ᇱ

(1 − (1 + 𝛿) ∙ 𝑝௜) ∙ 𝐼ᇱ
=

d𝑥ଵ

d𝑥଴
< 0, (32) 

where d𝑥଴ and d𝑥ଵ are marginal values in the loss and gain domains, respectively, and 𝐼ᇱ, 𝜋ᇱ >

0. 

Based on Lemma 1 in Schmidt (2016), we determine the curvature of the KT value function in 

Figure 7 using the sign of the value, 𝑉, showing that the indifference curve is concave (linear 

or convex respectively) if 𝑉 > 0 (= or < 0, respectively), satisfying Proposition 4. 

 

Figure 7. Indifference curves based on Proposition 4. The left panel displays indifference curves 
describing the optimality of staying on the reference point, whereas the right panel shows the 
indifference curve of the preference for market insurance instead of self-insurance. We follow Schmidt 
(2016) for these plots. 
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5 Empirical support and implication for policy 

5.1 Empirical evidence on loss probability 

In each of the three cases, we find the necessary conditions to show that a decision considered 

is preferred to the reference point. These conditions require a certain level of loss probability 

so that an agent decides to implement additional risk management activities (either market 

insurance or self-insurance). Although the level of probability leading the agent to carry out 

additional actions on risk management is relatively high in all cases, the recent literature 

identifies that the frequency of cyber loss events shows significantly faster growth, particularly 

for larger losses, over the last decade (Hofmann, Wheatley and Sornette, 2019).112F

113 Thus, the 

recent trend can make it more likely to achieve the conditions of propositions. To obtain some 

relevant empirical indications, we estimate appropriate loss probabilities using a publicly 

available database for cyber risk provided by Private Rights Clearinghouse (PRC).113F

114 

PRC collects information on data breach events and categorizes losses by eight types of breach 

(PRC, 2019), among which we only focus on four types of breach (hacking, insider breach, 

payment card fraud and unknown) as a malicious type of risk by following the categorization 

in Edwards et al. (2016). The malicious type of risk is more relevant to our model framework, 

particularly with regard to the presence of interdependent risk. The definition of cyber risk is 

generally broader than data breach risk (Eling and Wirfs, 2019), but here we restrict it to data 

breach loss, which is one of the main coverages in most cyber-insurance policies (Romanosky 

                                                      
113  Hofmann, Wheatley and Sornette (2019) update the results of Wheatley et al. (2016) for statistical features of 

cyber risk with larger and longer datasets between 2005 and 2017 from the Private Rights Clearinghouse (PRC) 
database and Open Security Foundation Dataloss database formerly used in Wheatley et al. (2016). They find 
a significant increase in cyber loss frequency by using generalized linear model (GLM) with log-linear negative 
binomial function. They specifically show 8% annual growth for data breach losses over 10,000 and 19% 
growth for losses over 1 million during the data period. 

114  PRC is a non-profit organization collecting and updating information on data breach events published in the 
media. Each loss observation can at least be found by either a government agency or a verifiable media source. 
With this effort, PRC forms the largest public database for data breaches that incorporates information on the 
breach date, the event location, the entity level, the loss type and the total number of breached records. Despite 
the provision of the largest data pool for cyber risk, the PRC database has several limitations; there might be a 
possibility of a bias in the data completeness (backfilling bias) so that the data collected more recently might 
be relatively less complete than the data from an older period. This bias might underestimate the frequency 
rate for the recent years (e.g., 2017, 2018) in Table 6, although the impact of the bias might be small because 
the database is continuously updated on a daily basis with the reliable data source standard (see, e.g., Eling and 
Wirfs, 2019, for a similar argumentation with SAS OpRisk database). Second, some observations have a zero 
value, indicating that the corresponding loss events are not publicly acknowledged or are still under 
investigation (Eling and Jung, 2018). We exclude zero values in our application to minimize the self-selection 
bias, which—according to Kamiya et al. (2018) using the same dataset—does not meet cyberattack notification 
laws and it might not be compulsory for firms to disclose information. However, this exclusion could clearly 
underestimate our application; hence, we need to make sure that the actual frequency rate might be higher than 
what is estimated with the non-zero values. 
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et al., 2017). Over the entire data period from 2005 to 2018, we find 4,053 observations related 

to malicious risk (as of February 5, 2019), among which we use the 2,774 non-zero records. 

In Table 6, we estimate the number of days experiencing at least one loss event per year over 

the data period between 2005 and 2018. From the insurer’s perspective, a loss frequency can 

be estimated by the ratio between the number of claims and the number of risks in the pool. 

However, from the insured perspective, it is difficult to measure a possible rate of loss 

frequency without the availability of loss data and information on the risk pool. As a proxy for 

the rate of loss frequency from an insured perspective, we attempt to estimate the number of 

days when at least one breach loss is publicly announced over the period. The rate for each year 

is measured upon different deductible levels ($5,000 as lowest to $1 million, at $250,000 

increments) subject to possible cyber-insurance coverages, using the deductibles based on the 

finding in Romanosky et al. (2017) as described in Section 3.2.  

Importantly, the observations in the PRC database account for only the number of breach 

records; thus, we need to translate them to the monetary unit to apply the deductibles. Studies 

on the measurement of the economic cost for data breach are lacking, but the Ponemon Institute 

(2018) reports its analysis on the cost of data breaches on an annual basis. Thus, we adapt the 

average economic cost on a yearly basis as estimated by the Ponemon Institute to obtain 

approximate measures of economic loss from data breach events. Table 6 shows the frequency 

rate per year from 2005 to 2018 with five deductible levels. Although it does not exactly reflect 

the actual loss probability, we can observe that the rate is significantly increasing, showing, for 

example, a threefold increase over the last decade (from 2008 to 2018 across all deductible 

categories). It implies that the dynamic landscape of cyber risk with a dramatic increase in loss 

frequency can lift up the demand for additional risk management tools (market insurance or 

self-insurance), resulting in a demand that is higher by a less averse agent against a loss.  

For further evidence114F

115 on the increasing frequency rate of cyber loss events that might heavily 

affect the subjective probability of potential insureds, we list anecdotal statements and empirical 

clues in Appendix C. The list demonstrates that cyber loss events and attacks are more likely to 

occur in our daily lives and business, particularly in recent years, which can result in a 

significant increase in the subjective probability of potential insureds against cyber risk. Overall, 

                                                      
115  Apart from evidence provided by practical reports, several concrete estimates can be found in academic studies. 

For example, Edwards et al. (2016) estimate the probability of the breach size above 1, 5 and 10 million in the 
next one year to be 99.3%, 75.6% and 53.6%, respectively, under the assumption that the status quo is 
maintained. Eling and Schnell (2018) estimate the annual frequency rate of 7.4% by applying the data breach 
dataset on the S&P 500 companies.  
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our finding implies that although a behavioral bias against cyber risk still exists in the market, 

it becomes more inevitable to implement additional plans for risk management as agents are 

exposed to increasing frequency rate each year, thereby leading the cyber-insurance market to 

stay on track. 

Table 6. Empirical Frequency Rate of Data Breach Loss (per year) 

 Deductible 
Year $5,000 $250,000 $500,000 $750,000 $1,000,000 
2005 14.0% 11.5% 11.0% 10.4% 9.3% 
2006 19.7% 14.5% 13.2% 11.0% 9.6% 
2007 18.1% 12.3% 11.5% 11.0% 9.9% 
2008 18.9% 13.9% 12.3% 10.1% 9.8% 
2009 13.7% 8.2% 7.4% 7.4% 7.4% 
2010 28.2% 16.2% 12.9% 11.8% 11.8% 
2011 37.5% 20.0% 15.1% 13.7% 12.9% 
2012 42.1% 25.1% 19.7% 16.4% 15.3% 
2013 32.9% 24.7% 21.1% 17.8% 15.6% 
2014 32.1% 21.6% 17.8% 16.7% 15.9% 
2015 20.0% 16.2% 14.5% 13.4% 12.3% 
2016 36.6% 29.5% 24.6% 23.5% 22.4% 
2017 36.4% 31.0% 28.5% 24.9% 22.7% 
2018 59.7% 44.7% 38.9% 34.8% 32.3% 
Note: This table shows a frequency rate per year of data breach loss over the period between 2005 and 2018. The data is 
derived from PRC and shows the percentage of days with a loss event larger than the deductible. 

5.2 Implication for cyber risk management 

Self-protection as the status quo for potential cyber-insureds not only reflects the current market 

situation, but also has some regulatory implications. Self-protection facilitates the reinforce-

ment of the security system of all interconnected parties (positive externality); hence, it can 

function as a public good in the interconnected network environment. The government can 

utilize this characteristic to increase the overall security level against cyber risk in society by 

forcing all business agents to meet a certain level of security requirement. This regulation 

should be backed by an appropriate assessment of a security system by the governmental agency 

to evaluate whether business parties applying this regulation appropriately implement cyber 

security measures. As another form of public intervention, the government might be able to 

incentivize business parties to enhance the security system by providing a partial tax exemption 

or subsidy for the cost of protective measures, particularly for small companies.  

For example, the Internal Revenue Service (IRS), a governmental agency in the U.S., offers a 

tax deduction for individuals and firms who have experienced enormous losses due to 

catastrophes. The Federal Emergency Management Agency (FEMA) in the U.S. financially 

supports individuals and businesses by subsidizing, for example, flood insurance premiums 
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through thousands of insurance agents in the nation, which is called FEMA’s National Flood 

Insurance Program (NFIP). This program also allows insureds to purchase more than the limit 

that the NFIP requires—an endorsement called excess flood protection. This type of regulation 

(public intervention) can also help cyber-insurers reduce information asymmetry and 

underwrite cyber-insurance with an optimal deductible and premium, possibly containing a 

comprehensive risk management offer.115F

116 Therefore, in the cyber risk context, we can base the 

status quo on the implementation of self-protection. 

Another way to force cyber security enhancement for business parties could be a monopolistic 

insurer (Mürmann and Kunreuther, 2008) or a co-insurance scheme provided by multiple 

insurers. The compulsory implementation of protective measures could be required by a 

monopolistic insurer or possibly oligopolistic insurers with an economic incentive for 

premiums more easily than in the competitive market. An insurer in the competitive market 

might not be able to impose the requirement for the protective measures as their implementation 

will cost potential insureds, which might lead the insurer to lose its market share. For instance, 

von Ungern-Sternberg (1996) observe that monopolistic state insurers in Switzerland (19 

cantons) with much lower damage rates offer almost 70% lower premiums for housing 

insurance than private insurers (seven cantons) in the competitive market do. An oligopoly 

market can also drive potential insureds to make more effort on preventive measures with the 

price reduction. The assumption on an oligopoly market for cyber-insurance might make sense 

in the current market situation (particularly in the U.S., as the largest market), where three 

insurers out of 500 cyber-carriers account for nearly 50% of the market share and almost 10 

players address 90% (Romanosky et al., 2017). 

In a similar context, co-insurance116F

117 can be another market-wise solution to enhance cyber risk 

management. Specifically, co-insurance can play the role of reducing the possibility of moral 

hazard by, for example, building up a homogenized risk assessment in the underwriting process 

(ex-ante) and ex-post joint assessment by insurers in the co-insurance pool, which can reduce 

the cost for insurers to monitor a possible moral hazard behavior. Markets such as Lloyd’s can 

help insurers share catastrophe risks via a co-insurance scheme depending on, for example, the 

financial capacity or the extent of understanding (cyber) risk. 

                                                      
116  Some cyber-insurance policies in the current market offer a so-called risk management package, which 

incorporates from building a detection system and a reporting process to the monetary coverage (e.g., Allianz 
Cyber Protect and HSB Cyber Insurance by Munich Re). 

117  Co-insurance scheme here indicates the sharing of risk by (re)insurers (sharing of the pool), not the scheme 
between an insurer and an insured. However, the latter can also reduce moral hazard as a similar form to the 
deductible insurance by assigning the portion of a loss to each party. 
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6 Conclusion 

We propose a conceptual framework for decision-making in cyber risk management with a 

descriptive decision model under loss aversion. The framework is constructed under the 

assumption of interdependent risk in the interconnected network environment. We consider 

market insurance and risk control measures (self-protection and self-insurance) and investigate 

their interaction. It is vital for any decision-making problem under loss aversion to set a relevant, 

realistic reference point. In this regard, we postulate self-protection as the status quo of the 

reference point, as self-protection as a form of enhancing (or maintaining) a cyber security 

system is an essential management tool in the interconnected business world. We compare the 

reference point with different decisions under the assumption that self-protection continues to 

be implemented—specifically, the decisions are 1) market insurance and 2) self-insurance. We 

also set self-protection and self-insurance as the second reference point, which is interpreted as 

the maximum effort for controlling cyber risk (public good + private good), and compare it to 

the decision on market insurance only with the self-protection measure under the assumption 

that both insurance plans are substitutes for each other. 

In the different scenarios, we come to the consistent conclusion that an agent with the reference 

point of self-protection as a basic management tool against cyber risk is more likely to avoid 

additional risk management measures (market insurance and self-insurance). In particular, a 

more loss averse agent is more likely to maintain the status quo (self-protection); the higher the 

net margin of insurance policies is for the agent, the less likely she is to give up additional 

measures. These findings address a fatalism observed in the current market that the agent tends 

to not choose any additional risk management tool, but stay only with self-protection.  

We find conditions on the range of loss probability, the loading factor for market insurance, 

and the level of coverage for self-insurance, where an agent is willing to decide on market 

insurance and self-insurance. Based on the findings, it can be concluded that market insurance 

and self-insurance are substitutes of self-protection as the reference point under loss aversion, 

which is counter to Ehrlich and Becker’s (1972) finding. We further estimate the frequency rate 

per year as a proxy of the loss probability from the insured perspective using an empirical 

dataset (PRC database). Although the anecdotal evidence of a fatalistic behavior against cyber 

risk is identified, we find that it is more likely to observe the increasing demand for additional 

risk management activities as agents are exposed to an increasing frequency rate year after year. 

A critical remark on our model framework is that it can not only be applied to the cyber risk 
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context, but also generalized to any interdependent risk model under loss aversion, which 

particularly considers measures to control risk. 

Although this study first opens up the discussion of a descriptive decision model on market 

insurance and risk control measures in the presence of interdependent risk, several limitations 

are still inherent in our model. In particular, several assumptions can be relaxed to adapt other 

possibilities in the model. For instance, a likelihood of successful contagion between nodes can 

be affected by other factors (e.g., heterogeneous security systems) so that the perfect contagion 

could not occur in the network system. Furthermore, we do not take into account the possibility 

of probability distortion due to the modeling of interdependent risk; however, it could be a 

possible avenue to combine both features in a model. Co-insurance or a reinsurance portfolio 

can be considered as an alternative insurance design possibly embedded in the model. 
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Appendix A. Review of literature and position of the paper 

A.1. Literature on risk control measures and interdependent risk 

In Table A1, we categorize the references dealing with risk control measures in a decision-

making framework. The categorization is defined upon three criteria: interdependency in risks, 

propensity under risk, and relation to cyber risk. We consider 20 academic papers, including 

the present study, and find that the studies in the presence of interdependent risk tend to model 

the impact of self-protection, but not self-insurance. This might be due to the fact that self-

protection affects the loss probability, which is important when modeling interdependent risk. 

In contrast, the studies examining the absence of interdependent risk take into account both 

self-protection and self-insurance to identify decision-making in risk control measures and 

market insurance. In addition, most cyber risk-related papers in our categorization analyze only 

self-protection in relation to cyber-insurance by accounting for cyber security enhancement; a 

noted exception is Johnson et al. (2011), who investigate the role of self-insurance. In this 

regard, our paper contributes to the literature by considering both self-protection and self-

insurance in the decision-making framework against cyber risk under interdependent risk. 

Table A1. The Classification of Risk Control and Loss Aversion under Interdependency in Risks 

 Risk control measures 
No interdependent risk Interdependent risk 

Risk-
aversion 
(EU) 

Non-
cyber 

 EB72 (SP, SI) 
 DE85 (SP, SI) 
 S90 (SP, SI) 
 KS93 (SP, SI) 

 S11 (SP, SI) 
 LRS12 (SP, SI) 
 AGT13 (SP, SI) 

 KH03 (SP) 
 H07 (SP) 
 MK08 (SP) 

Cyber-
related 

 KNL18 (SP)  ÖMR05 (SP) 
 LB09 (SP) 
 SSFW10 (SP) 
 HR11 (SP) 
 JBG11 (SP, SI) 

 ÖRM11 (SP) 
 ZXW13 (SP) 
 NL14 (SP) 
 HS18 (SP) 

Loss-
aversion 
(PT) 

Non-
cyber 

- - 

Cyber-
related 

 V08 (SP) Present paper (SP, SI) 

Note: SP and SI stand for self-protection and self-insurance, respectively. The references above are specified in the following; 
EB72: Ehrlich and Becker (1972); DE85: Dionne and Eeckhoudt (1985); S90: Shogren (1990); KS93: Konrad and Skaperdas 
(1993); KH03: Kunreuther and Heal (2003); ÖMR05: Öğüt, Menon and Raghunathan (2005); H07: Hofmann (2007); MK08: 
Mürmann and Kunreuther (2008); V08: Verendel (2008); LB09: Lelarge and Bolot (2009); SSFW10: Shetty et al. (2010); S11: 
Snow (2011); HR11: Hofmann and Ramaj (2011); JBG11: Johnson, Böhme and Grossklags (2011); ÖRM11: Öğüt, 
Raghunathan and Menon (2011); LRS12: Lohse, Robledo and Schmidt (2012); AGT13: Alary, Gollier and Treich (2013); 
ZXW13: Zhao, Xue and Whinston (2013); NL14: Naghizadeh and Liu (2014); HS18: Hota and Sundaram (2018); KNL18: 
Khalili, Naghizadeh and Liu (2018). 
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A.2. Comparison with the insurance literature under prospect theory 

Although we can find a great number of studies on insurance demand under the classical 

decision theory, there has been very little literature on insurance demand under prospect theory. 

One possible explanation for the lack of study in this context is the difficulty in choosing a 

reference point and the vagueness of how to examine the decision-making under the descriptive 

model. However, we attempt to overcome these obstacles by focusing on a specific context 

(cyber risk management). Nevertheless, our framework can be also generalized to the context 

about risk control measures and interdependent risk under loss aversion. In this regard, we 

compare this paper with two relevant studies under loss aversion in Table A2. All studies in the 

table fall within the insurance context by commonly investigating the optimal decision on 

insurance. 

Table A2. Comparison to Two Relevant References under Loss Aversion 

 Schmidt (2016) Eckles and Volkman-
Wise (2019) 

Present paper 

Focus of study Insurance demand under 
prospect theory 

Insurance demand under 
prospect theory 

Interaction between risk 
control measures and 
market insurance under 
prospect theory 

Risk controls No No Yes (self-protection and 
self-insurance) 

Insurance design Full insurance Deductible and loaded 
premium 

Deductible and loaded 
premium 

Interdependent risk No No Yes 

Reference point  Status quo with no 
insurance 

 Take up full insurance 

 Take up insurance 
 Initial wealth 
 Status quo with 

deductible insurance 

 Status quo with self-
protection 

 Self-protection and self-
insurance (full self-
control) 

Decision  Optimal level of 
insurance coverage 

 Optimal level of 
insurance coverage 

 Optimal level of 
insurance coverage  

 Optimal level of self-
insurance coverage 

Main results  An agent will demand 
either full coverage or no 
insurance, depending on 
the loss probability. 

 The indifference curve of 
the KT value function 
relies on the sign of the 
value function. 

 Prospect theory explains 
1) the preference for low 
deductibles for 
mandatory insurance, 2) 
the lack of demand for 
non-mandatory insurance 
and 3) the over-demand 
to insure small losses. 

 An agent with the 
reference point of self-
protection as a basic 
management tool against 
cyber risk is more likely 
to avoid additional risk 
management measures 
(market insurance and 
self-insurance), 
addressing a fatalism 
observed in the market. 
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Appendix B. Proofs 

B.1. Optimal demand for market insurance under the expected utility theory 

Following Eckles and Volkman-Wise (2019), we assume that a risk-averse agent has a 

comparable utility function with the KT value function as follows: 

𝑢(𝑤) = 𝑤ఈ, 

where 𝑢(∙) is a utility function under the expected utility theory, 𝑤 is the level of wealth for the 

agent and 𝛼 ∈ [0,1] is the risk aversion parameter showing concavity, which is similar to the 

diminishing sensitivity parameter of prospect theory in the gain domain. 

This function is consistent with the KT value function in the gain domain, where a power law 

function is used to represent risk aversion. In this section, we derive the optimal demand for 

market insurance under the expected utility theory when an agent implements self-protection. 

In Section 3.3, we have two states of the world representing loss and no-loss cases. Referring 

to the final wealth of Case 1 in Table 2, we can write the expected utility for the agent as 

𝐸(𝑈) = (1 − 𝑝௜) ∙ 𝑢(𝑊 − 𝑠௜ − 𝜋) + 𝑝௜ ∙ 𝑢(𝑊 − 𝑠௜ − 𝜋 − 𝐿 + 𝐼). 

The first order and second order conditions on the expected utility with respect to the insurance 

coverage, 𝛽, are respectively 

𝜕𝐸(𝑈)

𝜕𝛽
= −𝑝௜ ∙ (1 − 𝑝௜) ∙ (1 + 𝛿) ∙ (𝐿 − 𝑑)ା ∙ 𝑢ᇱ(𝑊 − 𝑠௜ − 𝜋) + 𝑝௜ ∙ (1 − (1 + 𝛿) ∙ 𝑝௜)

∙ (𝐿 − 𝑑)ା ∙ 𝑢ᇱ(𝑊 − 𝑠௜ − 𝜋 − 𝐿 + 𝐼), 

𝜕ଶ𝐸(𝑈)

𝜕𝛽ଶ
= (1 − 𝑝௜) ∙ 𝑝௜

ଶ ∙ (1 + 𝛿)ଶ ∙ [(𝐿 − 𝑑)ା]ଶ ∙ 𝑢ᇱᇱ(𝑊 − 𝑠௜ − 𝜋) + 𝑝௜ ∙ (1 − (1 + 𝛿) ∙ 𝑝௜)
ଶ

∙ [(𝐿 − 𝑑)ା]ଶ ∙ 𝑢ᇱᇱ(𝑊 − 𝑠௜ − 𝜋 − 𝐿 + 𝐼). 

As shown in Eckles and Volkman-Wise (2019), the utility function 𝑢(𝑤) = 𝑤ఈ is concave with 

the positive first derivative and the negative second derivative given 𝛼 ∈ [0,1]. Thus, the second 

order condition is negative, which leads the optimization problem to end up with a global 

maximum. 

The optimization problem can be written as 
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𝜕𝐸(𝑈)

𝜕𝛽
= −𝑝௜ ∙ (1 − 𝑝௜) ∙ (1 + 𝛿) ∙ (𝐿 − 𝑑)ା ∙ 𝑢ᇱ(𝑊 − 𝑠௜ − 𝜋) + 𝑝௜ ∙ (1 − (1 + 𝛿) ∙ 𝑝௜)

∙ (𝐿 − 𝑑)ା ∙ 𝑢ᇱ(𝑊 − 𝑠௜ − 𝜋 − 𝐿 + 𝐼) = 0. 

By taking the utility function, it can be rewritten as 

(1 − 𝑝௜) ∙ (1 + 𝛿) ∙ (𝑊 − 𝑠௜ − 𝜋)ఈିଵ = (1 − (1 + 𝛿) ∙ 𝑝௜) ∙ (𝑊 − 𝑠௜ − 𝜋 − 𝐿 + 𝐼)ఈିଵ. 

This formula ends up with 

൬1 −
𝛿

(1 − 𝑝௜) ∙ (1 + 𝛿)
൰ ∙ ൬

𝑊 − 𝑠௜ − 𝜋 − 𝐿 + 𝐼

𝑊 − 𝑠௜ − 𝜋
൰

ఈିଵ

= 1. 

This equation holds when full insurance is given—that is, 𝛿 = 0 and 𝐿 = 𝐼. Thus, it is concluded 

that the agent under the expected utility theory will purchase full insurance when the premium 

is fairly priced, which is consistent with Mossin (1968) and Eckles and Volkman-Wise (2019). 

If the loading factor is present (𝛿 > 0), then the last equation does not hold and full insurance 

is not optimal. Instead, partial insurance will be the optimal equilibrium. 

B.2. Proof of Proposition 1 

We derive inequality (18) with a simple mathematical process as follows; first, the KT value 

function is applied to the expected value in equation (16), and the expected value should be 

positive when market insurance is preferred. 

𝑉 = −𝜆 ∙ (1 − 𝑝௜) ∙ 𝜋ఈ + 𝑝௜ ∙ (𝐼 − 𝜋)ఈ > 0. 

With 𝜋 = (1 + 𝛿) × 𝑝௜ × 𝐼, we obtain 

𝑉 = −𝜆 ∙ (1 − 𝑝௜) ∙ [(1 + 𝛿) ∙ 𝑝௜ ∙ 𝐼]ఈ + 𝑝௜ ∙ [(1 − (1 + 𝛿) ∙ 𝑝௜) ∙ 𝐼]ఈ > 0. 

By canceling out 𝐼ఈ(> 0) in both terms on the left side of the inequality and transferring the 

first term to the right hand side of the inequality, we can rewrite it as 

𝑝௜ ∙ (1 − (1 + 𝛿) ∙ 𝑝௜)
ఈ > 𝜆 ∙ (1 − 𝑝௜) ∙ [(1 + 𝛿) ∙ 𝑝௜]

ఈ . 

As 𝑝௜ ≥ 0 and (1 + 𝛿) ∙ 𝑝௜ ≥ 0, 

ቈ
1 − (1 + 𝛿) ∙ 𝑝௜

(1 + 𝛿) ∙ 𝑝௜
቉

ఈ

> 𝜆 ∙
1 − 𝑝௜

𝑝௜
. 

Appendix B.3 proves the condition 𝛿 ≤
ଵିఈ

ఈ
.  
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B.3. Proof of Proposition 2 

The agent with the value function in equation (1) optimizes equation (16) with respect to the 

level of self-protection as follows: 

𝜕𝑉

𝜕𝑠௜
 =

𝜕[−𝜆 ∙ (1 − 𝑝௜) ∙ 𝜋ఈ + 𝑝௜(𝐼 − 𝜋)ఈ]

𝜕𝑠௜
 

= −𝜆 ∙ 𝛼 ∙ 𝜋ఈିଵ ∙ (1 + 𝛿) ∙ 𝐼 ∙ 𝑝௜
ᇱ + 𝜆 ∙ (𝛼 + 1) ∙ 𝜋ఈ ∙ 𝑝௜

ᇱ + (𝐼 − 𝜋)ఈ ∙ 𝑝௜
ᇱ − 𝛼 ∙ 𝜋 ∙ (𝐼 − 𝜋)ఈିଵ ∙ 𝑝௜

ᇱ 

= 𝜆 ∙ 𝜋ఈ ∙ 𝑝௜
ᇱ ∙ ൤(𝛼 + 1) −

𝛼

𝑝௜
൨ + (𝐼 − 𝜋)ఈିଵ ∙ 𝑝௜

ᇱ ∙ (𝐼 − 𝜋 − 𝛼𝜋) 

We know that the loss probability is a convex function with respect to the level of self-

protection according to assumption 2. It leads the above equation to rely on ቂ(𝛼 + 1) −
ఈ

௣೔
ቃ and 

(𝐼 − 𝜋 − 𝛼𝜋) to determine the first order condition. If both cases are all positive, the marginal 

value for the agent decreases over the level of self-protection, leading to the following condition: 

𝛼

1 + 𝛼
< 𝑝௜ <

1

(1 + 𝛼)(1 + 𝛿)
. 

Conversely, if both cases are all negative, the marginal value increases over the level of self-

protection with the following condition: 

1

(1 + 𝛼)(1 + 𝛿)
< 𝑝௜ <

𝛼

1 + 𝛼
. 

These conditions determine the loading factor by equating the upper and lower bounds such 

that 

𝛿 =
1 − 𝛼

𝛼
. 

Decreasing marginal value over the level of self-protection holds when the loading factor is 

smaller than ଵିఈ

ఈ
, whereas increasing marginal value holds with a higher loading factor. 

B.4. Proof of Proposition 3 

We clarify loss and gain domains by ensuring the positive value of the size of gain to understand 

the decision under prospect theory. The necessary condition to achieve this is 𝑔௜ ≥
௄(௚೔)

௅
, which 

is solved from 𝑔௜ ∙ 𝐿 − 𝐾(𝑔௜) ≥ 0 with regard to 𝑔௜. 

Inequality (23) can be derived with a simple mathematical process as follows: As demonstrated 

in Appendix B.3, the KT value function is first applied to the expected value in equation (21), 

and the expected value should be positive when self-insurance is preferred 
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𝑉 = −𝜆 ∙ (1 − 𝑝௜) ∙ 𝐾(𝑔௜)
ఈ + 𝑝௜ ∙ ൫𝑔௜ ∙ 𝐿 − 𝐾(𝑔௜)൯

ఈ
> 0. 

This can be rewritten as 

𝑝௜ ∙ ൫𝑔௜ ∙ 𝐿 − 𝐾(𝑔௜)൯
ఈ

> 𝜆 ∙ (1 − 𝑝௜) ∙ 𝐾(𝑔௜)
ఈ. 

As 𝑝௜ ≥ 0 and 𝐾(𝑔௜) ≥ 0, 

ቆ
𝑔௜ ∙ 𝐿 − 𝐾(𝑔௜)

𝐾(𝑔௜)
ቇ

ఈ

> 𝜆 ∙
1 − 𝑝௜

𝑝௜
. 

Solving it with respect to 𝑝௜ yields 

𝑝௜ >
1

൬
𝑔௜ ∙ 𝐿
𝐾(𝑔௜)

− 1൰
ఈ

/𝜆 + 1

. 

B.5. Proof of Proposition 4 

To prove Proposition 4, we consider two cases in the following: 

i) 𝑲(𝒈𝒊) − 𝝅 ≤ 𝟎  and 𝑰 − 𝒈𝒊 ∙ 𝑳 + 𝑲(𝒈𝒊) − 𝝅 > 𝟎  (positive net effect of the transition from self-

insurance to market insurance) 

The expected value with the KT value function in this case can be written as 

𝑉 = −𝜆 ∙ (1 − 𝑝௜) ∙ [−(𝐾(𝑔௜) − 𝜋)]ఈ + 𝑝௜ ∙ [𝐼 − 𝑔௜ ∙ 𝐿 + 𝐾(𝑔௜) − 𝜋]ఈ. 

To determine the preference for market insurance instead of self-insurance, we postulate a 

positive expected value; we can then rewrite the preceding equation as 

𝑝௜ ∙ [𝐼 − 𝑔௜ ∙ 𝐿 + 𝐾(𝑔௜) − 𝜋]ఈ > 𝜆 ∙ (1 − 𝑝௜) ∙ [𝜋 − 𝐾(𝑔௜)]ఈ. 

As 𝑝௜ ≥ 0 and 𝐾(𝑔௜) − 𝜋 ≤ 0, 

ቈ
𝐼 − 𝑔௜ ∙ 𝐿 + 𝐾(𝑔௜) − 𝜋

𝜋 − 𝐾(𝑔௜)
቉

ఈ

> 𝜆 ∙
1 − 𝑝௜

𝑝௜
. 

This leads to 

൤
𝐼 − 𝑔௜ ∙ 𝐿

𝜋 − 𝐾(𝑔௜)
− 1൨

ఈ

> 𝜆 ∙
1 − 𝑝௜

𝑝௜
. 
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ii) 𝑲(𝒈𝒊) − 𝝅 > 𝟎 and 𝑰 − 𝒈𝒊 ∙ 𝑳 + 𝑲(𝒈𝒊) − 𝝅 ≤ 𝟎 (positive net effect of staying with self-

insurance) 

Now the signs of two outcomes are switched. The expected value with the KT value function 

in this case is 

𝑉 = −𝜆 ∙ (1 − 𝑝௜) ∙ [−(𝐼 − 𝑔௜ ∙ 𝐿 + 𝐾(𝑔௜) − 𝜋)]ఈ + 𝑝௜ ∙ [𝐾(𝑔௜) − 𝜋]ఈ. 

To determine the preference for market insurance instead of self-insurance, we need to have a 

positive expected value, leading to the following equation: 

𝑝௜ ∙ [𝐾(𝑔௜) − 𝜋]ఈ > 𝜆 ∙ (1 − 𝑝௜) ∙ [𝑔௜ ∙ 𝐿 − 𝐼 − (𝐾(𝑔௜) − 𝜋)]ఈ. 

As 𝑝௜ ≥ 0 and 𝐼 − 𝑔௜ ∙ 𝐿 + 𝐾(𝑔௜) − 𝜋 ≤ 0, 

ቈ
𝐾(𝑔௜) − 𝜋

𝑔௜ ∙ 𝐿 − 𝐼 − (𝐾(𝑔௜) − 𝜋)
቉

ఈ

> 𝜆 ∙
1 − 𝑝௜

𝑝௜
. 

This leads to 

൤
𝑔௜ ∙ 𝐿 − 𝐼

𝐾(𝑔௜) − 𝜋
− 1൨

ఈ

<
1

𝜆
∙

𝑝௜

1 − 𝑝௜
. 
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Appendix C. Additional evidence on frequency rate 

To support our empirical estimation on frequency rate of cyber risk in Section 4.4, additional 

evidence is listed in Table C1. The figures in the evidence are estimated by a variety of 

organizations that regularly report on the status quo of cyber security worldwide. It is distinct 

from the anecdotal/statistical evidence that cyber loss events and attacks are more likely to 

occur in our daily lives and business, particularly in recent years, thereby possibly leading to a 

significant increase in the subjective probability of potential insureds against cyber risk. 

Table C1. List of Anecdotal/Statistical Evidence 

Evidence Source Year 
The average global likelihood of a breach above a minimum of 
10,000 records in the next 24 months is 27.9%. Brazil and 
South Africa have the highest probabilities, with 43.0% and 
40.9%, respectively. 

Ponemon study 2018 

The number of cyber incidents has doubled to 159,700 globally 
in 2017 compared to 2016. 

Online Trust Alliance 2018 

Approximately 70% of organizations believe that their cyber 
security risk significantly increased in 2017. 

Ponemon study 2017 

IoT attacks increased by 600% from 2016 to 2017. Symantec 2017 

The average annual number of breaches increased 27.4% each 
year from 2015 to 2017. 

Accenture 2017 

Cyberattacks are the biggest threat to mankind—an even bigger 
threat than nuclear weapons. 

Warren Buffett 
(in the 2017 Berkshire 
Hathaway’s annual 
shareholder meeting) 

2017 

Financial losses related to cybercrime in Hong Kong have risen 
680% over the five years (2012–2016). 

Hong Kong Police 
Force 

2017 

A 300% increase in ransomware attacks in the U.S. occurred in 
2016 compared to 2015, as reported by the FBI. 

FBI 2016 

China was the country with the largest number of infected 
computers (57.24%) in 2015, 30% more than in 2014, followed 
by Taiwan (49.15%) and Turkey (42.52%). 

Panda Security 2015 

Note: The evidence is listed in chronological order, from the most recent publication, with a variety of sources, including 
industrial reports to a government agency. 
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Essay IV 

Risk aggregation in non-life insurance: Standard models 
vs. internal models  

 

 

Abstract 

Standard models for capital requirements restrict the correlation between risk factors to the 

linear measure and disregard undertaking-specific parameters. We propose a comprehensive 

framework for risk aggregation in non-life insurance using vine copulas and two levels of 

aggregation: base level (within asset and underwriting modules) and top level (between asset 

and underwriting modules). Using empirical data from Korean and German insurance 

companies, we compare our internal risk model with three regulatory standard models (Korean 

risk-based capital, Solvency II, Swiss Solvency Test) and show that the standard models lead 

to more than 50% higher capital requirements on average. Half of the overestimation results 

from the uniform parameter selection imposed by regulations and the other half comes from the 

linear correlation assumption. The differences between standard models and internal models 

might distort competition when both approaches are used in a single market. 

 

Keywords: Insurance regulation, Risk aggregation, Vine copula, Capital requirements 
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1 Introduction 

In the aftermath of the 2008 financial crisis, meeting the capital requirement became one of the 

central management tasks in the banking and insurance industries. Solvency II (SII) as the 

regulatory standard for insurance companies in the European Union covers potential losses from 

the asset and liability side of an insurer by calculating solvency capital requirements (SCR) 

based on either a standard formula or an accredited internal risk model (EC, 2014). Other 

regulatory standards such as the U.S. risk-based capital (U.S. RBC), the Swiss Solvency Test 

(SST) or the Korean RBC (K-RBC) of interest in this study have recently been developed or 

revised (FINMA, 2006; FSS, 2017). Additionally, the International Association of Insurance 

Supervisors (IAIS) is currently discussing a new homogenized risk-based capital standard 

(Insurance Capital Standard; ICS) for globally active insurance groups (IAIS, 2018).1 17F

118 

The regulatory frameworks aggregate risks from the assets and liabilities to protect the insurer 

against simultaneous losses in a stressed situation. The distributions of such risks vary, 

especially between risk factors in the asset and underwriting portfolios, including significant 

tail risks. However, despite significant differences in risk distributions, regulatory standard 

models (e.g., SII and the K-RBC) require insurers to aggregate them under the linear 

dependence assumption with predefined correlation parameters and do not allow undertakings 

to replace the correlation parameters by undertaking-specific parameters (EC, 2014, p. 151; 

FSS, 2017, p. 199; ICS, 2018, p. 121).118F

119  Obviously, it is computationally convenient to 

aggregate risks under the linear dependence assumption. However, a clear drawback of this 

approach is that capital requirements might be misestimated by uniformly aggregating risks, 

which can display different distributional features and shapes (Tang and Valdez, 2009). The 

linear correlation assumption could not capture any symmetric or asymmetric tail risks, despite 

significant evidence of tail risks between assets (see, e.g., Aas and Berg, 2009) and liabilities 

(see, e.g., Diers, Eling and Marek, 2012).  

                                                      
118  After conducting several field tests with 50 insurance groups, IAIS will monitor the adoption of the new ICS 

standard for five years and then plans to launch the final approach in 2024 (IAIS, 2018, p. 11). ICS is closer to 
Solvency II framework than RBC or SST in that it is a stress approach with similar categorization in the market 
risk and the insurance risk modules and requires a 99.5% Value-at-Risk estimation for the calculation (IAIS, 
2018, p. 63). However, it also combines a factor-based approach, as done in RBC, particularly for non-life 
risks (premium and claims reserve risks), which is simpler to implement than the stress approach (IAIS, 2018, 
p. 60). Thus, this new standard attempts to combine existing regulatory frameworks. 

119  Devineau and Loisel (2009) also point out that risk aggregation in the standard formula of Solvency II is linear 
with margins in the elliptical family, which can impose significant restriction to undertakings. The authors 
attempt to build a non-linear internal model with the nested simulation technique to overcome this issue. Their 
focus is on market risk (stock and interest rate risk) and simulation-based analysis. 
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In addition to the linear correlation assumption, the regulatory standard models do not use 

undertaking-specific parameters on risk factors. Instead, they predefine either parameters (SII, 

K-RBC, ICS) or a certain distributional assumption on asset and underwriting risks (SST) for 

all undertakings. However, the parameters predefined by the regulations do not fully reflect the 

empirical data for an individual undertaking and distributional properties vary between assets 

and underwriting risks in different datasets. It might be inappropriate to apply homogeneous 

parameters into datasets with heterogeneous properties and to aggregate different risks with the 

same statistical tools. All these limitations motivate us to study alternatives to the regulatory 

standard models. 

To overcome such limitations, insurers construct and use internal risk models (FINMA, 2006, 

p. 4; EC, 2014, Chapter VI; ICS, 2018, Chapter 9.2).119F

120 The approval of an internal model by 

the regulator for calculating capital requirements signals to investors and analysts that the 

company can optimize its economic capital. However, establishing an internal risk model 

requires resources that small and mid-sized insurance companies cannot afford. This might lead 

to significant differences in solvency models used in one market so that competition might be 

distorted (Eling, Schmeiser and Schmit, 2007). While both standard and internal models should 

ensure effectiveness (i.e., meeting the regulatory capital requirements), it might be that the 

standard model significantly overestimates the necessary capital. If the benefit (possible 

reduction of necessary capital) exceeds the costs of developing and using an internal model, it 

would be more efficient to use the internal model. A distortion in competition might then arise 

if only large companies have the option to use a more efficient internal model. We empirically 

show that this is the case. Developing appropriate internal risk models and quantifying potential 

deviations from regulatory standard models are thus not only of interest for academics in 

actuarial science, but also highly relevant for insurance managers, regulators and public policy. 

To understand potential deviations between internal models and standard models, we construct 

internal risk models that aggregate different risk types of a non-life insurer using realistic asset 

and underwriting portfolios. To our knowledge, the literature has presented no comprehensive 

framework to aggregate asset and underwriting risk under the consideration of the correlation 

                                                      
120  The regulators thus do not force undertakings to adapt the standard model. The European Commission also 

requires insurers to conduct an assessment process called the own-risk and solvency assessment (ORSA; EC, 
2014, p. 187) critically reflecting the methods and main assumptions of the standard model. The internal model 
has not been institutionalized in the Korean regulation system, but is planned to be adopted (FSS, 2017, p. 6). 
The modeling procedure and risk aggregation in this study illustrates how important it is to adequately reflect 
the risk factors and their dependency. Our results also supports the conclusion of Bølviken and Guillen (2017) 
that the correlation assumption in the current Solvency II framework should be replaced by copulas. 
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assumption and predefined parameters. Studies in the insurance field have typically limited the 

risk aggregation to the liability side (e.g., Tang and Valdez, 2009; Diers et al., 2012).120F

121 We 

overcome the limitations of previous studies by using the recently developed vine copula121F

122 

and suggest a comprehensive method of measuring the solvency of a non-life insurer on both 

asset and liability by building a two-step aggregation model: base level and top level. The 

former models the dependence structures of different assets and underwriting risks from various 

lines of business (marginal modeling with undertaking-specific parameters). The latter couples 

the estimated aggregate distributions of assets and liabilities. 

This paper contributes to the academic literature and insurance practice in two ways. First, we 

develop an integrated framework for the economic capital calculation that combines asset and 

insurance portfolios with undertaking-specific parameters. Here, we focus on the market risk 

and underwriting risk module, which are the two main risk drivers for a non-life insurance 

company, as evidenced, for example, in the Solvency II field tests. Then, we consider all 

possible multivariate dependence models in the copula field. This allows us to identify the 

internal risk model that best fits the data using an up-to-date copula methodology. The intention 

is not to develop new theory or methods, but to comprehensively discuss and apply some 

recently developed methods to an important field of actuarial science. Second, we empirically 

compare our internal risk model with regulatory standard models and document significant 

differences (61.2% on average for Korea and 57.8% on average for Germany) between the two 

                                                      
121  In Appendix A, the contribution of this study is highlighted by comparing methodological aspect and outcome 

of this paper with those of five related references in the non-life insurance context: Pfeifer and Strassburger, 
2008; Eling and Toplek, 2009; Tang and Valdez, 2009; Savelli and Clemente, 2011; Diers, Eling and Marek, 
2012. Diers et al. (2012) propose a risk aggregation method for multi-line non-life insurers using Bernstein 
copulas. Savelli and Clemente (2011) analyze the premium risk of a multi-line non-life insurer by estimating 
the capital requirement with hierarchical Archimedean copulas. Tang and Valdez (2009) implement risk 
aggregation for general insurance and show that copulas capturing tail risks generate higher diversification 
benefits and reduce capital requirements. Eling and Toplek (2009) integrate asset and underwriting portfolios 
for the bivariate case using hierarchical Archimedean copulas and apply the model in a dynamic financial 
analysis for non-life insurance companies (using simulation examples, but no real data). 

122  The choice of the vine copula is based on several seminal studies in the context of the high-dimensional 
dependence modeling that stress the validity and efficiency of using the vine copula for financial and insurance 
data, possibly improving regulatory frameworks. For example, Dissmann et al. (2013) apply the regular vine 
copula structure into 16 financial assets to accurately capture their tail risk. Brechmann, Czado and Paterlini 
(2014) make use of the regular vine copula to model the dependence structure of operational risk losses, which 
represent to some extent similar distributional properties to insurance claims. They estimate regulatory capital 
for operational risks with their modeling process and find 38% smaller estimates than what the banking 
regulatory framework requires. Côté and Genest (2015) apply a tree-based copula structure similar to vine 
copula structure (or hierarchical Archimedean copula structure) on the insurance portfolio of a large Canadian 
insurance company and argue that regulatory frameworks need a flexible, multivariate risk model using high-
dimensional copulas. All the studies clearly support the use of the vine copula (or high-dimensional copula-
based approach) for the assessment of regulatory capitals to fully describe market and underwriting risks. 
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approaches.122 F

123  Revealing these massive differences has important policy implications for 

insurance managers and regulators, since they might create an uneven playing field that places 

small- and mid-sized insurers at a disadvantage. We illustrate this by applying our models to 

companies of different sizes. 

The rest of the paper is structured as follows. In Section 2, we present the regulatory frameworks 

(K-RBC, SII and SST), followed by the methodological framework. We describe the data used 

in the empirical study in Section 3. Section 4 presents the marginal modeling and dependence 

modeling at the base and top levels. Applications to the economic capital calculation are given 

in Section 5. Finally, we conclude and discuss further research questions in Section 6. 

 

2 Regulation, theoretical background and model framework 

2.1 Regulatory frameworks 

Korean risk-based capital (K-RBC) 

The RBC system was launched in the early 1990s by the National Association of Insurance 

Commissioners (NAIC) in the U.S. Modified versions have been applied in many other 

countries (e.g., Australia, Japan, Korea, Singapore and the U.K.). The K-RBC system by the 

Korean financial supervisory service (FSS), which is of interest in our empirical study, came 

into effect in April 2011 and was revised in 2017 (FSS, 2017). It requires insurers to estimate 

the RBC ratio and its components as follows (FSS, 2017, p. 37): 

𝑅𝐵𝐶 𝑟𝑎𝑡𝑖𝑜 =
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑖𝑡𝑎𝑙

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑖𝑡𝑎𝑙
× 100 ≥ 150, (1) 

  

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 = 𝐶 − 𝐼 + 𝑆, (2) 
  

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 = ඨ෍ ෍ 𝐶𝑜𝑟𝑟௜,௝ × 𝑅𝑖𝑠𝑘௜ × 𝑅𝑖𝑠𝑘௝

௝ୀଵ௜ୀଵ

, 
(3) 

                                                      
123 The data we consider is from Korea and Germany, two comparable markets from different parts of the world 

that have already implemented “risk-based capital” regulations. According to Swiss Re (2018), the Korean 
insurance market is ranked seventh in the world and third in Asia with regard to the total premium volume 
($181.2 bn); the German insurance market is sixth in the world and third ($223.0 bn) in Europe. We also 
consider two different markets, since most studies concentrate on data from one market or on simulated data. 
(see Appendix A). 
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where 𝐶 is the summation of core capital and supplementary capital, 𝐼 are intangible assets, 𝑆 

are any capital deficiency of subsidiaries, 𝐶𝑜𝑟𝑟௜,௝ is a correlation coefficient between risk i and 

risk j, and 𝑅𝑖𝑠𝑘௜ and 𝑅𝑖𝑠𝑘௝ are the exposures123F

124 of the i-th and j-th risk. 

The K-RBC is a factor-based system requiring insurers to use a risk coefficient for each risk 

factor given in the standard model.12 4F

125 The risks in equation (3) are estimated from individual 

modules consisting of insurance, market, credit, interest rate and operational risk. The K-RBC 

system classifies insurance risk into four categories based on the coverage (life, long-term non-

life, automobile and general insurance); the market risk module consists of three asset classes 

(short-term trading securities, derivatives and foreign exchange).125F

126  The evaluation of 

insurance risk is determined by premium risk and reserve risk, which are estimated by the sum 

of multiplication of risk exposure and adjusted risk coefficient under a predefined correlation. 

The key difference between the initial system in 2011 and the revised 2017 system is that an 

insurer needs to consider the correlation and the diversification effect between sub-risks in the 

insurance risk module and the confidence level to estimate the economic capital is increased 

from 95% to 99% (FSS, 2017, p. 6, p. 43). However, the new framework still does not require 

correlations between sub-risks in the market risk module, which is a difference between the K-

RBC and SII. Table 1 gives the assumed correlation matrices between the risk modules and 

between the risk classes of insurance risk. 

Table 1. Correlation Matrices under the K-RBC (FSS, 2017, p. 36) 

Panel A: Correlation of risk modules  Panel B: Correlation of insurance risk 
 Insur Market Credit Interest   Life LT-NL Auto General 
Insur 1     Life 1    
Market 0.25 1    LT-NL 0.25 1   
Credit 0.25 0.5 1   Auto 0.25 0.25 1  
Interest 0.25 0.5 0.5 1  General 0.25 0.5 0.5 1 
Note: LT-NL=Long-term non-life risk. 

                                                      
124  The term “exposure” is used here to represent the size of capital for a single risk in the regulatory framework. 

Here we follow the official document for the K-RBC (FSS, 2017, p. 29) which also employs this terminology. 
125  The standard risk coefficient for a risk factor i (=𝛾௜) can be calculated as follows (FSS, 2017, p. 29): 

𝛾௜ =
𝑉𝑎𝑅ఈ

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑙𝑜𝑠𝑠
=

inf൛𝑋௜ ∈ ℝ: 𝑋௜ ≥ 𝐹௑೔

ିଵ(1 − 𝛼)ൟ

𝐸[𝑋௜]
, 

where 𝛼 is a confidence level for Value-at-Risk of the risk factor i, 𝑋௜ is a loss vector and 𝐹௑೔
 is a probability 

function of 𝑋௜. Here, 𝑉𝑎𝑅ఈ is a possible loss amount (positive value) at the determined confidence level 𝛼. 
Insurers have an opportunity to adjust the standard risk coefficient using 50% of the difference in the combined 
ratio between an insurer and the industry average (FSS, 2017, p. 48; explained in detail in Appendix E). 

126  General insurance contains fire, package, marine, accident, liability and others, whereas long-term non-life 
insurance includes death/disability, disease, property, medical expense and others (see FSS, 2017, p. 47 for 
long-term non-life insurance and p. 55 for general insurance). Short-term trading securities consist of equities 
and bonds (treasury and corporate) classified as the short-term trading assets from the corporate balance sheet 
in Korean currency and the foreign exchange class is the risk caused by the change in the exchange rate from 
the country in which the asset is invested (see FSS, 2017, p. 130). 
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Solvency II (SII) 

SII, the new European Union regulatory framework that took effect in January 2016, is a 

scenario-based system that considers risk parameters in predefined stress situations, which are 

calibrated with data from a variety of insurers from different European countries. SII is 

comprised of market, default, life, non-life, health and operational risk modules (EC, 2014). 

Market risk incorporates six risk factors (interest rate, equity, property, spread, currency and 

concentration) providing calibrated parameters for potential stressed scenarios. The standard 

capital requirement for a sub-module of market risk is calculated by the change in the net asset 

value (asset–liability) from a normal state to a stressed state (see EC, 2014, Section 5 in Chapter 

V for detail). The non-life underwriting risk module consists of premium risk, reserve risk and 

catastrophe risk factors for different lines of business with predefined correlation assumptions 

(EC, 2014, Annex IV). The capital requirement by SII, which is called solvency capital 

requirement (SCR), is calculated using the square root formula (equation (3)) with replacing 

𝑅𝑖𝑠𝑘௜ and 𝑅𝑖𝑠𝑘௝ by 𝑆𝐶𝑅௜ and 𝑆𝐶𝑅௝ respectively. 

The SCR for each module is evaluated at 99.5% confidence level based on parameters 

calibrated under certain stress situations, where values of assets and liabilities are affected by a 

particular risk. SII specifies the correlation measures within and between risk modules. Table 

2 shows the correlation matrices between risk modules and within the non-life and market risk 

module. SII differentiates the correlation assumptions of the market risk module into two 

possible scenarios: “up” and “down” shocks of interest rate (see Appendix E for more detail). 

Table 2. Correlation Matrices under SII (EC, 2010, p. 96; EC, 2014, p. 105, p. 233) 

Panel A: Correlation of risk modules  Panel B: Correlation of non-life risk 
 Mkt Def Life Hth NL   Mot Fire MAT Liab Mis 
Mkt 1      Mot 1     
Def 0.25 1     Fire 0.25 1    
Life 0.25 0.25 1    MAT 0.5 0.25 1   
Hth 0.25 0.25 0.25 1   Liab 0.5 0.25 0.25 1  
NL 0.25 0.5 0 0 1  Mis 0.5 0.5 0.5 0.5 1 

Panel C: Correlation of market risk 
Correlation for the “up” shock  Correlation for the “down” shock 

 Interest Equity Property Spread   Interest Equity Property Spread 
Interest 1     Interest 1    
Equity 0.5 1    Equity 0 1   
Property 0.5 0.75 1   Property 0 0.75 1  
Spread 0.5 0.75 0.5 1  Spread 0 0.75 0.5 1 
Note: Mkt=Market risk; Def=Default risk; Hth=Health risk; NL=Non-life risk; Mot=Motor; MAT=Marine, aviation and 
transport; Liab=3rd party liability; Mis=Miscellaneous. In panel B and C, the original matrices consist of more factors, but 
we only show the relevant factors to our empirical data. 
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Swiss Solvency Test (SST) 

The SST, introduced in 2006, evaluates the amount of risks on a market-consistent basis. It 

specifies 74 risk factors that potentially influence the asset side of an insurer and 13 risk factors 

in the non-life underwriting module (FINMA, 2006). SST proposes a model-based approach to 

derive capital requirements for different risk modules; a multivariate normal distribution is 

assumed for the market risk module (FOPI, 2004, p. 19; see Appendix E for more detail). The 

claims distributions are split into normal, large and catastrophic claims by using mean and 

standard deviation of the lognormal distribution, a compound Poisson process and a scenario-

based model, respectively (FOPI, 2004, p. 22).1 26F

127  SST requires insurers to estimate their 

potential risk levels using Tail Value-at-Risk at 99% confidence level and uses the convolution 

to aggregate normal and large claims and the asset portfolio and underwriting portfolio (FOPI, 

2004, p. 24).127F

128 

2.2 Theoretical background and model framework 

Non-life insurers typically operate several lines of business and form a risk pool to realize 

diversification effects. Most of the earned premiums are invested in capital markets and 

diversified into risky and safe investments. We thus need to aggregate different risk factors 

from the asset and liability side of the balance sheet when estimating the insurers’ total risk and 

capital requirements. A risk factor is here a single asset or a single line of insurance business. 

The starting point of the risk aggregation process is to generate the aggregate distribution of 

individual risk factors from the asset and liability side. At this base level of aggregation, each 

marginal distribution needs to be parametrically specified to reflect the distributional feature of 

each risk factor. Then, we aggregate the estimated margins considering the dependence 

structure between risk factors. Copula methods are widely used for this aggregation by 

transforming heterogeneous margins to uniform distributions.128F

129 In the following, we assume 

that the reader is familiar with the concept of copula and multivariate modeling with copula, 

which originates from Sklar’s theorem (see Nelsen (2006), Chapter 2.3., for an overview). 

Several copula methods have been developed to estimate the dependence structure of risk 

factors. Gaussian and student-t copulas belonging to elliptical family are popular functions used 

                                                      
127  Large claims are defined as those above either 1 million or 5 million CHF; catastrophic claims are those that 

significantly influence several lines of business at the same time or are not covered by large claims distribution 
(FOPI, 2004, p. 44). 

128  FINMA (2006) conducted a field test using monthly asset data from different firms and calibrates a variance-
covariance matrix in its standard model. 

129 Traditionally, the risk aggregation is carried out using a variance-covariance matrix under normality assumption 
on the margins leading to the joint normality, especially for the asset portfolio management; the insurance risks 
are traditionally aggregated under independence (Embrechts, McNeil and Straumann, 2002).  



Essay IV  Risk aggregation in non-life insurance 

154 
 

in practice due to their statistical convenience. Clayton and Gumbel copulas belong to the 

Archimedean family and are widely used in modeling dependency, projecting asymmetric tail 

dependency (Nelsen, 2006). Recently, high-dimensional dependence models have been 

developed and applied to different fields of study: Hierarchical Archimedean Copula structure 

(HAC; also called nested Archimedean copula) and Pair Copula construction (PCC; also called 

vine copula model).12 9F

130  

HAC is a multivariate dependence structure constructed by generators of Archimedean family 

in a multi-level hierarchical setting, which can help to overcome exchangeability of simple 

Archimedean copula approach. Various papers have employed HAC to reduce the dimension 

and find a more accurate high-dimensional dependence structure than typical copula functions 

such as elliptical copulas and simple Archimedean copulas (e.g., Joe, 1997; Embrechts et al., 

2001; Nelsen, 2006; Savu and Trede, 2010). Similarly, PCC is used to reduce the dimension by 

pairing the variable set and more accurately establish a flexible dependence structure (Bedford 

and Cooke, 2001). PCC was introduced by Joe (1996) and has been developed by Bedford and 

Cooke (2002), Kurowicka and Cooke (2006) and Aas et al. (2009). 

PCC is more flexible than HAC in terms of the range of copula functions possibly used in the 

construction, whereas it has more parameters to be estimated. Aas and Berg (2009) compare 

HAC and PCC theoretically and empirically, concluding that PCC is computationally more 

efficient and less restrictive than HAC. Aas et al. (2009) build a theoretical frame for PCC, 

provide algorithms and apply the model to a financial portfolio. However, there is still a lack 

of empirical studies on insurance data, especially in combination with asset modeling in a high-

dimensional setting.130F

131 The PCC method is comprised of three structures: D-Vine (drawable 

vine copula), C-Vine (canonical vine copula) and R-Vine (regular vine copula). The D-Vine is 

a structure in a row with the hierarchical construction, the C-Vine describes a dependence 

                                                      
130  See, for instance, Savu and Trede (2010) with HAC for financial data, Schepsmeier and Czado (2016) with 

PCC for car crash simulation data and Eling and Jung (2018) with PCC for data breach records. Daul, De 
Giorgi, Lindskog and McNeil (2003) describe another high-dimensional dependence model, the grouped t-
copula, which models heterogeneous levels of tail dependence by aggregating sub-vectors of the d-dimensional 
vector of variables. We focus on tree (or level)-based multidimensional copula models recently developed, but 
the grouped t-copula by Daul et al. (2003) provide an alternative approach to model a large set of risk factors 
from different classes using the t-copula. 

131  There are several studies of risk aggregation for both assets and liabilities (see, e.g., Rosenberg and 
Schuermann, 2006; Aas et al., 2007; Aas and Berg, 2009 for asset aggregation; Tang and Valdez, 2009; Diers, 
Eling and Marek, 2012; Bermudez, Ferri and Guillen (2013); Eling and Jung, 2018 for insurance aggregation), 
but no integrated consideration of assets and liabilities. One relevant study to the correlation issue in Solvency 
II between market risk and underwriting risk is by Filipovic (2009), who discusses the interplay between the 
top-level correlation and the base-level correlation. Bølviken and Guillen (2017) construct an internal model 
incorporating the market, credit and non-life risk modules with Monte Carlo simulation under the lognormal 
assumption updating skewness, which, however, does not provide an empirical analysis. 
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structure where a core risk factor connects the rest of factors and the R-Vine links the risk 

factors according to the level of dependency.131F

132 The R-Vine as a more general structure can 

incorporate the C-Vine and the D-Vine according to the dependence structure of random 

variables. 

In addition to these parametric dependence models, we consider the Bernstein copula as an 

alternative base-level model, which is a type of empirical copula with Bernstein polynomial 

(Sancetta and Satchell, 2004). We implement the D-Vine structure with Bernstein copula 

recently developed by Kauermann and Schellhase (2014) to make it comparable with other 

pairwise models (HAC and PCC).132F

133 Table 3 illustrates the list of possible copula methods for 

d-dimensional setting used in our empirical study. 

Table 3. List of Copulas (Nelsen, 2006; Aas and Berg, 2009; Kauermann and Schellhase, 2014) 

Model # of parameters Pros Cons 
Gaussian 𝑑(𝑑 − 1)

2
 

 Easy to use and interpret. 
 Normally distributed 

margins. 

 No tail dependence. 
 Limited to symmetric 

and linear dependency. 
Student-t 𝑑(𝑑 − 1)

2
+ 1 

 Easy to use and interpret. 
 Tail dependence. 

 Limited to symmetric 
dependency. 

Archimedean 1  Easy to construct. 
 A great variety of copula 

families. 

 Difficult interpretation 
with a single parameter. 

 Exchangeability. 
Hierarchical 
Archimedean 
Copulas (HAC) 

𝑑 − 1  Easy to construct by using 
generating functions of 
Archimedean copulas. 

 A more accurate 
dependence structure. 

 Limited to Archimedean 
family. 

 Difficult interpretation. 
 Complicated form. 

Pair Copula  
Construction 
(PCC) 

𝑑(𝑑 − 1)

2
 

 A more accurate high 
dimensional dependency. 

 A variety of copulas. 
 Any type of dependence 

model. 

 Difficult interpretation. 
 No explicit distribution 

function available. 

Bernstein copula 
(D-Vine) 

𝑑(𝑑 − 1)

2
∙ (𝑚 + 1)ଶ, 

where m is the 
degree of Bernstein 
polynomial 

 Advantageous when 
parametric copula functions 
are misspecified. 

 Flexible by controlling the 
polynomial degree. 

 Still unknown 
parameter of optimal 
polynomial degree m. 

 Not parsimonious. 

In the empirical study, we construct two HAC structures with Gumbel and Clayton copula. 

Different copula functions could be used for different pairs in one structure (i.e., the mixture of 

different Archimedean copulas), but some copula functions are incompatible with each other; 

thus, the hierarchical structure cannot be formed by using the generating functions of such 

                                                      
132  See Aas et al., 2009 for more detail in specific algorithms of D-Vine and C-Vine. See Bedford and Cooke, 

2001, 2002; Czado, 2010; Dissmann et al., 2013 for more detail in the density estimation and specification of 
R-Vine. 

133  For more detail on mathematical formulations for Bernstein approximation and copula density, see Sancetta 
and Satchell (2004), Pfeifer, Strassburger and Philipps (2009), Diers, Eling and Marek (2012), Kauermann, 
Schellhase and Ruppert (2013) and Yang et al. (2015). 
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copulas. For example, Savu and Trede (2010) prove the incompatibility of different generating 

functions in a hierarchical structure using Gumbel and Clayton copulas. For this reason, we use 

one copula function for one HAC structure. In addition, we focus on the R-Vine model, which 

is less restrictive than the D- and C-Vine models and can represent them depending on the 

dependence structure of variables. To form the R-Vine density, the following steps are required 

(Dissmann et al., 2013):  

Step 1: The tree structure (the level of the structure) needs to be determined to identify linked 

trees (Czado, 2010, Section 3; Dissmann et al., 2013, Section 2.2). 

Step 2: Parametric bivariate copula for each node of each tree needs to be determined. 

Step 3: Corresponding dependence parameters to the estimated copula in step 2 need to be 

estimated. 

When a vine model is used, a two-step approach consisting of marginal estimation and copula 

estimation introduced by Joe and Xu (1996) is employed for the parameter estimation due to 

the high dimensional optimization of a vine model (Czado, Jeske and Hofmann, 2013). The 

approach that uses the maximum likelihood method is called the inference function for margins 

(IFM).133F

134 The transformation to the uniform distribution (𝑢௜ ∈ [0,1], 𝑖 = 1, … , 𝑑) in the first tree 

of a vine model is required and applies to the following trees given the estimation in the previous 

tree (conditional transformation). The transformation is carried out non-parametrically using 

the ranks of the observations, which are called pseudo-observations (Aas and Berg, 2009). The 

pseudo-observations are employed for bivariate conditional copula functions in the sequential 

estimation in the abovementioned steps, and the optimization of pairwise likelihood function 

                                                      
134  A simple case of IFM can be illustrated as follows. The d-dimensional probability function for the random 

vector 𝚾 based on Sklar’s theorem (1959) is described in the following: 
𝐹(𝐗; 𝜏ଵ, … , 𝜏ௗ, 𝛉) = 𝐶(𝐹ଵ(𝑥ଵ; 𝜏ଵ), … , 𝐹ௗ(𝑥ௗ; 𝜏ௗ); 𝛉), 

 where 𝜏௜ , 𝑖 = 1, … , 𝑑 is a parameter of a marginal function 𝐹௜ , 𝜽 is a set of dependence parameters by the 
copula function 𝐶. 

 The joint density function of the continuous random variables (vector X) can be derived as: 

𝑓(𝐗; 𝜏ଵ, … , 𝜏ௗ , 𝛉) = 𝑐(𝐹ଵ(𝑥ଵ; 𝜏ଵ), … , 𝐹ௗ(𝑥ௗ ; 𝜏ௗ); 𝛉) ෑ 𝑓௝൫𝑥௝; 𝜏௝൯
ௗ

௝ୀଵ
, 

 where 𝑓௝ is the corresponding probability density to the marginal function 𝐹௝  (𝑗 = 1, … , 𝑑) and 𝑐(∙) is a copula 
density function. 

 The log-likelihood function for the joint density function derived above has the following form: 

𝐿(𝛉, 𝜏ଵ, … , 𝜏ௗ) = ෍ log 𝑓(𝑥௜ ; 𝜏ଵ, … , 𝜏ௗ , 𝛉)
ௗ

௜ୀଵ
. 

The parameter estimation by IFM consists of optimizations for univariate margins and the optimization of the 
d-dimensional log-likelihood with the dependence parameter. The derivation of the parameters for vine models 
using IFM has been studied in Haff (2013) and Czado, Jeske and Hofmann (2013). 
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with pseudo-observations is implemented by maximizing the pseudo-likelihood (for more detail, 

see Aas et al., 2009; Dissmann et al., 2013).13 4F

135 

The selection of a parametric bivariate copula for each node in the second step is conducted by 

Akaike Information Criteria (AIC)1 35F

136 and the Vuong and Clarke test (Vuong, 1989; Clarke, 

2007). We consider a range of parametric copula functions to fit for each pair: independence, 

Gaussian, student-t, Clayton, Gumbel, Frank, Joe, survival Archimedean copulas and rotated 

Archimedean copulas (90° and 270°). Figure 1 depicts HAC and three types of PCC in the four-

dimensional setting, where the first tree of PCC distinguishes the vine models. 

 

Figure 1. A graphical example of HAC and PCC (four-dimensional case). The mathematical definitions 
of HAC and PCC (R-Vine) are provided in Appendix B. 

The copula models listed in Table 3 are used to aggregate at the base level with the marginal 

modeling in both asset and underwriting portfolios. Once the base-level aggregation is complete, 

one would have two aggregate distributions at hand from the two sides of the balance sheet. 

The estimated dependence structure from each portfolio is inherent in each aggregate 

distribution. The aggregate distribution for each portfolio can be described as: 

𝑅௔ = ෍ 𝑤௜𝑋௜ଵ|஼ೌೞೞ೐೟

௡ೌ

௜ୀଵ

 (𝑎𝑠𝑠𝑒𝑡𝑠) 𝑎𝑛𝑑 𝑅௟ = ෍ 𝑋௜ଶ|஼౫౤ౚ౛౨౭౨౟౪౟౤ౝ

௡೗

௜ୀଵ

 (𝑢𝑛𝑑𝑒𝑟𝑤𝑟𝑖𝑡𝑖𝑛𝑔), (4) 

                                                      
135  The maximum pseudo-likelihood estimation (MPL) is introduced by Genest, Ghoudi and Rivest (1995) and 

has been developed in Chen and Fan (2006) for time-series copula modeling and Aas et al. (2009) for pair 
copula construction. The estimation using MPL is basically a semi-parametric approach, consisting of non-
parametric marginal transformation and parametric estimation for dependence parameters (Genest et al., 1995). 

136  We use the information criterion defined by Akaike (1973) as follows: 
𝐴𝐼𝐶 ≔ −2𝐿𝑜𝑔𝑙𝑖𝑘௜(Θ|𝒖) + 2𝑘, 

 where 𝐿𝑜𝑔𝑙𝑖𝑘௜(∙) is the log-likelihood of i-th model, Θ = (θଵ, … , θ௞) is a set of parameters, 𝒖 = (𝑢ଵ, … , 𝑢ௗ) 
is a d-dimensional set of uniform margins and 𝑘 is the number of parameters. 
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where 𝑖 = 1, … , 𝑛௔ 𝑜𝑟 𝑛௟ is the dimension of each portfolio, 𝑅௔ is the return distribution of the 

asset portfolio, 𝑋௜ଵ is the i-th risk factor of the asset portfolio from the estimated dependence 

structure ( 𝐶௔௦௦௘௧ ), 𝑤௜  is the weight of the i-th asset136F

137 , 𝑅௟  is the loss distribution of the 

underwriting portfolio and 𝑋௜ଶ  is the i-th risk factor of the underwriting portfolio from the 

estimated dependence structure (𝐶௜௡௦௨௥௔௡௖௘). 

With the aggregate distributions, 𝑅௔ and 𝑅௟, we model the dependence structure using pseudo-

observations of 𝑅௔ and 𝑅௟ at the top level and aggregate two distributions with Sklar’s theorem 

(1959). 

𝐹(𝑥௔, 𝑥௟) = 𝐶(𝑢ො௔, 𝑢ො௟), (5) 

where 𝑥௔  is the aggregate asset distribution, 𝑥௟  is the aggregate liability distribution, 𝑢ො௔ =

𝐹௔(𝑅௔) is the vector of the pseudo-observations for the asset portfolio and 𝑢ො௟ = 𝐹௟(𝑅௟) is the 

vector of the pseudo-observations for the underwriting portfolio. The probability functions of 

both aggregate distributions are conditional functions (copula distributions) given the sub-risks 

for both portfolios at the base level. A range of copula functions considered at the top level are 

enumerated in Section 4.3.  

We note that the possible problems in multi-level risk aggregation under the current insurance 

regulatory frameworks are twofold. One problem results from the linear correlation assumption 

between risk factors, a problem that we address with our pairwise dependence model. A second 

problem is a possible interplay between risk factors from different classes, which Filipovic 

(2009) investigates by comparing the Solvency II two-level approach (i.e., a base correlation 

matrix within each risk class and a top-level correlation matrix between these risk classes) with 

an internal model using a bottom-up approach for a large correlation matrix of all risk types. 

Our modular two-level approach is consistent with the currently used standard models and thus 

only addresses the first problem, whereas Filipovic (2009) addresses the second problem. In 

this regard, our model complements the results by Filipovic (2009).137F

138 Figure 2 illustrates the 

                                                      
137  In the application part, we employ the asset allocation based on the financial statement of the insurer for the 

aggregate asset distribution (see Table 4). Then, we also consider two asset allocation strategies to see the 
effect of each strategy on the estimation of the economic capital (see Table D2 in Appendix D). 

138  Filipovic (2009) shows that only correlation parameters set at the base level lead to unequivocally comparable 
solvency capital requirements across the industry. Beyond that, he also stresses that the correlation aggregation 
does not appropriately capture tails and tail dependence of risks and encourages the additional use of risk and 
dependence modeling, which is what we present in this paper. To compare our data with Filipovic (2009), we 
also measure the linear correlations across risk classes based on the QIS3 calibration method that Filipovic 
(2009) follows, given the asset allocation for each data. For the Korean data, the linear correlations between 
premium/reserve (non-life) risk and the equity factors are: KR_stock: 8.6%; KR2Y: 2.6%; KR5Y: 4.9%; 
KR10Y: 6.0%; KRcor: 4.3%; KRM3: 8.5%; Wrd_real: 8.6%; For the German data, Wrd_stock: 19.9%; 
EMU_stock: 20.1%; DE_stock: 11.0%; US2Y: 7.2%; DE2Y: 3.1%; EMU2Y: 2.1%; IBOXX_cor: 3.1%; 
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integrated structure we use to derive the total loss distribution from the asset and liability side. 

Figure 3 summarizes our methodology. 

 

Figure 2. Integrated structure of risk aggregation for a non-life insurer. 

 

Figure 3. Process of the methodology implemented. 

 

3 Data  

In the empirical study, we consider a realistic portfolio selection for both assets and liabilities. 

Asset returns are measured with widely used benchmark indices. These indices consist of stocks, 

bonds, real estate and money market, usually accounting for most investments by non-life 

insurers (Eling, Gatzert and Schmeiser, 2009). A well-known benchmark asset portfolio for a 

large Korean non-life insurer is shown in Table 4, the portfolio that we consider to construct an 

internal model for market risk (Kim, 2015). The asset allocation in Table 4 is based on the 

financial statement of the insurer in 2016, allowing for adopting a realistic investment strategy. 

Monthly log returns from January 2002 to December 2016 (180 observations for each asset) 

                                                      
EURM3: 10.2%; Wrd_real: 3.6%; EU_real: 6.7%. These numbers are comparable with Figure 10 in Filipovic 
(2009), where the correlation between underwriting risk and equity risk is relatively high, whereas the 
correlation between underwriting risk and interest rate risk is relatively low. 
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are taken from Datastream. We use the total return index for the equity and the real estate 

securities, which consider the dividend reinvestment performance (Eling et al., 2009). For the 

insurance portfolio, we derive historical aggregate loss distributions of a Korean insurer from 

five lines of business (fire, motor, marine, liability and accident).138F

139 The loss distributions are 

also on a monthly basis and for the same time period. Table 5 presents the descriptive statistics 

for both portfolios. Appendix G gives corresponding information for the German dataset. 

Table 4. Benchmark Indices (Kim, 2015) 

Asset class Index Description Asset allocation 
Equity KR_stock MSCI Korea Index  5.0% 
Fixed income KR2Y Korea 2-year Sovereign Bond Index 20.0% 

KR5Y Korea 5-year Sovereign Bond Index 20.0% 
KR10Y Korea 10-year Sovereign Bond Index 20.0% 
KRcor AA 3-year Corporate Bond Index 20.0% 

Money Market KRM3 Korea standardized money supply M3 5.0% 
Real estate139F

140 Wrd_real MSCI World Real Estate Index 10.0% 
Note: MSCI stands for Morgan Stanley Capital International. The asset allocation is based on the 2016 annual report 
of the insurer. 

Table 5. Descriptive Statistics 

Panel A: Asset portfolio 

 mean sd skewness kurtosis Max median min JB-test 
KR_stock 0.0081 0.0771 -0.3898 1.1737 0.2341 0.0087 -0.3028 15.81*** 
KR2Y -0.0001 0.0118 0.0256 5.3170 0.0610 0.0019 -0.0444 219.55*** 
KR5Y 0.0001 0.0173 -0.5500 2.1224 0.0569 0.0030 -0.0615 44.87*** 
KR10Y -0.0002 0.0252 -0.4863 2.8502 0.1039 0.0038 -0.0835 70.98*** 
KRcor 0.0039 0.0047 2.8663 16.6943 0.0385 0.0035 -0.0049 2,396.48*** 
KRM3 0.0071 0.0336 -0.2851 3.7564 0.1490 0.0100 -0.1289 112.62*** 
Wrd_real 0.0071 0.0564 -1.3226 6.7998 0.2050 0.0129 -0.3244 411.43*** 

Panel B: Insurance portfolio (₩ billion) 

 mean sd skewness kurtosis Max median min 
Fire 0.892 0.799 3.444 20.175 7.102 0.714 0.043 
Motor 191.518 53.432 0.614 -0.443 356.089 174.658 97.938 
Marine 2.655 2.280 2.198 6.731 14.122 2.031 0.041 
Liability 2.870 1.928 1.193 1.724 11.594 2.221 0.253 
Accident 14.289 8.826 0.094 -1.071 33.313 14.456 1.171 
Note: The numbers in panel A are derived from geometric return series. *,**,*** indicate that the p-value is less than the 
significance levels, 10%, 5% and 1% respectively. JB-test stands for Jarque-Bera test for normality assumption on the 
residual. ₩ stands for Korean Won. 

                                                      
139  The insurance loss data is derived from insurance statistics information services (INsis) operated by the Korea 

Insurance Development Institute (KIDI). The data is from the largest non-life insurer in the Korean non-life 
insurance market (with almost a quarter of the market share) in terms of total asset size. We construct our 
internal model with this dataset and check the robustness of our model with additional data from four 
companies in the Korean market, which are at quartiles with regard to total asset size and have the same lines 
of business in the underwriting portfolio (see Appendix F). In addition, we compare the economic capitals of 
four companies estimated by our internal model with the regulatory measures under the K-RBC to see the 
variation between the internal model and the standard model (see Table 9). 

140  For the real estate index, local indices such as MSCI Korea or Asia-Pacific area are not available for the study 
period. The world index is also relevant to the possible investment of a Korean insurer, especially nowadays 
after the deregulation on real estate investment abroad in 2014 (FSC, 2014). 
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The Jarque-Bera test results on assets (panel A of Table 5) show that no return distribution 

satisfies the normality assumption. Figure C2 in Appendix C shows that most assets are either 

left- or right-skewed and leptokurtic. An asset return series is typically time-varying, so 

autocorrelation and heteroscedasticity need to be considered (Bollerslev, 1986). We fit ARMA-

GARCH model with different innovations for the dataset to resolve this issue, as described in 

Section 4.1. The aggregate losses from the five insurance lines are right-skewed (Figure C3), 

among which motor insurance generates substantially larger losses than other lines. 

4 Marginal modeling 

4.1 Marginal modeling 

The insurance modeling (individual risk model and collective risk model) is designed to 

estimate the total (aggregate) loss for a certain time period in the risk pool, where the losses are 

typically modeled by statistical tools for right-skewed frequency and severity (Cummins, 1991; 

Embrechts, 2002; Frees, 2015). In contrast, the financial return series are stationary (or linear) 

processes with the statistical features of mean-reversion and volatility clustering, which are 

modeled with different tools compared with the insurance claims modeling (Embrechts, 

Kluppelberg and Mikosch, 2013, Chapter 7). 

Autocorrelation and heteroscedasticity for the asset portfolio are investigated before the data is 

used in the dependence modeling. We find autocorrelation and that the assumption of the equal 

variance of residuals is violated for most assets, showing the presence of volatility clustering 

and fluctuation (see Figure C1 in Appendix C). Based on the graphical identification of 

autocorrelation and heteroscedasticity, ARMA and GARCH models are specified (Bollerslev, 

1986; Box, Jenkins and Reinsel, 1994). 

Conditional mean model (ARMA[p,q]): 

𝑟௧ = 𝜇 + 𝜑ଵ𝑟௧ିଵ + ⋯ + 𝜑௣𝑟௧ି௣ + 𝜃ଵ𝜀௧ିଵ + ⋯ + 𝜃௤𝜀௧ି௤ + 𝜀௧, (6) 

𝐸[𝜀௧] = 0 𝑎𝑛𝑑 𝑉𝑎𝑟[𝜀௧] = 𝜎௧
ଶ, 

Conditional variance model (GARCH[1,1]): 

𝜎௧
ଶ = 𝛼଴ + 𝛼ଵ𝜀௧ିଵ

ଶ + 𝛽𝜎௧ିଵ
ଶ , (7) 

where 𝑟௧ is a return at time t, 𝜇 is the drift term, 𝜑௣ is an auto-regressive coefficient, 𝜃௤ is a 

moving average coefficient and 𝛼ଵ and 𝛽 are GARCH coefficients. 
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For the conditional mean model, we test autocorrelation and moving average with different lags. 

For the conditional variance model, we fit GARCH(1,1) for each asset, but there is a need to 

apply heavy-tailed distributions due to the presence of extreme values observed in QQ-plots 

(see Figure C2).140F

141 Thus, the procedure to fit conditional variance is conducted in different 

parametric settings by specifying normal, skew normal, student-t and skew student-t 

distributions, all of which are widely used in the literature to analyze financial time-series data 

(see, e.g., Bollerslev, 1986; Bollerslev and Wooldridge, 1992; Jondeau and Rockinger, 2006; 

Eling, 2014). Many studies of conditional volatility modeling use the Gaussian distribution 

(Engle, 1982); we also consider skewed and leptokurtic distributions to find a better fit.  

The ARMA-GARCH model for each return distribution is determined by the minimum Akaike 

information criteria (AIC) among different candidates. Table C1 shows that all assets have long-

tailed residual distributions fitted by student-t, skew normal and skew student, consistent with 

the JB tests results. By specifying the ARMA-GARCH process for the marginal distributions 

of assets, intertemporal dependence is removed. The resulting standardized residuals are 

transformed to pseudo-observations (uniform margins for copula modeling) on the interval [0,1] 

using the probability integral transformation (Aas and Berg, 2009; Czado, Min and Schepsmeier, 

2012). Pairwise scatter plots and Kendall’s rank correlations of uniform margins in the left 

panel of Figure C4 (the right panel for the underwriting portfolio) show strong correlations 

between fixed income assets, generally above +0.2, whereas the correlation between different 

asset classes tends to be small (see, e.g., Avanzi et al., 2016). 

With regard to the insurance portfolio, loss data consist of the monthly aggregate loss from each 

line of business. We fit different parametric distributions to the aggregate loss data to derive 

the copula margins under the individual risk model. Twelve continuous distributions frequently 

used in the actuarial and operational risk context (see, e.g., Frachot, Georges and Roncalli, 2001; 

Moscadelli, 2004; Fu and Moncher, 2004; Shevchenko, 2011; Eling, 2012; Frees, Lee and Yang, 

2016; Eling and Jung, 2018) are considered: skew-normal, student-t, skew-student-t, lognormal, 

gamma, Weibull, inverse Gaussian, Cauchy, Burr, generalized Pareto distribution (GPD) and 

two peaks-over-threshold (POT) models with normal and lognormal in the body respectively 

and GPD in the tail. We determine the most appropriate distribution for each loss process based 

on AIC and goodness-of-fit (GoF) test (Table C2). We find that the skew student-t and gamma 

distributions best fit the historical losses in four cases and the lognormal is the best fit for the 

                                                      
141  We fit GARCH(1,1) for the conditional volatility, which is widely used to model the volatility clustering of 

the financial time series data in the pair copula modeling context (see, e.g., Aas and Berg, 2009; Aas et al., 
2009; Brechmann and Schepsmeier, 2013; Dissmann et al., 2013). 
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loss process of motor insurance. This finding is confirmed by QQ-plots in Figure C3, showing 

that the quantiles from fitted distributions are plotted along with the theoretical distributions. 

With the fitted distributions for insurance losses, we generate the copula margins and estimate 

the Kendall’s rank correlations shown in Figure C4. 

4.2 Dependence modeling and base-level aggregation 

In order to estimate the dependence models for both portfolios, we first transform the variables 

to the estimated marginal distributions on [0,1]. Transformed uniform margins are applied to 

the copula functions listed in Table 3. We then compare the models to identify which model is 

a better fit for the dependence structures of both portfolios. For PCC modeling, we consider R-

Vine model on a dependence structure. Table 6 provides three statistical measures to compare 

different models: log-likelihood, AIC and goodness-of-fit test result.  

The R-Vine structure most accurately estimates the dependence structures of both portfolios, 

followed by the student-t model for the asset and by HAC-Gumbel for the underwriting 

portfolio. This finding is supported by literature in which vine models turn out to be superior to 

conventional copula models (see, e.g., Aas and Berg, 2009; Aas et al., 2009; Brechmann and 

Czado, 2013; Low et al., 2013; Brechmann et al., 2014; Schepsmeier, 2015; Eling and Jung, 

2018).141F

142 In contrast, simple Archimedean copulas (Gumbel and Clayton) do not provide a 

good fit to both cases, which might result from the fact that estimating a high-dimensional 

dependence structure by Archimedean copulas is limited by one single parameter. This finding 

can be confirmed by the result of HAC as an extended model of simple Archimedean copulas 

for a high-dimensional setting in that HAC shows a better fit.  

The Bernstein model1 42F

143  provides a comparable log-likelihood measure to that of R-Vine; 

however, as described in Table 3 and proven by AIC, the model is not parsimonious due to the 

polynomial degree. Elliptical models are also a good fit for the structure in both cases, 

especially the student-t model, which implies significant tail dependency in both portfolios. The 

                                                      
142  Aas and Berg (2009) demonstrate the superiority of vine models to HAC, whereas Aas et al. (2009), Brechmann 

and Czado (2013), Brechmann et al. (2014) and Schepsmeier (2015) show a better fit of vine model than that 
of elliptical models. Low et al. (2013) and Eling and Jung (2018) find that vine models produce more 
outperforming statistical outcomes than do Archimedean copulas. 

143  The log-likelihood of Bernstein D-Vine is a penalized version of the log-likelihood, which can be estimated 
based on equation (16) in Kauermann and Schellhase (2014). AIC is also based on the penalized log-likelihood 
and corrected by using degree of freedom of the penalty parameter explained in equation (20) of Kauermann 
and Schellhase (2014). The goodness-of-fit test for Bernstein copula model (non-parametric case) has not been 
developed, since the p-value generation by the bootstrap method can generate inconsistent results for non-
parametric case (Genest and Remillard, 2008). The determination of the optimal degree of the polynomial is 
still an open question as written in Table 3 (Pfeifer et al., 2009; Diers et al., 2012); thus, we implement four 
cases (K=5,10,15,20) and present the model (K=10) with the lowest AIC in Table 6. 
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tail dependency is numerically specified in the pairwise setting in Table C3 (Appendix C), 

where estimated dependence parameters in the first tree are also present. In the first tree, the 

parameters are derived from unconditional copula densities, which normally show a stronger 

dependency than those from conditional copula densities in the following trees. The 

mathematical proof of this statement is described in Dissmann et al. (2013). Savu and Trede 

(2010) and Okhrin, Okhrin and Schmid (2013) also explain this property in HAC structure. 

Table 6. Dependence Modeling Results (Base level) 

  Asset Portfolio Insurance Portfolio 

Family Copula Log-lik AIC GoF143F

144 Log-lik AIC GoF 

Elliptical 
Gaussian 189.73 -337.47 0.037** 270.62 -521.25 0.158*** 

Student-t 209.31 -374.63 0.020 278.38 -534.77 0.063*** 

Archimedean 
Gumbel 52.60 -103.20 0.046*** 91.52 -181.04 0.275*** 

Clayton 58.70 -115.39 0.034 46.23 -90.47 4.169*** 

HAC 
Gumbel 152.04 -292.08 0.735 279.86 -551.71 0.584 

Clayton 162.14 -312.28 0.082* 159.15 -310.30 0.039** 

PCC R-Vine 228.41 -416.81 118.71 294.51 -577.01 6.514 

Bernstein (D-Vine) 222.80 -87.29 - 278.27 -197.97 - 

Note: Elliptical and Archimedean copulas are estimated via R package copula, HAC models are estimated via copula 
and HAC, R-Vine model is implemented via VineCopula and Bernstein D-Vine model is estimated via penDvine. The 
numbers in the goodness-of-fit results indicate the test statistics except for those of HAC models showing p-values (see 
footnote 142). *,**,*** indicate that the p-value is less than the significance levels, 10%, 5% and 1% respectively. The bold 
indicates the best fit method for each portfolio. 

Figure C5 displays the dependence structures of both portfolios in the first tree of R-Vine as 

the best fit. The graphical description of the estimated aggregate distributions at the base level 

with 100,000 samples is found in Figure 4 (based on R-Vine model as the best fit). The 

aggregate asset distribution is leptokurtic, which is in line with the stylized fact of financial 

returns, and a long-tail risk is identified from the insurance aggregate distribution. 

                                                      
144  The goodness-of-fit test for copula methods is based on the information matrix equality of White (1982), 

developed by Huang and Prokhorov (2014) and applied to vine models by Schepsmeier (2019). The test 
specification in a general case can be described as (Huang and Prokhorov, 2014; Schepsmeier, 2019):  

𝐻଴: ℍ(𝜃) + ℂ(𝜃) = 0, 
where ℍ(𝜃) = 𝐸ൣ𝜕ఏ

ଶ ln൫𝑐ఏ(𝑢ଵ, … , 𝑢ௗ)൯൧ is the expected Hessian matrix of the score function (second-order 

derivative) and ℂ(𝜃) = 𝐸 ቂ𝜕ఏ ln൫𝑐ఏ(𝑢ଵ, … , 𝑢ௗ)൯ ൫𝜕ఏ ln൫𝑐ఏ(𝑢ଵ, … , 𝑢ௗ)൯൯
்

ቃ is the expected outer product of the 

corresponding score function. 
When it comes to HAC model, the statistical closed-form of the goodness-of-fit test has not been developed 
(Savu and Trede, 2010; Okhrin and Ristig, 2014). Instead, we use the goodness-of-fit for copulas in higher 
dimensions introduced by Hofert and Mächler (2014), the test whose results are p-values (whereas other models 
show the test statistics) shown as the GoF result for HAC in Table 6. This test provides a global p-value based 
on pairwise Rosenblatt transform and enables to identify pairs that do not follow the null hypothesis as follows: 

𝐻଴: 𝐶𝛉 𝑖𝑠 𝐻𝐴𝐶 𝐺𝑢𝑚𝑏𝑒𝑙 (𝐶𝑙𝑎𝑦𝑡𝑜𝑛) 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑤𝑖𝑡ℎ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 
For more detail on the test specification and the global p-value, see Hofert and Mächler (2014). 
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                                         Asset portfolio    Underwriting portfolio 

 
Figure 4. Base-level aggregate distributions. 

4.3 Top-level aggregation 

This section investigates the top-level dependency between the market risk module and the non-

life risk module. Both the K-RBC and SII assume 0.25 correlation between the asset portfolio 

(market risk) and the insurance portfolio (non-life risk) (see Table 1, 2). However, this 

correlation does not adequately reflect the dependence structure in the empirical setting; hence, 

the standard model might lead to a significant gap between the required capital and the actual 

size of risk. 

First, we conduct the independence test to check the validity of the independence assumption. 

The test result for the independence copula model is derived based on a bivariate asymptotic 

independence test of empirical Kendall’s tau (see Genest and Remillard, 2004, for more detail 

on the test specification). Second, we conduct goodness-of-fit tests for other bivariate copulas 

under the top-level correlation assumption by regulations (= 0.25).1 44F

145 Four types of bivariate 

copula functions considered at the top level are mathematically described as follows (Nelsen, 

2006; Eling and Toplek, 2009). 

Independence copula (independence assumption): 

𝐶ூ௡ௗ(𝐮) = ∏ ቀ𝐶୅ୱୱୣ୲(𝑢ଵ
௔, … , 𝑢௞

௔), 𝐶୙୬ୢୣ୰୵୰୧୲୧୬୥൫𝑢ଵ
௟ , … , 𝑢ௗ

௟ ൯ቁ, (8) 

                                                      
145  Here we do not consider Bernstein copula as done at the base level because 1) no statistical testing tool has 

been developed for this type as discussed in footnote 141; and 2) it is an empirical-type copula that does not 
allow the calibration of a dependence parameter. 
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Gaussian copula (linear correlation assumption): 

𝐶ீ௔௨௦௦(𝐮) = 𝚽஘ ቀ𝐶୅ୱୱୣ୲(𝑢ଵ
௔, … , 𝑢௞

௔), 𝐶୙୬ୢୣ୰୵୰୧୲୧୬୥൫𝑢ଵ
௟ , … , 𝑢ௗ

௟ ൯ቁ, (9) 

Student-t copula (symmetric tail correlation assumption): 

𝐶௧(𝐮) = 𝐭୴,஘ ቀ𝐶୅ୱୱୣ୲(𝑢ଵ
௔, … , 𝑢௞

௔), 𝐶୙୬ୢୣ୰୵୰୧୲୧୬୥൫𝑢ଵ
௟ , … , 𝑢ௗ

௟ ൯ቁ, (10) 

Archimedean copula (asymmetric dependence assumption): 

𝐶஺௥௖௛௜(𝐮) = 𝝍ି𝟏 ቀ𝐶୅ୱୱୣ୲(𝑢ଵ
௔, … , 𝑢௞

௔), 𝐶୙୬ୢୣ୰୵୰୧୲୧୬୥൫𝑢ଵ
௟ , … , 𝑢ௗ

௟ ൯ቁ, (11) 

where 𝚽ఏ indicates a multivariate normal density with the correlation parameter of 𝜃 and 𝐭௩,ఏ 

stands for a multivariate student-t density with degree of freedom, v, and the correlation 

parameter of 𝜃. 

Table 7 shows the test result for the presence of the independence and the GoF tests for other 

copulas, where the independence assumption holds for two marginal distributions. For other 

copulas with the correlation of 0.25, the tests reject the null hypothesis mostly at the 1% critical 

level. Therefore, the regulatory assumption of 0.25 is not adequate for modeling the top-level 

dependency of the empirical data. We also test goodness-of-fit for the top-level aggregation 

with the linear structure (Gaussian) at the base level, which we assume is closer to the regulatory 

framework. We find that the test leads to the same result as that with the best fit model at the 

base level, implying that the independence structure is a global fit for the top-level aggregation 

in this empirical case. 

The independence assumption at the top level is reasonable in that the degree of dependency at 

a lower level of a hierarchical structure can be mathematically proven to be stronger than that 

at a higher level because the dependency at a higher level is conditional (see, e.g., Savu and 

Trede, 2010; Dissmann et al., 2013). Therefore, it can be inferred that the correlation at the top-

level aggregation as assumed in the K-RBC and SII might not be mathematically justified under 

a hierarchical dependence structure. It also proves that the standard models aim at achieving 

conservative results, which do not adequately reflect the top-level dependency driven by the 

empirical case in our study. This finding is in line with the literature that for non-life insurance 

(property and casualty) a dependent feature between assets and liabilities rarely exists (Gründl, 

Dong and Gal, 2016).  

There might still exist dependence between the assets and liabilities of a non-life insurance 

company, particularly due to interest rate risk. For example, non-life insurers with long-tail 
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liabilities (e.g., workers’ compensation insurance) might be more exposed to interest rate risk 

than non-life insurers with mainly short-tail liabilities (Gilbert, 2016). Also changes in 

discounting practice (new accounting standards requiring discounting of reserves) might 

influence the interest rate sensitivity and create dependence. 

Table 7. Goodness-of-fit Results for the Top-Level Aggregation 

 R-Vine (Base level) Linear (Base level) 
Statistics P-value Statistics P-value 

Independence test 1.0813 0.280 0.3464 0.729 

Elliptical family 
Gaussian 0.5438*** 0.005 0.3327** 0.035 

Student-t 0.5826*** 0.004 0.3767** 0.029 

Archimedean family 
Gumbel 0.5168** 0.011 0.3267** 0.049 

Clayton 0.6248*** 0.002 0.3802** 0.018 
Note: The independence test is implemented via R package copula and the tests for other copulas are conducted via 
gofCopula. *,**,*** indicate that the p-value is less than the significance levels, 10%, 5% and 1% respectively. 

5 Applications 

5.1 Application to Korean and German data 

The purpose of estimating the economic capital is to identify the amount of capital necessary 

to prevent an insurer from becoming insolvent within a predefined time horizon and confidence 

level.  The definition of one-period solvency in our model with the historical data is the excess 

of the assets over the liabilities expressed as: 

𝐴ଵ − 𝐿ଵ = 𝐴଴ ∙ (1 + 𝑟) − 𝐿ଵ > 𝑅𝐶ఈ, (12) 

where 𝐴ଵ is the market value of the asset portfolio consisting of equity, bonds, money market 

and real estate instruments at time 1. 𝐿ଵ is the market value of the policyholders debt at time 1 

represented by the aggregate loss from different lines of business in our model. 𝐴଴ is the market 

value of the asset portfolio at time 0 (present), which is the invested asset from the balance sheet 

in our model. We set 𝐴଴ at ₩18.6 trillion obtained from the same insurer for which we also 

take underwriting data.145F

146 𝑟 is a stochastic aggregate return on the asset portfolio estimated by 

our model. 𝑅𝐶ఈ is the required capital at 𝛼 confidence level, for example 99% in the K-RBC or 

99.5% in SII. The time horizon defined by regulations is one year. Since the regulatory 

                                                      
146  The statistical information on the assets of Korean insurers can be also obtained from INsis (see footnote 137). 

We derive the amount of the investment by downsizing the annual amount of the invested asset for the insurer 
into the annual amount with five business lines based on net earned premium (five lines account for 31.9%). 
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standards have an annual time horizon, we annualize the monthly asset return distribution and 

the monthly loss distribution.146F

147 

Based on the results from Section 4, we choose the independence copula to describe the top-

level dependency and the R-Vine structure for the base-level structures. In Appendix D, we 

consider other dependence structures at the base and top levels to identify the impact of different 

dependencies on the economic capital. We estimate VaR at 99% and 99.5% and Tail Value at 

Risk (TVaR) at 99%, which are the current regulatory requirements for the K-RBC, SII and 

SST respectively. In Table 8, we compare our capital estimates to the required amounts of 

capital from the three regulatory standard models. Next to the Korean data, we present the 

results for our second, German dataset. Appendix E contains all conceptual details on the 

comparison between the standard and internal models; all implementation and estimation 

details for the German data are presented in Appendix G.  

Table 8. Comparison of the Internal Model and Standard Model 

Panel A: Korean Data VaR 99% (K-RBC) VaR 99.5% (SII) TVaR 99% (SST) 
Internal Model (₩ billion) 559.7 744.5 842.5 
Standard Model (₩ billion) 846.3 1,177.5 1,471.5 
Absolute difference (₩ billion) 286.6 433.0 629.0 
Relative difference  51.2% 58.2% 74.7% 
* from risk parameters 15.3 pp 24.6 pp 63.0 pp 
* from correlation 35.9 pp 33.6 pp 11.7 pp 

Panel B: German Data VaR 99% (K-RBC) VaR 99.5% (SII) TVaR 99% (SST) 
Internal Model (€ million) 31.3 51.2 55.3 
Standard Model (€ million) 45.5 80.7 94.4 
Absolute difference (€ million) 14.2 29.5 39.1 
Relative difference  45.4% 57.6% 70.7% 
* from risk parameters 9.3 pp 14.8 pp 62.9 pp 
* from correlation 36.1 pp 42.8 pp 7.8 pp 
Note: The internal model is the best fitted model (R-Vine-independence) in our estimation procedure. “pp” stands for 
percentage points. 

The three standard models significantly overestimate the capital requirement, showing the 

variation size of 61.2% on average for the Korean case and 57.8% for the German case 

compared to the total risk estimated by the internal model.147F

148 The K-RBC provides the least 

                                                      
147  We aggregate 12 consecutive monthly returns and losses to the annual size as follows: 

Asset: 𝑟௔ = ∏ (1 + 𝑟௜
௠)ଵଶ

௜ୀଵ − 1,  

Underwriting: 𝑋௔ = ෍ 𝑋௜
௠

ଵଶ

௜ୀଵ
. 

The superscripts, 𝑎 and 𝑚, indicate the annual value and the monthly value respectively. 
148  Previous studies criticize the SII standard formula comparing with internal modelling approaches, but have 

different aspects on the criticism. For instance, Gatzert and Martin (2012) argue that the predefined scenarios 
by SII, which over- or underestimate the actual risk, do not sufficiently reflect the insurance company’s risk 
situation by comparing the standard model with their partial internal model. Mittnik (2011) identifies that the 
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conservative measure with VaR 99% showing the smallest gap between the internal model and 

the standard model, whereas SST turns out to be the most conservative model with TVaR 99% 

showing the largest deviation among three standard models.148F

149 This might be due to the fact 

that the K-RBC does not consider the correlation across market risks, resulting in no 

diversification effect in this module. Furthermore, the categorization in the underwriting risk 

module does not appropriately reflect the diversified lines of business, thereby providing a less 

conservative measure than the other two models. 

The observed deviations are relatively large in comparison with the literature. For example, 

Tang and Valdez (2009) document a 5.4% deviation (overestimation) considering the 

underwriting risk module only. Christiansen et al. (2012) do not quantify the deviation between 

the internal model and the standard formula, but they identify a significant overestimation of 

economic capital resulting from the correlation assumption of the life underwriting module in 

SII. Our results also surpass most practitioners’ expectations of internal models.149F

150 

The commonly identified overestimation of the economic capital from the standard models 

comes from two factors. The first factor is that the distributional features of individual risk 

factors are not adequately taken into account. Thus, the calibrated parameters (risk coefficients 

in the K-RBC and SII) and the distributional assumption (SST) can amplify the capital 

requirement. To measure the size of overestimation due to the fixed and predefined risk 

parameters, we apply our aggregation model with assumed risk parameters predefined by the 

standard models, which produces economic capital of 645.1, 927.3 and 1,373.5 (in ₩ billion) 

for the Korean case and 34.2, 58.8 and 90.1 (in € million) for the German. The predefined risk 

parameters imposed by the standard models thus contributes on average 34.3 and 29.0 

percentage points for the Korean and German cases respectively to the empirical deviations, 

which are 56% and 50% of the total overestimation sizes. The second factor is the correlation 

assumption between risk factors, which does not reflect the dependence structure inherent in 

firm-specific data. Ceteris paribus, the linear correlation assumptions imposed in the standard 

                                                      
misestimated correlation measures between assets do not appropriately reflect the diversification effects. 
Pfeifer and Strassburger (2008) discuss that the overall SCR can be misspecified in case of symmetric 
aggregate distribution (linear) and correlated underlying risk factors. 

149  Some practice-oriented papers and reports have emphasized the differences in regulatory frameworks. For 
example, Holzmüller (2009) conducts a comparison analysis for the U.S. RBC standard, Solvency II and SST 
by evaluating eleven criteria. Siegel (2016) compares SST and Solvency II with a focus on insurance groups 
and using five criteria. 

150  According to a survey with 160 insurance companies in 19 European countries, 37% of the respondents expect 
the internal model to decrease the capital requirement by 10-20%, 26% of them expect 20-30% and 14% of 
them expect more than 30%. See EY (2013).  
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models contribute to 26.9 percentage points on average for the Korean case and 28.8 percentage 

points on average for the German.  

As robustness tests, we implement different asset allocation strategies to analyze the extent to 

which differences between the standard model and the internal model are driven by the risk on 

the asset side (see Tables D2 and G5 in Appendix D and G). We find that the riskier the asset 

portfolio is, the more capital is required, resulting in a bigger gap between the internal model 

and the standard models. In Appendix D, we analyze the diversification benefits of the internal 

models compared to benchmark models; our best fit model provides a higher diversification 

benefit compared to other possible internal models, possibly offering a better optimization of 

the capital structure (see Figure D1). 

5.2 Sensitivity analyses with respect to company size 

One critical concern in internal models is how far the use of internal models might distort 

competition, if small companies lack the resources and expertise to implement such models (see 

Eling, Schmeiser and Schmit, 2007). Our empirical setup allows us to analyze this important 

policy question, because we have data for the complete Korean market and can analyze 

companies of different sizes. We therefore estimate the economic capital for four additional 

non-life insurers (in different size quartiles of total assets) for the Korean market in Table 9.150F

151 

All selected companies operate the five lines of business considered in our study so that the 

outcomes are not driven by the complexity of the businesses; considering less complex 

companies will reduce the benefit of implementing an internal risk model. We first examine 

whether our internal model (R-Vine at the base level and independence at the top level) also 

fits well for these companies as robustness check and find that it holds for all these cases (see 

Appendix F). We then use the internal model to calculate the capital size for each company and 

compare it with the required capital under the corresponding standard model (the K-RBC).  

The result shows an overestimation of 39.0% on average, which declines with company size. 

Large insurers as well as medium-size companies (such as the 1st and 2nd qrt company in Table 9) 

can obtain a significant financial advantage by using the internal model, by saving ₩287 billion, 

₩133 billion and ₩45 billion in capital. In contrast, implementing the internal risk model might 

not be worthwhile for smaller companies (such as the 3rd qrt or smallest company in Table 9), 

since the capital savings might not justify the development of an internal model. We can 

                                                      
151  We also obtain the insurance loss data for additional four companies from the same database as the one we 

obtain the main dataset. In this implementation, we apply the same benchmark portfolio used in the main model 
to four companies. 
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illustrate the potential cost saving by multiplying the capital reduction for the largest and 

smallest companies (₩287 billion and ₩3.3 billion) with a standard cost of capital rate of 6% 

as used, for instance, in Solvency II (EC, 2014, p. 39), leading to a cost reduction of ₩17.2 

billion and ₩0.198 billion, respectively per annum.  

For the largest company, investment in the construction of an internal model could be 

worthwhile, but not necessarily for the smallest company. For example, if developing an 

internal model needs five employees, it might already cost ₩0.162 billion over a year without 

consideration of further costs, based on statistics for 2016 average Korean salary (= $32,400; 

Statista, 2018) with an exchange rate of ₩1,000/$. Additional costs or resources to the 

development of an internal model might come from e.g., maintenance and validation of the 

internal model, the collection of the necessary, up-to-date data as inputs or the internal 

assessment prior to the approval process (Milliman, 2008). For a small company it is thus less 

clear whether developing an internal model is worthwhile. Note that the advantage of 

implementing an internal model decreases both on an absolute and on a relative basis, in relation 

to the K-RBC and in relation to asset size. 

Table 9. Variation of Company Size 

 
(Largest) (1st qrt) (2nd qrt) (3rd qrt) (Smallest) 

Internal Model (in ₩ billion) 559.7 292.7 103.0 25.4 10.9 
*RBC ratio 620% 418% 258% 220% 812% 
K-RBC (in ₩ billion) 846.3 425.2 148.2 34.7 14.2 
*RBC ratio 410% 288% 179% 161% 623% 

Absolute difference (in ₩ billion) 286.6 132.5 45.2 9.3 3.3 
Relative difference 51.2% 45.3% 43.9% 36.6% 30.3% 
*Risk parameter 15.3 pp 16.7 pp 19.6 pp 15.7 pp 12.8 pp 
*Correlation 35.9 pp 28.6 pp 24.3 pp 20.9 pp 17.5 pp 

Invested assets (in ₩ billion) 18,577.8 9,025.2 3,420.3 691.2 178.6 
Asset size (in ₩ billion) 21,659.4 10,562.9 3,987.0 821.3 285.4 
Equity capital (in ₩ billion) 3,471.0 1,224.0 265.7 55.9 88.5 

Abs. difference/asset size 1.32% 1.25% 1.13% 1.13% 1.16% 
Note: Four companies are chosen out of the Korean non-life insurers, who operate the five lines of business considered in 
our study, by the quartiles of the total asset size. Company 1 is at the first quartile (25%) from the largest company, company 
2 is at the second quartile (median), company 3 is at the third quartile and company 4 is the smallest. Invested assets (A0 in 
equation (12)), total asset size and equity capital are downsized by the share of five insurance lines compared to the total 
non-life business for each company based on net earned premium. 

6 Conclusion 

The aim of this paper is to construct an internal risk model using a recently developed 

dependence method and apply it to empirical datasets in order to compare the internal model 

with three regulatory standards models (the K-RBC, SII and SST). We introduce a two-step 

aggregation methodology with the pair copula construction model (vine copula model) to 
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estimate the economic capital for several Korean non-life insurers and a mid-sized German non-

life insurer. For all datasets, the R-Vine structure at the base level and the independence 

structure at the top level turn out to be the best fit based on the statistical testing procedure. The 

comparison between the proposed internal model and the standard models shows that the 

standard models overestimate the economic capital by on average 61.2% for the Korean case 

and 57.8% for the German, implying that insurers can significantly reduce their risk capital 

using the proposed internal risk model. Our internal model is also proven to be a good fit for 

additional companies of different sizes in the Korean market, which again supports our finding 

on the overestimation of the risk capital by the standard model (39.0% on average). 

We focus on two regulatory factors resulting in the overestimation: the calibrated parameters 

for marginal risks and the linear correlation assumption. The regulated risk parameters in the 

standard models address on average 56% (34.3 percentage points) and 50% (29.0 percentage 

points) out of the total deviation for the Korean and the German cases respectively, whereas, 

ceteris paribus, the rest of the deviation is led by the correlation parameters in the linear setting 

for each case. We identify that the K-RBC system is less conservative than SII and SST, based 

on the fact that the K-RBC system requires the estimation at a lower quantile, does not consider 

the correlated risk between the sub-modules in the market risk leading to no diversification 

effect and does not appropriately elaborate the categorization of the non-life underwriting risk 

module. The proposed internal model provides a higher diversification benefit than other 

models do, possibly leading to a better optimization of the capital structure. 

The literature has already found over- or under-estimation of the standard formula, especially 

for SII (see, e.g., Pfeifer and Strassburger, 2008; Mittnik, 2011; Christiansen et al., 2012; 

Gatzert and Martin, 2012); however, it focuses only on one part of the corporate risk structure 

(e.g., only on the market risk module, the life insurance module or the non-life insurance 

module). Therefore, our result contributes to the literature by offering an undertaking-specific 

risk model for a comprehensive risk structure with recently developed aggregation models and 

an insight into how significant a potential misestimation might be. The misestimation of the 

economic capital under the standard models can present insurers with several challenges. The 

standard formula requires insurers to hold more capital than necessary with an internal risk 

model, thus, lowering the potential return on equity. The overestimation of the economic capital 

can force insurers to restructure their business (asset allocation and liability management) to 

increase the amount of capital. 
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Based on the estimated models, we propose that regulators adjust their dependence assumptions 

to reduce the deviation between the estimates under the standard models and the estimates under 

our data-driven internal models. Despite its efficiency, our internal risk model might be too 

costly for small- and mid-sized companies. The regulator might support small- and mid-size 

companies who are interested in taking advantage of such models by reducing the 

implementation costs, e.g., by providing basic technical documents and tools. Thus, to increase 

regulatory efficiency, it might be useful to support companies in developing the know-how. 

This could help to reduce potential market distortions in the competition of solvency models, 

caused by significant differences in efficiency. A key question that remains for future research 

is to find the optimal balance between statistical sophistication and the ease of implementation. 

Our results, however, illustrate that the approach taken by regulators is too simplistic and might 

raise concerns on potential market distortions. Our proposal might also be applied to the 

currently discussed international capital standard (ICS), which is also limited to linear 

dependency between risks and pre-defined risk parameters, but allows an opportunity to 

develop an accredited internal risk model as well. 

In this study, we consider empirical datasets for a non-life insurer. The literature to date has 

also been mostly limited to the risk aggregation for non-life insurance, perhaps because of the 

tractability of dependence modeling for non-life loss data using the risk model. However, 

investigating life and health insurance data with our internal risk model might be also a possible 

means of contributing to the literature. It might also be an interesting avenue for future research 

to integrate some emerging risks that are well known for non-linear dependence structures (e.g., 

cyber risk) into the model. Another avenue for future research could be to apply U.S. data to 

the internal model and then compare it with the U.S. RBC system. Moreover, some other risk 

modules in the standard models, such as operational risk and credit risk (counterparty default 

risk), might be included in the modeling, thereby constructing a more comprehensive and 

complete framework for risk aggregation. 
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Appendix A. Overview of literature and comparison with the present paper 

Table A1. Summary of Literature on the Correlated Risk under Regulatory Frameworks 

 PS08 ET09 TV09 SC11 DEM12 Present paper 

M
od

el
in

g 
pe

rs
pe

ct
iv

e 

Focus of 
Study 

Aggregating non-normal risks Integrating assets and 
liabilities 

Aggregating underwriting 
risks 

Aggregating underwriting 
risks 

Aggregating underwriting 
risks 

Aggregating asset and 
underwriting risks 

Comparison 
to Regulation 

SII - Australian standard model 
(Prescribed method) 

RBC ratios under SII - K-RBC, SII, SST 

Data type Simulation with selected 
parameters 

Simulation with selected 
parameters for asset and 
underwriting(bivariate for 
each) 

Semi-annual loss ratios on 
Australian general insurance 
industry 

Simulation with calibrated 
parameters 

Monthly German 
underwriting data (non-life: 
multi-dimension) 

Monthly Korean and 
German asset and 
underwriting data (multi-
dimension for each) 

Level of 
Aggregation 

Base-level (underwriting)  Base-level (asset and 
underwriting)  

 Top-level 

Base-level (underwriting) Base-level (underwriting) Base-level (underwriting)  Base-level (asset and 
underwriting)  

 Top-level 

Use of 
Copula 

Frechet-Hoeffding copulas HAC and elliptical copulas Elliptical copulas and Cauchy 
copula 

HAC and elliptical copulas Elliptical copulas and 
Bernstein copula 

PCC, HAC, elliptical and 
Bernstein (D-Vine) 

O
ut

co
m

e 

Main points  Identify the drawback of 
the square root formula (SII 
standard formula) in case of 
skewed underwriting risks 
(using beta distribution) 

 Apply HAC to the dynamic 
financial analysis for non-
life insurance with stylized 
parameters for asset and 
liability portfolio. 

 Investigate how the risk 
and return measures are 
affected by different 
dependence structures. 

 Investigate how the 
economic capital for the 
underwriting portfolio is 
affected by different 
dependence structures. 

 Compare the estimated 
economic capitals with the 
Australian requirement and 
see how much they are 
deviated. 

 The collective risk model 
for the underwriting risk is 
applied to SCR estimation 
using calibrated parameters. 

 HAC model is used to the 
underwriting risk 
aggregation. 

 Bernstein copula fits well 
for the dependence 
modeling of underwriting 
risks, which is proven by 
goodness-of-fit analysis. 

 Different types of 
dependence models 
including PCC and HAC 
are used to aggregate the 
two main risk modules 
(asset and underwriting). 

 Economic capitals from 
different copulas are 
compared with three 
regulatory standards. 

Limitation There is no empirical study to 
check the robustness of the 
model and it is limited to 
underwriting risks. 

There is no empirical study to 
check the robustness of the 
model and only a bivariate 
case is considered. 

The data size is limited (only 
19 observations for each risk 
factor) and it is limited to 
underwriting risks. 

Calibrated parameters are not 
from SII standard and there is 
no empirical study to check 
the robustness of the model. 

The fitting result might not be 
a global solution to all 
possible problems and the 
data size is relatively small. 

Limited to the non-life 
insurance (no life insurance 
modeling) 

Note: PS08: Pfeifer and Strassburger (2008); ET09: Eling and Toplek (2009); TV09: Tang and Valdez (2009); SC11: Savelli and Clemente (2011); DEM12: Diers, Eling and Marek (2012); DFA: dynamic financial 
analysis; SII: Solvency II; K-RBC: Korean RBC, PCC: Pair copula construction method (vine copula); HAC: Hierarchical Archimedean copula method. The bold indicates the contributing points of the present 
paper to the literature. 
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Appendix B. High-dimensional dependence models 

We describe the mathematical definitions of vine models (PCC), particularly R-Vine, and 

hierarchical Archimedean copula (HAC), whose graphical differences are presented in Figure 

1. Vine models can be categorized as D-Vine, C-Vine and R-Vine. The R-Vine links the 

variables by dependency without fixing a certain structure, so it can project the other two vine 

models (Cooke, Joe and Aas, 2011). We first factorize the joint density, 𝑓(𝑥ଵ, … , 𝑥ௗ), of a vector 

of random variables, 𝑋 = (𝑋ଵ, … 𝑋ௗ), to form the copula distribution function as follows: 

𝑓(𝑥ଵ, … , 𝑥ௗ) = 𝑓ଵ(𝑥ଵ) ∙ 𝑓ଶ|ଵ(𝑥ଶ| 𝑥ଵ) ⋯ 𝑓ௗ|ଵ,…,ௗିଵ(𝑥ௗ| 𝑥ଵ, … , 𝑥ௗିଵ). (B.1) 

Sklar’s theorem (Sklar, 1959) and the chain rule with continuous marginal function, 𝐹௜(𝑥௜), 𝑖 =

1, … 𝑑, lead us to obtain  

𝑓(𝑥ଵ, … , 𝑥ௗ) = 𝑓ଵ(𝑥ଵ) ⋯ 𝑓ௗ(𝑥ௗ) ∙ 𝑐ଵ,…,ௗ[𝐹ଵ(𝑥ଵ), … , 𝐹ௗ(𝑥ௗ)], (B.2) 

where 𝑐ଵ,…,ௗ[∙] is a d-dimensional copula density. 

Equation (B.1) is equivalent to equation (B.2) by decomposing the conditional density in 

equation (B.1). Let us consider an example of a bivariate conditional density, 𝑓ଶ|ଵ(𝑥ଶ| 𝑥ଵ), which 

can be defined as: 

𝑓ଶ|ଵ(𝑥ଶ| 𝑥ଵ) =
𝑓ଵ,ଶ(𝑥ଵ, 𝑥ଶ)

𝑓ଵ(𝑥ଵ)
=

𝑐ଵ,ଶ[𝐹ଵ(𝑥ଵ), 𝐹ଶ(𝑥ଶ)] ∙ 𝑓ଵ(𝑥ଵ) ∙ 𝑓ଶ(𝑥ଶ)

𝑓ଵ(𝑥ଵ)
= 𝑐ଵ,ଶ[𝐹ଵ(𝑥ଵ), 𝐹ଶ(𝑥ଶ)] ∙ 𝑓ଶ(𝑥ଶ), (B.3) 

where 𝑐ଵ,ଶ[∙,∙] is a copula density function for the pair of 𝑋ଵ and 𝑋ଶ, each of which has a density 

function, 𝑓௜(𝑥௜), 𝑖 = 1,2, and a probability function, 𝐹௜(𝑥௜). 

A three-dimensional case with two variables given to the condition in the density can be defined 

as: 

𝑓ଵ|ଶଷ(𝑥ଵ| 𝑥ଶ, 𝑥ଷ) = 𝑐ଵ,ଶ|ଷൣ𝐹ଵ|ଷ(𝑥ଵ|𝑥ଷ), 𝐹ଶ|ଷ(𝑥ଶ|𝑥ଷ)൧ ∙ 𝑓ଵ|ଷ(𝑥ଵ|𝑥ଷ). (B.4) 

One can define different decomposition of the conditional density from equation (B.4) 

according to the following dependence structure of variables:  

𝑓ଵ|ଶଷ(𝑥ଵ| 𝑥ଶ, 𝑥ଷ) = 𝑐ଵ,ଷ|ଶൣ𝐹ଵ|ଶ(𝑥ଵ|𝑥ଶ), 𝐹ଷ|ଶ(𝑥ଷ|𝑥ଶ)൧ ∙ 𝑓ଵ|ଶ(𝑥ଵ|𝑥ଶ). (B.5) 

Equation (B.5) can be further factorized to the following: 

𝑓ଵ|ଶଷ(𝑥ଵ| 𝑥ଶ, 𝑥ଷ) = 𝑐ଵ,ଷ|ଶൣ𝐹ଵ|ଶ(𝑥ଵ|𝑥ଶ), 𝐹ଷ|ଶ(𝑥ଷ|𝑥ଶ)൧ ∙ 𝑐ଵ,ଶ[𝐹ଵ(𝑥ଵ), 𝐹ଶ(𝑥ଶ)] ∙ 𝑓ଵ(𝑥ଵ). (B.6) 

We can generalize equation (B.1) by constituting the pairwise copula construction and a 

conditional marginal density using the development of the factorization above in the following 

(Aas et al., 2009): 
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𝑓(𝑥| 𝚯) = 𝑐௫,஀ೕ|𝚯ష𝒋
ൣ𝐹൫𝑥|𝚯ି௝൯, 𝐹൫Θ௝|𝚯ି𝒋൯൧ ∙ 𝑓൫𝑥|𝚯ି𝒋൯, (B.7) 

where 𝚯 is a d-dimensional vector, Θ௝ is an arbitrarily selected component of the vector 𝚯 and 

𝚯ି𝒋 is a vector of 𝚯 without the 𝑗-th component. 

Vine models are constructed by a number of trees, 𝑇௝ , 𝑗 = 1, … , 𝑑 − 1 , which start from 

unconditional marginal densities and develop with decomposition. Each tree, 𝑇௝, is comprised 

of 𝑑 − 𝑗 nodes and 𝑑 − 𝑗 − 1 edges and the entire decomposition of the vine density is defined 

by 𝑛(𝑛 − 1)/2 edges and the marginal densities of 𝑑 variables. The labels of the edges in the 

tree 𝑇௝ାଵ are defined by the nodes in the tree 𝑇௝. The case that two edges in the tree 𝑇௝ have a 

common node forms an edge in the tree 𝑇௝ାଵ.  

As mentioned above, the R-Vine flexibly connects the variables by dependency, offering a 

general form of a vine model. Definition B1 illustrates a regular vine model based on Bedford 

and Cooke (2001, 2002), Cooke, Joe and Aas (2011) and Dissmann et al. (2013). For the D-

Vine and the C-Vine, Aas et al. (2009) provide more detail in specific algorithms. 

Definition B1. (A regular vine) 𝐗 = {𝑥ଵ, … , 𝑥ௗ} is a d-dimensional set. 𝒱 = {𝑇ଵ, … , 𝑇ௗିଵ} is a 

nested set of trees in a regular vine structure on d components if 

(1) 𝑇ଵ is the first tree with nodes 𝐷ଵ = {1, … , 𝑑} and a set of edges, 𝐸ଵ. 

(2) For 𝑖 = 2, … , 𝑑 − 1, 𝑇௜ is a following tree with nodes 𝐷௜ = 𝐸௜ିଵ and a set of edges, 𝐸௜. 

(3) (Proximity condition) for 𝑖 = 2, … , 𝑑 − 1  and {𝑎, 𝑏} ∈ 𝐸௜ , #(𝑎 ∩ 𝑏) = 1  holds, where # 

indicates the cardinality of a set. 

The HAC method uses Archimedean copulas, which incorporate dependence parameters 

estimated by a generating function. Prior to constructing a generalized HAC structure, the 

following equation defines an exchangeable structure with Archimedean copulas in a d-

dimensional setting (Aas and Berg, 2009): 

𝐶(𝑢ଵ, … , 𝑢ௗ) = 𝜓ିଵ[𝜓(𝑢ଵ) + ⋯ + 𝜓(𝑢ௗ)], (B.8) 

where 𝑢௜, 𝑖 = 1, … , 𝑑, is a uniform margin for random variable i, 𝐶 is a copula function and 𝜓 is 

a generating function of an Archimedean copula with a monotonic decreasing function 𝜓ିଵ ∈

[0,1]. 

To construct a HAC structure, let us denote hierarchical levels by ℎ, each of which incorporates 

𝑛௛ distinct objects. Suppose that 𝐗 = {𝑥ଵ, … , 𝑥ௗ} is a d-dimensional set with a set of uniform 
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margins 𝐔𝐝 = {𝑢ଵ, … , 𝑢ௗ} ∈ [0,1]ௗ at the ground level ℎ = 0. At the first level ℎ = 1, the uniform 

margins are modeled by 𝑛ଵ Archimedean copulas with the form, 𝐶ଵ,௝, 𝑗 = 1, … , 𝑛ଵ, defined as: 

𝐶ଵ,௝൫𝐮ଵ,௝൯ = 𝜓ଵ,௝
ିଵ ቌ෍ 𝜓ଵ,௝൫𝐮ଵ,௝൯

𝐮భ,ೕ

ቍ, (B.9) 

where 𝜓ଵ,௝ is the generating function of the copula 𝐶ଵ,௝, 𝑗 = 1, … , 𝑛ଵ, and 𝐮ଵ,௝ is a set of elements 

from uniform margins 𝐔𝐝. 

A set of copulas, 𝐶ଵ,௝, at the first level is grouped into a set of copulas at the second level, 

𝐶ଶ,௝, 𝑗 = 1, … , 𝑛ଶ, which can be represented as: 

𝐶ଶ,௝൫ℂଶ,௝൯ = 𝜓ଶ,௝
ିଵ ቌ෍ 𝜓ଶ,௝൫ℂଶ,௝൯

ℂమ,ೕ

ቍ, (B.10) 

where 𝜓ଶ,௝ is the generating function of the copula 𝐶ଶ,௝, 𝑗 = 1, … , 𝑛ଶ, at the second level and ℂଶ,௝ 

stands for a set of the copulas from the first level (ℎ = 1) grouped into 𝐶ଶ,௝. 

The entire HAC structure is complete until the process reaches the final level ℎ  with the 

hierarchical Archimedean copula 𝐶௛,ଵ as a single object. As an example, the four-dimensional 

density function of HAC can be expressed as: 

𝐶(𝑢ଵ, 𝑢ଶ, 𝑢ଷ, 𝑢ସ) = 𝐶ଶଵ൫𝐶ଵଵ(𝑢ଵ, 𝑢ଶ), 𝐶ଵଶ(𝑢ଵ, 𝑢ଶ)൯

= 𝜓ଶଵ
ିଵൣ𝜓ଶଵ൛𝜓ଵଵ

ିଵ൫𝜓ଵଵ(𝑢ଵ) + 𝜓ଵଵ(𝑢ଶ)൯ൟ + 𝜓ଶଵ൛𝜓ଵଶ
ିଵ൫𝜓ଵଶ(𝑢ଷ) + 𝜓ଵଶ(𝑢ସ)൯ൟ൧, 

(B.11) 

where 𝑢௜, 𝑖 = 1, … ,4, is a uniform margin for random variable i, 𝐶 is a copula function and 𝜓 is 

a generating function of an Archimedean copula. 

Aas and Berg (2009), Savu and Trede (2010) and Okhrin, Okhrin and Schmid (2013) provide 

more detail on the specification and the inference of the HAC structure.
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Appendix C. Graphical and numerical results for modeling 

Graphical diagnoses and numerical results of marginal modeling 

 
Figure C1. Time-series plots and autocorrelation function plots. 

 

 
Figure C2. Histograms of asset returns and testing normality of innovations. 
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Figure C3. Histograms of insurance loss and QQ-plots with fitted distributions. 

 

Asset portfolio Insurance portfolio 

 

Figure C4. Pairwise plots and Kendall’s correlations of marginal distributions. The pairwise scatter plots 
of transformed standardized residuals are displayed on the upper triangle and the corresponding bivariate 
Kendall’s rank correlations are on the lower triangle.
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Table C1. ARMA-GARCH Specifications 

 ARMA-order AIC for ARMA 
Fitted distribution 

for innovation 
AIC for 

GARCH(1,1) 
KR_stock (0,3) -416.37 Skew normal -439.28 
KR2Y (3,3) -1,119.34 Student-t -1,171.82 
KR5Y (3,2) -993.47 Student-t -1,000.89 
KR10Y (3,1) -835.83 Skew student -841.92 
KRcor (3,3) -1,467.52 Student-t -1,615.04 
KRM3 (3,3) -710.25 Skew normal -785.15 
Wrd_real (2,3) -540.72 Skew normal -591.04 

 

Table C2. Distributions Fitting Results for Insurance Losses 

 Fire Motor Marine Liability Accident 

Skew Normal 
   5,507.61 
(0.426***)  

   18,411.32 
(0.999***) 

   5,894.99  
(0.426***) 

   5,884.48  
(0.474***) 

     6,452.71  
(0.458***) 

Student-t 
   6,056.20 
(0.560***)  

     7,550.89 
(0.743***)  

   6,381.02  
(0.539***) 

   5,756.39  
(0.319***) 

     6,358.80  
(0.424***) 

Skew student-t 
   5,277.97 

(0.071)  
     7,144.08  
(0.434***) 

   5,675.24  
(0.108**) 

   5,685.14  
(0.118**) 

     6,254.18  
(0.072) 

Lognormal 
   5,595.35 
(0.334***)  

     6,898.17  
(0.073) 

   5,958.91  
(0.363***) 

   5,664.16  
(0.072) 

     6,300.37  
(0.199***) 

Gamma 
   5,291.48 
(0.213***)  

     6,902.25  
(0.109**) 

   5,637.89  
(0.075) 

   5,659.83  
(0.077) 

     6,265.40  
(0.161***) 

Weibull 
   6,188.74  
(0.823***) 

     8,497.73  
(0.886***) 

   6,466.01  
(0.803***) 

   6,819.57  
(0.868***) 

     7,412.18  
(0.884***) 

Inverse Gaussian 
   8,725.86 
(0.978***)  

   12,481.34  
(0.999***) 

   9,200.98  
(0.961***) 

   9,726.62  
(0.999***) 

   10,699.46  
(0.999***) 

Cauchy 
   5,323.55 
(0.125***)  

     7,000.54  
(0.163***) 

   5,741.18  
(0.138***) 

   5,761.80  
(0.160***) 

     6,366.56  
(0.133***) 

Burr 
   5,988.23  
(0.546***) 

     8,276.54  
(0.620***) 

   6,273.73  
(0.525***) 

   6,599.54  
(0.574***) 

     7,185.69  
(0.579***) 

GPD 
   5,335.66  
(0.201***) 

     7,418.68  
(0.683***) 

   5,727.55  
(0.191***) 

   5,768.63  
(0.208***) 

     6,349.77  
(0.221***) 

POT 90% 
(Norm-GPD) 

   5,472.58 
(0.437***)  

     7,564.20  
(0.818***) 

   5,869.92  
(0.426***) 

   5,896.56  
(0.463***) 

     6,476.03  
(0.453***) 

POT 90% 
(Lognorm-GPD) 

   5,597.43 
(0.303***)  

     8,341.07  
(0.801***) 

   6,312.60  
(0.697***) 

   6,661.56  
(0.765***) 

     7,252.92  
(0.757***) 

Note: The numbers in the parentheses are Kolmogorov-Smirnov statistics and *,**,*** indicate that the p-value is less than 
the significance levels, 10%, 5% and 1% respectively. The bold indicates the best fit for each insurance loss distribution. 
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Parameter estimation and graphical structure of dependence modeling 

Table C3. Parameter Estimations of the Best Fitted Pair Copula Structure (First Tree) 

 Copula Parameter Lower-tail 
dependency 

Upper-tail 
dependency 

Asset Portfolio 

𝜃ସ,ଶ; 𝐶௄ோଵ଴௒,௄ோଶ௒ (Student-t) 0.36/3.78 0.195 0.195 
𝜃ଷ,ସ; 𝐶௄ோହ௒,௄ோଵ଴௒ (Student-t) 0.67/2.80 0.439 0.439 
𝜃ହ,ଷ; 𝐶௄ோ௖௢௥,௄ோହ௒ (Student-t) 0.48/3.43 0.272 0.272 
𝜃଺,ହ; 𝐶௄ோெଷ,௄ோ௖௢௥  (Student-t) 0.17/3.72 0.129 0.129 
𝜃ଵ,଺; 𝐶௄ோ_௦௧௢௖௞,௄ோெଷ (Student-t) 0.65/4.16 0.339 0.339 
𝜃଻,ଵ; 𝐶ௐ௥ௗ_௥௘௔௟,௄ோ_௦௧௢௖௞ (Survival Gumbel) 1.82 0.537 - 
 
Insurance Portfolio 

𝜃ସ,ଵ; 𝐶௅௜௔௕௜௟௜௧௬,ி௜௥௘  (Survival Gumbel) 1.16 0.181 - 
𝜃ଶ,ସ; 𝐶ெ௢௧௢௥,௅௜௔௕௜௟௜௧௬  (Gumbel) 1.93 - 0.568 
𝜃ହ,ଶ; 𝐶஺௖௖௜ௗ௘௡௧,ெ௢௧௢௥  (Frank) 20.34 - - 
𝜃ହ,ଷ; 𝐶஺௖௖௜ௗ௘௡௧,ெ௔௥௜௡௘ (Survival Clayton) 0.86 - 0.341 
Note: The table shows estimated parameters only in the first tree of the structure, which demonstrates the strongest 
dependency in the structure. Student-t copula has two parameters representing dependency and degree of freedom. The 
parametric R-Vine is sequentially determined by R-package VineCopula. The subscripts of the copulas indicate the 
following: 
Asset (Korean): 1=KR_stock; 2=KR2Y; 3=KR5Y; 4=KR10Y; 5=KRcor; 6=KRM3; 7=Wrd_real 
Insurance (Korean): 1=Fire; 2=Motor; 3=Marine; 4=Liability; 5=Accident 

 

Asset portfolio Insurance portfolio 

 

Figure C5. Graphical structure of dependency in the first tree. The estimated copula functions and their 
dependence parameters are illustrated at edges. The copula functions at edges are specified as follows: 
t: Student-t; SG: Survival Gumbel; G: Gumbel; SC: Survival Clayton; F: Frank. 
 



Essay IV  Risk aggregation in non-life insurance 

182 
 

Appendix D. Additional applications 

In this application, we diversify the dependence structures at the base level to identify the 

impact of different base-level dependencies and also the structures at the top level with the data-

driven correlation between asset and underwriting portfolios. Additionally, we investigate how 

the difference between internal models and standard models changes with different asset 

allocation strategies and how strong the diversification effect in our internal model could be.  

Application to economic capital 

Table D1 illustrates the results of risk measurement with diversified models at two levels. 

Regarding the models at the base level, we carry out two different approaches in order to apply 

HAC models and simple Archimedean models (AC); we consider HAC and AC with Gumbel 

for the asset portfolio and with Clayton for the insurance portfolio, which is regarded as the 

best-case scenario for a non-life insurer by HAC and AC models.151F

152 Conversely, HAC and AC 

with Clayton for the asset portfolio and with Gumbel for the insurance portfolio can be seen as 

the worst-case scenario by HAC and AC. Additionally, we employ the independence structure 

for both portfolios at the base level to see how significantly different economic capitals can be 

between independence assumption and intrinsic dependence structures at the base level 

aggregation. 

The correlation applied at the top level is the empirical measure from the original data. 

Consistently, the independence structure at the top level generates the lowest economic capital 

across all base-level models, implying that the correlation assumption under regulations 

between market and insurance modules can overestimate the capital requirements. The models 

with the tail dependence measures (particularly, student-t and Gumbel) produce higher level of 

capitals at extreme quantiles. This also applies to the base-level results that R-Vine, student-t, 

HAC-worst and AC-worst cases with the correlated risk in the tail generally provide higher 

capital levels. In addition, the independence structure of d-dimensional case at the base level 

                                                      
152  Since HAC with Gumbel copula can model the upper tail dependency for every estimated pair in the structure, 

it can derive the simultaneous positive returns from the asset portfolio. In contrast, since HAC with Clayton 
copula can model the lower tail dependency for every estimated pair, it can predict simultaneous lower claims 
from different lines of business in the insurance portfolio. However, these scenarios are not definitive best or 
worst scenarios across all considered models since the scenarios are modeled only by HAC, but they can 
provide different scenarios for estimating the economic capital. In the literature, several approaches are carried 
out to find the bounds on the risk measure. For example, Pfeifer and Strassburger (2008) use Frechet-Hoeffding 
bounds to aggregate stochastically dependent risks as extreme cases. Aas and Puccetti (2014) develop upper 
and lower bounds on the risk measure based on the rearrangement algorithm (RA).  
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can generate significantly lower level of the economic capital, since this structure does not 

incorporate the correlated risk that should be counted in the estimate. 

Table D1. Comparison with Regulatory Standards 

   Top-level dependence (Bivariate) 
(in ₩ billion) Indep Gauss t Gumbel Clayton 

B
as

e-
le

ve
l d

ep
en

de
nc
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VaR at 
99% 

R-Vine 559.7 582.1 587.9 605.6 577.4 
Gauss 521.1 554.7 571.5 569.1 548.5 
t 534.7 557.9 581.1 575.5 555.2 
HAC-best 464.3 488.7 516.7 504.5 482.3 
HAC-worst 507.8 528.9 563.8 535.1 524.8 
AC-best 398.3 419.5 438.5 430.2 413.5 
AC-worst 531.0 553.1 578.4 553.5 541.7 
Independence 129.3 148.5 165.6 165.4 146.9 
Bernstein 304.9 323.8 346.3 338.9 318.6 

       

VaR at 
99.5% 

R-Vine 744.5 757.3 768.6 763.4 755.0 
Gauss 693.3 711.0 697.5 682.0 680.6 
t 714.6 723.6 721.0 682.9 708.5 
HAC-best 619.0 629.8 625.7 614.5 625.4 
HAC-worst 672.4 698.8 692.7 669.6 693.2 
AC-best 533.9 547.4 546.8 529.2 543.4 
AC-worst 711.0 721.3 716.8 708.2 715.4 
Independence 243.5 265.7 252.9 248.9 253.2 
Bernstein 454.7 478.6 469.3 441.4 462.7 

       

TVaR 
at 99% 

R-Vine 842.5 850.0 880.2 866.4 841.0 
Gauss 779.2 762.5 795.5 782.7 757.8 
t 795.0 780.6 811.8 790.5 777.2 
HAC-best 701.5 686.3 713.2 699.3 678.6 
HAC-worst 769.2 757.1 788.1 776.3 754.5 
AC-best 615.4 600.8 624.9 613.2 591.5 
AC-worst 801.5 805.0 829.8 819.1 794.8 
Independence 316.1 311.3 333.6 323.4 307.5 
Bernstein 540.7 527.3 551.8 534.5 520.6 

  K-RBC (VaR 99%) SII (VaR 99.5%) SST (TVaR 99%) 
Standard models 846.3 1,177.5 1,471.5 
Note: HAC stands for hierarchical Archimedean copulas and AC indicates simple Archimedean copulas. The bold indicates 
the best fitted model for the empirical data. 

The estimates of the Bernstein model are positioned between those of parametric models (R-

Vine, Gaussian and student-t) and the independence model, which is in line with the outcome 

of the literature modeling non-life insurance loss with Bernstein copula (Diers et al., 2012).152F

153 

Specifically, the Bernstein copula could generate a smaller size of the risk measures at extreme 

quantiles than those of parametric copulas. This result might be because the non-parametric 

estimation with Bernstein polynomials plays a role of an approximation to parametric copulas 

                                                      
153  Few empirical studies have compared risk measurement between Bernstein copula and parametric copulas. 

Thus, our result in the application could be a benchmark to compare Bernstein model and other parametric 
models for future research. 
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and smoothing parameters for polynomial dimensions are dependent on the grid size (= m) 

(Sancetta and Satchell, 2004; Scheffer and Weiss, 2017). 

Asset allocation strategies 

The asset allocation considered in Table 8 reflects the realistic strategy that the main insurer 

adopted, giving 2.75% annual return and 7.51% annual standard deviation. In this case, slightly 

above 80% is invested in the fixed income securities, which can help an insurer meet the 

regulatory requirement (ruin probability of 0.5%) and be more likely to avoid insolvency (Eling 

et al., 2009). However, it is difficult for the insurer from the short-term perspective to increase 

the investment size so that the firm usually diversifies strategies by considering different 

allocations to the assets (Eling et al., 2009).153F

154 Based on this fact, we implement different asset 

allocations to derive the economic capital under our internal model and the standard model. 

Following Eling et al. (2009), we take into account two possible asset allocation strategies 

shown in panel A of Table D2154F

155, which have different levels of risk. Since the second case 

incorporates more weights on riskier assets (i.e., KR_stock and Wrd_real. See Table D2), it 

shows higher volatility (= 17.72%) on an annual basis, but higher return (= 6.17%) than that of 

the first case (2.82% volatility and 8.50% return). We estimate the economic capitals by VaR 

at 99% and the K-RBC level for each strategy to which the dataset is subject. 

The results in panel B of Table D2 show that a riskier asset portfolio increases the economic 

capital and the capital requirement by the regulation. The economic capital of the riskier case 

under the best fit model is 38.7% higher than that of the less risky case, which implies that 1% 

increase in the portfolio volatility can lead to 4.21% increase in the economic capital. This is a 

reasonable outcome in that a riskier investment with a higher return and a higher volatility leads 

to a higher capital requirement. The economic capital with different asset strategies can be also 

overestimated by the standard model, showing that the K-RBC turns out to be 56.2% 

overestimated in the first strategy and 60.9% in the second strategy. It is observed from this 

result that the riskier the asset portfolio is, the larger the gap between the internal model and 

the standard model is. 

 

                                                      
154  Gründl et al. (2016) state that firm size is a significant factor on risk-taking by insurers. Larger insurers are 

able to more diversify investment portfolios, which enables the insurers to take on more risks and control such 
risks.  

155  Eling et al. (2009) consider four examples of asset allocations. Among them, the first example accounts for the 
investment only on the money market and the third example addresses the equally weighted portfolio (see 
Table 2 in Eling et al., 2009). Since we need to take into consideration diversified portfolio under dependency 
with different riskiness we do not include the first and third examples in Eling et al. (2009). 
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Table D2. Diversified Investment Strategies 

Panel A: Asset allocations 
  Allocation 1 Allocation 2 
Equity KR_stock 10% 30% 
Fixed income KR2Y 20% 10% 

KR5Y 20% 10% 
KR10Y 20% 10% 
KRcor 20% 10% 

Money Market KRM3 0% 0% 
Real estate Wrd_real 10% 30% 

Panel B: Application to the economic capital  

(in ₩ trillion) 
Top-level dependence 

Indep Gauss t Gumbel Clayton K-RBC 

B
as

e-
le

ve
l d

ep
en
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nc

e 

Allocation 1 
(VaR 99%) 
 𝜇=2.82% 
 𝜎=8.50% 

R-Vine 603.4 631.8 663.0 641.0 621.1 

942.5 

Gauss 565.1 590.1 619.4 614.1 583.7 
t 578.3 602.3 628.7 621.1 592.0 
HAC-best 511.5 532.8 566.7 551.0 517.1 
HAC-worst 552.0 570.9 608.1 585.8 566.5 
AC-best 458.9 483.1 503.8 494.2 466.0 
AC-worst 590.9 598.5 643.0 614.1 597.7 
Independence 202.9 214.2 241.5 238.3 206.6 
Bernstein 421.3 439.3 452.5 451.5 431.5 

  Indep Gauss t Gumbel Clayton K-RBC 

Allocation 2 
(VaR 99%) 
 𝜇=6.17% 
 𝜎=17.72% 

R-Vine 837.1 871.1 924.1 899.8 848.8 

1,346.7 

Gauss 787.7 795.2 841.9 832.1 793.3 
t 790.2 817.6 851.6 844.5 797.5 
HAC-best 659.5 682.5 717.3 705.4 672.0 
HAC-worst 800.1 844.0 893.9 863.8 821.9 
AC-best 654.7 678.2 709.2 702.5 669.9 
AC-worst 852.5 876.9 928.7 892.4 854.0 
Independence 392.8 405.4 433.0 431.0 399.3 
Bernstein 650.8 669.9 694.0 688.4 668.9 

Note: 𝜇 is the mean of the portfolio and 𝜎 is the volatility of the portfolio on an annual basis. The bold in panel B indicates 
the best fitted model for the empirical data. 

Diversification effect 

The standard formula under regulations allows insurers to have the diversification benefit by 

reducing the economic capital in the aggregate distribution. The diversification effect in the 

standard formula is generated by the square root formula with the assumed correlation measures. 

However, it can be expected that the diversification effect under the linear dependence structure 

is smaller than the effect under the non-linear dependence structure (Eling and Jung, 2018). The 

diversification effect is estimated by: 

𝑑𝑖𝑣 =
𝑆𝐶𝑅൫∑ 𝑋௜

ௗ
௜ୀଵ ൯ − ∑ 𝑆𝐶𝑅௜

ௗ
௜ୀଵ

∑ 𝑆𝐶𝑅௜
ௗ
௜ୀଵ

, (D.1) 

where 𝑆𝐶𝑅൫∑ 𝑋௜
ௗ
௜ୀଵ ൯ is the solvency capital requirement of a portfolio with d-dimensional risks 

and ∑ 𝑆𝐶𝑅௜
ௗ
௜ୀଵ  is the sum of individual SCRs for the portfolio. 
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Gatzert and Martin (2012) assess the diversification benefit of around 18% from the asset 

portfolio with stocks and bonds in their internal model and provide the benefit of the standard 

formula in SII (see Figure D1). To compare with their estimate as a benchmark, we also derive 

the diversification effect of the asset portfolio from different base-level settings. Here, we 

consider five competing base-level models: R-Vine (PCC), Gaussian, student-t, HAC with 

Gumbel, HAC with Clayton and Bernstein copula. The diversification benefits from our 

empirical case and Gatzert and Martin (2012) are comparable in that the same diversification 

formula is applied and only stocks and bonds are considered in the portfolio. The difference 

between two implementations is that the asset portfolio in our empirical case consists of less 

number of assets than the portfolio in Gatzert and Martin (2012) (5 vs. 14). Overall, the pair 

copula model drives the highest diversification benefit of around 42.6%, followed by student-t 

(37.9%), Gaussian (37.2%) and Bernstein (37.0%). This effect accounts for a significant 

reduction in the economic capital (from the simple summation of individual risks estimated in 

the same model) by the data-driven dependence structure, compared to that of the standard 

formula (7.7%) in Figure D1. 

 
Figure D1. Diversification benefit of the asset portfolio. The 
diversification benefit is obtained by measuring how much the SCR 
of a portfolio is reduced from the sum of individual SCRs. “HAC-G” 
stands for HAC model with Gumbel copula and “HAC-C” for HAC 
model with Clayton copula. “Internal” indicates the diversification 
benefit from the internal model in Gatzert and Martin (2012) and 
“Standard” from the standard model in the same paper.
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Appendix E. Comparing standard models and the internal model 

In this section, we additionally note the comparison between the internal model and the standard 

models in Section 5. First, we apply the risk category of each regulatory framework to the 

dataset as explained in Section 2.1. For example, we categorize our underwriting data to two 

lines of business (automobile and general insurance) under the K-RBC and to five lines of 

business (Fire, Motor, Marine, Liability and Miscellaneous) under SII. This categorization is 

also applied to the German data in Appendix G. The following describes several particular 

points of comparison. 

Korean RBC 

As mentioned in Section 2.1, no correlation between market risk factors is taken into 

consideration in the standard model. Here, we assume that the equity and bond assets in the 

Korean benchmark portfolio belong to the category of short-term securities (see footnote 124). 

Thus, the market risk module in the K-RBC framework is based on the simple summation of 

risk amounts from different factors (FSS, 2017, p. 131): 

𝑅𝑖𝑠𝑘௠௞௧ = ෍ 𝑅𝑖𝑠𝑘௜

௜

, (E.1) 

where 𝑅𝑖𝑠𝑘௜ is the exposure of i-th risk factor multiplied by the corresponding risk coefficient. 

The standard risk coefficient for each factor from both asset and underwriting portfolios is given 

to an insurer, however, the K-RBC allows for adjusting the coefficient only to the underwriting 

portfolio. The adjusted risk coefficient (= 𝛾௜
ᇱ) for the underwriting risk is calculated with the 

difference in the combined ratio between the undertaking and the industry average (FSS, 2017, 

p. 54):  

𝛾௜
ᇱ = min൛Maxൣ𝛾௜ + ൫𝐶𝑅௜ − 𝐶𝑅௔௩௚൯ × 0.5, 𝛾௜ × 0.7൧, 1ൟ, (E.2) 

where 𝛾௜ is the standard risk coefficient for i-th line of business, 𝐶𝑅௜ is the combined ratio for 

i-th line and 𝐶𝑅௔௩௚ is the industry average of the combined ratio for i-th line. 

The risk size for each factor is conceptually described by VaR 99% as seen in Figure E1, which 

is reflected in the risk coefficient. To replace the risk coefficient given in the standard model 

by our undertaking-specific parameters, we apply the multiplication of 99% quantile under the 

normality assumption and the standard deviation (= 2.32𝜎) for the asset portfolio in the internal 

model, which is equivalent to the size of the deviation in Figure E1. Our undertaking-specific 
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risk coefficients can better reflect the degree of riskiness, for example, from the returns in the 

realistic asset portfolio (see Table E1). 

 
Figure E1. Conceptual plot for individual risk exposure in the K-RBC (FSS, 2017, p. 29). 

 

Table E1. Comparison of Risk Coefficients for the Asset Portfolio 

 KRstock KR2Y KR5Y KR10Y KRcor KR3MCD Wrd_real 
Internal model 0.179 0.028 0.040 0.059 0.124 0.119 0.131 
K-RBC 0.120 0.012 0.035 0.060 0.030 0.012 0.060 
Note: For the risk coefficients on the government bonds, we assume that the term to maturity for each bond is following: 1-
2 years for KR2Y, 4-5 years for KR5Y and 7-10 years for KR10Y.  

Solvency II 

SII differentiates the correlation assumptions of the market risk module into two possible 

scenarios: “up” and “down” shocks of interest rate. The SCR calculation considering interest 

rate shocks is following (EC, 2010, p. 108): 

𝑆𝐶𝑅௠௞௧ = max ቎෍ 𝐶𝑜𝑟𝑟𝑀𝑘𝑡𝑈𝑝௜,௝ ∙ 𝑀𝑘𝑡௨௣,௜ ∙ 𝑀𝑘𝑡௨௣,௝

௜,௝

; ෍ 𝐶𝑜𝑟𝑟𝑀𝑘𝑡𝐷𝑜𝑤𝑛௜,௝ ∙ 𝑀𝑘𝑡ௗ௢௪௡,௜ ∙ 𝑀𝑘𝑡ௗ௢௪௡,௝

௜,௝

቏, (E.3) 

where 𝐶𝑜𝑟𝑟𝑀𝑘𝑡𝑈𝑝௜,௝ is the correlation between market risk factor i and j under the interest rate 

up stress, 𝑀𝑘𝑡௨௣,௜ is the required capital for the i-th market risk sub-module under the interest 

rate up stress, 𝐶𝑜𝑟𝑟𝑀𝑘𝑡𝐷𝑜𝑤𝑛௜,௝ is the correlation between market risk factor i and j under the 

interest rate down stress and 𝑀𝑘𝑡ௗ௢௪௡,௜ is the required capital for the i-th market risk sub-module 

under the interest rate down stress. 

The SII estimate in Table 8 is the one under the interest rate up stress. In terms of the equity 

risk module, SII differentiates the shock scenario in two categories: “Global” and “Other” 

(“Type 1” and “Type 2” in EC, 2014). “Global” category contains the equities belonging to the 

members of the European Economic Area (EEA) or the Organization for Economic 
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Cooperation and Development (OECD), whereas “Other” category incorporates other equities 

not belonging to the list of “Global” equities (EC, 2014, p. 108). The equities in our Korean 

and German cases are considered in the “Global” category. 

The required capital for each risk module is calculated by applying the calibrated parameters 

by EC (2014). With regard to the required capital for the non-life risk module, the calculation 

is based on equation (3). For each sub-risk module, we calculate the required capital: 

𝑆𝐶𝑅௜,ே௅ = 3 × 𝜎௜ × 𝑉௜, (E.4) 

where 𝜎௜ is the standard deviation for i-th submodule based on the calibrated standard deviation 

for premium and reserve risks in SII and 𝑉௜ is the volume measure for i-th submodule. 3 × 𝜎௜ 

indicates an approximate measure of the combined standard deviation for the module, which is 

assumed upon the lognormal losses (EC, 2010, p. 199). 

Swiss Solvency Test 

SST is designed to evaluate the amount of risks on a market-consistent basis (FINMA, 2006). 

The SST measure in Table 8 is upon the standard model, which assumes the linear dependence 

of P&L on risk factors and multivariate normal for all risk factors. That is, SST assumes a 

multivariate normal distribution with mean 0 and the volatility based on the sensitivity analysis 

for the asset portfolio (FINMA, 2006). It calibrates the volatilities and the correlation matrix 

with monthly data. Thus, we also use variance-covariance approach for the asset portfolio with 

the delta measure defined in SST as follows: 

∆𝑉(𝑃) ~ 𝑁൫0, ඥ𝛿ᇱ∑𝛿൯, (E.5) 

where ∆𝑉(𝑃) is the change in the market portfolio value, 𝛿 is a vector of the sensitivities of the 

portfolio with respect to the risk factors and ∑ is the covariance matrix of the risk factors (7×7 

for the Korean case and 10×10 for the German case in Appendix G). 

Regarding the underwriting portfolio, SST requires different estimations for normal and large 

losses, which are above either the threshold of 1 million or 5 million CHF (see Section 2.1). 

For normal sizes, the first two moments are used to estimate, whereas lognormal assumption is 

employed to estimate large sizes. In this application, we assume that our loss data are the losses 

in the current accident year and the exchange rate between CHF and Korean Won is 1,000 

Won/CHF to translate the threshold. Then, we apply the distributional assumptions to the 

different sizes of losses and implement convolution to aggregate the market risk and the 

underwriting risk.
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Appendix F. Robustness of the best fit model  

We implement our modeling procedure on the base-level dependence structure of the 

underwriting portfolio and the top-level dependence structure from both sides for four 

companies considered in Table 9. Panel A of Table F1 illustrates that the statistical testing 

results for four companies at the base level turn out to be similar to the result with the main 

dataset in Section 4. R-Vine model is proven to be superior to other models, followed by 

elliptical models (Gaussian and student-t). Hierarchical Archimedean models fit better than 

simple Archimedean family, but cannot compete with R-Vine and elliptical family. At the top 

level, we again find that the independence assumption needs to be taken into account as 

evidenced by statistical testing in panel B; thus, we can conclude that our internal risk model is 

robust. 

Table F1. Implementation of the Best Fit Aggregation Model for Four Companies 

Panel A: Base-level estimation (underwriting) 

  Company 1 Company 2 Company 3 Company 4 

Copula LogLik AIC LogLik AIC LogLik AIC LogLik AIC 

Elliptical 
Gauss 154.4 -288.9 118.1 -216.1 52.5 -85.0 118.6 -217.3 

t 161.7 -301.4 120.6 -219.2 53.6 -85.2 133.5 -245.0 

Archimedean 
Gumbel 26.5 -50.9 80.9 -159.7 -0.0 2.0 60.6 -119.2 

Clayton 26.7 -51.4 39.3 -76.5 1.8 -1.7 86.2 -170.3 

HAC 
Gumbel 142.4 -276.9 128.0 -248.0 14.0 -20.0 87.6 -167.1 

Clayton 120.2 -232.4 11.5 -15.0 13.4 -18.8 86.5 -165.0 

PCC(R-Vine) 202.4 -396.7 157.7 -301.3 74.3 -130.5 162.0 -306.0 

Bernstein 193.5 -122.0 220.5 -138.8 103.8 -40.3 242.1 -134.4 
  

Panel B: Top level estimation (with R-Vine at the base level) 

 Company 1 Company 2 Company 3 Company 4 

 Statistic P-value Statistic P-value Statistic P-value Statistic P-value 

Indep 0.866 0.386 0.027 0.978 0.596 0.551 1.725* 0.085 

Gauss 0.488*** 0.008 0.245* 0.092 0.198 0.176 0.586*** 0.006 

t 0.511** 0.011 0.297* 0.066 0.204 0.179 0.580*** 0.005 

Gumbel 0.465** 0.015 0.276* 0.071 0.184 0.213 0.562*** 0.005 

Clayton 0.550** 0.011 0.273* 0.082 0.228 0.139 0.632*** 0.001 
Note: Elliptical and Archimedean copulas are estimated via R package copula, HAC models are estimated via copula and 
HAC, R-Vine model is implemented via VineCopula and Bernstein D-Vine model is estimated via penDvine. *,**,*** 
indicate that the p-value is less than the significance levels, 10%, 5% and 1% respectively. The bold indicates the best fit 
method for each portfolio. Four companies in panel B are chosen out of the Korean non-life insurers, who operate the five 
lines of business considered in our study, by the quartile of the total asset size. Company 1 is at the first quartile (25%) from 
the largest company, company 2 is at the second quartile (median), company 3 is at the third quartile and company 4 is the 
smallest. 
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Appendix G. Fitting result for German data 

The considered realistic asset portfolio consists of 10 asset indices (Table G1) as a benchmark 

for a German non-life insurer introduced and employed in Eling et al. (2009).155F

156 The asset data 

are monthly returns from January 1998 to December 2006, each of which contains 108 

observations. We also use historical claims data of the same insurer on a monthly basis for the 

same period.156F

157 The insurance portfolio is formed with six lines of business: industry fire, other 

fire, household storm, homeowner fire, homeowner storm and water damage insurances. 

Table G1. List of Benchmark Indices and Descriptive Statistics (Eling et al., 2009) 

Panel A: List of benchmark indices 

Asset class Index Description Asset allocation 
Equity Wrd_stock MSCI Worldwide stock indices without EMU 5.0% 

EMU_stock MSCI Stock indices in EMU without Germany 5.0% 
DE_stock MSCI Stock index in Germany 5.0% 

Fixed Income US2Y US 2 year Sovereign Bond Index 15.0% 
DE2Y Germany 2 year Sovereign Bond Index 15.0% 
EMU2Y Euro Zone 2 year Sovereign Bond Index 15.0% 
IBOXX corp IBOXX Euro AAA 3 year Corporate bond index 15.0% 

Money Market EURM3 European Central Bank M3 money supply index 5.0% 
Real Estate Wrd_real MSCI Worldwide real estate index 10.0% 

Euro_real MSCI Europe real estate index 10.0% 

Panel B: Descriptive statistics 
Assets mean sd skewness kurtosis Max median min JB-test 
Wrd_stock 0.0053 0.0414 -0.6789 0.6728 0.0891 0.0092 -0.1400 11.007*** 
EMU_stock 0.0072 0.0542 -0.7148 1.1359 0.1212 0.0194 -0.1699 16.085*** 
DE_stock 0.0065 0.0688 -0.8105 2.8450 0.2126 0.0104 -0.2791 51.446*** 
US2Y 0.0035 0.0053 0.1033 0.2326 0.0173 0.0032 -0.0112 0.584 
DE2Y 0.0027 0.0035 0.1327 -0.7752 0.0098 0.0025 -0.0052 2.747 
EMU2Y 0.0035 0.0092 -0.2086 -0.6162 0.0248 0.0044 -0.0172 2.275 
IBOXX corp 0.0033 0.0087 -0.1727 -0.3203 0.0242 0.0039 -0.0219 0.880 
EURM3 0.0054 0.0030 0.3758 1.0624 0.0163 0.0051 -0.0030 8.449** 
Wrd_real 0.0090 0.0522 0.1560 1.8597 0.2002 0.0116 -0.1243 17.579*** 
Euro_real 0.0112 0.0431 -0.3219 0.5933 0.1359 0.0115 -0.1022 3.883 

Underwriting mean sd skewness kurtosis Max median min 
Ind_fire 803,228.2  1,240,581.2  2.521 6.028 6,186,363.1  295,276.2  949.3  
HO_fire 2,228,594.6  991,556.9  -0.238 0.042 4,663,559.9  2,251,845.3  25,119.4  
Other_fire 1,313,010.5   917,484.8  1.054 0.543 4,146,761.6  984,767.3  3,384.7  
HH_storm 44,862.9  74,288.1  4.431 26.823 594,514.1  18,223.3  0.0                     
HO_storm 1,833,345.2  3,990,165.4  6.633 53.926 37,075,463.2  462,420.4  5,411.4  
Water 4,007,250.9  1,445,809.7  -1.097 2.166 7,930,423.2  4,277,080.0  101,092.1  
Note: In panel A, MSCI stands for Morgan Stanley Capital International and EMU stands for European Monetary Union. 
*,**,*** indicate that the p-value is less than the significance levels, 10%, 5% and 1% respectively. JB-test stands for 
Jarque-Bera test for normality assumption on the residual. Underwriting statistics are in € (Euro). 

                                                      
156  The portfolio consisting of bonds, stocks, real estate and money market securities accounts for 99.5% of all 

investments by insurance companies (Eling et al., 2009). The equity and real estate indices are the performance 
indices counting the dividend reinvestment performance provided by MSCI.  

157  Due to the limitation of available claims data, we test the model with German portfolios for a shorter period 
than with the Korean data. However, the implementation with the German data is meaningful because it can 
describe the adequacy of the estimated model in the different period (effectiveness for pre-financial crisis in 
2008) and different market (European market vs. Asian market) as well as the firm size (large insurer vs. mid-
sized insurer). Note that this underwriting dataset has been also used in Diers et al. (2012), who also investigates 
the adequacy of dependence models for the underwriting risk aggregation. 
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Marginal modeling 

ARMA-GARCH fit is implemented for the asset portfolio and 12 distribution candidates are 

applied to the insurance portfolio, showing that skewed and long-tailed distributions are also 

mainly fitted for the German assets (see Table G2).  

Table G2. Fitting Distributions for Asset and Insurance Portfolios 

Panel A: Asset portfolio 
 ARMA-order AIC for ARMA Fitted distribution AIC for GARCH 

Wrd_stock (0,0) -379.11 Skew normal -396.16 
EMU_stock (2,2) -322.21 Skew student -351.18 
DE_stock (0,0) -269.68 Skew student -282.58 
US2Y (1,0) -819.58 Normal -822.95 
DE2Y (2,3) -916.45 Normal -934.22 
EMU2Y (1,1) -699.01 Normal -735.19 
IBOXX corp (3,0) -720.41 Normal -729.12 
EURM3 (3,3) -954.08 Skew normal -973.93 
Wrd_real (3,1) -346.53 Skew student -355.91 
Euro_real (0,1) -367.46 Normal -380.42 

Panel B: Insurance portfolio 
 Ind_fire HO_fire Other_fire HH_storm HO_storm Water 

Skew Normal 
3,359.63 

(0.426***) 
3,452.52 

(0.549***) 
3,369.76 

(0.428***) 
2,732.08 

(0.274***) 
3,604.26 

(0.426***) 
3,572.18 

(0.600***) 

Student-t 
3,145.12 

(0.683***) 
3,516.66 

(0.637***) 
3,390.33 

(0.693***) 
2,795.55 

(0.487***) 
3,295.83 

(0.655***) 
3,635.47 

(0.633***) 

Skew student-t 
3,128.23 

(0.056) 
3,337.36 

(0.309***) 
3,246.36 

(0.109) 
2,514.79 

(0.075) 
3,292.71 

(0.093) 
3,457.85 

(0.441***) 

Lognormal 
3,137.60 

(0.103) 
3,391.84 

(0.267***) 
3,285.51 

(0.148**) 
2,529.24 

(0.077) 
3,289.55 

(0.095) 
3,520.44 

(0.377***) 

Gamma 
3,140.02 

(0.133**) 
3,337.01 

(0.210***) 
3,247.31 

(0.087) 
2,514.24 

(0.079) 
3,310.62 

(0.164***) 
3,455.35 

(0.345***) 

Weibull 
3,134.27 

(0.100) 
3,311.14 

(0.141**) 
3,244.18 

(0.068) 
2,509.65 

(0.073) 
3,300.03 

(0.149**) 
3,409.59 

(0.282***) 

Inverse Gaussian 
3,256.48 

(0.411***) 
3,462.41 

(0.428***) 
3,418.60 

(0.421***) 
2,958.41 

(0.776***) 
3,337.78 

(0.213***) 
3,582.77 

(0.506***) 

Cauchy 
3,203.37 

(0.220***) 
3,321.02 

(0.078) 
3,289.30 

(0.139**) 
2,606.33 

(0.252***) 
3,381.99 

(0.264***) 
3,309.34 

(0.062) 

Burr 
3,499.17 

(0.509***) 
3,907.38 

(0.540***) 
3,759.83 

(0.540***) 
2,813.60 

(0.501***) 
3,669.61 

(0.529***) 
4,048.19 

(0.536***) 

GPD 
3,128.36 

(0.070) 
3,315.54 

(0.240***) 
3,247.90 

(0.114) 
2,509.01 

(0.061) 
3,289.94 

(0.114) 
3,430.96 

(0.369***) 
POT 90% 
(Norm-GPD) 

3,267.40 
(0.215***) 

3,296.22 
(0.070) 

3,266.07 
(0.160***) 

2,639.78 
(0.201***) 

3,451.95 
(0.220***) 

3,371.74 
(0.246***) 

POT 90% 
(Lognorm-GPD) 

3,513.02 
(0.657***) 

3,403.94 
(0.389***) 

3,797.46 
(0.741***) 

2,552.05 
(0.207***) 

3,709.15 
(0.694***) 

4,085.97 
(0.742***) 

Note: The numbers in the parentheses are Kolmogorov-Smirnov statistics and *,**,*** indicate that the p-value is less than 
the significance levels, 10%, 5% and 1% respectively. The bold indicates the best fit for each insurance claims distribution. 

Dependence modeling 

With the fitted marginal factors, we carry out the same set of the dependence models as done 

with the Korean data and panel A of Table G3 presents testing results for such dependence 

models.  
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Table G3. Dependence Modeling Results 

Panel A: Statistical testing for the dependence modeling at the base level 

  Asset Portfolio Insurance Portfolio 
Family Copula Log-lik AIC GoF Log-lik AIC GoF 

Elliptical 
Gaussian 236.12 -382.24 0.016 175.74 -321.47 0.119*** 

Student-t 256.51 -421.02 0.019* 175.75 -319.49 0.100*** 

Archimedean 
Gumbel 8.81 -15.62 0.015 76.87 -151.73 0.230*** 

Clayton 23.86 -45.72 0.011 122.78 -243.56 0.055 

HAC 
Gumbel 182.86 -347.72 0.175 142.77 -275.54 0.642 

Clayton 204.12 -390.24 0.175 162.36 -314.73 0.759 

PCC R-Vine 289.42 -522.83 108.00 203.00 -374.00 56.43 

Bernstein (D-Vine) 278.95 -41.06 - 181.88 -73.72 - 

Panel B: Dependence parameters in the first tree at the base level (R-Vine) 

Copula Parameter 
Lower-tail 

dependency 
Upper-tail 

dependency 

Asset Portfolio 
𝜃ଷ,଼; 𝐶஽ா௦௧௢௖௞,ா௎ோெଷ (Gumbel) 1.09 - 0.116 
𝜃ଶ,ସ; 𝐶ாெ௎௦௧௢௖௞,௎ௌଶ௒ (90° Rotated Joe) -1.73 - - 
𝜃ଷ,ଶ; 𝐶஽ா௦௧௢௖௞,ாெ௎௦௧௢௖௞ (Survival Gumbel) 2.39 0.663 - 
𝜃ଵ,ଷ; 𝐶ௐ௥ௗ௦௧௢௖௞,஽ா௦௧௢௖௞ (Student-t) 0.81/2.53 0.583 0.583 
𝜃଺,଻; 𝐶ாெ௎ଶ௒,ூ஻ை௑௑௖௢௥ (Survival Gumbel) 3.18 0.756 - 
𝜃ହ,଺; 𝐶஽ாଶ௒,ாெ௎ଶ௒ (Survival Clayton) 0.30 - 0.098 
𝜃ଽ,ଵ; 𝐶ௐ௥ௗ௥௘௔௟,ௐ௥ௗ௦௧௢௖௞ (Student-t) 0.48/2.60 0.328 0.328 
𝜃ଽ,ହ; 𝐶ௐ௥ௗ௥௘௔௟,஽ாଶ௒ (Frank) 1.56 - - 
𝜃ଵ଴,ଽ; 𝐶ா௎ோ௥௘௔௟,ௐ௥ௗ௥௘௔௟  (Survival Joe) 1.91 0.563 - 

Insurance Portfolio 
𝜃ଶ,଺; 𝐶ுை௙௜௥௘,ுை௪௔௧௘௥ (Survival Joe) 1.83 0.540 - 
𝜃ଶ,ଷ; 𝐶ுை௙௜௥௘,ை௧௛௘௥௙௜௥௘  (Survival Joe) 1.93 0.569 - 
𝜃ସ,ଵ; 𝐶ுு௦௧௢௥௠,ூே஽௙௜௥௘ (Survival Gumbel) 1.44 0.383 - 
𝜃ହ,ଶ; 𝐶ுை௦௧௢௥௠,ுை௙௜௥௘  (Survival Gumbel) 1.62 0.467 - 
𝜃ହ,ସ; 𝐶ுை௦௧௢௥௠,ுு௦௧௢௥௠ (Gaussian) 0.93 - - 

Panel C: Statistical testing at the top level 
 R-Vine (Base level) Linear (Base level) 

Statistics P-value Statistics P-value 
Independence test 0.8083 0.419 0.2283 0.819 

Elliptical 
Gaussian copula 0.1293 0.415 0.1795 0.217 

Student-t copula 0.1639 0.260 0.1979 0.167 

Archimedean 
Gumbel copula 0.1295 0.376 0.1751 0.238 
Clayton copula 0.1585 0.282 0.2140 0.157 

Note: The table shows the statistical testing results for dependence models (panel A), estimated parameters only in the first 
tree of the structure representing the strongest dependency in the structure (panel B) and goodness-of-fit test results for the 
top-level dependency (panel C). The numbers of the goodness-of-fit results in Panel A indicate the test statistics except for 
those of HAC models showing p-values (see footnote 142). *,**,*** indicate that the p-value is less than the significance 
levels, 10%, 5% and 1% respectively. The bold in panel A indicates the best fit method for each portfolio. The parametric 
R-Vine is sequentially determined by R-package VineCopula. The subscripts of copulas in panel B indicate the following: 
Asset: 1=Wrdstock; 2=EMUstock; 3=DEstock; 4=US2Y; 5=DE2Y; 6=EMU2Y; 7=IBOXXcor; 8=EURM3; 9=Wrdreal; 
10=EUreal 
Insurance: 1=INDfire; 2=HOfire; 3=Otherfire; 4=HHstorm; 5=HOstorm; 6=HOwater 

It is observed that R-Vine model best describes the dependence structures of both portfolios 

and elliptical copulas demonstrate a better fit than HAC and Bernstein models as discovered 
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with the Korean data. For the top-level dependency in panel C, it can be concluded, based on 

the p-values, that the independence structure reflects the top-level structure of the German data 

better than other dependence structures under the correlation assumption by the standard 

models. The parameter estimation result by R-Vine shows that tail risks are observed in most 

pairs of both portfolios, particularly lower tail risks for the underwriting portfolio. 

Asset portfolio Insurance portfolio 

 
Figure G1. Graphical structure of dependency in the first tree. The estimated copula functions and their 
dependence parameters are illustrated at edges. The copula functions at edges are specified as follows: 
J: Joe; SG: Survival Gumbel; G: Gumbel; t: Student-t; SJ: Survival Joe; SC: Survival Clayton; F: Frank; 
N: Normal (Gaussian). 

Full application to risk measurement 

As a robustness of our finding from Korean case, we generate the economic capitals for the 

German data from different dependence structures. The result of the comparison between the 

estimates can be found in Table G4. We can clearly observe that the top-level dependence 

structure of the German data ends up with the same result as in the Korean case, showing that 

the lowest level of capital is generated from the independence structure, whereas student-t and 

Gumbel capturing the correlated risk in the right tail produce higher levels. Similar patterns are 

identified at the base level in that the independence structure in the high-dimension significantly 

lowers the level of the economic capital and the Bernstein model estimates it between the 

parametric models and the independence model. 
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Table G4. Comparison with Regulatory Standards 

(in € million) 
Top-level dependence (Bivariate) 

Indep Gauss t Gumbel Clayton 

B
as

e 
le

ve
l d

ep
en

de
nc

e 

       

VaR at 
99% 

R-Vine 31.27 35.56 38.78 36.99 33.53 
Gauss 31.04 34.60 36.26 36.17 33.48 
t 32.93 36.23 38.87 37.86 35.58 
HAC-best 27.36 32.34 31.98 31.19 29.78 
HAC-worst 44.21 48.11 51.63 51.03 47.81 
AC-best 16.32 20.93 21.01 20.41 18.47 
AC-worst 33.06 36.17 38.30 37.96 35.62 
Independence 5.93 7.63 9.47 8.07 7.33 
Bernstein 22.64 26.65 27.39 27.32 25.07 

       

VaR at 
99.5% 

R-Vine 51.24 58.77 59.42 59.32 53.94 
Gauss 50.26 56.63 58.36 56.84 52.39 
t 52.76 59.03 60.51 59.71 55.24 
HAC-best 47.15 51.56 52.70 52.37 48.29 
HAC-worst 68.06 74.23 75.63 75.17 68.22 
AC-best 35.01 39.24 40.61 40.33 36.90 
AC-worst 54.21 59.48 62.32 61.18 55.40 
Independence 23.61 28.12 29.17 29.03 24.71 
Bernstein 42.02 46.56 47.28 46.82 42.12 

       

TVaR 
at 99% 

R-Vine 55.27 59.81 62.19 60.99 56.11 
Gauss 53.44 57.28 59.95 58.89 55.25 
t 56.05 59.98 62.84 62.08 57.54 
HAC-best 48.88 52.65 54.37 53.13 50.27 
HAC-worst 71.49 75.07 79.38 78.72 72.42 
AC-best 36.23 39.95 41.30 40.87 38.05 
AC-worst 56.54 60.32 64.11 63.80 58.44 
Independence 24.61 29.09 30.03 29.53 26.57 
Bernstein 45.03 47.95 50.00 48.91 45.68 

  K-RBC SII SST 
Standard models 45.51 80.68 94.39 
Note: HAC stands for hierarchical Archimedean copulas and AC indicates simple Archimedean copulas. The bold in the 
upper panel indicates the best fitted model for the empirical data. 

Application to asset allocation 

As done with the Korean case in Table D2, we also investigate the effect of different asset 

allocation strategies with the German case. The corresponding regulatory measure (SII) and 

confidence level (VaR 99.5%) are used for comparison. Two examples of the allocation are 

considered in panel A of Table G5, showing that the second case is riskier than the first case. 

The economic capital of the riskier case under the best fit model is 63.6% higher than that of 

the less risky case, implying that 1% increase in the portfolio volatility can lead to 6.72% 

increase in the economic capital. Therefore, the German case again confirms that a riskier asset 

portfolio can require a higher capital size for an insurer, possibly leading to an increase in the 

restructuring cost. It also supports the finding that the higher the risk is, the higher the difference 

between the internal and standard model is, showing 64.6% overestimation in the first case and 

77.4% in the second case. 
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Table G5. Diversified Investment Strategies 
Panel A: Asset allocations 
 Allocation 1 Allocation 2 
Equity Wrd_stock 10% 20% 

EMU_stock 10% 20% 
DE_stock 10% 20% 

Fixed income US2Y 10% 0% 
DE2Y 15% 0% 
EMU2Y 15% 0% 
IBOXX corp 10% 0% 

Money Market EURM3 0% 0% 
Real estate Wrd_real 10% 20% 

Euro_real 10% 20% 

Panel B: Application to the economic capital 

(in € million) 
Top-level dependence 

Indep Gauss t Gumbel Clayton SII 

B
as

e-
le

ve
l d

ep
en

de
nc

e  

Allocation 1 
(VaR 99.5%) 
 𝜇=6.89% 
 𝜎=12.40% 

R-Vine 65.63 73.63 74.95 74.01 68.58 

108.0 

Gauss 65.07 70.68 72.31 70.74 65.67 
t 66.28 74.28 74.97 74.67 69.30 
HAC-best 60.42 64.73 65.87 65.56 60.64 
HAC-worst 82.75 90.48 91.79 90.97 82.98 
AC-best 40.34 44.50 45.87 45.44 41.80 
AC-worst 60.28 66.48 68.94 68.17 61.72 
Independence 26.99 31.48 32.85 32.42 27.61 
Bernstein 52.53 56.81 58.53 57.48 52.76 

  Indep Gauss t Gumbel Clayton SII 

Allocation 2 
(VaR 99.5%) 
 𝜇=9.84% 
 𝜎=21.86% 

R-Vine 107.37 117.08 118.47 117.43 110.68 

190.5 

Gauss 104.26 111.66 113.08 112.52 104.36 
t 111.16 120.90 122.49 121.40 112.54 
HAC-best 97.22 102.66 104.68 103.85 98.13 
HAC-worst 128.43 138.03 140.40 138.17 129.13 
AC-best 62.25 66.80 68.67 68.00 62.41 
AC-worst 84.75 92.31 95.32 93.51 85.40 
Independence 44.12 49.09 51.42 50.54 44.25 
Bernstein 85.51 91.58 94.23 92.13 86.94 

Note: 𝜇 is the mean of the portfolio and 𝜎 is the volatility of the portfolio on an annual basis. The bold in panel B indicates 
the best fitted model for the empirical data. 
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