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Abstract

The thesis’ focus is on consumption/portfolio optimization under time-varying investment op-

portunities and dynamic non-financial (labor) income using analytical methods.

The most striking result is that counter-cyclical non-financial income growth (income growth

is low when expected returns are high) or pro-cyclical income volatility (income volatility is

high when expected returns are high) lead to a strong reduction of optimal risky investment and

consumption. Hence, it can be stated that dynamic labor income is a simple and comprehensible

instrument to explain why some people do not participate in the stock market.

From a technical point of view, the assumption of complete markets allows for a separation of

the complicated HJB-equation into ordinary differential equations. It will be shown that certain

combinations of parameter values of the financial assets, the state variable and non-financial

income lead to solutions of the differential equations that do not converge in the long-run.

These settings are in favor of extreme results and this should be considered as a warning for

numerical studies of the consumption-investment problem with labor income that are calibrated

on empirical results.



vii

Zusammenfassung

Die vorliegende Dissertation befasst sich mit der Konsum-/Porfoliooptimierung unter zeitvari-

ablen Investitionsmöglichkeiten und dynamischem externen Einkommen (wie beispielsweise Ar-

beitseinkommen) unter der Anwendung von analytischen Methoden.

Als wichtigstes Resultat wird gezeigt, dass antizyklisches Einkommenswachstum (Einkom-

menswachstum ist tief, wenn die erwateten Prämien hoch sind) oder prozyklische Einkom-

mensvolatilität (Einkommensvolatilität ist hoch, wenn die erwateten Prämien hoch sind) zu

einer starken Reduktion der Investitionen in risikoreiche Anlagen und zu tieferem Konsum führt.

Deshalb kann die Berücksichtigung von dynamischen Arbeitseinkommen als ein einfaches und

verständliches Mittel betrachtet werden, um zu erklären weshalb gewisse Individuen nicht in

Aktien investieren.

Aus analytischer Sicht führt die Annahme von vollständigen Märkten dazu, dass die kom-

plizierte HJB-Gleichung in gewöhnliche Differentialgleichungen zerlegt werden kann. Es wird

gezeigt, dass gewisse Parameterkonstellationen der Finanzanlagen, der Zustandsvariable und des

Arbeitseinkommens nicht konvergente Lösungen implizieren. Diese Konstellationen begünstigen

extreme Lösungen und sollten für numerische Studien des Konsum-/Porfoliooptimierungsprob-

lems, welche auf empirische Daten kalibriert werden, als warnender Hinweis dienen.
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Notation

We tried to adhere to the following convention on notation. Depending on the chapter and

the context, the same letter or symbol can have a different meaning. Such occurrences are

highlighted appropriately in the thesis. We tried to avoid such polyvalent situations; however,

we did not completely succeed simply due to the sheer number of quantities for which we needed

some notation.

Uppercase Letters

A financial wealth

Â total wealth
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Lowercase Letters
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Chapter 1

Introduction

Consumption and portfolio optimization under time-varying investment opportunities and dy-

namic non-financial income has not received much attention until now. Two exceptions are

Lynch and Tan (2009)1 and Munk and Sørensen (2010). These papers focus on rather compli-

cated life-cycle models and have to rely on numerical methods. Their results imply that dynamic

labor income matters for consumption and portfolio decisions. In this thesis we will approach the

question with analytical methods. We will be able to reproduce results from the aforementioned

studies and offer considerably more theoretical insights and implications for empirical research.

1.1 Literature Review and Field of Research

The starting point of modern portfolio choice coincides with the seminal work of Markowitz

(1952), who introduced the concept of diversification in a clear mathematical form by studying

the trade-off between return and variance. The static one-period model was extended by Tobin

(1965) to a multiple period model. Based on the work of Markowitz and Tobin, Sharpe (1964)

and Lintner (1965) developed an equilibrium model for asset pricing, the well-known capital

asset pricing model (CAPM). An important contribution of these studies is that all individuals

should hold only one portfolio of risky assets independent of their risk aversion2 - the so called

myopic portfolio.

In 1969, portfolio theory made an important step. Samuelson (1969) and Merton (1969) an-

alyzed combined consumption-investment decision problems in a multi-period framework in

discrete and continuous time respectively. Samuelson and Merton introduced the method of dy-

namic programming (stochastic control) into the portfolio choice literature. Under the assump-

tion of constant relative risk aversion (CRRA) utility functions and lognormally distributed risky

assets, Merton was able to derive closed-form solutions for optimal consumption and investment.

The work of Samuelson and Merton confirmed the major result from the static literature, namely

1The paper by Lynch and Tan has been accepted for future publication in the Journal of Financial Economics,

http://jfe.rochester.edu/forth.htm (10th January 2011).
2Of course, individuals with different risk aversions should hold different fractions of their wealth in the risky

asset portfolio.

1



2 CHAPTER 1. INTRODUCTION

that all investors should hold the same risky portfolio. Furthermore, the work of Merton implied

that all individuals should consume a fixed fraction of their wealth3.

The major result was challenged by Merton (1973) himself. While precedent models implied

constant investment opportunities, i.e. constant expected returns and (co-)variances for the risky

assets, Merton introduced stochastic investment opportunities. In particular, he assumed that

investment opportunities vary with a certain number of state variables. The two most impor-

tant results are the following. Firstly, in addition to the myopic portfolio, all investors should

hold a second portfolio of risky assets that hedges the changes in the investment opportunity

set. Basically, this hedging portfolio consists of assets that are most correlated with the state

variables. Secondly, consumption is not a fixed fraction of wealth, but varies with the state vari-

ables. Although the work of Merton was presented in a rather abstract way, the results are quite

intuitive. Loosely speaking, investment opportunities can either be good or bad. To invest in a

portfolio that delivers a good return when investment opportunities turn bad and vice versa is

conceptually identical to an insurance and seems a reasonable choice.

Pliska (1986), Karatzas et al. (1987) and Cox and Huang (1989) introduced the martingale

representation technique into the field of portfolio choice and offered an alternative method to the

well-established dynamic programming method. Although the martingale method is theoretically

and practically appealing, most papers still rely on the dynamic programming method4.

The importance of non-financial income as labor income was recognized early. Merton (1971)

introduced a constant wage and his work was extended in several dimensions. Duffie et al. (1997)

discuss properties of the value function and the optimal policies under stochastic labor income.

Koo (1998) and He and Pagès (1993) rule out short selling and/or impose borrowing constraints

under non-insurable labor income risk. Heaton and Lucas (2000a, b) point out the importance

of entrepreneurial risk and show that individuals with high business risk should hold less stocks.

Munk (2000) and Viceira (2001) calibrate labor income models to realistic financial and labor

market data. Bodie et al. (1992) introduce flexible labor supply. Cocco et al. (2005) examine

the effect of different labor income risk on the optimal portfolio policies of a life cycle investor

under a realistic calibration of the labor income process.

The most important result of these models is that labor income matters for the consumption-

investment decision of an individual. In fact, the future income stream implies additional wealth

to the investor and hence, the behavior of the individual generally becomes more extreme.

Moreover, the presence of labor income generates an additional hedging portfolio in the demand

for risky assets. Similarly to state variable hedging demand, hedging demand for labor income

consists of risky assets that are most correlated with labor income. From a technical point of view,

it is important to know that with stochastic labor income, closed-form solutions are generally

not available. As shown by Koo (1998) and Duffie et al. (1997), without additional assumptions,

the ratio of financial wealth to labor income becomes essential in order to determine the value

3However, the fraction does not have to be constant unless the planning horizon is infinite. If not, the fraction

varies with the planning horizon.
4A good example for an application of the martingale method in a consumption-investment problem under

time-varying investment opportunities is Wachter (2002).
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of the future income stream and this leads to highly non-linear partial differential equations

that have no explicit solution. That financial wealth becomes important in the valuation of the

income stream is intuitive as well. Imagine an individual with a labor income stream that is

risky and not perfectly correlated with the financial market. In this case, financial wealth of the

individual can go to zero and the income stream still can have a high value; the individual might

start to borrow in order to invest in risky assets. In this situation, the wage could suffer from a

severe negative shock and go to zero as well. This results in a situation where the individual is

left without labor income and debts and thus she is not able to afford any consumption, which is

clearly not optimal5. As shown in, for example, Huang and Milevsky (2008), solutions to labor

income problems are available under the assumption of perfect correlation between labor income

and the financial market or riskfree labor income.

With the influential work by Kim and Omberg (1996) a new branch of portfolio choice litera-

ture emerged. Kim and Omberg presented closed-form solutions for a portfolio choice problem

with stochastic investment opportunities. In particular, they assumed that there is only one state

variable that follows an Ornstein-Uhlenbeck process and that the equity premium is affine in the

state variable. While Kim and Omberg focused on hyperbolic absolute risk aversion (HARA)

utility over terminal wealth, Wachter (2002) extended the model to CRRA utility over consump-

tion but has to assume complete markets. From a technical view, the solution of the optimization

problem involves separating a non-linear partial differential equation into a system of ordinary

differential equations. Some of the resulting ordinary differential equations are already known

from the term structure literature and can be solved by similar formulas6.

Models with an affine equity premium were extended in several ways. Most importantly,

Campbell et al. (2004) extended the model to stochastic differential utility7 (SDU). Herzog

et al. (2004) included multiple state variables. The numerical calibration of the Wachter and the

Campbell et al. models to real data showed that state variable hedging demand has the same

sign as myopic demand and is important compared to the size of myopic demand.

Work in dynamic portfolio choice is not limited to models with an affine equity premium.

Chacko and Viceira (2005) studied models with time-varying volatility. Munk et al. (2004)

incorporate stochastic interest rates and inflation uncertainty. Buraschi et al. (2010) analyzed

the effects of stochastic correlation. Liu (2007) presented a general model that includes those of

Wachter, Kim and Omberg and some aspects of those of Chacko and Viceira and Munk et al. as

special cases. He was able to state conditions for the return and the state variable processes that

5Assuming a standard utility function as power utility with a coefficient of risk aversion greater than one. For

these utility functions limc→0+ u(c) = −∞.
6For example, some parts of the solution of the Kim and Omberg (1996) and Wachter (2002) model are similar

to parts in the solution of the Cox-Ingersoll-Ross term structure model. Compare Kim and Omberg’s C(τ) (p.

158), Wachter’s A1(τ) (p. 71) with Ingersoll (1987, p. 397) or Duffie (2001, p. 142).
7SDU was introduced by Duffie and Epstein (1992a, b). A major advantage of SDU is that it allows the

separation of relative risk aversion from intertemporal elasticity of substitution (IES). This is a well-known

drawback of HARA utility functions. See, for example, Bommier (2007). For an early application of SDU in

the portfolio choice literature see Schroder and Skiadas (1999). For recent applications of SDU in the asset pricing

literature see Avramov and Hore (2007) or Hore (2008).
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have to be satisfied in order to separate the resulting partial differential equation into ordinary

differential equations.

The combination of labor income and stochastic opportunity set models is a rather new devel-

opment. Lynch and Tan (2009) consider a model where labor income growth, and in an extension

labor income volatility, depend on the dividend yield. Calibrated on empirical data they find that

time-varying labor income can have an important impact on the optimal policies. In fact, they

show that the highly positive investment in risky assets implied by the Wachter and Campbell et

al. model can be reversed. Munk and Sørensen (2010) present a combined stock-bond allocation

problem with stochastic short interest rates and assume that labor income growth depends on

the short rate. The focus of their work is on the joint implications of stochastic interest rates

and labor income for the valuation of human capital and optimal policies.

Other important contributions in the field of portfolio choice include the impact of limited/no

short selling and borrowing constraints8, the effect of trading costs9 and the influence of infor-

mation uncertainty10.

Furthermore, it should be mentioned that the notion of time variation in investment opportu-

nities is still under challenge. In fact, a vast literature has focused on the search for state variables

that can explain time-variation in the expected return of the stock market. Research goes back to

Dow (1920), who analyzed the predictive power of the dividend yield on expected returns. Goyal

and Welch (2008) give a critical overview of the empirical evidence of popular state variables

used in previous studies. Their evidence suggests that most examined state variables have lost

some or all of their in-sample predictive power in the last years. Furthermore, all tested state

variables have no or only low out-of-sample predictive power. Lettau and Van Nieuwerburgh

(2007) point out that financial ratios (as the dividend yield, price-earnings ratio, etc.) have

predictive power, but shifts in the steady state of the state variable make the in-sample return

forecastability hard to exploit. Another critical study is Liu and Zhang (2008) who question the

predictive power of the so-called value spread, the difference in the price-earnings ratio of value

and growth stocks.

Recent work in favor of predictability are Inoue and Kilian (2004), Ang and Bekaert (2007),

Campbell and Thompson (2007), Cochrane (2005, 2008) and Cooper and Priestley (2009). Inoue

and Kilian (2004) show that in-sample tests for predictability are more reliable than out-of-

sample tests. Ang and Bekaert (2007) find that the dividend yield and the short rate are good

predictors and show that the results are robust to international data. Campbell and Thompson

(2007) point out that prediction quality can be improved by imposing economically meaningful

restriction on the signs of the estimated coefficients and return forecasts. Cochrane (2005, 2008)

states that the variation in the dividend yield implies that if returns are not predictable, dividend

growth must be predictable. He finds that the absence of dividend growth predictability gives

stronger evidence than does the presence of return predictability. Cooper and Priestley (2009)

8Koo (1998), He and Pagès (1993).
9Liu and Loewenstein (2002), Balduzzi and Lynch (1999).

10Brennan (1998), Xia (2001), Garlappi et al. (2007), Kan and Zhou (2007), Wachter and Warusawitharana

(2009). In addition, for a recent overview of Bayesian portfolio models see Avramov and Zhou (2010).
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show impressive in- and out-of-sample predictive power for the so-called output gap. This state

variable measures the deviation of industrial production from its long-term trend level.

The brief review shows the wide range of the portfolio choice literature. As stated by Wachter

(2010):

“Ultimately, the goal of academic work on asset allocation is the conversion of the

time series of observable returns and other variables of interest into a single number:

Given the preferences and horizon of the investor, what fraction of her wealth should

she put in stock11? The aim is to answer this question in a “scientific” way, namely by

clearly specifying the assumptions underlying the method and developing a consistent

theory based on these assumptions. The very specificity of the assumptions and the

resulting advice can seem dangerous, imputing more certainty to the models than the

researcher can possibly possess. Yet, only by being so highly specific, does the theory

turn into something that can be clearly debated and ultimately refuted in favor of an

equally specific and hopefully better theory.”

Thus, for the sake of clarity we will restrict the models in this thesis to include the following

properties:

1. The individual has HARA utility12 over consumption or terminal wealth.

2. The planning horizon is known, i.e. there is no lifetime uncertainty.

3. The investor chooses between a risky (a broad stock portfolio) and a riskless asset.

4. The individual faces outside (non-financial) income.

5. The risky asset and non-financial income are subject to time variation.

6. The time variation is driven by a single state variable.

7. There are no barriers to trading in the assets, such as leverage or short-sale constraints.

8. There is no parameter uncertainty.

From these characteristics it can be stated that our models are closest to that of Lynch and

Tan (2009). Another related model is that of Munk and Sørensen (2010) but their focus is on

combined bond-stock problems and they assume that stock returns are not subject to time-

variation. What the models have in common is that they combine two important branches of

the portfolio choice literature, namely time-varying investment opportunities and labor income.

Moreover, the exclusion of model frictions as described in (6.) and (7.) allows us to study the

11The quote should not be misunderstood: the distinction between equity and (risky) long-term bonds is an

important issue for asset allocation as well. Nevertheless, for the sake of simplicity it is standard to deal with

only one risky asset and think of it as a broad stock portfolio unless one intends to study optimal stock-long-term

bond allocation problems explicitly.
12With the exception of exponential utility, HARA utility implies a subsistence level of consumption/wealth.
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effects of dynamic labor income clearly. However, for future research several additional features

could be added to the presented models.

Finally, it should be mentioned that the thesis provides an answer to the question of how

an individual should behave (given a certain set of assumptions). The issue of how individuals

really behave is an empirical one and not part of this thesis13.

1.2 Motivation

As mentioned above, the literature that combines labor income models with time-varying in-

vestment opportunities and time variation in labor income is rather undeveloped. The afore-

mentioned work of Munk and Sørensen and Lynch and Tan focuses on the solution of rather

complicated models, which demands a reliance upon numerical methods14. As a consequence,

theoretical insights and the sensitivity of results on the parameters and on the states of the

economy are largely neglected.

The primary intention of this thesis is to fill this gap. We will develop models that are not

as realistic as the cited models. In fact, we have to impose more assumptions in order to solve

the models in explicit form and, admittedly, certain assumptions are not completely in line with

reality. However, during the thesis we will point out the critical assumptions and will discuss

their importance and implications for the results.

Labor income must be an important dimension in portfolio-consumption problems. In our

opinion, the two most crucial arguments in favor of this statement are the following. Firstly,

for a young individual at the beginning of her working life, financial wealth is genrally low

compared to the value of future income stream. This suggests that labor income characteristics

as time-varying growth rates become important in the consumption-investment decision process.

Secondly, labor income allows for individuality. While it is natural to assume that financial

markets, and thus the relevant parameters of financial markets, are identical to all individuals,

labor income brings diversity in a natural way15. To be more precise, the classical work of Merton

and the extension to time-varying investment opportunities, as for example Wachter (2002) and

Campbell et al. (2004), provide only few channels for individuality. In fact, different risk aversion

and intertemporal elasticity of substitution give only limited possibilities for distinct investment

and consumption strategies. This is not the case in the presence of labor income. Well-educated

people are likely to have different exposure to changes in the investment opportunity set than low-

educated people. The importance of the labor income stream is not the same to rich and poor

individuals. The duration of the employment phase until retirement brings diversity between

young and old individuals.

Furthermore, time variation in labor income growth is not only a theoretical concept. The

estimates of Lynch and Tan (2009) in Table 1 are significant on the 1 percent level. Stock

13As stated by Campbell (2006), the availableness of high quality data in this field is still limited.
14Munk and Sørensen (2010) pay attention to special cases that could be solved in closed-form. Nevertheless,

they do not analyze these cases in depth.
15See, for example, Dynan et al. (2004).
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and Watson (1999) show clear variation in wages and employment at business cycle frequency.

Moreover, assuming time variation not only in the financial, but also in the labor market seems

conceptually reasonable.

Because of these arguments, it clearly worthwhile to study the implications of time-varying

labor income and to understand the sensitivity of the results for a reasonable range of parameters.

In the course of the thesis, the following three important issues are highlighted and possible

explanations derived:

1. The dynamic models of Kim and Omberg (1996), Wachter (2002) and Campbell et al.

(2004) imply that an individual should have an even stronger position in the risky asset

through the state variable hedging portfolio. In fact, the unconstrained solutions look like

hedge fund portfolios, not typical investor portfolios. With a single risky asset, the result

is a highly leveraged position, unless one assumes extremely risk-averse individuals16. As

shown in Kim and Omberg or Wachter, hedging demand decreases with decreasing horizon.

This implies that young people should hold more stocks. Although this is in line with

financial advice17, empirical surveys do not show such clear age effects18. By the inclusion

of labor income, the results of Lynch and Tan show a different picture, i.e. individuals with

a long horizon have no/negative exposure in the risky asset. The explicit solutions enable

an understanding of the forces that drive these results.

2. The work of Wachter (2002) and Campbell et al. (2004) shows that optimal portfolios

and consumption should vary strongly with the state variable. For example, Figure 3 of

Wachter shows clearly that the optimal allocation should vary from no equity exposure

to a leveraged19 position within two standard deviations from the long-run mean of the

state variable. Neither Lynch and Tan nor Munk and Sørensen pay any attention to this

dimension. The analytical solution will allow this dimension to be studied in detail.

3. The valuation of the future income stream has an essential impact on the optimal policies.

As will be shown below, the valuation of the income stream asks for the solution of ordinary

differential equations (ODEs). The analytical expression will provide important insights as

to which parameter combinations will result in solutions of the ODEs that do not converge

in the long term.

1.3 Contents and Results of Thesis

After this introductory chapter, we will present a model that is closely related to the model of

Lynch and Tan (2009). To be more precise, the main feature of this model is time variation in the

expected return of the risky asset and time variation in labor income growth. The time variation

is driven by a single state variable that follows an Ornstein-Uhlenbeck process. Compared to

16Special thanks to Edward Omberg, who stressed this critical issue.
17See, for example, Munk et al. (2004) Table 2 (p. 158).
18Campbell (2006).
19More than 100 percent of financial wealth.
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Lynch and Tan, we will impose certain assumptions in order to find explicit solutions. With

the help of these expressions we are able to interpret our results clearly and we can provide

theoretical insights. The most important result is that

• The inclusion of time-varying labor income growth leads to highly individual optimal

policies. For realistic parameters it is shown that some individuals do not want to hold

a positive amount of risky assets. Hence, the fact that some individuals do not hold any

equity at all20 can be confirmed.

Further essential results are the following:

• Under the assumptions of perfect correlation between the risky asset and labor income

or locally riskfree labor income, the separation of the Hamilton-Jacobi-Bellmann (HJB)

equation into ordinary differential equations is still possible.

• The inclusion of time variation in labor income leads to an adaption of state variable hedg-

ing demand. In fact, state variable hedging demand can be separated into the usual part

that arises in the absence of labor income and a new part21. This part grows monotonically

with the planning horizon and can have either sign.

• In contrast to myopic and classical state variable hedging demand, indirect labor hedging

demand does not depend on the level of financial wealth. Hence, it remains important even

if financial wealth is low.

• A negative sensitivity of labor income growth on the state variable can induce falling risky

investment and consumption even if expected returns are increasing in the state variable.

This is in contrast to the models of Wachter (2002) and Campbell et al. (2004). Moreover,

the level of risky investment can be reduced as well.

• From a technical point of view, the valuation of the labor income stream involves solving

ordinary differential equations. Certain combinations of state variable and financial market

parameters lead to solutions which do not converge for long horizons. In these cases, the

valuation of the income stream leads to extreme results even if the sensitivity of labor

income growth to the state variable is low.

• If the sensitivity of the risky asset and labor income on the state variable are in a particular

relation, indirect labor hedging demand is zero and the valuation of the labor income

stream is independent of the state variable and similar to the case with constant income

growth.

In the subsequent chapter the setting of the basic model is extended to stochastic labor income

volatility. The specification is an adaption of a model extension examined by Lynch and Tan.

Additional important results are given by:

20See, for example, Figure 2 of Campbell (2006).
21We will refer to this part as the “indirect labor hedging demand”. The choice of this expression will become

clear in the derivation of the optimal policies in Appendix 2.A.2.
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• The inclusion of stochastic volatility in labor income always drives a wedge between the

risky asset and labor income. Hence, the valuation of the labor income stream will always

depend on the state variable and indirect labor hedging demand is never zero.

• If labor income and the risky asset are positively correlated, then the part of hedging

demand that is due to stochastic volatility converges to a stable solution even for an infinite

horizon. Nevertheless, a highly persistent state variable can lead to extreme results.

• The addition of stochastic labor income volatility allows for more interesting patterns of

hedging demand. In fact, indirect and direct labor hedging demand become non-monotone

in the state variable.

• Labor income volatility can generate risky investment that is rather insensitive to changes

in the state variable. Furthermore, optimal policies that include both decreasing risky

investment and consumption are possible even if the expected return of the risky asset is

rising.

• The system of ordinary differential equation for the valuation of the labor income stream

becomes more complicated. In particular, it includes a Riccati differential equation. If

the labor income process has some advantageous properties, the value of the future la-

bor income stream can be infinite even for a finite horizon. However, these cases ask for

unrealistically extreme parameter values.

The fourth chapter introduces a model with stochastic volatility for the risky asset and an affine

volatility premium. It is assumed that the labor income stream faces the same characteristics.

Stochastic volatility follows a CIR-process and a similar model without labor income is presented

by Liu (2007). As an extension, the model is integrated in a life cycle model that includes a

period of retirement without any non-financial income. The most important additional insights

are:

• The system of ordinary differential equation for the valuation of the labor income stream

includes a Riccati differential equation. If the labor income process has some advantageous

properties, the value of the future labor income stream can be infinite even for a finite

horizon. As before, these cases ask for unrealistically extreme parameter values.

• The extension of the basic model to a life-cycle model with a phase of retirement is a simple

and comprehensible instrument to reduce the value of total wealth. As a consequence, risky

investment and excess consumption are reduced to a realistic level.

• The reduction of total wealth in the life-cycle model implies that the importance of myopic

and state variable hedging demand is reduced compared to the two labor income hedging

demands.

In the fifth chapter, the assumption of constant labor income parameters over the life-cycle is

weakened. While constant parameters are a reasonable choice for the financial market, this is not
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the case for labor income, as with growing age the skills of an individual change. The inclusion

of time-variation shows that:

• Time-dependence in the part of labor income growth that is not related to the state variable

is rather simple to implement.

• The inclusion of high labor income growth at the beginning of the working period leads

to a higher valuation of the future income stream. As a consequence, the importance of

labor income on the optimal policies increases.

• Time-dependence in the parts that measure the sensitivity of the labor income dynamics

to changes in the state variable are difficult to implement because closed-form solutions

to Riccati differential equations with time-varying coefficients only exist in a few special

cases. Nevertheless, closed-form solutions can be found for piecewise constant parameters.

• The analytical results show that non-constant labor income parameters allow for more

sophisticated patterns of the function, which values the future income stream labor. This

can lead to an indirect labor hedging demand that changes sign over the life-cycle.

• Even if labor income from young individuals is not exposed to changes in the state of

the economy, the valuation of the future income stream depends on the state if income is

exposed to changes in the state at a later time period. In this case, the sensitivity of the

value of the future income stream of a young individual is rather stable over time.



Chapter 2

Portfolio and Consumption Decisions

under Mean-Reverting Returns and

Labor Income Growth

In this chapter, the consumption investment problem of an individual facing a dynamic financial

market and dynamic non-financial income (labor income) is solved. The financial market consists

of two assets. One is a riskless bond and a risky asset with mean-reverting returns. Thus, the

financial market setting is up to an invariant affine transformation identical to Kim and Omberg

(1996) and Wachter (2002). In addition, it is assumed that the individual faces outside labor

income that has a mean-reverting growth rate. There is a single state variable that drives both

the risky asset and labor income.

A similar model is discussed by Lynch and Tan (2009)1. The model of Lynch and Tan is

more realistic with respect to the model assumptions, but has to rely on numerical methods.

For this reason, the reported effects can only be interpreted with a certain depth and sensitivity

analysis is neglected largely. In fact, Lynch and Tan focus exclusively on the development of

the optimal policies over the life-cycle and omit the sensitivity of the results over states. This

chapter aims to fill this gap and points out critical issues within this setting that are not only

relevant on a analytical dimension, but also have implications for empirical research. However,

for the sake of closed-form solutions more restrictive assumptions have to be taken. In fact, it has

to be assumed that labor income is either locally riskfree or perfectly correlated with the risky

asset. Nevertheless, these assumptions come with an advantage. In particular, it is shown that

the assumption allows the inclusion of a subsistence level of consumption (HARA preferences)

without having to assume that initial financial wealth exceeds the value of the future subsistence

consumption stream. Furthermore, and similarly to Wachter (2002) it must be assumed that the

state variable and the risky asset are perfectly correlated. However, for the dividend yield this

assumption is not too problematic as the correlation is close to -1.

1The paper by Lynch and Tan has been accepted for future publication in the Journal of Financial Economics,

http://jfe.rochester.edu/forth.htm (10th January 2011).

11
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The assumption of a single state variable eases the mathematical derivation and the interpre-

tation of the results. Moreover, there are several reasons that suggest that the assumption of a

single state variable is not too restrictive. Firstly, the use of only one state variable that drives

both financial assets and labor income is motivated by the empirical estimation in Lynch and

Tan who use the dividend yield as state variable2. Secondly, from a theoretical point of view,

factors that drive capital and labor markets simultaneously are reasonable since most output

is produced by a combination of labor and capital. Finally, empirical macroeconomic literature

as Stock and Watson (1999) shows clear variation in wages/employment and of the financial

market at business cycle frequency.

The rest of this chapter is organized as follows. In Section 2.1, the model with preferences

over intermediate consumption is introduced. Section 2.2 adapts the same model to utility over

terminal wealth. In Section 2.3, the long-horizon stability of the solution is discussed. The

subsequent section presents the results for numerically realistic parameter values. The final

section concludes. Mathematical derivations as the solution of the HJB-equation and other non-

trivial derivations are provided in the Appendices 2.A.1 - 2.A.6.

2.1 Model with Utility over Consumption

For the sake of simplicity, we assume that the individual works during the entire optimization

horizon. Nevertheless, life cycle models with a retirement period could be included without

severe problems3.

The conditional expected utility over the remaining lifetime for an individual at t is

Et

[∫ T

t

e−δs

1− γ (c (s)− c̄)1−γ ds
]

, γ > 1

where c̄ > 0 is the subsistence level of consumption, δ ≥ 0 is the time discount parameter and

τ ≡ T − t is the fixed and certain time horizon4. In this part, we assume that the risky assets’

expected return is affine in a state variable and has constant volatility. In particular, we assume

that
dS1 (t)

S1 (t)
= (λ1X (t) + r0) dt+ σsdWs (t) (2.1)

where λ1 > 0 and σs > 0. r0 is the short rate and the riskless asset follows5

dS0 (t)

S0 (t)
= r0dt

It should be noted that in this framework, the market price of risk is linear in X (t)

θ (t) ≡ λ1
σs
X (t)

2See Table 1 in Lynch and Tan (2009, p. 44).
3See, for example, Huang and Milevsky (2008), Moos and Müller (2010) or Chapter 4 for examples.
4For the sake of simplicity, it is assumed that the individual is not exposed to lifetime uncertainty. However,

lifetime uncertainty models as presented in Pliska and Ye (2007) could be included without severe technical issues.
5A specification of the short rate of the form dS0 (t) /S0 (t) =

(
r0 + r1X (t) + r2X (t)2

)
dt could be chosen

without severe problems. Properties of quadratic short rate models are discussed in Leippold and Wu (2002, 2003).

For the sake of simplicity, and in order to show the effects of non-financial income clearly, this is omitted.
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The state variable dynamics are given by

dX (t) = −κx
(
X (t)− X̄

)
dt+ σxdWx (t) (2.2)

where κx ≥ 0, X̄ ≥ 0 and σx > 0. (2.2) is a well-known Ornstein-Uhlenbeck process6. The

specification of the investment opportunities is in accordance with Liu (2007), who, in a general,

analyzes model consumption-investment problems without labor income in a stochastic opportu-

nity set. Moreover, the financial market setting is one-to-one similar7 to Wachter (2002). Hence,

the effect of the inclusion of a stochastic labor income can be directly compared with the results

of Wachter8.

It is assumed that the wage consists of two parts. In particular,

Ŷ (t) = Ȳ + Y (t)

where Ȳ ≥ 0 is a constant and thus without risk. This part can be interpreted as a minimum

wage that is guaranteed by a third party. Y (t) is the risky part of labor income and follows

dY (t)

Y (t)
= (y0 + y1X (t)) dt+ σydWy (t) (2.3)

where y0 is the constant part of labor income, y1 is the sensitivity of labor income growth on

the state variable and σy ≥ 0. Since Y (t) can not become negative, Ȳ is the minimum income

of the investor.

With the specified income, the financial wealth dynamics of an investor are as follows

dA (t) =
[

π (t)A (t)λ1X (t) +A (t) r0 + Ŷ (t)− c (t)
]

dt

+π (t)A (t)σsdWs (t) (2.4)

The HJB is given by

0 = Jt + sup
c

[

e−δt
(ct − c̄)1−γ

1− γ − JAct
]

+sup
π




JAπ (t)A (t)λ1X (t) + 1

2JAAπ (t)
2A (t)2 σ2s

+JAXπ (t)A (t) ρsxσsσx + JAY π (t)A (t)Y (t) ρsyσsσy





+JA

[

A (t) r0 + Ŷ (t)
]

− JXκx
(
X (t)− X̄

)
+ JY Y (t) (y0 + y1X (t))

+
1

2
JXXσ

2
x +

1

2
JY Y Y (t)2 σ2y + JXY Y (t) ρxyσxσy (2.5)

6The process is well-known in the literature of mathematical finance. See Vasicek (1977) for an early example

in the term structure literature and Lo and Wang (1995) and Schöbel and Zhu (1999) for examples in the option

pricing literature.
7Of course, there are some changes in notation.
8We would like to thank Jessica Wachter for providing us with her original Matlab code. With the help of her

code we were able to verify our results and our code.
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where dWsdWx = ρsxdt, dWsdWy = ρsydt and dWxdWy = ρxydt. The first order conditions

(FOCs) are given by

c∗t =
(

eδtJA

)− 1
γ
+ c̄ (2.6)

and

A (t)π∗t = − JA
JAA

λ1
σ2s
X (t)− JAX

JAA

ρsxσx
σs

− JAY

JAA

ρsyσy
σs

Y (t) (2.7)

Plugging in the FOCs (2.6) and (2.7) into the HJB equation (2.5) yields

0 = Jt +
γ

1− γ e
− δ
γ
t
J
1− 1

γ

A − JAc̄+ JAA (t) r0 + JAȲ + JAY (t)

−JXκx
(
X (t)− X̄

)
+ JY Y (t) (y0 + y1X (t))

+
1

2
JAA (t)π∗t λ1X (t) +

1

2
JAXA (t)π∗t ρsxσxσs

+
1

2
JAYA (t)Y (t)π∗t ρsyσyσs

+JXY Y (t) ρxyσxσy +
1

2
JY Y Y (t)2 σ2y +

1

2
JXXσ

2
x (2.8)

One tries a value function of the following form

J =
e−δ(T−τ)

[∫ τ
0 e

1
γ (c0(s)+c1(s)X+ 1

2
c2(s)X2)ds

]γ
(A+ k (τ,X)Y −R (τ))1−γ

1− γ (2.9)

where τ ≡ T − t, k (X, τ) is a function of the state variable and the time horizon and R (τ) is a

function of the time horizon. Both will be parameterized below.

For the sake of readability, the solution of the HJB (2.8) is shown in Appendix 2.A.2. As we

focus on closed-form solutions some assumptions have to be implemented. As in Wachter (2002),

it must be assumed that the risky asset and the state variable have to be perfectly correlated.

ρsx ∈ {−1, 1} (2.c.1)

Furthermore, it has to be assumed that either

ρsy ∈ {−1, 1} ⇒ ρxy = ρsxρsy ∈ {−1, 1} (2.c.2)

or

σy = 0 (2.c.3)

Admittedly, these assumptions do not match reality one-to-one. Nevertheless, several papers

have shown that the results of exactly solvable special cases are qualitatively similar to cases

with non-perfect correlation9. Hence, we expect that the qualitative results hold for more general

cases.

Furthermore, in Campbell and Viceira (1999), Barberis (2000), Wachter (2002), Campbell

et al. (2004) and Lynch and Tan (2009) the dividend yield was chosen as the state variable. As

9See Cocco et al. (2005), Huang et al. (2008), Huang and Milevsky (2008), Bick et al. (2009) and Dybvig and

Liu (2010).
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shown below, the dividend yield has a correlation to equity close to −1 and thus the assumption

ρsx = −1 is, in this case, not too restrictive. Finally, if labor income volatility is rather low, the

locally riskfree labor income case σy = 0 is certainly a reasonable approximation. Hence, it can

be stated that despite these assumptions, the results of the model are not only of theoretical

interest, but have implications for realistic cases.

Finally, these assumptions come with an advantage besides the interpretability of closed-form

solutions. In fact, in the case of ρsy /∈ {−1, 1} and σy > 0, current financial wealth has to be

higher than the reserves for the future subsistence consumption10. This would be an unrealistic

assumption, especially for young individuals who generally have a low financial wealth.

Similarly to the models without labor income, the final HJB (2.37) of Appendix 2.A.2 can be

separated into ordinary differential equations.

2.1.1 Separation of the HJB by A

Separating the HJB (2.37) of Appendix 2.A.2 by A gives the following equation

0 =

∫ τ

0
eC(X,s)







−δ −
(
∂c0(s)
∂s + ∂c1(s)

∂s X + 1
2
∂c2(s)
∂s X2

)

+ (1− γ) r0

−κx
(
c1 (s)X + c2 (s)X

2
)
+ κxX̄ (c1 (s) + c2 (s)X)

+1
2
1−γ
γ

λ2
1

σ2
s
X2 + 1−γ

γ
ρsxσx
σs

λ1X (c1 (s) + c2 (s)X)

+1
2
1
γσ

2
x

(

γc2 (s) + c21 (s) + 2c1 (s) c2 (s)X + c2 (s)
2X2

)







ds (2.10)

which can be separated by X2, X and constant terms into three ordinary differential equations.

∂c2 (s)

∂s
= k0 + k1c2 (s) + k2c2 (s)

2 (2.11)

∂c1 (s)

∂s
= k3c2 (s) +

k1
2
c1 (s) + k2c2 (s) c1 (s) (2.12)

∂c0 (s)

∂s
= k5 + k3c1 (s) + k4c2 (s) +

k2
2
c1 (s)

2 (2.13)

with initial conditions c2 (0) = c1 (0) = c0 (0) = 0 and

k0 ≡
1− γ
γ

λ21
σ2s
, k1 ≡ 2

[

−κx +
1− γ
γ

ρsxσx
σs

λ1

]

, k2 ≡
1

γ
σ2x

k3 ≡ κxX̄, k4 ≡
1

2
σ2x, k5 ≡ −δ + (1− γ) r0

The system of ODEs (2.11) - (2.13) is one and the same as in the problems without income. In

fact, this is exactly the solution found in Wachter (2002)11. A detailed discussion is therefore

omitted. Nevertheless, for the sake of completeness, Appendix 2.A.1 contains the results of the

Wachter model and the two following important results should be kept in mind:

10In Koo (1998) and Munk (2000) it is shown for an individual with power utility over consumption that under

non-perfect correlation between the financial asset and labor income, total wealth and risky investment go to

zero as the financial wealth approaches zero. This is intuitive, as otherwise the individual risks ending up with a

negative wealth and no income and hence, cannot afford a positive consumption level, which is clearly not optimal.
11It should be noticed that in Wachter (2002) there are several typographical errors. Most notably, b1 and b3

are interchanged. All other differences arise from different notation. More important, despite the typographical

errors the presented examples in Wachter are not affected and are correct.
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• Because of the assumption γ > 1, it follows that c2 (s) < 0 and c1 (s) < 0 for s > 0. As a

consequence, the sign of state variable hedging demand can be determined unambiguously

for X > 0.

• Given γ > 1, c2 (s) converges to a finite number as s → ∞. In other words, the solution

of the Riccati differential equation is well-defined.

2.1.2 Separation of the HJB by Y

For the Y parts12

0 =

∫ τ

0
eC(X,s)ds







−∂k
∂τ − r0k + 1 + k (y0 + y1X)− κxX ∂k

∂X + κxX̄
∂k
∂X

−1
2
ρsxσx
σs

λ1X
∂k
∂X − 1

2
ρsyσy
σs

λ1Xk − 1
2
ρsxσx
σs

λ1X
∂k
∂X

−1
2
ρsyσy
σs

λ1Xk + ρxyσxσy
∂k
∂X + 1

2σ
2
x
∂2k
∂X2







+

∫ τ

0
eC(X,s) (c1 (s) + c2 (s)X) ds







σ2x
[
−1

2ρ
2
sx − 1

2ρ
2
sx + 1

]
∂k
∂X

σxσy
[
−1

2ρsxρsy − 1
2ρsxρsy + ρxy

]
k







With the assumptions (2.c.1) and (2.c.2) or (2.c.3), the second part on the right hand side

vanishes and the equation simplifies to

0 =

∫ τ

0
eC(X,s)ds







−∂k
∂τ − r0k + 1 + k (y0 + y1X)− κxX ∂k

∂X + κxX̄
∂k
∂X

−ρsxσx
σs

λ1X
∂k
∂X −

ρsyσy
σs

λ1Xk + ρxyσxσy
∂k
∂X + 1

2σ
2
x
∂2k
∂X2






(2.14)

It should be noticed that the assumptions enable the complete separation of the solution of the

labor income part from the results of the SODE (2.11) - (2.13) and this simplifies the solution

considerably.

As
∫ τ
0 e

C(X,s)ds > 0, (2.14) is zero if the part in the brackets is zero. A function of the form

k (X, τ) =

∫ τ

0
ed0(s)+d1(s)Xds (2.15)

with initial conditions d1 (0) = d0 (0) = 0 will solve equation (2.14). These initial conditions are

the only ones that ensure that (2.16) is solved and that the solution converges to the one of the

constant opportunity set (λ1 = 0 and y1 = 0). The relevant partial derivatives are as follows

kτ =

∫ τ

0

(
∂d0 (s)

∂s
+
∂d1 (s)

∂s
X

)

ed0(s)+d1(s)Xds+ 1

kX =

∫ τ

0
d1 (s) e

d0(s)+d1(s)Xds

kXX =

∫ τ

0
d1 (s)

2 ed0(s)+d1(s)Xds

Plugging in the partial derivatives into (2.14) leads to

0 =

∫ τ

0
ed0(s)+d1(s)X







−
(
∂d0(s)
∂s + ∂d1(s)

∂s X
)

− r0 + (y0 + y1X)

−κxXd1 (s) + κxX̄d1 (s)− ρsxσx
σs

λ1Xd1 (s)

−ρsyσy
σs

λ1X + ρxyσxσyd1 (s) +
1
2σ

2
xd1 (s)

2







ds (2.16)

12Terms similar to A are directly set to zero because of (2.10).
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Matching coefficients on X and the constant term leads to a system of two ordinary differential

equations.

∂d1 (s)

∂s
= l0 + l1d1 (s) (2.17)

∂d0 (s)

∂s
= l2 + l3d1 (s) + l4d1 (s)

2 (2.18)

where

l0 ≡ y1 −
ρsyσy
σs

λ1, l1 ≡ −κx −
ρsxσx
σs

λ1

l2 ≡ y0 − r0, l3 ≡ κxX̄ + ρxyσxσy, l4 ≡
1

2
σ2x

The first equation is a linear differential equation with constant coefficients, the second can be

solved by integration. It should be noticed that human capital depends on the state variable

even if labor income is not directly influenced by the state variable (y1 = 0). The effect stems

from the
ρsyσy
σs

λ1 term in l0. The solution of equation (2.17) with initial condition d1 (0) = 0 is

given by

d1 (s) =







l0
l1

(
el1s − 1

)
, l1 6= 0

l0s , l1 = 0
(2.19)

Because of the simple form of d1 (s) and
∂d0(s)
∂s = l2 + l3d1 (s) + l4d1 (s)

2, the solution of d0 (s)

is also available in closed-from. Simple integration yields

d0 (s) =







(

l2 − l3 l0l1 + l4
l20
l21

)

s+
(

l3
l0
l21
− 2l4

l20
l31

) (
el1s − 1

)

+1
2 l4

l20
l31

(
e2l1s − 1

) , l1 6= 0

l2s+
1
2 l3l0s

2 + 1
3 l4l

2
0s

3 , l1 = 0

(2.20)

Remarks

• From (2.15) it can be easily seen that k (X, τ) > 0 for τ > 0. This is intuitive as the

risky part of labor income Y cannot become negative and hence, the individual attaches a

positive value to the future labor income stream13.

• As will become clear from the phase plane analysis of Section 2.3, in order that the solution

d1 (s) converges for long horizon, l1 = −κx − ρsxσx
σs

λ1 < 0. Thus, given l0, the stability of

d1 (s) does not depend on parameters of the labor income process, but only on parameters

of the risky asset and the state variable.

• The term y1−βsyλ1 can be interpreted as a pricing formula for the wage premium similar

to the CAPM, with βsy ≡ ρsyσy
σs

. In other words, if the wage compensation is in accordance

13To be more precise, k gives only the value of one unit of stochastic labor income Y and not of Ȳ . Because

this is obvious, we continue to use the used terminology and do not mentioned this explicitly for the remainder

of the thesis.
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with the stock market compensation14, y1− ρsyσy
σs

λ1 = 0 and d1 (s) = 0, ∀s. As will be shown
below, if y1 − ρsyσy

σs
λ1 6= 0, an adapted state variable hedging demand will arise.

• The risk aversion parameter γ is not involved in the valuation of the income stream. This is

intuitive, as the assumption of complete markets allows for a perfect hedge of labor income

risk.

2.1.3 Separation the HJB by the Constant Terms

Finally, for the constant parts15,

0 =

∫ τ

0
eC(X,s)ds

{
∂R

∂τ
+ Ȳ − c̄+ r0R

}

(2.21)

By the same arguments as above, the equation is zero if the term in the brackets is zero. The

equation in the brackets is a linear differential equation with constant coefficients and initial

condition R (0) = 0

R (τ) =
c̄− Ȳ
r0

(
1− e−r0τ

)
(2.22)

Since c̄−Ȳ
r0

is the value of a perpetual bond that pays c̄− Ȳ as its coupon, it becomes clear that

(2.21) can be interpreted as the reserves necessary to cover the subsistence level of consumption

net of the minimum wage that is guaranteed.

Remarks

• From the derivation in Appendix 2.A.2 and (2.22) it can be noticed that the constant part

of labor income enters the HJB in the same way as the (constant) subsistence level of

consumption. For this reason, it can be stated that only the difference c̄− Ȳ really matters

for valuation of the net reserves. Moreover, the optimal investment decision depends only

on the difference c̄− Ȳ as well. Nevertheless, optimal consumption is directly affected by c̄

and hence, individuals with the same c̄− Ȳ but different c̄ hold an identical portfolio, have

same excess consumption c∗t − c̄, but have different consumption levels.

• Given the solution of k and R, total wealth Â ≡ (. . .) = A+ kY −R can be structured in a

more interpretable form16. In fact, Â = A+H−N . A is financial wealth of the individual,

H ≡ kY + Ȳ
r0

(1− e−r0τ ) is human capital and N ≡ c̄
r0

(1− e−r0τ ) are the reserves covering

the subsistence level of consumption.

2.1.4 Optimal Policies

As shown in Appendix 2.A.2, plugging in the relevant partial derivatives into the FOCs leads to

c∗t =
Â

∫ τ
0 e

C(X,s)ds
+ c̄ (2.23)

14In this case, the solution of k (X, τ) collapses to k (τ) = 1
y0−r0

(

e(y0−r0)τ − 1
)

and is similar to the constant

labor income growth case.
15Terms that are similar to A are directly neglected because they are equal to zero because of (2.10).
16A similar interpretation is common, see, for example, Koo (1998) or Huang and Milevsky (2008).
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and

Aπ∗t =
1

γ

λ1
σ2s
XÂ+

1

γ

ρsxσx
σs

∫ τ
0 (c1 (s) + c2 (s)X) eC(X,s)ds

∫ τ
0 e

C(X,s)ds
Â

−ρsxσx
σs

∂k

∂X
Y − ρsyσy

σs
kY (2.24)

where Â is total wealth.

Remarks

• Optimal consumption (2.23) consists of two parts. Only the first part varies over time, the

subsistence part is constant. As a consequence, consumption varies less strongly than total

wealth. Indeed, in the classical Merton (1969) model, consumption has the same variation

as financial wealth, which is implausible17. In Wachter (2002), the relation is not one-to-

one, but since the variation in
∫ τ
0 e

C(X,s)ds is low, the relation is close. Adding a subsistence

level of consumption eases this issue.

• For individuals close to the margin of subsistence (Â→ 0), optimal consumption converges

to c̄ and its variation disappears.

• The first two terms of the optimal investment rule (2.24) are identical to Wachter (2002).

• For individuals close to the margin of subsistence (Â→ 0), the first two parts vanish.

• The third term of optimal risky investment (2.24) is state variable hedging demand that

arises under labor income. It does not vanish for individuals close to the margin of sub-

sistence. Furthermore, it even exists if labor income is locally riskfree (σy = 0) or the

correlation between labor income and the risky asset is zero (ρsy = 0). Of course, it is

necessary that the risky asset and the state variable are correlated (ρsx 6= 0). It is shown

below that this part is negative for individuals with unfavorable income characteristics,

which helps to explain the low equity exposure of low-educated and poor individuals.

• Furthermore, the third term of optimal risky investment (2.24) has a natural interpretation.

In fact, partitioning the third term into

−ρsx
︸ ︷︷ ︸

i)

σx
σs
︸︷︷︸

ii)

∂k

∂X
︸︷︷︸

iii)

Y

allows the following interpretation. Most importantly, iii) is the first derivative of the value

per unit of labor income on X. In other words, this part gives the change in the value of one

unit of labor income when the state variable moves. ii) is a multiplicator that relates the

strength of the shocks of the risky asset and the state variable. i) is simply plus or minus

one and gives the direction the state variable moves in relation to the risky asset. Thus, it

can be summarized that this third term is a hedge for the value of the future income stream

to changes in the state of the economy.

17Cochrane (2007, p.76).
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• The last term is hedging demand for labor income risk. This part does not vanish for

individuals close to the margin of subsistence18. For positive (negative) ρsy it will decrease

(increase) the amount invested in the risky asset. Moreover, it will vanish if labor income

returns are uncorrelated with the risky asset or if labor income is locally riskfree.

2.1.5 Dynamics of Optimal Total Wealth

In Appendix 2.A.3 it is shown that under assumptions (2.c.1) - (2.c.3), optimal total wealth

follows

dÂ∗

Â∗
=

(

r0 +
1

γ

λ21
σ2s
X2

)

dt

+

(

1

γ

ρsxσx
σs

λ1

∫ τ
0

(
c1 (s)X + c2 (s)X

2
)
eC(X,s)ds

∫ τ
0 e

C(X,s)ds
− 1

∫ τ
0 e

C(X,s)ds

)

dt

+
1

γ

(

λ1
σs
X + ρsxσx

∫ τ
0

(
c1 (s)X + c2 (s)X

2
)
eC(X,s)ds

∫ τ
0 e

C(X,s)ds

)

dWs (t) (2.25)

Remarks

• Under the assumption of perfect correlation, the individual is able to hedge the labor income

risk entirely. Optimal total wealth follows a geometric Brownian motion with time-varying

coefficients and will stay non-negative in all cases. Hence, given that initial total wealth

Â(0) > 0, the individual will be able to afford the subsistence level of consumption in all

cases.

• As can be seen, optimal total wealth follows the same dynamics as financial wealth in the

case without labor income and a subsistence level of consumption (Wachter model). The

individual takes into account the additional wealth due to human capital and the reduction

in wealth due to the reserves covering the subsistence level and controls his total wealth in

the same manner as the investor in the Wachter model controls financial wealth.

• In Appendix 3.A.1 of Chapter 3 the valuation of the future income stream is performed

using the martingale approach. Since the assumption of complete markets implies that the

market price of risk is unique and the risk-neutral valuation asks for the absence of arbi-

trage, it is not surprising that the value of the future labor income stream is a combination

of the riskfree and the risky asset. As a consequence, the special relation of financial and

non-financial assets allows allows them to be absorbed in one factor - total wealth.

2.1.6 Main Results

The most important results can be summarized in the following proposition.

18This part is well known, see, for example, Koo (1998) or Viceira (2001).
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Proposition 2.1 Given the assumptions Â(0) > 0, ρsx ∈ {−1, 1} and either ρsy ∈ {−1, 1} or

σy = 0 one obtains

J =
e−δ(T−τ)

[∫ τ
0 e

1
γ (c0(s)+c1(s)X+ 1

2
c2(s)X2)ds

]γ
(A+ k (τ,X)Y −R (τ))1−γ

1− γ
with

k (τ,X) =

∫ τ

0
ed0(s)+d1(s)Xds

where d0 (s) and d1 (s) are the solution to the following system of ordinary differential equations

∂d1 (s)

∂s
= l0 + l1d1 (s)

∂d0 (s)

∂s
= l2 + l3d1 (s) + l4d1 (s)

2

with initial conditions d0 (0) = 0 and d1 (0) = 0 and where

l0 ≡ y1 −
ρsyσy
σs

λ1, l1 ≡ −κx −
ρsxσx
σs

λ1

l2 ≡ y0 − r0, l3 ≡ κxX̄ + ρxyσxσy, l4 ≡
1

2
σ2x

The net reserves follow

R (τ) =
c̄− Ȳ
r0

(
1− e−r0τ

)

The solutions of c0 (s) , c1 (s) and c2 (s) are identical to Wachter (2002).

Optimal consumption and risky investment are given by

c∗t =
Â

∫ τ
0 e

C(X,s)ds
+ c̄ (2.26)

Aπ∗t =
1

γ

λ1
σ2s
XÂ+

1

γ

ρsxσx
σs

∫ τ
0 (c1 (s) + c2 (s)X) eC(X,s)ds

∫ τ
0 e

C(X,s)ds
Â

−ρsxσx
σs

(∫ τ

0
d1 (s) e

d0(s)+d1(s)Xds

)

Y − ρsyσy
σs

kY (2.27)

2.2 Model with Utility over Terminal Wealth

Following from this, the similar problem for an investor with utility over terminal wealth only is

solved. Kim and Omberg (1996) and Liu (2007) show that without labor income, the assumption

ρsx ∈ {−1, 1} is not necessary in order to obtain closed-form solutions. We will show that

in the presence of labor income this assumption is necessary as well. Thus, compared to the

consumption problem, the set of assumptions (2.c.1) - (2.c.3) is the same. Nevertheless, the

results of this part can be compared with the consumption framework.

Expected utility is given by

Et

[(
AT − Ā

)1−γ

1− γ

]

, γ > 1
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Following the same steps as above, the following HJB-equation results

0 = Jt + JAA (t) r0 + JAȲ + JAY (t)

−JXκx
(
X (t)− X̄

)
+ JY Y (t) (y0 + y1X (t))

+
1

2
JAA (t)π∗t λ1X (t) +

1

2
JAXA (t)π∗t ρsxσxσs +

1

2
JAYA (t)Y (t)π∗t ρsyσyσs

+JXY Y (t) ρxyσxσy +
1

2
JY Y Y (t)2 σ2y +

1

2
JXXσ

2
x (2.28)

where π∗t is also the FOC given by (2.7).

The solution to this problem can be found in Appendix 2.A.4. The results are summarized in

the following proposition.

Proposition 2.2 Given the assumptions Â(0) > 0, ρsx ∈ {−1, 1} and either ρsy ∈ {−1, 1} or

σy = 0 one obtains

J =
ec0(τ)+c1(τ)X+ 1

2
c2(τ)X2

(A+ k (τ,X)Y −R (τ))1−γ

1− γ
with k (τ,X) identical to Proposition 2.1. The net reserves follow

R (τ) = − Ȳ
r0

(
1− e−r0τ

)
+ e−r0τ Ā (2.29)

The solutions of c0 (s) , c1 (s) and c2 (s) are identical to Wachter (2002).

Optimal risky investment is given by

Aπ∗t =
1

γ

λ1
σ2s
XÂ+

1

γ

ρsxσx
σs

(c1 (τ) + c2 (τ)X) Â

−ρsxσx
σs

(∫ τ

0
d1 (s) e

d0(s)+d1(s)Xds

)

Y − ρsyσy
σs

kY

where τ ≡ T − t.

Besides the analytical derivation, the necessity of the assumption ρsx ∈ {1,−1} is intuitive

in order to get explicit solutions. In fact, from the definition of total wealth it can be clearly

recognized that the valuation of the stochastic part of labor income k depends onX. Now, if total

wealth is close to zero and there is a shock to the state variable, k can fall and the individual risks

ending up with negative total wealth, which is clearly not optimal. This undesirable situation

can only be avoided if state variable risk to the stochastic labor income stream can be hedged

perfectly. If not, the level of financial wealth becomes important for the value of the income

stream and the described separation of the HJB is not possible. Hence, an extended Wachter

model with non-perfect correlation between the risky asset and the state variable could be solved

in closed-form with the extensions deterministic labor income and subsistence wealth19.

As can be seen from the optimal policy, only the second term of the RHS is changed. The

differences for optimal investment are extensively discussed in Wachter (2002). Wachter shows

that the differences in the consumption and terminal wealth case are rather small. For this reason,

and for the sake of brevity, we focus for the illustration of the results on the consumption case.

19The extension subsistence wealth (HARA utility) was already solved by Kim and Omberg (1996).
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2.3 Long-Horizon Stability of the Solution

The first equation of the system of ODE (2.17) - (2.18) is a linear differential equation with

constant coefficients. Thus, there is no assumption that ensures that the solution is stable as

s→∞. Figure 2.1 shows the phase plane analysis for the linear differential equation. Four cases

can be distinguished, l0 determines whether the axis intercept is positive or negative and l1

defines the sign of the slope.
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Figure 2.1: Phase Plane Analysis I

Panels (a), (b), (c) and (d) show a phase plane analysis of the equation ∂d1(s)
∂s

= l0 + l1d1 (s). In all cases one real

particular solution exists. In Panels (a) and (c), l1 > 0 in Panels (b) and (d), l1 < 0. Only in Panels (b) and (d)

does d1 (s) converge to a stable solution marked by acircle.

The following properties should be noted.

Remarks

• Figure 2.1 shows that the sign of d1 (s) is equal to the sign of l0 (vertical axis intercept).

• From Figure 2.1 it can be seen that d1 (s) is either monotonically increasing or decreasing

in the time horizon and does not change sign.
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• Only the slope is crucial for stability and hence the coefficient l1 becomes important. It

should be emphasized that this coefficient contains only information with respect to the

financial market and no labor income parameter is involved. As it is assumed that the

working period is finite, no transversality condition has to be stated. Nevertheless, it should

be kept in mind that l1 > 0 is in favor of extreme results as k (τ,X) (and ∂k (τ,X) /∂X)

grows without bound.

Table 2.1 summarizes the stability analysis. There is a crucial warning for numerical studies of

the consumption-investment problem with labor income that are calibrated on empirical results.

From the definition of l1, if the state variable is highly persistent (low κx) and the correlation

between the state variable and the risky asset is close to −1 then the valuation of the income

stream can be extreme even if the sensitivity of the income process on the state variable is low.

Stable?

(a) l0 < 0, l1 > 0 no

(b) l0 < 0, l1 < 0 yes

(c) l0 > 0, l1 > 0 no

(d) l0 > 0, l1 < 0 yes

Table 2.1: Stability Analysis

2.4 Illustration of Results

As mentioned above, the model without non-financial income and CRRA utility was presented

by Wachter (2002). Moreover, Campbell et al. (2004) consider a similar model for the financial

market with more sophisticated utility20.

Wachter Campbell et al.

r0 = 0.0168 r0 = 0.0033

λ1 = 12 σs = 0.1510 λ1 = 4 σs = 0.1579

κx = 0.2712 X̄ = 0.0034 σx = 0.0029 κx = 0.1755 X̄ = 0.0132 σx = 0.0115

ρsx = −1 ρsx = −1

Table 2.2: Financial Market Parameter Values - Wachter and Campbell et al.

Table 2.2 shows their parameters in annualized form and adapted to our notation21. Wachter

20Stochastic differential utility (SDU) allows for separating risk aversion from intertemporal elasticity of sub-

stitution and was introduced by Duffie and Epstein (1992b).
21The notations differ only by an invariant affine transformation. Hence, results are not affected. Invariant affine

transformation (IAT) are well-known from the term structure literature as, see for example, Dai and Singleton

(2000).
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and Campbell et al. use the dividend yield as the single state variable22.

For the sake of comparability, the values in Table 2.2 are normalized to λ1 = 1 by another

IAT23 and are displayed in Table 2.3.

Wachter Campbell et al.

r0 = 0.0168 r0 = 0.0033

λ1 = 1 σs = 0.1510 λ1 = 1 σs = 0.1579

κx = 0.2712 X̄ = 0.0408 σx = 0.0348 κx = 0.1755 X̄ = 0.0528 σx = 0.0460

ρsx = −1 ρsx = −1

Table 2.3: Financial Market Parameter Values - Normalized

Remarks

• The sample period and the sample frequency differ somewhat. In Wachter (Campbell et

al.), the sample period is given as 1952–1995 (1947.1–1995.4) and monthly (quarterly)

data is used. The estimated correlation is not exactly ρsx = −1 but close to this. In the

Campbell et al. dataset ρsx = −0.963 and in the Wachter dataset ρsx = −0.935.

• The stationary distribution of the state variable is normally distributed N
(
µ, σ2

)
with

µ = X̄ and σ2 = σ2x/ (2κx). For the Wachter parameter set, this is N (0.0408, 0.0022) and

for the Campbell et al. dataset, N (0.0528, 0.0060). From λ1 = 1 and the standard deviation

of the normal distributions of 4.69% and 7.75% respectively, it can be directly seen that the

estimated parameters imply very strong variations in the premium.

For the sake of brevity, we will work with an adapted Campbell et al. (2004) dataset only. In our

opinion, the implied variation in the equity premium is much too strong. In fact, both datasets

imply that a variation of 20 percentage points is not unusual and furthermore, that there is a

considerable probability of a negative equity premium. Moreover, the estimation error in Table 1

of Campbell and Viceira (2000) and the work of Goyal and Welch (2008) suggest that assuming

a lower variation can also be justified from an empirical point of view. As a consequence, we

reduce this variation of X by adjusting σx for the basic setting. Nevertheless, we will look at

the implication of the parameter set of Wachter and Campbell et al. as a part of the sensitivity

analysis with respect to σx. The parameters for non-financial income are chosen variably in order

to show the effects clearly. To sum up, the initial parameter set is given in Table 2.4.

The choice of σx implies that the state variable has an unconditional standard deviation of

1.5%, which yields a considerably lower variation in the equity premium.

It should be noted that the chosen parameters imply a low component of stochastic labor

income at the beginning of the working period. In fact, Table 2.4 reveals that only a quarter of

22For the predictive power of the dividend yield see, for example, Fama and French (1988), Campbell and

Thompson (2007) and Cochrane (2005, 2008). On the other hand, Goyal and Welch (2008) doubt that the

dividend yield is a good predictor.
23See Appendix 2.A.5.
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initial total income is non-constant. Increasing the importance of Y compared to Ȳ would give

even more weight to the impact of stochastic labor income24.

Financial Market

r0 = 0.0033

λ1 = 1 σs = 0.1579

κx = 0.1755 X̄ = 0.0528 σx = 0.0089

ρsx = −1

Individual

γ = 4 δ = 0.06

ȳ = 0.03

A (0) = 50 Y (0) = 10 Ȳ = 40

c̄ = 45

Table 2.4: Parameter Values

The parameters for the labor income process (2.3) are chosen variably in order to show the

effects clearly. For the sake of comparability, y0 and y1 are chosen, so that the growth rate at

the long-run mean X̄ is constant. Specifically,

y0 = ȳ − y1X̄ (2.30)

where ȳ is the long-run growth rate and given in Table 2.4.

For these kind of models, a critical issue is that the parameters for the financial and the non-

financial processes are chosen exogenously. In a general equilibrium model with a production side

that is driven by technology and resources, the financial and labor markets should be linked in

a reasonable way. For this reason, certain parameter choices for the illustrative examples might

be unrealistic.

Nevertheless, several studies have shown that the labor market adapts less quickly to changes

in the real economy than the stock market25. In fact, institutional conditions such as long-term

labor contracts, unions and so on suggest that a simple equilibrium relation between the two

kinds of income do not exist. Indeed, the empirical estimation of Table 1 in Lynch and Tan (2009)

suggests counter cyclical patterns, i.e. low labor income growth when expected returns are high.

Hence, it seems an appropriate choice to treat the parameters freely in order to understand the

sensitivity of the results for a range of reasonable parameter values.

In order to reduce the dimension of the problem, we start by discussing the case of locally

riskfree labor income σy = 0. In a second step, risky labor income is introduced. In this case, it

is assumed that26 ρsy = 1.

24Of course, the growth rate and the volatility of Y would have to be reasonable adjusted in order to have

comparable income paths.
25See, for example, Stock and Watson (1999).
26The case ρsy = −1 can be derived in analogy.
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The focus of the interpretation is on the state variable dimension for an individual with a given

time horizon, a given wealth and a given initial income. Of course, the optimal allocation and

consumption over the time horizon is an important issue as well and the work of Lynch and Tan

(2009) and Munk and Sørensen (2010) focus exclusively on this dimension. Nevertheless, as has

become clear from the phase plane analysis of Section 2.3, the magnitude of hedging demands

decrease for shorter horizon. As a consequence, the results for shorter horizons are analogous

and do not bring any surprising results27.

In all figures, the center of the horizontal axis corresponds to X̄, and the grid points show
(
X̄ − 3σ, X̄ − 1.5σ, X̄, X̄ + 1.5σ, X̄ + 3σ

)
where σ is the standard deviation of the uncondi-

tional normal distribution of the state variable as was defined above. It should be noticed that

since λ1 is normalized to one, the horizontal axis shows the (annualized) equity premium. Fur-

thermore, in all figures the panels on the left and on the right hand side have the same scale for

the vertical axis. However, the ranges of the vertical axis can differ.

For the sake of clarity, we introduce the following definitions for the components of risky

investment

Aπ∗t =
1

γ

λ1
σ2s
XÂ

︸ ︷︷ ︸

“myopic”

+
1

γ

ρsxσx
σs

∫ τ
0 (c1 (s) + c2 (s)X) eC(X,s)ds

∫ τ
0 e

C(X,s)ds
Â

︸ ︷︷ ︸

“state variable hedging”

−ρsxσx
σs

(∫ τ

0
d1 (s) e

d0(s)+d1(s)Xds

)

Y

︸ ︷︷ ︸

“indirect labor hedging”

−ρsyσy
σs

(∫ τ

0
ed0(s)+d1(s)Xds

)

Y

︸ ︷︷ ︸

“direct labor hedging”

(2.31)

As far as possible, the presented results are justified by an analytical argumentation and followed

by an economic intuition.

2.4.1 Locally Riskfree Labor Income

The assumption of locally riskfree labor income simplifies the results considerably and facilitates

the interpretation. In particular, direct labor hedging demand vanishes and SODE (2.17) - (2.18)

reduces to

∂d1 (s)

∂s
= l0 + l1d1 (s)

∂d0 (s)

∂s
= l2 + l3d1 (s) + l4d1 (s)

2

where

l0 ≡ y1, l1 ≡ −κx −
ρsxσx
σs

λ1

l2 ≡ y0 − r0, l3 ≡ κxX̄, l4 ≡
1

2
σ2x

The results are displayed in Figures 2.2 - 2.4. The blue and red lines in the left (right) panels

belong to an individual with a negative (positive) labor income sensitivity of y1 = −0.5 and

27See, for example, Wachter (2002, p. 76), Figure 2, for an illustration of this statement.



28 CHAPTER 2. MEAN-REVERTING RETURNS AND LABOR INCOME GROWTH

y1 = −0.25 (y1 = 0.5 and y1 = 0.25) respectively28. The green lines contain the results for an

individual where the growth rate of labor income is constant y1 = 0 and is the same in the left

and the right panels. It serves as a benchmark case and eases the comparison.
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Figure 2.2: Total Wealth - Locally Riskfree Labor Income

This Figure shows total wealth Â dependent on the state variable under locally riskfree labor income σy = 0.

Parameters are chosen as in Table 2.4. In Panel (a) the sensitivity of labor income growth is non-positive, the

blue (red, green) line shows the results for an individual with y1 = −0.5 (−0.25, 0). In Panel (b) the sensitivity of

labor income growth is non-negative, the blue (red, green) line shows the results for an individual with y1 = 0.5

(0.25, 0).

Figure 2.2 shows the result for total wealth. In the case of locally riskfree labor income, the sign

of d1 (s) , s > 0 is unambiguously determined by the sign of y1. The slope of total wealth follows

immediately from
∂Â

∂X
=

∂k

∂X
Y =

(∫ τ

0
d1 (s) e

d0(s)+d1(s)Xds

)

Y

By the positivity of Y and the exponential function, the sign of ∂Â/∂X is given by the sign of

d1 (s).

28The value y1 = −0.5 compared to λ1 is the one that is most in line with the estimates of Lynch and Tan

(2009).
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This result is intuitive, as high states of X imply low labor income growth and hence the

value of the future income stream declines. The results for the right panel can be interpreted in

analogy29.

Furthermore, it should be recognized that at X = X̄ the level of total wealth is considerably

lower for small values of y1. Since X has a symmetric distribution around X̄ this result is not

trivial. The intuition comes from the desire to have an intertemporally favorable environment.

In fact, it is assumed that ρsx = −1 and this implies that high states of X follow a decline in

the value of the risky asset. If y1 > 0 the labor income stream has a high growth rate after a

decline in the financial market and this matches the aim of intertemporal hedging, i.e. to be in

a good state after a negative return and vice versa.

Appendix 2.A.6 shows that strict analytical results with respect to this property are not

available30. Nevertheless, from the derivations it can be stated that the term

Ψ ≡ l0ψX̄ = y1ψX̄

becomes crucial in order to determine the effect of the sensitivity of labor income growth onto

the value of the income stream. In fact, it is shown that for Ψ > 0 (Ψ < 0) the valuation of

the income stream at X = X̄ > 0 is higher (lower) compared to the value of a constant income

stream with an identical growth rate (green line).

ψ is defined by

ψ ≡
[
1

l1

(

el1s − 1
)

− s
](

1 +
l3/X̄

l1

)

=

[
1

l1

(

el1s − 1
)

− s
](

1− κx
κx +

ρsxσx
σs

λ1

)

From Table 2.5 it should be noticed that ψ is positive if ρsx < 0 (second and third columns)

and negative if ρsx > 0 (first column).

l1 < κx κx < l1 < 0 l1 > 0

sign
(

1
l1

(
el1s − 1

)
− s
)

− − +

sign
(

1 + κx
l1

)

+ − +

sign (ψ) − + +

Table 2.5: Sign of ψ

It can be seen that the sign of the effect depends crucially on the opportunity set of the financial

market. In fact, if low returns on the financial asset are followed by high expected returns on

the risky asset

ρsx = −1 < 0⇒ l1 > κx ⇒ ψ > 0

29For the sake of readability, if the relation is clear this statement is omitted for the remainder of the text.
30As an alternative to Appendix 2.A.6, the absence of unambiguous results can be verified by looking at the

equation that determines d0 (s). In fact, for extreme σx d0 (s) can become very large because of the unambiguously

positive term l4d1 (s)
2 in equation (2.18). Hence, the level of future income at X = X̄ could be higher compared

to the constant income growth case even for y1 < 0.
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and, in addition, the individual faces low labor income growth (y1 < 0), the individual attaches

a lower value to the income stream.

An alternative view gives a risk-neutral valuation of the future income stream. In Appendix

3.A.1 of Chapter 3, the value of future stochastic income G ≡ kY is derived by the Martingale

approach. From equation (3.12) it can be recognized that the risk-neutral valuation and the

no-arbitrage condition imply that G is priced in accordance with the market price of risk θ. It

must be noticed that the RHS of (3.12) gives the expected premium in excess of the riskless rate

that G must deliver. Since

y1 < 0⇒ ∂G

∂X
=

∂k

∂X
Y < 0 ∧ ρsx = −1 < 0

implies that the expected excess return of G must be positive, the value of G must be lower

compared to y1 = 0 (∂G/∂X = 0). Indeed, this is similar to a financial asset that is discounted

at a higher rate. The case y1 > 0 can be derived in analogy and a higher value for G results.

Panels (a) and (b) of Figure 2.3 show optimal total risky investment. The components accord-

ing to (2.31) are displayed in the lower panels. It can be recognized that a negative (positive) y1

reduces (increases) the exposure in the risky asset. In the left panels, myopic demand and state

variable hedging demand are reduced because of the lower total wealth, while indirect labor

hedging demand is negative because of the sign of d1 (s). Besides, because σy = 0, direct labor

hedging demand is zero.

The sign of indirect labor hedging demand can be understood as follows. The situation is

easiest to understand for an individual close to the margin of subsistence. In this case, myopic

and state variable hedging demand are close to zero and risky investment is determined by

indirect labor hedging demand. In the case y1 < 0, the demand is negative. This has to be the

case, since a rise in X leads to a decrease in the growth rate of Y and this has a negative impact

on total wealth. The position in the risky asset must compensate the decline in future labor

income in order to prevent total wealth from becoming negative.

The sign of indirect labor hedging demand can be further explained in analogy to state variable

hedging demand as already described in Kim and Omberg (1996) and Wachter (2002). State

variable hedging demand is positive because the individual likes high expected returns after a

decline in the risky asset and this is the case for ρsx < 0. Now, in case of y1 < 0 labor income

delivers the opposite, a low growth rate after a decline in the risky asset. To compensate for this

undesirable situation the individual takes a short position in the risky asset. The combination

of the labor income stream and this short position creates the situation she likes. In fact, this

position generates high returns followed by low income growth rates and vice versa.
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Figure 2.3: Optimal Risky Investment - Locally Riskfree Labor Income
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Figure 2.3 continued: Panels (a) and (b) show optimal total investment in the risky asset Aπ∗t dependent on

the state variable under locally riskfree labor income σy = 0. Parameters are chosen as in Table 2.4. In the panels

to the left the sensitivity of labor income growth is non-positive, the blue (red, green) line shows the results for

an individual with y1 = −0.5 (−0.25, 0). In the panels to the right the sensitivity of labor income growth is

non-negative, the blue (green, red) line shows the results for an individual with y1 = 0.5 (0.25, 0). Panels (c) to

(h) show the components of risky investment as described in equation (2.31).

The slope of the components of risky investment are indicated in Figure 2.3 and are valid for

realistic parameter values; general rules are hard to find. Nevertheless, for the right hand panels

it can be stated that myopic demand is unambiguously increasing in the state variable because
1
γ
λ1
σ2
s
> 0 and total wealth is increasing in X. This statement must not be true for the left hand

case as total wealth is decreasing in the state variable and this has a contrary effect. For X > 0,

a similar statement is true for state variable hedging demand.

Indirect labor hedging demand is increasing in the state variable for both cases as

∂2k (τ,X) /∂X2 =

∫ τ

0
d1 (s)

2 ed0(s)+d1(s)Xds > 0 (2.32)

As a last comment on indirect labor hedging demand it should be noticed that the sensitivity

with respect to X and the level of indirect labor hedging demand are in close relation. This stems

from the fact that d1 (s) is important for both measures. In particular, a highly negative (positive)

d1 (s) implies a low (high) level of indirect labor hedging demand and a high sensitivity. This

statement is important. In fact, it states that indirect labor hedging demand of high magnitude

always comes with a high sensitivity of this hedging demand to changes in the state variable.

Nevertheless, from Panel (a) it can be clearly recognized that the counter effects in myopic

demand and state variable hedging demand can compensate the high sensitivity of indirect

labor hedging demand and that total risky investment is not too sensitive. This is not so in the

case displayed in Panel (b), since the effects of all components of risky investment go in the

same direction and lead to a highly sensitive investment policy.

Figure 2.4 shows optimal consumption. As can be seen from (2.26), optimal consumption is

determined by the numerator total wealth and the denominator
∫ τ

0
e

1
γ (c0(s)+c1(s)X+ 1

2
c2(s)X2)ds.

As total wealth declines (increases) for negative (positive) y1, the effect of total wealth on the

amount consumed is straightforward.

For the empirically relevant range of the state variable X > 0, c1 (s) < 0 and c2 (s) < 0 lead

to ∫ τ

0
(c1 (s) + c2 (s)X) e

1
γ (c0(s)+c1(s)X+ 1

2
c2(s)X2)ds < 0 (2.33)

for τ > 0. Thus, for X > 0 the denominator is unambiguously decreasing31. As a consequence,

it can be stated that for y1 > 0 the numerator is increasing and the denominator decreasing and

thus optimal consumption rises with X.

31For X < 0 the statement is not valid in general since (c1 (s) + c2 (s)X) becomes positive for low X.
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Figure 2.4: Optimal Consumption - Locally Riskfree Labor Income

Panels (a) and (b) show optimal consumption exceeding the subsistence level c∗t−c̄ dependent on the state variable

under locally riskfree labor income σy = 0. Parameters are chosen as in Table 2.4. In Panel (a) the sensitivity of

labor income growth is non-positive, the blue (red, green) line shows the results for an individual with y1 = −0.5

(−0.25, 0). In Panel (b) the sensitivity of labor income growth is non-negative, the blue (green, red) line shows

the results for an individual with y1 = 0.5 (0.25, 0).

The situation for the individual to the left is more interesting. For X > 0, both the denominator

and the numerator are decreasing and thus, for realistic parameters optimal consumption can

even fall in times when X rises. Loosely speaking, optimal consumption is decreasing if the

percentage decline in total wealth is stronger than the percentage decline in the denominator.

Hence, it can be concluded that the possible decline in consumption is more pronounced for

individuals with low financial wealth and/or low income prospects.

The insight of declining consumption for high states of X is of importance. In the Wachter

model, there was a clear relation between the equity premium and the consumption-financial

wealth ratio for the empirically relevant set of positive X. Specifically, the premium is high when

the consumption-wealth ratio is high. This must clearly not be the case under the presence

of time-varying labor growth. This result might also have implications for the asset pricing

literature and might help to explain the mixed evidence on consumption-based asset pricing
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models32. Moreover, Lynch and Tan (2009) interpret the dividend yield as a proxy for the

business-cycle. In their view, states with high X are recessions and thus falling consumption for

increasing X seems to be a desirable property.

It can be summarized that on the one hand, for y1 > 0 the pro-cyclical variation of expected

return and labor income growth (income growth is low when expected returns are high) leads

to an extreme variation in the optimal policies, which seems implausible. On the other hand,

for y1 < 0 the optimal policies are on lower levels and are less sensitive across states. Thus, the

case y1 < 0 implies more realistic behavior.

2.4.2 Sensitivity of the Results to the Stability Parameter l1

As indicated in the phase plane analysis, the results for the labor income part k (τ,X) depend

crucially on the slope parameter l1. In particular, it could be stated that the long-run behavior

of k (τ,X) is stable if l1 < 0. It can be easily checked that this is indeed the case for the chosen

parameters. The sensitivity of the results will be demonstrated by altering σx. Figures 2.5 - 2.7

exhibit the results.

The lines with crosses (circles, squares) show σx = 0.0089 (0.0134, 0.0178). The higher state

variable volatility implies stronger variation in the equity premium and the labor income growth

rates. In all cases, l1 is still smaller than zero, but the direction can be clearly recognized. In

fact, it can be seen from the phase plane analysis in Figure 2.1 that a higher σx leads to a less

steep line and that d1 (s) becomes greater in magnitude.

Since the results are qualitatively unchanged to Section 2.4.1, a detailed discussion is omitted.

Nevertheless, two points should be noted. Firstly, it can be stated that for realistic parameter

values, results become more extreme. To give an example, at X = X̄ the slope of total wealth

is lower (higher) for y1 < 0 (y1 > 0). This is intuitive as the higher σx implies more persistent

shocks33. In other words, it takes longer for the state variable to return to its long-run mean.

Hence, in case of y1 < 0 after a negative shock on the risky asset it takes longer until labor

growth catches up, and this clearly reduces the value of the future labor income stream.

Secondly, state variable hedging demand in Panel (c) shows some interesting patterns. On one

hand, it can be clearly recognized why Wachter and Campbell et al. show important hedging

demands for the framework without labor income (here the green lines imply constant labor

income and can be considered as the analogous framework). For the green case, state variable

hedging demand is substantially increased for high σx. Nevertheless, this does not have to be

the case in the presence of labor income and a negative sensitivity of labor income to the state

variable. In this case, the decrease in total wealth can (over-)compensate the direct effect of σx

on state variable hedging demand.

Finally, it should be emphasized that l1 is crucial indeed. As shown by the parameter set of

32Consumption based asset pricing goes back to Breeden (1979). On the one hand, Lettau and Ludvigson (2001)

provide results in favor of consumption based asset pricing. On the other hand, Brennan and Xia (2005) and Goyal

and Welch (2008) challenge the results of Lettau and Ludvigson.
33Persistency is better understand if we notice that for high σx, κx is small relative to σx.
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Wachter (2002) and Campbell et al. (2004), l1 varies widely. In fact, from the parameter values

in Table 2.2 it can be verified that in the Wachter dataset, lw1 = −0.0407, while in the Campbell

et al. dataset, lc1 = 0.1158.

In our example, the small changes in σx implied l1 = −0.1191 (−0.0910, − 0.0628) and even

these small changes had strong effects on the results. Thus, a parameter set as in Campbell et

al. implies results that are unreasonably extreme unless y1 is close to zero.
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Figure 2.5: Total Wealth - Stability Analysis

This Figure exhibits the results of a stability analysis by altering the relevant parameter l1 ≡ −κx − ρsxσx
σs

λ1

by changing σx. Panels (a) and (b) show total wealth Â dependent on the state variable under locally riskfree

labor income σy = 0. Parameters are chosen as in Table 2.4. In the panel to the left (right) the blue lines show

the results for an individual with a negative (positive) sensitivity of labor income growth on X (t) of y1 = −0.5

(y1 = 0.5). In both panels the green lines show the case of constant labor income growth y1 = 0. The lines with

crosses (circles, squares) display the results for an individual with σx = 0.0089 (0.0134, 0.0178).
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Figure 2.6: Optimal Risky Investment - Stability Analysis

This Figure exhibits the results of a stability analysis by altering the relevant parameter l1 ≡ −κx − ρsxσx
σs

λ1 by

changing σx. Panels (a) and (b) show optimal total risky investment Aπ∗t dependent on the state variable under

locally riskfree labor income σy = 0. Panels (c) and (d) show state variable hedging demand, Panels (e) and (f)

show indirect labor income hedging demand as described in equation (2.31). Parameters are chosen as in Table

2.4. In the panels to the left (right) the blue lines show the results for an individual with a negative (positive)

sensitivity of labor income growth on X (t) of y1 = −0.5 (y1 = 0.5). In all panels the green lines show the case of

constant labor income growth y1 = 0. The lines with crosses (circles, squares) display the results for an individual

with σx = 0.0089 (0.0134, 0.0178).
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Figure 2.7: Optimal Consumption - Stability Analysis

This Figure exhibits the results of a stability analysis by altering the relevant parameter l1 ≡ −κx − ρsxσx
σs

λ1

by changing σx. Panels (a) and (b) show optimal consumption exceeding the subsistence level c∗t − c̄ dependent

on the state variable under locally riskfree labor income σy = 0. Parameters are chosen as in Table 2.4. In the

panel to the left (right) the blue lines show the results for an individual with a negative (positive) sensitivity of

labor income growth on X (t) of y1 = −0.5 (y1 = 0.5). In both panels the green lines show the case of constant

labor income growth y1 = 0. The lines with crosses (circles, squares) display the results for an individual with

σx = 0.0089 (0.0134, 0.0178).

2.4.3 Constant Investment Opportunities

Time variation in the equity premium is still under challenge34. Nevertheless, Lynch and Tan

(2009) show that the dividend yield seems a good predictor of labor income growth since it is

related to business-cycle fluctuations. Moreover, the dividend yield is naturally related to the

stock market with a correlation close to −1. For this reason, we will look at a model where

λ1 → 0 and labor income is locally riskfree.

The model can also be interpreted without the connection to the dividend yield. In fact, the

perfectly negative correlation of the state variable and the risky asset simply implies that the

34For a general overview see Goyal and Welch (2008); Pástor and Stambaugh (2001) point out the problem of

structural breaks in valuation ratios that are used as instruments.



38 CHAPTER 2. MEAN-REVERTING RETURNS AND LABOR INCOME GROWTH

growth rate of labor income is in close relation to the financial market. Specifically, the growth

rate of labor income is low after a decline in the risky asset.

It should be noticed that IAT allow almost every combination of long run equity premium and

premium sensitivity to be modeled, but the case λ1 = 0 also implies a zero long-run premium in

the specification of (2.1). The reason is that as λ1 → 0, X̄ → ∞ in order to ensure a non-zero

long-run premium. In order to avoid a zero equity premium, (2.1) is adapted to

dS1 (t)

S1 (t)
= (λ0 + λ1X (t) + r0) dt+ σsdWs (t)

Taking into account the modified risky asset dynamics and following the steps described in

Appendix 2.A.2. SODE (2.11) - (2.13) changes to

∂c2 (s)

∂s
= k0 + k1c2 (s) + k2c2 (s)

2

∂c1 (s)

∂s
= k6 + k3c2 (s) +

k1
2
c1 (s) + k2c2 (s) c1 (s)

∂c0 (s)

∂s
= k5 + k3c1 (s) + k4c2 (s) +

k2
2
c1 (s)

2

with initial conditions c2 (0) = c1 (0) = c0 (0) = 0 and

k0 ≡
1− γ
γ

λ21
σ2s
, k1 ≡ 2

[

−κx +
1− γ
γ

ρsxσx
σs

λ1

]

, k2 ≡
1

γ
σ2x

k3 ≡ κxX̄, k4 ≡
1

2
σ2x, k5 ≡ −δ + (1− γ) r0 +

1

2

1− γ
γ

λ20
σ2s

k6 ≡
1− γ
γ

λ0λ1
σ2s

Because λ1 = 0 and the initial conditions,

c2 (s) = c1 (s) = 0, ∀s

Now, the equation for c0 (s) becomes simple.

∂c0 (s)

∂s
= ∆ ≡ −δ + (1− γ) r0 +

1

2

1− γ
γ

λ20
σ2s

Thus,

h (t) ≡
∫ τ

0
eC(X,s)ds =

∫ τ

0
e

1
γ
∆s
ds = γ

1

∆

(

e
1
γ
∆τ − 1

)

In fact, the solution of
∫ τ
0 e

C(X,s)ds is, in this case, the well-known solution from Merton (1969).

It should be noticed that without the initial conditions equal to zero, c2 (s) and c1 (s) would

not be zero and the solution would not be equal to the Merton solution. A similar statement is

true for γ → 1 (log utility)35. Hence, the choice of the initial conditions can be justified not only

because they are necessary to solve the HJB as described in Appendix 2.A.2, but for intuitive

reasons as well.

35A related statement with respect to risk aversion is made in Campbell and Viceira (1999) and Chacko and

Viceira (2005).
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More importantly with c2 (s) = c1 (s) = 0, state variable hedging demand vanishes and because

λ1 = 0, myopic demand varies only with total wealth.

The SODE of the labor income part (2.17) - (2.18) changes to

∂d1 (s)

∂s
= l0 + l1d1 (s)

∂d0 (s)

∂s
= l2 + l3d1 (s) + l4d1 (s)

2

where

l0 ≡ y1, l1 ≡ −κx
l2 ≡ y0 − r0 −

ρsyσy
σs

λ0, l3 ≡ κxX̄ −
ρsxσx
σs

λ0 + ρxyσxσy, l4 ≡
1

2
σ2x

Remarks

• Through the simplification, the sign of l1 is unambiguously negative and the phase plane

analysis reveals that this leads to stability of d1 (s) as s→∞.

• The sign of y1 determines the sign of d1 (s) and thus, the sign of indirect labor income

hedging demand.

Figures 2.8 - 2.10 exhibit the results. The blue lines in the left (right) panels belong to an

individual with a negative (positive) labor income sensitivity of y1 = −0.5 (y1 = 0.5). The green

lines contain the results for an individual where the growth rate of labor income is constant

y1 = 0. The lines with crosses (circles, squares) belong to an individual with σy = 0 (0.04, 0.08),

all other parameters are chosen as in Table 2.4 except λ1 = 0 and λ0 = X̄.

Figure 2.8 shows the value of total wealth dependent on the state variable. As in the case of

locally riskfree labor income, the sign of the slope is exclusively determined by y1.

It should be noticed that the level of total wealth declines with higher labor income volatility.

This is intuitive and the primary effect stems from a lower36 l2. In fact, the higher income

volatility in combination with a positive correlation of the risky asset and labor income leads to

a more precautious valuation of the income stream. From the discussion of the dynamics of total

wealth it is known that the individual controls total wealth in the same manner as an investor

without labor income and subsistence consumption. As non-financial income becomes risky, the

individual will need additional (short) positions in the risky asset. This is taken into account by

adding a correspondingly lower value to the labor income stream.

As before, the risk-neutral valuation from Appendix 3.A.1 of Chapter 3 can give additional

insights. Adapted to the market price of risk of the constant financial market setting θc (t) ≡ λ0
σs
,

the second part of the RHS of 3.12

∂G

∂Y
Y
ρsyσy
σs

λ0 = kY
ρsyσy
σs

λ0 > 0

is unambiguously positive. Hence, a higher σy asks for a higher premium and the value of k must

be correspondingly lower.

36See Appendix 2.A.6 for more details.
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Figure 2.8: Total Wealth - Constant Investment Opportunities

This Figure exhibits total wealth Â dependent on the state variable under risky labor income. Parameters are

chosen as in Table 2.4 except that the risky asset is assumed to have a constant premium λ0 = X̄, λ1 = 0. In the

panel to the left (right) the blue lines show the results for an individual with a negative (positive) sensitivity of

labor income growth on X (t) of y1 = −0.5 (y1 = 0.5). In both panels the green lines show the case of constant

labor income growth y1 = 0. The lines with crosses (circles, squares) display the results for an individual with

σy = 0 (0.0400, 0.0800).

Moreover, there is a secondary effect of smaller magnitude that stems from changes in l3. As

can be seen from Figure 2.8, at the long-run mean X = X̄ the differences in the valuation of the

income stream become lower for high values of σy. Reviving the discussion from above37, this

can be explained by the term

ψc ≡
[
1

l1

(

el1s − 1
)

− s
](

l3
l1

+ X̄

)

In fact, the negativity of ρxy = ρsyρsx leads to a lower l3 for higher σy. As a consequence, ψc

becomes smaller (and can even turn negative). As shown in Appendix 2.A.6, this lowers the

difference to the constant growth case.

This result is not intuitive as a negative ρxy and y1 > 0 imply that a decline in labor income

is followed by high income growth and this seems to be a desired feature from an intertemporal

37See Section 2.4.1 and Appendix 2.A.6.
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point of view. An answer can be found by looking at the dynamics of total wealth. As already

described, by the valuation of the income stream the individual compensates the dynamics of

the non-financial income stream in order to end up with total wealth, which behaves as in a

setting without labor income. The critical term ρxyσxσy in l3 can be clearly identified in the

dynamics of total wealth (2.38) as ∂k
∂X ρxyσxσy. Since this part does not originate from a first

order condition but simply from the cross product of labor income and state variable diffusion,

it is comprehensible that there is no connection to intertemporal hedging. Furthermore,

y1 < 0⇒ ∂k

∂X
< 0,

(

y1 > 0⇒ ∂k

∂X
> 0

)

in combination with ρxy = −1 implies a positive (negative) drift for total wealth. This additional

drift has to be taken into account by valuing the income stream.

Optimal investment is displayed in Figure 2.9. The most distinct feature is well known from

the portfolio choice literature with no time variation in labor income. In particular, with ρsy > 0

risky investment is reduced for σy > 0 over direct labor hedging demand, which is described in

equation (2.31).

Because state variable hedging demand is zero and myopic demand varies only with total

wealth, their interpretation is easy and omitted. Indirect labor hedging demand is shown in

Panels (c) and (d). This component is easy to understand. The slopes are unambiguously positive

because of the same argument as in Section 2.4.1. More importantly, the effects are strongest

in magnitude for low levels of σy and hence, optimal risky investment is affected even for the

locally riskfree labor income case (crosses).

Direct labor hedging demand

−ρsyσy
σs

(∫ τ

0
ed0(s)+d1(s)Xds

)

Y

is displayed in Panels (e) and (f). The positive correlation between the risky asset and labor

income implies negative direct labor hedging demand and the slopes are explained by the sign

of −ρsyd1 (s).
Figure 2.10 shows optimal consumption exceeding the subsistence level, which is given by

c∗t − c̄ =
Â (t)

h (t)

As the denominator of optimal consumption does not vary with the state variable, the amount

consumed varies only with total wealth. As a consequence, consumption falls (rises) with X if

y1 < 0 (y1 > 0).

It can be summarized that despite the simplicity of the model, it is able to reproduce realistic

patterns. In particular, falling consumption in times of a high state variable (recession), and low

or even negative risky asset exposure for individuals with long maturity and unfavorable labor

income characteristics.
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Figure 2.9: Optimal Risky Investment - Constant Investment Opportunities

Panels (a) and (b) show optimal total risky investment Aπ∗t dependent on the state variable under risky labor

income. Panels (c) and (d) show indirect labor income hedging demand, Panels (e) and (f) show direct labor

income hedging demand as described in equation (2.31). Parameters are chosen as in Table 2.4 except that the

risky asset is assumed to have a constant premium λ0 = X̄, λ1 = 0. In the panels to the left (right) the blue

lines show the results for an individual with a negative (positive) sensitivity of labor income growth on X (t) of

y1 = −0.5 (y1 = 0.5). In all Panels the green lines show the case of constant labor income growth y1 = 0. The

lines with crosses (circles, squares) display the results for an individual with σy = 0 (0.0400, 0.0800).
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Figure 2.10: Optimal Consumption - Constant Investment Opportunities

Panels (a) and (b) show optimal consumption exceeding the subsistence level c∗t−c̄ dependent on the state variable

under risky labor income. Parameters are chosen as in Table 2.4 except that the risky asset is assumed to have a

constant premium λ0 = X̄, λ1 = 0. In the panel to the left (right) the blue lines show the results for an individual

with a negative (positive) sensitivity of labor income growth on X (t) of y1 = −0.5 (y1 = 0.5). In both Panels the

green lines show the case of constant labor income growth y1 = 0. The lines with crosses (circles, squares) display

the results for an individual with σy = 0 (0.0400, 0.0800).

2.4.4 Risky Labor Income

This section discusses the general model. Many issues have already been pointed out in special

cases. For this reason, the discussion is restricted to new and/or important characteristics. As

above, the blue lines in the left (right) panels belong to an individual with a negative (positive)

labor income sensitivity of y1 = −0.5 (y1 = 0.5). The green lines contain the results for an

individual where the growth rate of labor income is constant (y1 = 0). The lines with crosses

(circles, squares) belong to an individual with σy = 0 (0.04, 0.08); all other parameters are chosen

as in Table 2.4.

Figure 2.11 shows total wealth dependent on the state variable. The combination of time-

varying returns/income growth and risky labor income has an impact on l0 ≡ y1− ρsyσy
σs

λ1. The

assumption ρsy = 1 leads to a reduction of l0 that results in a more negative slope through the
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decrease in d1 (s). In fact, even for a positive sensitivity of labor income growth on X, the slope

can become negative. Moreover, for realistic parameters the level of total wealth is lower for

higher σy at X̄. Nevertheless, as before, the differences between the blue and the green lines at

X = X̄ are narrowing. The interpretation is similar to the preceding section.
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Figure 2.11: Total Wealth - Risky Labor Income

This Figure exhibits the results for total wealth Â dependent on the state variable under risky labor income.

Parameters are chosen as in Table 2.4. In the panels to the left (right) the blue lines show the results for an

individual with a negative (positive) sensitivity of labor income growth on X (t) of y1 = −0.5 (y1 = 0.5). In both

panels the green lines show the case of constant labor income growth y1 = 0. The lines with crosses (circles,

squares) display the results for an individual with σy = 0 (0.0400, 0.0800).

Figure 2.12 shows optimal risky investment. In Panels (a) and (b) it can be recognized that for

realistic parameters the level of total risky investment decreases with labor income volatility.

Indeed, total risky investment can become negative. Since myopic and state variable hedging

demand are only affected by changes in total wealth, they are omitted.

Panels (c) and (d) show that indirect labor hedging demand is affected and shows different

patterns. In particular, Panel (d) shows different levels for the hedging demand while in Panel

(c) they are of similar magnitude.
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Figure 2.12: Optimal Risky Investment - Risky Labor Income

Panels (a) and (b) show optimal total risky investment Aπ∗t dependent on the state variable under risky labor

income. Panels (c) and (d) show indirect labor income hedging demand, Panels (e) and (f) show direct labor

income hedging demand as described in equation (2.31). Parameters are chosen as in Table 2.4. In the panels

to the left (right) the blue lines show the results for an individual with a negative (positive) sensitivity of labor

income growth on X (t) of y1 = −0.5 (y1 = 0.5). In all panels the green lines show the case of constant labor

income growth y1 = 0. The lines with crosses (circles, squares) display the results for an individual with σy = 0

(0.0400, 0.0800).

The analytical reason for the case displayed in Panel (c) is as follows. For l0 < 0 a higher σy

leads to a d1 (s) of higher magnitude (more negative). The positivity of l3 leads to l3d1 (s) < 0
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and hence it can be seen from (2.18) that a lower d0 (s) results. Thus, from the crucial term

kX =

∫ τ

0
d1 (s)
︸ ︷︷ ︸

ω1

ed0(s)+d1(s)X
︸ ︷︷ ︸

ω2

ds

it becomes evident that for a higher σy ω1 is higher in magnitude but ω2 lowers. Hence, the two

effects compensate each other. As can be seen in Panel (d), this is not the case for l0 > 0 as

both components become lower in magnitude for rising σy.

The interpretation for direct labor hedging demand in Panels e) and f) is similar to the model

presented in Section 2.4.3. Moreover, the changes in l0 due to σy are already pointed out in the

discussion of total wealth.

Figure 2.13 displays optimal consumption exceeding the subsistence consumption. It should

be noticed that because of the changes in total wealth, consumption increases less strongly and

can even fall with rising X for cases with a positive sensitivity of income growth on X.

It can be summarized that the full model allows for a variety of pattern as, for example, low

or even negative equity exposure and falling consumption in high states of X.

This section concludes with a final note on volatility of consumption. In the numerical ex-

amples, consumption exceeding the subsistence consumption was between 20 − 100 percent of

subsistence consumption at X = X̄. As a consequence, consumption volatility will be cor-

respondingly lower than the volatility of total wealth. The problem that consumption is as

volatile as wealth is the analogous problem to the equity premium puzzle in the asset pricing

literature38. From the empirical literature it is well known that aggregate consumption has a

low volatility. Hence, in order to be in line with reality the solution of a consumption-investment

problem should imply a consumption stream that has a lower volatility than wealth as long as

the fraction of wealth invested in the risky asset is high39.

Moreover, lowering the time discount parameter δ would imply unambiguously lower excess

consumption40. Thus, a reduction of the discount rate would reduce consumption volatility

further. In the numerical example, the discount rate of six percent was taken over from Campbell

et al. (2004) and Wachter (2002). In the models without labor income, such a high value is

necessary in order to ensure that the individual consumes a reasonable fraction of her (financial)

wealth41. In models with labor income, such a high discount rate is clearly not needed. Finally,

in Chapter 4, a similar model is extended to a life-cycle model including a phase of retirement

with no non-financial income or subsistence consumption. In this model, excess consumption is

reduced further because the individual has to increase her saving ratio for the phase of retirement.

38See Mehra and Prescott (1985).
39See Cochrane (2007, p. 76).
40The time discount rate parameter has an impact on c0(s) only.
41In the model of Campbell et al. (2004) with stochastic differential utility, it is shown that for the (important)

special case of intertemporal substitution equal to one, the consumption wealth ratio is constant and equal to the

discount rate.
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Figure 2.13: Optimal Consumption - Risky Labor Income

Panels (a) and (b) show optimal consumption exceeding the subsistence level c∗t−c̄ dependent on the state variable

under risky labor income. Parameters are chosen as in Table 2.4. In the panel to the left (right) the blue lines show

the results for an individual with a negative (positive) sensitivity of labor income growth on X (t) of y1 = −0.5

(y1 = 0.5). In both panels the green lines show the case of constant labor income growth y1 = 0. The lines with

crosses (circles, squares) display the results for an individual with σy = 0 (0.0400, 0.0800).

2.5 Conclusion

The most important results of the basic model are the following:

1. The impact of time variation in non-financial income on optimal investment and consump-

tion is important. Assuming time variation in the financial market and ignoring it for

non-financial income leads to considerably distinct results.

2. The inclusion of time variation in labor income leads to an adaption of state variable hedg-

ing demand. In fact, state variable hedging demand can be separated into the usual part

that arises in the absence of labor income and a new part. This part grows monotonically

with planning horizon and can have either sign. Hence, a reduction in risky investment

for individuals with a long planning horizon as reported in Lynch and Tan (2009) can be

reproduced.
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3. A negative sensitivity of labor income growth on the state variable can induce falling risky

investment and consumption even if expected returns are increasing in the state variable.

Moreover, the level of risky investment can be reduced as well.

4. Under the assumptions (2.c.1) - (2.c.3), the complicated HJB equation can be separated

into ordinary differential equations which can be solved in closed-form.

5. From a technical point of view, the valuation of the labor income stream involves solving

ordinary differential equations. Certain combinations of state variable and financial market

parameters lead to solutions that do not converge for long horizons. In order to have

optimal policies that are neither extreme in level nor highly variable over states, there are

two explanations. Firstly, the parameters of the financial market and non-financial income

must be in a close relation. Secondly, other important aspects as borrowing/short selling

constraints42, trading costs43 or information uncertainty44 are neglected in the model.

In addition, it should be kept in mind that the chosen parameters imply a low component of

stochastic labor income at the beginning of the working period. Increasing the importance of Y

compared to Ȳ would give even more weight to direct and indirect labor hedging demand. A

similar statement is true for risk aversion. In the numerical examples, a level of risk aversion of

γ = 4 was chosen. A higher level of risk aversion would lower myopic and state variable hedging

demand and thus, the relative importance of the two labor hedging demands would rise.

42See, for example, Koo (1998).
43See, for example, Liu and Loewenstein (2002).
44See, for example, Xia (2001).
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2.A Appendix

2.A.1 Solution of the Wachter Model

For the sake of completeness, this appendix contains the main results of part of the model that

is identical to the Wachter model. For more details the reader is referred to Wachter (2002).

The solutions to the SODE (2.11) - (2.13) with initial conditions c2 (0) = c1 (0) = c0 (0) = 0

are given by

c2 (s) =
2k0 (1− e−ηs)

2η − (k1 + η) (1− e−ηs)

c1 (s) =
4k0k3

(
1− e−ηs/2

)2

η [2η − (k1 + η) (1− e−ηs)]

c0 (s) =

∫ τ

0
k5 + k3c1 (s) +

k2
2
c1 (s)

2 + k4c2 (s) ds

where η ≡ √q and q = k21 − 4k0k2.

The negativity and the convergence of c2 (s) can be derived analytically45 or seen in the phase

plane analysis of Figure 2.14. Because k2 > 0, the parabola in equation (2.11) opens upward.

Furthermore, because of the assumption γ > 1 it must be noted that

k0 ≡
1− γ
γ

λ21
σ2s

< 0

Hence, there exists only one case with two real particular solutions. As can be recognized, c2 (s)

starts in the origin (c2 (0) = 0) and moves to the left.

0

0

(a)

∂
c

2
(s

)/
∂
s

←←←O

Figure 2.14: Phase Plane Analysis of c2 (s)

This Figure shows a phase plane analysis of the equation ∂c2(s)
∂s

= k0 + k1c2 (s) + k2c2 (s)
2 for q > 0. In this case,

two real particular solutions exist and c2 (s) converges to a stable solution marked by a circle.

In analogy to the phase plane analysis in Figure 2.1, the negativity of c1 (s) follows from the

negativity of the vertical axis intercept of equation (2.12). In fact, k3c2 (s) < 0 because k3 > 0

and the negativity of c2 (s).

45As performed by Wachter (2002, pp. 87-88).
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2.A.2 Solution of the HJB-Equation for the Consumption Problem

The relevant partial derivatives of (2.9) are given by46

Jτ = e−δ(T−τ)









1
1−γ

[. . .]γ−1 (. . .)1−γ
∫ τ

0

(
∂c0(s)
∂s

+ ∂c1(s)
∂s

X + 1
2
∂c2(s)
∂s

X2
)

eC(X,s)ds

+ δ
1−γ

[. . .]γ (. . .)1−γ + γ
1−γ

[. . .]γ−1 (. . .)1−γ

+ [. . .]γ (. . .)−γ
(
∂k
∂τ
Y − ∂R

∂τ

)









JA = e−δ(T−τ) [. . .]γ (. . .)−γ , JAA = −γe−δ(T−τ) [. . .]γ (. . .)−γ−1

JY = e−δ(T−τ) [. . .]γ (. . .)−γ k, JY Y = −γe−δ(T−τ) [. . .]γ (. . .)−γ−1 k2

JX = e−δ(T−τ)





1
1−γ

[. . .]γ−1 (. . .)1−γ
∫ τ

0
(c1 (s) + c2 (s)X) eC(X,s)ds

+ [. . .]γ (. . .)−γ ∂k
∂X
Y





Jxx = e−δ(T−τ)



















− 1
γ
[. . .]γ−2 (. . .)1−γ

[∫ τ

0
(c1 (s) + c2 (s)X) eC(X,s)ds

]2

+ 1
1−γ

[. . .]γ−1 (. . .)1−γ
∫ τ

0
1
γ









γc2 (s) + c21 (s)

+2c1 (s) c2 (s)X

+c2 (s)
2X2









eC(X,s)ds

+2 [. . .]γ−1 (. . .)−γ ∂k
∂X
Y

∫ τ

0
(c1 (s) + c2 (s)X) eC(X,s)ds

−γ [. . .]γ (. . .)−γ−1 ( ∂k
∂X
Y
)2

+ [. . .]γ (. . .)−γ ∂2k
∂X2 Y



















JAX = e−δ(T−τ)




[. . .]γ−1 (. . .)−γ

∫ τ

0
(c1 (s) + c2 (s)X) eC(X,s)ds

−γ [. . .]γ (. . .)−γ−1 ∂k
∂X
Y





JAY = −γe−δ(T−τ) [. . .]γ (. . .)−γ−1 k

JXY = e−δ(T−τ)




[. . .]γ−1 (. . .)−γ k

∫ τ

0
(c1 (s) + c2 (s)X) eC(X,s)ds

−γ [. . .]γ (. . .)−γ−1 k ∂k
∂X
Y + [. . .]γ (. . .)−γ ∂k

∂X





where for the sake of brevity we define

[. . .] ≡
[∫ τ

0
e

1
γ (c0(s)+c1(s)X+ 1

2
c2(s)X2)ds

]

(. . .) ≡ (A+ k (τ,X)Y −R (τ))

and

C (X, τ) ≡ 1

γ

(

c0 (τ) + c1 (τ)X +
1

2
c2 (τ)X

2

)

It should be noted that for Jτ , the following rule was applied:

f (a, b) =

∫ a

b
g (x) dx = G (a)−G (b)

⇒
∂f (a, b)

∂a
=
∂G (a)

∂a
= g (a)− g (b) + g (b) =

∫ a

b

∂g (x)

∂x
dx+ g (b)

Moreover, only the terminal conditions c0 (0) = c1 (0) = c2 (0) = 0 ensure that Jτ contains
γ

1−γ [. . .]γ−1 (. . .)1−γ and this term is inevitable to find a solution for the HJB47.

46More details with respect to the derivation of Jτ can be found at the bottom of the page.
47See also Wachter (2010, p. 195).
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Plugging in the relevant partial derivatives into the FOCs (2.6) and (2.7) leads to

c∗t =
(. . .)

∫ τ
0 e

C(X,s)ds
+ c̄ (2.34)

and

Aπ∗t =
1

γ

λ1
σ2s
X (. . .) +

1

γ

ρsxσx
σs

∫ τ
0 (c1 (s) + c2 (s)X) eC(X,s)ds

∫ τ
0 e

C(X,s)ds
(. . .)

−ρsxσx
σs

∂k

∂X
Y − ρsyσy

σs
kY (2.35)

The solution of the HJB equation is tedious but leads to simple and interpretable results48.

Plugging in the relevant partial derivatives, (2.34) and (2.35) into the HJB and multiplying by

eδ(T−τ) yields

0 = −





1
1−γ

[. . .]γ−1 (. . .)1−γ
∫ τ

0

(
∂c0(s)
∂s

+ ∂c1(s)
∂s

X + 1
2
∂c2(s)
∂s

X2
)

eC(X,s)ds

+ δ
1−γ

[. . .]γ (. . .)1−γ + γ
1−γ

[. . .]γ−1 (. . .)1−γ + [. . .]γ (. . .)−γ
(
∂k
∂τ
Y − ∂R

∂τ

)





− [. . .]γ (. . .)−γ c̄+
γ

1− γ [. . .]γ−1 (. . .)1−γ + [. . .]γ (. . .)−γ Ar0

+ [. . .]γ (. . .)−γ Ȳ + [. . .]γ (. . .)−γ Y

−
(

1

1− γ [. . .]γ−1 (. . .)1−γ
∫ τ

0

(c1 (s) + c2 (s)X) eC(X,s)ds+ [. . .]γ (. . .)−γ
∂k

∂X
Y

)

κx
(
X − X̄

)

+ [. . .]γ (. . .)−γ kY (y0 + y1X)

+
1

2
[. . .]γ (. . .)−γ λ1X





1
γ
(. . .) λ1

σ2
s
X + 1

γ
(. . .)

∫
τ
0 (c1(s)+c2(s)X)eC(X,s)ds

∫
τ
0 eC(X,s)ds

ρsxσx
σs

− ∂k
∂X
Y ρsxσx

σs
− kY ρsyσy

σs





+
1

2
ρsxσxσs















[. . .]γ−1 (. . .)−γ

∫ τ

0
(c1 (s) + c2 (s)X) eC(X,s)ds

−γ [. . .]γ (. . .)−γ−1 ∂k
∂X
Y



 ·





1
γ
(. . .) λ1

σ2
s
X + 1

γ
(. . .)

∫
τ
0 (c1(s)+c2(s)X)eC(X,s)ds

∫
τ
0 eC(X,s)ds

ρsxσx
σs

− ∂k
∂X
Y ρsxσx

σs
− kY ρsyσy

σs
















−1

2
γρsyσyσs [. . .]

γ (. . .)−γ−1 kY





1
γ
(. . .) λ1

σ2
s
X + 1

γ
(. . .)

∫
τ
0 (c1(s)+c2(s)X)eC(X,s)ds

∫
τ
0 eC(X,s)ds

ρsxσx
σs

− ∂k
∂X
Y ρsxσx

σs
− kY ρsyσy

σs





+ρxyσxσyY




[. . .]γ−1 (. . .)−γ k

∫ τ

0
(c1 (s) + c2 (s)X) eC(X,s)ds

−γ [. . .]γ (. . .)−γ−1 k ∂k
∂X
Y + [. . .]γ (. . .)−γ ∂k

∂X





−1

2
γ [. . .]γ (. . .)−γ−1 k2Y 2σ2

y

+
1

2
σ2
x



















− 1
γ
[. . .]γ−2 (. . .)1−γ

[∫ τ

0
(c1 (s) + c2 (s)X) eC(X,s)ds

]2

+ 1
1−γ

[. . .]γ−1 (. . .)1−γ
∫ τ

0
1
γ









γc2 (s) + c21 (s)

+2c1 (s) c2 (s)X

+c2 (s)
2X2









eC(X,s)ds

+2 [. . .]γ−1 (. . .)−γ ∂k
∂X
Y

∫ τ

0
(c1 (s) + c2 (s)X) eC(X,s)ds

−γ [. . .]γ (. . .)−γ−1 ( ∂k
∂X
Y
)2

+ [. . .]γ (. . .)−γ ∂2k
∂X2 Y



















48For a textbook treatment of stochastic control, the reader is referred to Øksendal (2003) Chapter 11.
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Multiplying by [. . .]−(γ−1) (. . .)γ gives

0 = − δ

1− γ (. . .) [. . .]− 1

1− γ (. . .)

∫ τ

0

(
∂c0 (s)

∂s
+
∂c1 (s)

∂s
X +

1

2

∂c2 (s)

∂s
X2

)

eC(X,s)ds

−
(
∂k

∂τ
Y − ∂R

∂τ

)

[. . .]− c̄ [. . .] +Ar0 [. . .] + Ȳ [. . .] + Y [. . .] + (y0 + y1X) kY [. . .]

− 1

1− γ κx
(
X − X̄

)
(. . .)

∫ τ

0

(c1 (s) + c2 (s)X) eC(X,s)ds− κx
(
X − X̄

) ∂k

∂X
Y [. . .]

+
1

2

1

γ

λ2
1

σ2
s

X2 (. . .) [. . .] +
1

2

1

γ

ρsxσx
σs

λ1X (. . .)

∫ τ

0

(c1 (s) + c2 (s)X) eC(X,s)ds

−1

2

ρsxσx
σs

λ1X
∂k

∂X
Y [. . .]− 1

2

ρsyσy
σs

λ1XkY [. . .]

+
1

2

1

γ

ρsxσx
σs

λ1X (. . .)

∫ τ

0

(c1 (s) + c2 (s)X) eC(X,s)ds

+
1

2

1

γ
ρ2sxσ

2
x (. . .) [. . .]

−1

[∫ τ

0

(c1 (s) + c2 (s)X) eC(X,s)ds

]2

︸ ︷︷ ︸

i)

−1

2
ρ2sxσ

2
x
∂k

∂X
Y

∫ τ

0

(c1 (s) + c2 (s)X) eC(X,s)ds− 1

2
ρsxσxρsyσykY

∫ τ

0

(c1 (s) + c2 (s)X) eC(X,s)ds

−1

2

ρsxσx
σs

λ1X
∂k

∂X
Y [. . .]− 1

2
ρ2sxσ

2
x
∂k

∂X
Y

∫ τ

0

(c1 (s) + c2 (s)X) eC(X,s)ds

+
1

2
γρ2sxσ

2
x (. . .)

−1

(
∂k

∂X
Y

)2

[. . .]

︸ ︷︷ ︸

ii)

+
1

2
γρsxσxρsyσy (. . .)

−1 kY
∂k

∂X
Y [. . .]

︸ ︷︷ ︸

iii)

−1

2

ρsyσy
σs

λ1XkY [. . .]− 1

2
ρsxσxρsyσykY

∫ τ

0

(c1 (s) + c2 (s)X) eC(X,s)ds

+
1

2
γρsxσxρsyσy (. . .)

−1 kY
∂k

∂X
Y [. . .]

︸ ︷︷ ︸

iii)

+
1

2
γρ2syσ

2
y (. . .)

−1 k2Y 2 [. . .]
︸ ︷︷ ︸

iv)

+ρxyσxσykY

∫ τ

0

(c1 (s) + c2 (s)X) eC(X,s)ds−γρxyσxσy (. . .)−1 kY
∂k

∂X
Y [. . .]

︸ ︷︷ ︸

iii)

+ρxyσxσy
∂k

∂X
Y [. . .]−1

2
γσ2

y (. . .)
−1 k2Y 2 [. . .]

︸ ︷︷ ︸

iv)

−1

2

1

γ
σ2
x (. . .) [. . .]

−1

[∫ τ

0

(c1 (s) + c2 (s)X) eC(X,s)ds

]2

︸ ︷︷ ︸

i)

+
1

2

1

1− γ σ
2
x (. . .)

∫ τ

0

1

γ

(
γc2 (s) + c21 (s) + 2c1 (s) c2 (s)X + c2 (s)

2X2) eC(X,s)ds

+σ2
x
∂k

∂X
Y

∫ τ

0

(c1 (s) + c2 (s)X) eC(X,s)ds

−1

2
γσ2

x (. . .)
−1

(
∂k

∂X
Y

)2

[. . .]

︸ ︷︷ ︸

ii)

+
1

2
σ2
x
∂2k

∂X2
Y [. . .] (2.36)

To our knowledge, closed-form solutions for this general PDE are not available49. The high-

lighted terms make it impossible to separate the equation into a system of ODEs. However,

the highlighted terms i) and ii) vanish under the assumption of ρsx ∈ {−1, 1}, which is the

assumption in Wachter (2002). Furthermore, if ρsy ∈ {−1, 1} then ρxy = ρsxρsy ∈ {−1, 1} or if

σy = 0, the terms indicated by iii) and iv) vanish.

49See Huang and Milevsky (2008), Huang et al. (2008), Munk and Sørensen (2010).



2.A. APPENDIX 53

Without the terms highlighted by i), ii), iii) and iv), the HJB simplifies to

0 = − δ

1− γ (. . .) [. . .]− 1

1− γ (. . .)

∫ τ

0

(
∂c0 (s)

∂s
+
∂c1 (s)

∂s
X +

1

2

∂c2 (s)

∂s
X2

)

eC(X,s)ds

−
(
∂k

∂τ
Y − ∂R

∂τ

)

[. . .]− c̄ [. . .] + r0 (. . .) [. . .]− r0 (kY −R) [. . .]

+Ȳ [. . .] + Y [. . .] + (y0 + y1X) kY [. . .]

− 1

1− γ κx
(
X − X̄

)
(. . .)

∫ τ

0

(c1 (s) + c2 (s)X) eC(X,s)ds− κx
(
X − X̄

) ∂k

∂X
Y [. . .]

+
1

2

1

γ

λ2
1

σ2
s

X2 (. . .) [. . .] +
1

2

1

γ

ρsxσx
σs

λ1X

∫ τ

0

(c1 (s) + c2 (s)X) eC(X,s)ds (. . .)

−1

2

ρsxσx
σs

λ1X
∂k

∂X
Y [. . .]− 1

2

ρsyσy
σs

λ1XkY [. . .]

+
1

2

1

γ

ρsxσx
σs

λ1X (. . .)

∫ τ

0

(c1 (s) + c2 (s)X) eC(X,s)ds

−1

2
ρ2sxσ

2
x
∂k

∂X
Y

∫ τ

0

(c1 (s) + c2 (s)X) eC(X,s)ds

−1

2
ρsyσyρsxσxkY

∫ τ

0

(c1 (s) + c2 (s)X) eC(X,s)ds

−1

2

ρsxσx
σs

λ1X
∂k

∂X
Y [. . .]− 1

2
ρ2sxσ

2
x
∂k

∂X
Y

∫ τ

0

(c1 (s) + c2 (s)X) eC(X,s)ds

−1

2

ρsyσy
σs

λ1XkY [. . .]− 1

2
ρsxσxρsyσykY

∫ τ

0

(c1 (s) + c2 (s)X) eC(X,s)ds

+ρxyσxσykY

∫ τ

0

(c1 (s) + c2 (s)X) eC(X,s)ds+ ρxyσxσy
∂k

∂X
Y [. . .]

+
1

2

1

1− γ σ
2
x (. . .)

∫ τ

0

1

γ

(
γc2 (s) + c21 (s) + 2c1 (s) c2 (s)X + c2 (s)

2X2) eC(X,s)ds

+σ2
x
∂k

∂X
Y

∫ τ

0

(c1 (s) + c2 (s)X) eC(X,s)ds+
1

2
σ2
x
∂2k

∂X2
Y [. . .] (2.37)

Moreover, it should be noticed that the trivial expansion

(kY −R) r0 [. . .]− (kY −R) r0 [. . .]

was made in the second line of (2.37). This equation can now be separated into a system of

ODEs.
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2.A.3 The Dynamics of Total Wealth

From the definition Â ≡ A+ k (X, t)Y − R (t) , application of Ito’s lemma yields the dynamics

of total wealth

dÂ = dA+
∂k

∂X
Y dX +

1

2

∂2k

∂X2
Y dX2 +

∂k

∂t
Y dt+ kdY +

∂k

∂X
dXdY − ∂R

∂t
dt

Plugging in (2.2) - (2.4) and the optimal policies (2.23) and (2.24) leads to

dÂ∗ =









1
γ

λ2
1
σ2
s
X2Â∗ + 1

γ
ρsxσx
σs

λ1

∫
τ
0 (c1(s)X+c2(s)X

2)eC(X,s)ds
∫
τ
0 eC(X,s)ds

Â∗

− ρsxσx
σs

λ1X
∂k
∂X
Y − ρsyσy

σs
λ1XkY

+r0Â
∗ − r0 (kY −R) + Ȳ + Y − 1∫

τ
0 eC(X,s)ds

Â∗ − c̄









dt

+





1
γ
λ1
σs
XÂ∗ + 1

γ
ρsxσx

∫
τ
0 (c1(s)+c2(s)X)eC(X,s)ds

∫
τ
0 eC(X,s)ds

Â∗

−ρsxσx ∂k∂X Y − ρsyσykY



 dWs (t)

− ∂k

∂X
Y κx

(
X − X̄

)
dt+

∂k

∂X
Y σxdWx (t) +

1

2
σ2
x
∂2k

∂X2
Y dt− ∂k

∂τ
Y dt

+kY (y0 + y1X) dt+ kY σydWy (t) +
∂k

∂X
ρxyσxσyY dt+

∂R

∂τ
dt

Arranging in proper order

dÂ∗ =






r0 +
1
γ

λ2
1
σ2
s
X2 − 1∫

τ
0 eC(X,s)ds

+ 1
γ
ρsxσx
σs

λ1

∫
τ
0 (c1(s)X+c2(s)X

2)eC(X,s)ds
∫
τ
0 eC(X,s)ds




 Â∗dt

+

(

1

γ

λ1

σs
X +

1

γ
ρsxσx

∫ τ

0
(c1 (s) + c2 (s)X) eC(X,s)ds

∫ τ

0
eC(X,s)ds

)

Â∗dWs (t)

+




− ∂k
∂τ

+ 1− r0k − ∂k
∂X
κx

(
X − X̄

)
+ k (y0 + y1X)

− ρsxσx
σs

λ1
∂k
∂X
X − ρsyσy

σs
λ1kX + ∂k

∂X
ρxyσxσy +

1
2
σ2
x
∂2k
∂X2



Y dt

+

[
∂R

∂τ
+ Ȳ + r0R− c̄

]

dt

+ [dWy (t)− ρsydWs (t)]σykY + [dWx (t)− ρsxdWs (t)]σx
∂k

∂X
Y (2.38)

The last line is equal to zero due to the assumptions about perfect dependence (2.c.1) - (2.c.2)

and locally riskfree labor income (2.c.3), i.e. dWx (t) = ρsxdWs (t) and dWy (t) = ρsydWs (t) or

σy = 0. Inspecting the parts in the square brackets one can identify (2.14) and (2.21) which are

also equal to zero. The dynamics of (2.25) follow directly.
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2.A.4 Solution of the HJB-Equation for the Terminal Wealth Problem

For the terminal wealth problem, a reasonable candidate for the value function is given by

J =
ec0(τ)+c1(τ)X+ 1

2
c2(τ)X2

(A+ k (τ,X)Y −R (τ))1−γ

1− γ

where τ ≡ T − t, k (X, τ) and R (τ) are in analogy to Appendix 2.A.2. The expected utility

implies that

J (τ = 0) =

(
AT − Ā

)1−γ

1− γ
and hence, c0 (0) = c1 (0) = c2 (0) = 0 and R (0) = Ā. The relevant partial derivatives are given

by

Jτ = eC(X,τ)





1
1−γ

(. . .)1−γ
(
∂c0(τ)
∂τ

+ ∂c1(τ)
∂τ

X + 1
2
∂c2(τ)
∂τ

X2
)

+(. . .)−γ
(
∂k
∂τ
Y − ∂R

∂τ

)





JA = eC(X,τ) (. . .)−γ , JAA = −γeC(X,τ) (. . .)−γ−1

JY = eC(X,τ) (. . .)−γ k, JY Y = −γeC(X,τ) (. . .)−γ−1 k2

JX = eC(X,τ)

(
1

1− γ (c1 (τ) + c2 (τ)X) (. . .)1−γ + (. . .)−γ
∂k

∂X
Y

)

Jxx = eC(X,τ)









1
1−γ

(. . .)1−γ
(
c2 (τ) + c21 (τ) + 2c1 (τ) c2 (τ)X + c2 (τ)

2X2
)

+2 (c1 (τ) + c2 (τ)X) (. . .)−γ ∂k
∂X
Y

−γ (. . .)−γ−1 ( ∂k
∂X
Y
)2

+ (. . .)−γ ∂2k
∂X2 Y









JAX = eC(X,τ)




(c1 (τ) + c2 (τ)X) (. . .)−γ

−γ (. . .)−γ−1 ∂k
∂X
Y





JAY = −γeC(X,τ) (. . .)−γ−1 k

JXY = eC(X,τ)




(c1 (τ) + c2 (τ)X) (. . .)−γ k

−γ (. . .)−γ−1 k ∂k
∂X
Y + (. . .)−γ ∂k

∂X





where C (X, τ) ≡ c0 (τ) + c1 (τ)X + 1
2c2 (τ)X

2. Plugging the relevant partial derivatives into

(2.7) gives

Aπ∗t =
1

γ

λ1
σ2s
XÂ+

1

γ

ρsxσx
σs

(c1 (τ) + c2 (τ)X) Â

−ρsxσx
σs

(∫ τ

0
d1 (s) e

d0(s)+d1(s)Xds

)

Y − ρsyσy
σs

kY
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The solution of the HJB-equation follows the same steps as in the consumption case. For this

reason the derivation is shortened. Plugging in the relevant partial derivatives and the optimal

policy in the HJB (2.28) and multiplying by e−C(X,τ) (. . .)γ yields

0 = − 1

1− γ (. . .)

(
∂c0 (τ)

∂τ
+
∂c1 (τ)

∂τ
X +

1

2

∂c2 (τ)

∂τ
X2

)

−
(
∂k

∂τ
Y − ∂R

∂τ

)

+Ar0 + Ȳ + Y + kY (y0 + y1X)

− 1

1− γ κx
(
X − X̄

)
(. . .) (c1 (τ) + c2 (τ)X)− κx

(
X − X̄

) ∂k

∂X
Y

+
1

2

1

γ

λ2
1

σ2
s

X2 (. . .) +
1

2

1

γ

ρsxσx
σs

λ1X (. . .) (c1 (τ) + c2 (τ)X)

−1

2

ρsxσx
σs

λ1X
∂k

∂X
Y − 1

2

ρsyσy
σs

λ1XkY

+
1

2

1

γ

ρsxσx
σs

λ1X (. . .) (c1 (τ) + c2 (τ)X) +
1

2

1

γ
ρ2sxσ

2
x (. . .) (c1 (τ) + c2 (τ)X)2

−1

2
ρ2sxσ

2
x
∂k

∂X
Y ((c1 (τ) + c2 (τ)X))− 1

2
ρsxσxρsyσykY ((c1 (τ) + c2 (τ)X))

−1

2

ρsxσx
σs

λ1X
∂k

∂X
Y − 1

2
ρ2sxσ

2
x
∂k

∂X
Y (c1 (τ) + c2 (τ)X)

+
1

2
γρ2sxσ

2
x (. . .)

−1

(
∂k

∂X
Y

)2

︸ ︷︷ ︸

ii)

+
1

2
γρsxσxρsyσy (. . .)

−1 kY
∂k

∂X
Y

︸ ︷︷ ︸

iii)

−1

2

ρsyσy
σs

λ1XkY −
1

2
ρsxσxρsyσykY (c1 (τ) + c2 (τ)X)

+
1

2
γρsxσxρsyσy (. . .)

−1 kY
∂k

∂X
Y

︸ ︷︷ ︸

iii)

+
1

2
γρ2syσ

2
y (. . .)

−1 k2Y 2

︸ ︷︷ ︸

iv)

+ρxyσxσykY (c1 (τ) + c2 (τ)X)−γρxyσxσy (. . .)−1 kY
∂k

∂X
Y

︸ ︷︷ ︸

iii)

+ρxyσxσy
∂k

∂X
Y−1

2
γ (. . .)−1 k2Y 2σ2

y

︸ ︷︷ ︸

iv)

+
1

2

1

1− γ σ
2
x (. . .)

(
c2 (s) + c21 (τ) + 2c1 (τ) c2 (τ)X + c2 (τ)

2X2)

+σ2
x
∂k

∂X
Y (c1 (τ) + c2 (τ)X)

−1

2
γσ2

x (. . .)
−1

(
∂k

∂X
Y

)2

︸ ︷︷ ︸

ii)

+
1

2
σ2
x
∂2k

∂X2
Y

Kim and Omberg (1996) show that in the case without labor income, the PDE can be solved

in closed-form for all values of ρsx. This is not the case in the presence of labor income. On one

hand, it can be noticed that terms highlighted by i) in (2.36) do not cause any problems in this

equation. On the other hand, the assumption ρsx ∈ {−1, 1} is needed in order to get rid of terms

highlighted by ii). Hence, we impose the same assumptions as in the case of consumption.
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Without the terms highlighted by ii), iii) and iv), the HJB simplifies to

0 = − 1

1− γ (. . .)

(
∂c0 (τ)

∂τ
+
∂c1 (τ)

∂τ
X +

1

2

∂c2 (τ)

∂τ
X2

)

−
(
∂k

∂τ
Y − ∂R

∂τ

)

+ r0 (. . .)− r0 (kY −R)

+Ȳ + Y + (y0 + y1X) kY

− 1

1− γ κx
(
X − X̄

)
(. . .) (c1 (τ) + c2 (τ)X)− κx

(
X − X̄

) ∂k

∂X
Y

+
1

2

1

γ

λ2
1

σ2
s

X2 (. . .) +
1

2

1

γ

ρsxσx
σs

λ1X (. . .) (c1 (τ) + c2 (τ)X)

−1

2

ρsxσx
σs

λ1X
∂k

∂X
Y − 1

2

ρsyσy
σs

λ1XkY

+
1

2

1

γ

ρsxσx
σs

λ1X (. . .) (c1 (τ) + c2 (τ)X)

−1

2
ρ2sxσ

2
x
∂k

∂X
Y (c1 (τ) + c2 (τ)X)− 1

2
ρsxσxρsyσykY (c1 (τ) + c2 (τ)X)

−1

2

ρsxσx
σs

λ1X
∂k

∂X
Y − 1

2
ρ2sxσ

2
x
∂k

∂X
Y (c1 (τ) + c2 (τ)X)

−1

2

ρsyσy
σs

λ1XkY +−1

2
ρsxσxρsyσykY (c1 (s) + c2 (s)X)

+ρxyσxσykY (c1 (τ) + c2 (τ)X) + ρxyσxσy
∂k

∂X
Y

+
1

2

1

1− γ σ
2
x (. . .) c2 (s) + σ2

x
∂k

∂X
Y (c1 (τ) + c2 (τ)X) +

1

2
σ2
x
∂2k

∂X2
Y

+
1

2

1

1− γ
1

γ
σ2
x (. . .)

(
c21 (s) + 2c1 (s) c2 (s)X + c2 (s)

2X2) (2.39)

Moreover, it should be noticed that the trivial expansion

(kY −R) r0 − (kY −R) r0

was made in the second line of (2.39).

Furthermore,

1

2

(
1

1− γ +
1

γ
ρ2sx

)

σ2x (. . .)
(

c21 (s) + 2c1 (s) c2 (s)X + c2 (s)
2X2

)

=
1

2

1

γ (1− γ)σ
2
x (. . .)

(

c21 (s) + 2c1 (s) c2 (s)X + c2 (s)
2X2

)

because ρ2sx = 1 by assumption.

Comparing (2.39) with (2.37) shows that by separating the equations, one gets the same

systems of differential equations50, except that δ = 0. As a consequence, it can be referred to

the discussion of the consumption case. Besides, it should be noticed that assuming δ 6= 0 would

lead to a change in c0 (s) only. Hence, optimal risky investment and the valuation of the reserves

would not be affected.

The equation that determines the value of the net reserves is given by

0 =

∫ τ

0
eC(X,s)ds

{
∂R

∂τ
+ Ȳ + r0R

}

(2.40)

50This is known from Wachter (2002) and Liu (2007) in the context without labor income.



58 CHAPTER 2. MEAN-REVERTING RETURNS AND LABOR INCOME GROWTH

with initial condition R(0) = Ā. It can be verified that (2.29) is the solution to (2.40) with

R(0) = Ā.

2.A.5 Invariant Affine Transformation

Invariant affine transformations (IAT) are well-known from the term-structure literature51.

Given (2.1) and (2.2)

dS1 (t)

S1 (t)
= (λ1X (t) + r0) dt+ σsdWs (t)

dX (t) = −κx
(
X (t)− X̄

)
dt+ σxdWx (t)

It can be noticed that the system is over-identified. To give an example, instead of (2.1) it could

be assumed that the same risky asset follows

dS1 (t)

S1 (t)
=
(

λ̃1X̃ (t) + r0

)

dt+ σsdWs (t)

where λ̃1 6= λ1. Now,

λ̃1X̃ (t) + r0 = λ1X (t) + r0 ⇔ X̃ (t) =
λ1

λ̃1
X (t)

This leads to dX̃ (t) = λ1

λ̃1
dX (t)

dX̃ (t) = −λ1
λ̃1
κx
(
X (t)− X̄

)
dt+

λ1

λ̃1
σxdWx (t)

= −κx
(
λ1

λ̃1
X (t)− λ1

λ̃1
X̄

)

dt+
λ1

λ̃1
σxdWx (t)

= −κx
(

X̃ (t)− ¯̃X
)

dt+ σ̃xdWx (t)

where ¯̃X ≡ λ1

λ̃1
X̄ and σ̃x ≡ λ1

λ̃1
σx. In other words, changes in the sensitivity parameter λ1 can

be compensated by appropriate changes in (2.2). For the system (2.1) - (2.2), invariant affine

transformation have the following form

TAX (t) = pX (t) ,TAΨ ≡
(
p−1λ1, p

−1pκx = κx, pX̄, pσx
)

where p 6= 0.

2.A.6 Valuation of the Labor Income Stream

From

k (X, τ) =

∫ τ

0
ed0(s)+d1(s)Xds

it is clear that the d0 (s) + d1 (s)X is crucial for the valuation of the income stream. It should

be kept in mind that d1 (s) and d0 (s) are given by equation (2.19) and (2.20) respectively. For

51See Dai and Singleton (2000).
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the sake of comparability we focus on X = X̄

d0 (s) + d1 (s) X̄

=

(

l2 − l3
l0
l1

+ l4
l20
l21

)

s+

(

l3
l0
l21
− 2l4

l20
l31

)(

el1s − 1
)

+
1

2
l4
l20
l31

(

e2l1s − 1
)

+
l0
l1

(

el1s − 1
)

X̄

= (ȳ − r0) s− y1X̄s+
ρsyσy
σs

λ1X̄s−
ρsyσy
σs

λ1X̄s+ l3
l0
l1

[

−s+ 1

l1

(

el1s − 1
)]

+l4
l20
l21

[

s− 2
1

l1

(

el1s − 1
)

+
1

2l1

(

e2l1s − 1
)]

+ l0
1

l1

(

el1s − 1
)

X̄

= (ȳ − r0) s+







l0

[
1
l1

(
el1s − 1

)
− s
] (

l3
l1
+ X̄

)

+l4
l20
l21

[

s− 2 1
l1

(
el1s − 1

)
+ 1

2l1

(
e2l1s − 1

)]

−ρsyσy
σs

λ1X̄s







for52 l1 6= 0.

It should be noticed that after the second equals sign the relation y0 = ȳ− y1X̄ was used and

the trivial expansion
ρsyσy
σs

λ1X̄s− ρsyσy
σs

λ1X̄s = 0 was made. Furthermore, after the third equals

sign l0 = y1 − ρsyσy
σs

λ1 was used.

It should be kept in mind that λ1 > 0 and X̄ ≥ 0. The first part of the last line, (ȳ − r0) s
corresponds to the value of the income stream under a constant growth rate (y1 = 0). Hence,

the term in the brackets determines whether the income stream is valued higher or lower than

the constant counterpart.

Under locally riskfree labor income, the last term in the brackets vanishes. Under risky labor

income, a positive correlation between the risky asset and labor income leads to a lower valuation.

The second term in the brackets is positive for53 s > 0. Under locally riskfree labor income, the

definition l4 =
1
2σ

2
x reveals that state variable volatility has an unambiguously positive effect on

the valuation of the income stream. Nevertheless, for the parameter values as chosen in Table

2.4, the second term is small in magnitude. Hence, the term

l0

[
1

l1

(

el1s − 1
)

− s
](

l3
l1

+ X̄

)

becomes the key for the valuation of the income stream at X = X̄ under time-varying income

growth.

52For the case l1 = 0 the solution is given by d0 (s)+d1 (s) X̄ = (ȳ − r0) s+y1X̄s+ 1
2
l0l3s

2+ 1
3
l4l

2
0s

3− ρsyσy
σs

λ1X̄s.
53This follows from the fact that at s = 0 the term is zero and the first derivative with respect to s is given by

(
el1s − 1

)2
> 0, s > 0.
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Chapter 3

Portfolio and Consumption Decisions

under Mean-Reverting Returns and

Labor Income Growth and

Stochastic Labor Income Volatility

The model presented in this chapter is an extension of the basic model of Chapter 2. The chapter

is written so that the main implications can be understood without having read Chapter 2.

Nevertheless, the author recommends reading the aforementioned chapter first.

The main motivation for this chapter is that Lynch and Tan (2009) report that adding stochas-

tic volatility to labor income has an even more pronounced effect on risky investment as a

time-varying income drift1. Specifically, they show that adding stochastic labor income volatil-

ity reduces risky investment further. In their numerical exercise they assume that labor income

volatility can take two states depending on the state variable - the dividend yield (dy). In par-

ticular, it is assumed that σy (t) = σ̄y, if dy (t) ≤ dy∗ and σy (t) = 1.75 · σ̄y, if dy (t) > dy∗ and

where dy∗ is a threshold defined by Lynch and Tan2.

A strong impact of labor income volatility on optimal investment is particularly interesting

since Chacko and Viceira (2005) report only modest hedging demand for stock market volatility.

The inclusion of stochastic volatility in the labor income process does not lead to severe

difficulties. In fact, the separation of the HJB can be done by the same methods. However,

the system of ordinary differential equations to value the future income stream becomes more

extensive and more sophisticated methods have to be applied.

The remainder of this chapter is as follows. In Section 3.1, the basic model with preferences

over intermediate consumption of Chapter 2 is extended to stochastic volatility. In Section 3.2,

the long-horizon stability of the solution is discussed. Section 3.3 contains the results of the model

1Stochastic volatility in economic time series is a widely accepted phenomena and has received much attention

since the work of Engle (1982) and Bollerslev (1986).
2Lynch and Tan (2009, p. 24). The paper by Lynch and Tan has been accepted for future publication in the

Journal of Financial Economics, http://jfe.rochester.edu/forth.htm (10th January 2011).
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for numerically realistic parameter values. The final section concludes. Mathematical derivations

as the solution of the system of ordinary differential equation are given in Appendices 3.A.1 -

3.A.3.

3.1 Model

In order to get closed form solutions, the specification of Lynch and Tan cannot be implemented

one-to-one but is adapted to the following form

dY (t)

Y (t)
= (y0 + y1X (t)) dt+ (σy0 + σy1X (t)) dWy (t) (3.1)

where σy1 ≥ 0. It should be noticed that with this assumption σy0+σy1X (t) can turn negative.

In this case, the correlation between labor income and the risky asset changes sign. Nevertheless,

as long as σy1 is small the probability is low.

Similarly to Lynch and Tan (2009) the financial assets and the state variable are still given as

in Chapter 2.

While the separation of the HJB by A as described in Section 2.1.1 of Chapter 2 is not affected

by the changes in the volatility of labor income, it can be verified that equation (2.14) of Chapter

2 changes to

0 =

∫ τ

0
eC(X,s)ds







−∂k
∂τ − r0k + 1 + k (y0 + y1X)− κxX ∂k

∂X + κxX̄
∂k
∂X

−ρsxσx
σs

λ1X
∂k
∂X −

ρsy
σs

(σy0 + σy1X)λ1Xk

+ρxyσx (σy0 + σy1X) ∂k
∂X + 1

2σ
2
x
∂2k
∂X2







(3.2)

It should be noticed that the term in brackets can also be derived by the Martingale method.

Appendix 3.A.1 shows the rather compact derivation.

As
∫ τ
0 e

C(X,s)ds > 0, (3.2) is zero if the part in the brackets is zero. A function of the form3

k (X, τ) =

∫ τ

0
ed0(s)+d̂1(s)X+ 1

2
d2(s)X2

ds

will solve the equation (3.2) with d0 (0) = d̂1 (0) = d2 (0) = 0. The relevant partial derivatives

are as follows

kτ =

∫ τ

0

(

∂d0 (s)

∂s
+
∂d̂1 (s)

∂s
X +

1

2

∂d2 (s)

∂s
X2

)

eD(X,s)ds+ 1

kX =

∫ τ

0

(

d̂1 (s) + d2 (s)X
)

eD(X,s)ds

kXX =

∫ τ

0

(

d̂1 (s)
2 + d2 (s) + 2d̂1 (s) d2 (s)X + d22 (s)X

2
)

eD(X,s)ds

where D (X, s) ≡ d0 (s) + d̂1 (s)X + 1
2d2 (s)X

2. Plugging in the partial derivatives into (3.2)

3The notational change form d1 (s) to d̂1 (s) will become clear below.



3.1. MODEL 63

leads to

0 =

∫ τ

0
eD(X,s)







−
(
∂d0(s)
∂s + ∂d̂1(s)

∂s X + 1
2
∂d2(s)
∂s X2

)

− r0 + (y0 + y1X)

−κxX
(

d̂1 (s) + d2 (s)X
)

+ κxX̄
(

d̂1 (s) + d2 (s)X
)

−ρsxσx
σs

λ1X
(

d̂1 (s) + d2 (s)X
)

− ρsy
σs

(σy0 + σy1X)λ1X

+ρxyσx (σy0 + σy1X)
(

d̂1 (s) + d2 (s)X
)

+1
2σ

2
x

(

d̂1 (s)
2 + d2 (s) + 2d̂1 (s) d2 (s)X + d22 (s)X

2
)







ds

Matching coefficients on X2, X and the constant term leads to a system of three ordinary

differential equations.

∂d2 (s)

∂s
= l0 + l1d2 (s) + l2d2 (s)

2 (3.3)

∂d̂1 (s)

∂s
= l6 + l3d2 (s) +

l1
2
d̂1 (s) + l2d̂1 (s) d2 (s) (3.4)

∂d0 (s)

∂s
= l7 + l4d̂1 (s) +

l2
2
d̂1 (s)

2 + l5d2 (s) (3.5)

where

l0 ≡ −2
ρsyσy1
σs

λ1, l1 ≡ 2

[

−κx −
ρsxσx
σs

λ1 + ρxyσxσy1

]

, l2 ≡ σ2x

l6 ≡ y1 −
ρsyσy0
σs

λ1, l3 ≡ κxX̄ + ρxyσxσy0

l7 ≡ y0 − r0, l4 ≡ κxX̄ + ρxyσxσy0, l5 ≡
1

2
σ2x

Remarks

• The first equation of the system of ordinary differential equations (SODE) (3.3) - (3.5)

is a Riccati differential equation and has three solution forms depending on l0, l1 and l2.

As a consequence, three cases must be distinguished for (3.3). The solutions are given in

Appendix 3.A.2 and the details of the derivation can be found in Appendix 3.A.3.

• The inclusion of stochastic volatility of this form always comes with a gap between the

market price of the risky asset and that of labor income. To be more precise, assuming

σy1 6= 0 will lead to d2 (s) 6= 0. As a consequence, there will be an effect of stochastic

volatility on the optimal policies.

• The size of the effect depends on the stability of the Riccati differential equation. In instable

cases, a strong hedging demand may arise for long horizons. A detailed discussion follows

in the next section.

The results for the model with stochastic volatility are summarized in Proposition 3.1.

Proposition 3.1 Given the assumptions Â(0) > 0, ρsx ∈ {−1, 1} and ρsy ∈ {−1, 1} one

obtains

J =
e−δ(T−τ)

[∫ τ
0 e

1
γ (c0(s)+c1(s)X+ 1

2
c2(s)X2)ds

]γ
(A+ k (τ,X)Y −R (τ))1−γ

1− γ
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with

k (τ,X) =

∫ τ

0
ed0(s)+d̂1(s)X+ 1

2
d2(s)X2

ds

where d0 (s) , d1 (s) and d2 (s) are the solution to the following system of ordinary differential

equations

∂d2 (s)

∂s
= l0 + l1d2 (s) + l2d2 (s)

2

∂d1 (s)

∂s
= l6 + l3d2 (s) +

l1
2
d̂1 (s) + l2d1 (s) d2 (s)

∂d0 (s)

∂s
= l7 + l4d̂1 (s) +

l2
2
σd̂1 (s)

2 + l5d2 (s)

with initial conditions d0 (0) = 0, d̂1 (0) = 0 and d2 (0) = 0 and where

l0 ≡ −2
ρsyσy1
σs

λ1, l1 ≡ 2

[

−κx −
ρsxσx
σs

λ1 + ρxyσxσy1

]

, l2 ≡ σ2x

l6 ≡ y1 −
ρsyσy0
σs

λ1, l3 ≡ κxX̄ + ρxyσxσy0

l7 ≡ y0 − r0, l4 ≡ κxX̄ + ρxyσxσy0, l5 ≡
1

2
σ2x

The net reserves follow

R (τ) =
c̄− Ȳ
r0

(
1− e−r0τ

)

The solutions of c0 (s) , c1 (s) and c2 (s) are identical to Wachter (2002).

Optimal consumption and risky investment are given by

c∗t =
Â

∫ τ
0 e

C(X,s)ds
+ c̄ (3.6)

Aπ∗t =
1

γ

λ1
σ2s
XÂ+

1

γ

ρsxσx
σs

∫ τ
0 (c1 (s) + c2 (s)X) eC(X,s)ds

∫ τ
0 e

C(X,s)ds
Â

−ρsxσx
σs

(∫ τ

0

(

d̂1 (s) + d2 (s)X
)

eD(X,s)ds

)

Y

−ρsy
σs

(σy0 + σy1X) kY

where C (X, s) ≡ 1
γ

(
c0 (s) + c1 (s)X + 1

2c2 (s)X
2
)
and D (X, s) ≡ d0 (s)+ d̂1 (s)X+ 1

2d2 (s)X
2.

3.2 Long-Horizon Stability of the Solution

Figure 3.1 and 3.2 show a phase plane analysis for the Riccati differential equation (3.3). Since

l2 is unambiguously greater than zero, the parabola opens upward and six cases arise. Figure

3.1 shows the cases where (3.3) has two real particular solutions. If l0 < 0 two real solutions

with different signs exist. As can be seen in Panel (a), d2 (s) converges to the negative solution.

Given two real solutions, if l0 > 0 and l1 < 0 two positive solutions exist. From Panel (b) it can
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be recognized that d2 (s) converges to the smaller solution. Given two real solutions, if l0 > 0

and l1 > 0 two negative solutions exist. From Panel (c) it should be noticed that this setting is

unstable as d2 (s) grows without bound.

0

0

(a)

∂
d

2
(s

)/
∂
s

d
2
(s)

←←←O

0

0

(b)

∂
d

2
(s

)/
∂
s

d
2
(s)

→ →
O

0

0

(c)

∂
d

2
(s

)/
∂
s

d
2
(s)

→ → → → →

Figure 3.1: Phase Plane Analysis I

Panels (a), (b) and (c) show a phase plane analysis of the equation ∂d2(s)
∂s

= l0 + l1d2 (s) + l2d2 (s)
2 for ql > 0. In

all cases two real particular solutions exist. In Panel (a), l0 < 0, in Panel (b), l0 > 0 and l1 < 0 and in Panel (c),

l0 > 0 and l1 > 0. In Panels (a) and (b) d2 (s) converges to a stable solution marked by a circle.

Panels (a) and (b) from Figure 3.2 show the case where only one real particular solution exists.

The discussion is analogous to Panels (b) and (c) from Figure 3.1. In Panel (c) there are no real

solutions and d2 (s) grows without bound. In all cases in Figure 3.2 l0 > 0. Table 3.1 summarizes

the stability analysis.

As pointed out in Appendix 3.A.2, in the case of instability d2 (s) > 0, ∀s > 0 and approaches

infinity at a finite horizon. The consequences are similar to Kim and Omberg (1996) who discov-

ered this property for the solution of the state variable hedging part for utility functions with

γ < 1. If the set of parameters leads to an unstable situation then the value of the future income

stream becomes infinite and the optimal policies are not well-defined4.

4In the Kim and Omberg model, the cases with instability lead to an infinite utility. This is not the case in

our model as γ > 1 by assumption and hence, the utility is bounded above by zero.
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0
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Figure 3.2: Phase Plane Analysis II

Panels (a), (b) and (c) show a phase plane analysis of the equation ∂d2(s)
∂s

= l0 + l1d2 (s) + l2d2 (s)
2. In Panels

(a) and (b), one real particular solution exists (ql = 0). Panel (c) shows the case without a particular solution

(ql < 0). In Panel (a), l1 < 0 and in Panel (b), l1 > 0. In Panel (a), d2 (s) converges to a stable solution marked

by a circle.

Number of Particular Solutions Stable?

2 ql > 0, l0 < 0 yes

ql > 0, l0 > 0, l1 < 0 yes

ql > 0, l0 > 0, l1 > 0 no

1 ql = 0, l1 < 0 yes

ql = 0, l1 > 0 no

0 ql < 0 no

Table 3.1: Stability Analysis

It should be noticed that the cases where an unstable solution results are limited. In particular,

a (perfectly) positive correlation between the risky asset and labor income leads to l0 < 0 and
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thus a stable solution occurs. On the other hand, l0 > 0⇔ ρsy = −1 implies that solutions that

are not well-defined might exist. This point shows that a valuation of the future income stream

that is so positive as to effect an infinite value is not arbitrary and depends on the economic

environment. A negative correlation between the risky asset return and labor income is certainly

a good thing as a natural diversification of financial and non-financial income exists.

Even for ρsy = −1, as long as λ1 and σy1 are not to high compared to σs, two particular

solutions exist. In this case, the unstable solution asks for l1 > 0. The definition

l1 ≡ 2

[

−κx −
ρsxσx
σs

λ1 + ρxyσxσy1

]

reveals that l1 consists of three components. The first part −κx is unambiguously negative and

therefore in favor of stability. Hence, as long as the persistency of the shocks is not to high (low

κx), the solution tends to be stable. The other two parts contain correlation parameters. Since

unstable solutions arise only for ρsy = −1 and λ1 > 0, σs > 0, σx > 0, σy1 ≥ 0 only two cases

can be distinguished.

In the first case

ρsx = −1⇒ ρxy = ρsyρsx = 1.

In this case, l1 > 0 is feasible and thus instability is possible.

In the second case

ρsx = 1⇒ ρxy = ρsyρsx = −1

and l1 > 0 is not feasible.

The reason why the individual prefers the first case to the second one is the following. ρsx = −1
implies not only a higher equity premium after a decline in the value of the risky asset, but higher

labor income volatility too. As a consequence, the labor hedging portfolio must include more

of the risky asset, which is desirable in states of high premium (the risks cancel out but the

premium is high).

The ρxy must be interpreted in analogy to Section 2.4.3 of Chapter 2. As mentioned, for

X > 0, d2 (s) < 0 and a negative correlation ρxy imply a positive drift in total wealth that must

be accounted for.

The interpretations for the one particular solution case (q1 = 0) is the same. In the case

without a particular solution, the valuation is even unstable in case of l1 < 0. In this case the

diversification effect of the risky asset and labor income is so important that the counter effects

are dominated.

Thus, it can be concluded that instable solutions arise only if labor income and the risky asset

share very distinct dynamics. From an equilibrium perspective there should be a connection

between labor and capital markets and therefore the rather extreme parameter set asked for

instability are probably not in line with reality. This statement is similar to that in Kim and

Omberg for their instable solutions5. The other explanation of Kim and Omberg is of course

applicable as well. Namely, that the real world includes constraints and costs that are not part

5Kim and Omberg (1996, p. 151).
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of the model and prevent the value of the income stream from becoming infinite. Moreover, it

should be kept in mind that the employment phase is finite and has a horizon of approximately

40 years. As a consequence, parameters must have extreme values to end up with a critical

horizon lower than the employment phase.

The following properties are important in order to interpret the results and can be derived

from Figures 3.1 and 3.2.

Remarks

• The sign of d2 (s) is equal to the sign of l0 (vertical axis intercept).

• The sign of d2 (s) is the same for the entire horizon and d2 (s) is monotone.
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Figure 3.3: Phase Plane Analysis III

Panels (a) and (b) show a phase plane analysis of the equation ∂d2(s)
∂s

= l0+ l1d2 (s)+ l2d2 (s)
2 as l0 = 0→ l0 < 0.

In both cases, two real particular solutions exists. d2 (s) converges to the negative particular solution marked by

a circle. In Panel (a) l1 > 0, in Panel (b) l1 < 0.

A short note on the results of Lynch and Tan (2009) concludes this section. In their model,

σy1 > 0 and the correlation between labor income and the risky asset is slightly positive6.

6Of course, our model is, strictly speaking, only valid in the case of ρsy = ±1 and thus the comments have to

be handled with care. Nevertheless, we believe that the main intuition is valid for all correlation levels.
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Hence, d2 (s) < 0 and this has, as shown in more detail below, a negative impact on risky asset

holdings.

Moreover, the parameters estimated in Lynch and Tan suggest a positive l1. The sign of l1 is

more important than it may look on first sight for long-horizon investors. As can be seen from

the phase plane analysis in Figure 3.3, an open upward parabola with l0 = 0 has a particular

solution equal to zero. Because of the initial condition d2 (0) = 0, the solution to the Riccati

differential equation is given by

d2 (s) = 0, ∀s

The second particular solution is positive (negative) if l1 < 0 (l1 > 0), but not of interest. A

difference arises as soon as l0 6= 0. For l1 < 0, the stable solution of the Riccati equation is

the one that was originally in the origin. Hence, even long-term behavior of d2 (s) is smooth in

l0. Loosely spoken, Panel (b) shows that as l0 shifts away from zero, the stable solution is still

close to the origin. This is not the case for l1 > 0, Panel (a) exhibits that the solution from the

differential equation converges to the negative particular solution. Hence, there is a jump in the

long-term behavior of d2 (s) around l0 = 0 and extreme results may occur.

3.3 Illustration of the Results

Parameters are chosen similar to the model of Table 2.4 of Chapter 2, which is identical with

the exception of the stochastic volatility part. Table 3.2 shows the parameters in detail.

The parameters for the labor income process (3.1) are chosen variably in order to show the

effects clearly. For the sake of comparability, y0 (σy0) and y1 (σy1) are chosen so that the growth

rate (volatility) at the long-run mean X̄ is constant. Specifically,

y0 = ȳ − y1X̄, σy0 = σ̄y − σy1X̄

where ȳ (σ̄y) is the long-run growth rate (volatility) and given in Table 3.2.

Financial Market

r0 = 0.0033

λ1 = 1 σs = 0.1579

κx = 0.1755 X̄ = 0.0528 σx = 0.0089

ρsx = −1

Individual

γ = 4 δ = 0.06

ȳ = 0.03 σ̄y = 0.04 ρsy = 1 ρxy = −1
A (0) = 50 Y (0) = 10 Ȳ = 40

c̄ = 45

Table 3.2: Parameter Values
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Compared to the model in the previous section, the inclusion of stochastic income volatility

leads to a more difficult SODE. For the interpretation of the results it should be kept in mind

that the sign of d2 (s) is equal to the sign of l0. This has become clear from the phase plane

analysis. Since it is focused on the case ρsy = 1

l0 < 0⇒ d2 (s) < 0, ∀s

The assumption l0 < 0 and the phase plane analysis revealed that for the illustrative examples

only the results of case I of Appendix 3.A.3 are needed. Nevertheless, for future research the

solution of the other cases can become important as well. Furthermore, for the interpretation

of the results it is assumed that the critical parameter for stability is l1 < 0. As can be seen

from the parameters in Table 3.2, this is clearly the case for the numerical examples and the

phase plane analysis above shows that this assumption seems to be in line with reality. Since

l2 is unambiguously greater than zero, in combination with the negative sign of d2 (s), the

(time-varying) slope parameter of (3.4) is

l1
2
+ l2d2 (s) < 0

and hence the linear differential equation converges to a stable solution as well7.

Because of the high number of parameters, general results are hard to find. Nevertheless, the

qualitative effects described in this section are valid for a wide range of realistic parameters.

In order to show the effect of stochastic labor income volatility clearly, the results consists

of four scenarios. In the first case (green line with crosses), the individual has a constant labor

income growth and constant volatility. In the second and the third cases, only stochastic volatility

(green line with circles) or only varying labor income growth (blue line with crosses) is switched

on. In the fourth case (blue line with circles), both channels are switched on. The cases without

stochastic volatility are discussed extensively in the last chapter. For this reason only the most

important points are stated.

For the sake of clarity, we introduce the following definitions for the components of risky

investment

Aπ∗t =
1

γ

λ1
σ2s
XÂ

︸ ︷︷ ︸

”myopic”

+
1

γ

ρsxσx
σs

∫ τ
0 (c1 (s) + c2 (s)X) eC(X,s)ds

∫ τ
0 e

C(X,s)ds
Â

︸ ︷︷ ︸

”state variable hedging”

−ρsxσx
σs

(∫ τ

0

(

d̂1 (s) + d2 (s)X
)

eD(X,s)ds

)

Y

︸ ︷︷ ︸

”indirect labor hedging”

−ρsy (σy0 + σy1X)

σs

(∫ τ

0
eD(X,s)ds

)

Y

︸ ︷︷ ︸

”direct labor hedging”

(3.7)

Figure 3.4 shows total wealth dependent on the state variable. In Chapter 2 it was shown

that without stochastic income volatility the slope of total wealth does not change sign over the

7For more details see phase plane analysis of a linear differential equation in Chapter 2.
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range of X. In fact, without stochastic labor income volatility the linear differential equation

(3.4) reduces to

∂d̂1 (s)

∂s
= l6 +

l1
2
d̂1 (s)

and (3.8) reduces to

∂Â

∂X
=

∂k

∂X
Y =

(∫ τ

0
d̂1 (s) e

D(X,s)ds

)

Y

It can be recognized that the sign of the slope does only depend on the sign of d̂1 (s) and is

equal to the sign of8 l6.
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Figure 3.4: Total Wealth - Stochastic Labor Income Volatility

This Figure exhibits total wealth Â (t) dependent on the state variable under stochastic labor income volatility.

Parameters are chosen as in Table 3.2. In the panel to the left (right) the blue lines show the results for an

individual with a negative (positive) sensitivity of labor income growth on X (t) of y1 = −0.5 (y1 = 0.5). In both

Panels the green lines show the case of constant labor income growth y1 = 0. The lines with crosses (circles)

display the results for an individual with constant (stochastic) labor income volatility. In the case of stochastic

labor income volatility σy1 = 0.5.

As Panel (b) shows, this is not the case in the presence of stochastic income volatility. In fact,

8For more details on the constant income volatility case see Chapter 2.
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the slope varies with X and changes sign. From an analytical point of view

∂Â

∂X
=

∂k

∂X
Y =

(∫ τ

0

(

d̂1 (s) + d2 (s)X
)

eD(X,s)ds

)

Y (3.8)

By the positivity of the exponential function and Y , the sign is determined by d̂1 (s) + d2 (s)X.

As d2 (s) < 0, ∀s and d̂1 (s) is bounded it can be stated that the slope of total wealth is positive

for sufficiently small X and negative for sufficiently high X.

From

k (X, τ) =

(∫ τ

0
ed0(s)+d̂1(s)X+ 1

2
d2(s)X2

ds

)

Y

the negativity of d2 (s) implies that e
1
2
d2(s)X2

has an unambiguously negative effect on the level

of total wealth at X = X̄. However, a general statement cannot be made because of the impact

of σy1 > 0 on d̂1 (s) and the impact of d2 (s) and d̂1 (s) on d0 (s). Nevertheless, for the chosen

parameters the total impact on the level of total wealth is negative.

Panels (a) and (b) of Figure 3.5 show total risky investment. It can be seen that at the long-

run mean X̄ the inclusion of stochastic volatility leads to a decrease in the level of risky asset

holdings. Moreover, the slopes become less steep and can even turn negative. A low sensitivity of

optimal investment across states seems a desirable property because permanent portfolio shifts

are avoided.

As can be seen from Panels (c) and (d) and the definition of state variable hedging demand

in equation (3.7), the impact of X on state variable hedging demand is rather simple, as it is

only affected by the changes in total wealth.

The changes in indirect labor hedging demand are far more interesting. While in the case

σy1 = 0 the slope of indirect hedging demand is unambiguously positive, this is not the case

when stochastic labor volatility is included. The derivative of indirect labor hedging demand

with respect to X is given by

∫ τ

0

(

d̂1 (s)
2 + d2 (s) + 2d̂1 (s) d2 (s)X + d2 (s)

2X2
)

eD(s,X)ds

Without stochastic volatility the term in the parentheses reduces to d̂1 (s)
2, which is positive.

In the presence of stochastic volatility, the terms d̂1 (s)
2 and d2 (s)

2X2 are also unambiguously

positive. However, this is not the case for the other two terms. As shown above, d2 (s) < 0

and the term 2d̂1 (s) d2 (s)X can have either sign. Hence, the absence of a clear relation is

straightforward.

The change in level is mainly caused by the term d2 (s)X, which is unambiguously negative

for X > 0. This can be clearly recognized in Panels (e) and (f) as the reduction in the difference

between the solid and the dashed lines as X goes to zero.

The behavior of indirect labor hedging demand can be explained by the goal of intertemporal

hedging. High income volatility in high states of X is clearly an undesirable feature. As a

consequence, the individual takes a (short) position in the risky asset that delivers a high return

before a negative state and vice versa.
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Figure 3.5: Optimal Risky Investment - Stochastic Labor Income Volatility
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Figure 3.5 continued: Panels (a) and (b) show optimal total risky investment A (t)π∗t dependent on the state

variable under stochastic labor income volatility. Panels (c) to (h) show the components of hedging demand as

described in equation (3.2). Parameters are chosen as in Table 3.2. In the panels to the left (right) the blue

lines show the results for an individual with a negative (positive) sensitivity of labor income growth on X (t) of

y1 = −0.5 (y1 = 0.5). In both panels the green line shows the case of constant labor income growth y1 = 0. The

lines with crosses (circles) display the results for an individual with constant (stochastic) labor income volatility.

In the case of stochastic labor income volatility σy1 = 0.5.

Direct labor hedging demand is displayed in Panels (g) and (h). From its definition it becomes

clear that two effects are at work. On the one hand, the demand is directly affected by X through

ρsy (σy0 + σy1X) /σs. On the other hand, k changes with X. Moreover, it should be kept in mind

that at X = X̄, σy0 + σy1X̄ is the same for all cases. The derivative of direct labor hedging

demand with respect to X is given by

−ρsyσy1
σs

kY − ρsy (σy0 + σy1X)

σs

(∫ τ

0

(

d̂1 (s) + d2 (s)X
)

eD(s,X)ds

)

Y (3.9)

It should be noticed that the first term is unambiguously negative, but the second part is more

complicated.

In the case of constant income volatility, the first term drops out and the second reduces to

−ρsyσy0
σs

(∫ τ

0
d̂1 (s) e

d0(s)+d̂1(s)Xds

)

Y

and the sign of the slope of direct labor hedging demand is determined by the sign of −ρsyd̂1 (s).
For the slope of direct hedging demand in the case of stochastic income volatility, it should

be noted that by the positivity of the exponential function and Y , the two terms σy0 + σy1X

and d̂1 (s) + d2 (s)X become crucial. Indeed, if the terms have the same sign, the second term

of (3.9) also becomes negative and the slope of direct labor hedging demand is clearly negative.

For sufficiently high values of X,

σy0 + σy1X > 0 ∧ d̂1 (s) + d2 (s)X < 0

The second relation follows from the phase plane analysis that showed d2 (s) < 0 and because

d̂1 (s) is bounded. In analogy, for sufficiently small values of X,

σy0 + σy1X < 0 ∧ d̂1 (s) + d2 (s)X > 0

For intermediate values of X, the two terms have the same sign. Thus, general statements are

not possible. However, for the chosen parameter values around the steady state X̄ the first part

of (3.9) dominates and the slope is negative.

At X = X̄, the impact on the level of direct labor hedging demand stems exclusively from

changes in k as σy0+σy1X̄ = σ̄y. Hence, the changes in the level of direct labor hedging demand

are analogous to the changes in total wealth.

The stronger variation in direct labor income hedging demand is intuitive as high levels of X

imply high labor income volatility and hence more pronounced positions in the risky asset are

needed to hedge labor income.
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Figure 3.6: Optimal Consumption - Stochastic Labor Income Volatility

Panels (a) and (b) show optimal consumption exceeding the subsistence level c∗t−c̄ dependent on the state variable

under risky labor income. Parameters are chosen as in Table 3.2. In the panel to the left (right) the blue lines show

the results for an individual with a negative (positive) sensitivity of labor income growth on X (t) of y1 = −0.5

(y1 = 0.5). In both panels the green lines show the case of constant labor income growth y1 = 0. The lines with

crosses (circles) display the results for an individual with constant (stochastic) labor income volatility. In the case

of stochastic labor income volatility σy1 = 0.5.

Figure 3.6 shows the results for optimal consumption exceeding the subsistence level of con-

sumption. The results are rather easy to explain as the denominator of (3.6) is the same for

all cases and hence the differences are caused exclusively by the differences in total wealth. A

detailed discussion is omitted, but it should be noticed that stochastic labor income volatility

leads to lower consumption in high states of X.

To show the impact of σy1 more clearly, Figures 3.7 - 3.9 exhibit the blue cases with an

additional value for σy1 = 0.08. The analysis does not show any unexpected results. In general,

the results go in the same direction and are stronger in magnitude. Nevertheless, the following

points are worth mentioning.

Panels (a) and (b) of Figure 3.8 show that optimal risky investment can decrease as the state

variable increases. Moreover, total risky investment can become rather insensitive to changes in

the state variable. This is a desirable feature as it avoids strong shifts in risky investment across
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states. As can be seen form Panels (g) and (h), these effects are mainly driven by changes in

direct labor hedging demand, which becomes steeper.

Furthermore, the parameter values of the lines with squares in the panels to the left lead to

both falling risky investment and consumption in states of high labor income volatility, even

though expected returns of the risky asset rise with X.
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Figure 3.7: Total Wealth - Sensitivity

This Figure exhibits total wealth Â (t) dependent on the state variable under stochastic labor income volatility.

Parameters are chosen as in Table 3.2. In the panel to the left (right) the blue lines show the results for an

individual with a negative (positive) sensitivity of labor income growth on X (t) of y1 = −0.5 (y1 = 0.5). The

lines with crosses (circles, squares) display the results for an individual with constant (stochastic) labor income

volatility. In the case of stochastic labor income volatility σy1 = 0.5 (circles) and σy1 = 1 (squares).
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Figure 3.8: Optimal Risky Investment - Sensitivity
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Figure 3.8 continued: Panels (a) and (b) show optimal total risky investment A (t)π∗t dependent on the state

variable under stochastic labor income volatility. Panels (c) to (h) show the components of hedging demand as

described in equation (3.2). Parameters are chosen as in Table 3.2. In the panels to the left (right) the blue

lines show the results for an individual with a negative (positive) sensitivity of labor income growth on X (t) of

y1 = −0.5 (y1 = 0.5). The lines with crosses (circles, squares) display the results for an individual with constant

(stochastic) labor income volatility. In the case of stochastic labor income volatility σy1 = 0.5 (circles) and σy1 = 1

(squares).

Finally, in Chapter 2 it was shown that for the cases with a positive sensitivity of labor income

growth on the state variable (y1 > 0), the optimal policies increase along X and seem unrealis-

tically extreme. The inclusion of stochastic labor income volatility with high volatility in states

of high income growth is an appropriate mean to achieve more realistic policies. In other words,

a positive sensitivity of income growth can not be ruled out per se, but should be considered

with a positive sensitivity of income volatility.
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Figure 3.9: Optimal Consumption - Sensitivity

Panels (a) and (b) show optimal consumption exceeding the subsistence level c∗t−c̄ dependent on the state variable

under risky labor income. Parameters are chosen as in Table 3.2. In the panel to the left (right) the blue lines show

the results for an individual with a negative (positive) sensitivity of labor income growth on X (t) of y1 = −0.5

(y1 = 0.5). The lines with crosses (circles, squares) display the results for an individual with constant (stochastic)

labor income volatility. In the case of stochastic labor income volatility σy1 = 0.5 (circles) and σy1 = 1 (squares).
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3.4 Conclusion

The inclusion of stochastic labor income volatility gives new insights. In addition to the results

of the basic model presented in Chapter 2, the most important results are the following:

1. The inclusion of stochastic volatility in labor income always drives a wedge between the

risky asset and labor income. Hence, the valuation of the labor income stream will always

depend on state variable and indirect labor hedging demand is never zero.

2. If labor income and the risky asset are positively correlated, then the part of the hedging

demand that is due to stochastic volatility converges to a stable solution even for an infinite

horizon. Nevertheless, a highly persistent state variable can lead to l1 > 0, which is in favor

of extreme results.

3. The addition of stochastic labor income volatility allows for more interesting patterns of

the two labor hedging demands. In fact, indirect and direct labor hedging demand can

become non-monotone in the state variable.

4. Labor income volatility can generate risky investment that is rather insensitive to changes

in the state variable. Furthermore, optimal policies which include both decreasing risky

investment and consumption are possible even if expected returns of the risky asset are

rising.

The results show that stochastic labor income volatility can have a considerable effect even

if labor income volatility is low. Finally, it can be concluded that the major result of Lynch

and Tan (2009) - stochastic labor income volatility leads to lower risky investment - could be

qualitatively verified.
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3.A Appendix

3.A.1 Valuation of the Labor Income Stream with the Martingale Approach

The risk-neutral valuation of the future labor income stream is given by9

G = EQ
0

[∫ τ

0
e−r0sY (s) ds

]

Since it is assumed that there is only one shock that drives the economy, complete markets

are implied. As stated in Pliska (1986) and He and Pearson (1991), the market price of risk is

unique in complete markets. With a change in measure from the risk-neutral to the standard

probability law, the value of the future income stream can be written as.

G =
1

φ (0)
E0

[∫ τ

0
φ (s)Y (s) ds

]

(3.10)

where
dφ (t)

φ (t)
= −r0dt− θ (t) dWs (t) = −r0dt−

λ1
σs
X (t) dWs (t) (3.11)

The process φ (t) can be interpreted as a system of Arrow-Debreu prices. Indeed, the value of

φ (t) in each state gives the price per unit probability of a dollar in that state.

From (3.10) and (3.11) it can be recognized that the value of the labor income stream must

be a function of X, Y and τ . Furthermore, from Cox et al. (1985) it is known that every asset

must obey the following no-arbitrage condition

Y +
∂G

∂t
− ∂G

∂X
κx

(
X − X̄

)
+
∂G

∂Y
(y0 + y1X)Y

+
1

2

[
∂2G

∂X2
σ2x +

∂2G

∂Y 2
σ2yY

2 + 2
∂2G

∂X∂Y
ρxyσxσy

]

− r0G

=

[
∂G

∂X
ρsxσx +

∂G

∂Y
ρsyσyY

]
λ1
σs
X (3.12)

where σy ≡ σy0 + σy1X (t). The first term Y is the instantaneous wage and is analogous to a

dividend paying asset. The RHS shows the expected return every asset must deliver in order to

comply with the premium of the tradable risky asset. Now, a function of the form

G (X,Y, τ) = k (X, τ)Y

implies the following partial derivatives

∂G

∂t
= −∂G

∂τ
= −∂k

∂τ
Y

∂G

∂X
=

∂k

∂X
Y,

∂2G

∂X2
=

∂2k

∂X2
Y

∂G

∂Y
= k,

∂2G

∂Y 2
= 0

∂2G

∂X∂Y
=

∂k

∂X
9For a textbook treatment of the martingale approach, the reader is referred to Korn (1997) Chapter 3.4. or

Shreve (2004) Chapter 5.
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Plugging in the partial derivatives into (3.12) and dividing by Y leads to

0 = 1− ∂k

∂τ
− ∂k

∂X
κx

(
X − X̄

)
+ k (y0 + y1X)

+
1

2

∂2k

∂X2
σ2x +

∂k

∂X
ρxyσx (σy0 + σy1)− r0k

−ρsxσx
σs

λ1X
∂k

∂X
− ρsy (σy0 + σy1X)

σs
λ1Xk

which is identical to the term in the brackets of (3.2).

3.A.2 A Special System of Ordinary Differential Equations - Solutions

The system of ordinary differential equation (SODE)

∂d2
∂s

= l0 + l1d2 + l2d
2
2 (3.13)

∂d̂1
∂s

= l6 + l3d2 +
l1
2
d̂1 + l2d2d̂1 (3.14)

∂d0
∂s

= l7 + l4d̂1 +
l2
2
d̂21 + l5d2 (3.15)

is related to the system discussed in Kim and Omberg (1996). In fact, (3.13) is identical to

the first equation in the system of Kim and Omberg and hence their solutions apply as well.

However, in the second equation there is an additional constant l6, which makes the solution

of the system more complicated. Furthermore, there is an additional constant l7 in the final

equation. Initial conditions are d2 (0) = d̂1 (0) = d0 (0) = 0.

In order to solve the second equation, the following form for the solution is attempted

d̂1 (s) = d1 (s) + d̃1 (s)

Plugging in into (3.14) yields

∂d1 (s)

∂s
+
∂d̃1 (s)

∂s
= l6 + l3d2 +

l1
2

(

d1 (s) + d̃1 (s)
)

+ l2d2

(

d1 (s) + d̃1 (s)
)

This equation can be separated into

∂d1 (s)

∂s
= l3d2 +

l1
2
d1 (s) + l2d2d1 (s) (3.16)

∂d̃1 (s)

∂s
= l6 +

l1
2
d̃1 (s) + l2d2d̃1 (s) (3.17)

with d̃1 (0) = d1 (0) = 0. (3.16) is identical to the second equation in Kim and Omberg and

thus the task is to find a solution to (3.17). Dealing with this equation demands solving a linear

differential equation with time-varying coefficients and initial condition d̃1 (0) = 0.

The final equation (3.15) of the SODE can be solved by integration. Kim and Omberg show

that closed-form solutions for d0 (s) are available for their system, but are long and hard to

interpret. Although closed-form solutions might be available even for this extended system, the
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search for them is omitted. There are several good reason to refrain from this task10. Firstly,

and most importantly, d0 (s) is not needed in order to determine the sign of the corresponding

hedging demand. Secondly, the closed-form solution will be extensive and its interpretation will

be difficult. Finally, (3.15) can be solved easily numerically as long as d2 (s) and d̂1 (s) are

available in closed-form.

The first equation (3.13) is a Riccati differential equation and three cases can be distin-

guished11. All derivations are given in Appendix 3.A.3.

Case I ql ≡ l21 − 4l0l2 > 0

In the first case ql > 0, which means that (3.13) has two real particular solutions. In this case

the solution for the SODE is given by12.

d2 (s) =
2l0 (1− e−ηls)

2ηl − (l1 + ηl) (1− e−ηls)

d1 (s) =
4l0l3

(
1− e−ηls/2

)2

ηl [2ηl − (l1 + ηl) (1− e−ηls)]

d̃1 (s) =
2l6

2ηl − (l1 + ηl) (1− e−ηls)

[

2
(

1− e−ηls/2
)

− l1 + ηl
ηl

(

1− e−ηls/2
)2

]

(3.18)

d0 (s) =

∫ τ

0
l7 + l4d1 (s) +

l2
2
d1 (s)

2 + l5d2 (s) ds

where ηl ≡
√
ql.

Since (3.13) is a quadratic equation and ql > 0, two real solutions exist. d+2
(
d−2

)
is the one

associated with the positive (negative) root. The sign of the two solutions can be determined by

the rule

d+2 d
−
2 =

l0
l2

Since l2 > 0, the solutions have opposite signs if l0 < 0, and equal sign otherwise. Figure 3.1

contains a phase plane analysis and makes clear that only one solution is a stable equilibrium.

Moreover, because d2 (0) = 0, the solution converges to a finite number only if both particular

solutions are positive or have opposite signs. As can be seen in Panel (c), if both particular

solutions are negative, the solution will not converge and grows without bound. Kim and Omberg

name this situation as “nirvana” solutions. Since l2 > 0, this solution only occurs in cases where

l0 > 0 and l1 > 0. More interestingly, the nirvana is obtained at a finite horizon, which is given

by13

sc =
1

ηl
ln

(
l1 + ηl
l1 − ηl

)

10We follow the example of Wachter (2002), who also resigned from this issue.
11Kim and Omberg (1996) subdivide the second case into two cases called the “hyperbolic” and the “polyno-

mial” solution. We omit the latter since in our model this case is not admissible. To be more precise, this case

presumes l1 = l2 = 0 and as can be seen from the text l2 > 0.
12The solution can be looked up in integral tables, see Gradshteyn and Ryzhik (2000, p. 78), or can be derived

by general methods of solving Riccati differential equations as described in Zwillinger (1998, p. 392). Furthermore,

this differential equation is well known from the term structure literature, see, for example, Ingersoll (1987, p.

397).
13d2 (s) approaches infinity when its denominator approaches zero.
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Finally it should be noticed that

lim
s→∞

d2 (s) =
2l0

ηl − l1
=

1

−l1+
√

l21−4l0l2
2l0

l2
l2

=
1

−l1+
√

l21−4l0l2
2l2

l2
l0

=
1

d+2
l2
l0

= d−2

Hence, the stable solution is always the one associated with the negative root.

Case II ql ≡ l21 − 4l0l2 = 0

In the second case, the quadratic equation has only one solution, i.e. ql = 0

d2 (s) = −
1

l2

(

s− 2
l1

) − l1
2l2

d1 (s) = −
l3

l1l2

(

s− 2
l1

) −
l1l3

(

s+ 2
l1

)

4l2

d̃1 (s) = 2l6




1

4

(

s+
2

l1

)

+
1

l21

(

s− 2
l1

) − 1

l1 − 2
s



 (3.19)

d0 (s) =

∫ τ

0
l7 + l4d1 (s) +

l2
2
d1 (s)

2 + l5d2 (s) ds

Panels (a) and (b) of Figure 3.2 display that the solution of d2 (s) converges to a finite limit if

l1 < 0, and is a nirvana solution otherwise. In the nirvana case, the critical horizon is given by14

sc =
2

l1

Case III ql ≡ l21 − 4l0l2 < 0

The third case covers ql < 0, i.e. the quadratic equation does not have any real solutions. In this

case, the solutions are given by

d2 (s) =
ηl
2l2

tan (ωs+ ϕ)− l1
2l2

where ̟ ≡ ηl
2 and ϕ ≡ arctan

(
l1
ηl

)

d1 (s) = −
l3
l2

[1 + tan (ϕ) tan (ωs+ ϕ)− sec (ϕ) sec (ωs+ ϕ)]

d̃1 (s) = sec (ωs+ ϕ) cos (ϕ)
2l1l6
η2l

[

−1 + cos (ωs+ ϕ) +
ηl
l1

sin (ωs+ ϕ)

]

(3.20)

d0 (s) =

∫ τ

0
l7 + l4d1 (s) +

l2
2
d1 (s)

2 + l5d2 (s) ds

As can be seen from Panel (c) of Figure 3.2, there is no particular solution, the solution of d2 (s)

will not converge to a finite limit. Hence, this case results in nirvana solutions independent of l1

and l0. The critical horizon is given by15

sc =
π

ηl
− 2

ηl
ϕ

14As before, the result can be derived by setting the denominator of c2 (s) to zero. Moreover, application of the

rule of de l’Hospital yields that limηl→0+
1
ηl

ln
(
l1+ηl
l1−ηl

)

= 2
l1
, indeed.

15For this case, it should be kept in mind that limψ→π/2 tan (ψ) = ∞. Moreover, application of the rule of de

l’Hospital to sc =
2
ηl

(
π
2
− ϕ

)
yields limη→0+ sc =

2
l1
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where π is the mathematical constant and should not be confused with the risky investment

policy.

3.A.3 A Special System of Ordinary Differential Equations - Derivations

The general formula for the solution of a linear differential equation with time-varying coefficients

∂d̃1 (s)

∂s
+ f1 (s) d̃1 (s) = f0 (s)

is given by16

d̃1 (s) = e−F
∫

f0 (s) e
Fds+ e−FK

where

F ≡
∫

f1 (s) ds

and K is the constant of integration. Starting from (3.17)

∂d̃1 (s)

∂s
−

(
l1
2
+ l2d2 (s)

)

︸ ︷︷ ︸

f1(s)

d̃1 (s) = l6
︸︷︷︸

f0(s)

Obviously, only f1 (s) is really a function of time through d2 (s) and f0 (s) = l6 is constant17.

Hence, the main task is to find the primitive of d2 (s).

Case I ql ≡ l21 − 4l0l2 > 0

In this case the primitive of d2 (s) is given by18

∫

d2 (s) ds =
2l0

ηl − l1
s+

4l0
η2l − l21

ln

(
2ηl − (l1 + ηl) (1− e−ηls)

2ηl

)

Hence,

F =

∫

− l1
2
− l2d2 (s) ds

= − l1
2
s− 2l0l2

ηl − l1
s− 4l0l2

η2l − l21
ln

(
2ηl − (l1 + ηl) (1− e−ηls)

2ηl

)

eF = eηls/2
(
2ηl − (l1 + ηl) (1− e−ηls)

2ηl

)

For the last step the definition of ηl should be kept in mind and thus 4l0l2 = l21 − η2l
∫

f0 (s) e
Fds =

∫

l6e
ηls/2

(
2ηl − (l1 + ηl) (1− e−ηls)

2ηl

)

ds

=
l6
ηl

(

2eηls/2 − l1 + ηl
ηl

eηls/2
(
1− e−ηls

)
)

16See, for example, Polyanin and Zaitsev (1995, p. 1).
17Since (3.16) contains time variation in f1 (s) and f0 (s) , it could be expected that (3.17) is easier to solve and

leads to simpler solutions. This is not the case, because in the solution of (3.16), the integral
∫
f0 (s) e

F ds allows

the cancelling out of some of the time-varying parts. However, this is not the case if f0 (s) is simply the constant

k6.
18All solutions are verified by the use of Mathematica (Version 7.0.1.0).
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d̃1 (s) =
2

2ηl − (l1 + ηl) (1− e−ηls)

[

l6

(

2− l1 + ηl
ηl

(
1− e−ηls

)
)

+ 2ηle
−ηls/2K

]

(3.21)

The initial condition d̃1 (0) = 0 leads to

K = l6
l1 + ηl
η2l

Plugging in K into (3.21) leads to

d̃1 (s) =
2l6

2ηl − (l1 + ηl) (1− e−ηls)

[

2
(

1− e−ηls/2
)

− l1 + ηl
ηl

(

1− e−ηls/2
)2

]

(3.22)

Case II ql ≡ l21 − 4l0l2 = 0

In this case the primitive of d2 (s) is given by

∫

d2 (s) ds = −
l1
2l2

s+
1

l2
ln





∣
∣
∣l1

(

s− 2
l1

)∣
∣
∣

2





Thus,

F =

∫

− l1
2
− l2d2 (s) ds

eF =

∣
∣
∣l1

(

s− 2
l1

)∣
∣
∣

2

Furthermore,

∫

f0 (s) e
Fds =

∫

l6

∣
∣
∣l1

(

s− 2
l1

)∣
∣
∣

2
ds

=
1

4
l6l1s

2 − l6s+K

d̃1 (s) =
1

1
2 l1

(

s− 2
l1

)

[
1

4
l6l1s

2 − l6s+K

]

(3.23)

The initial condition d̃1 (0) = 0 leads to

K = 0

Plugging in K into (3.23) leads to

d̃1 (s) =
1

1
2 l1

(

s− 2
l1

)

[
1

4
l6l1s

2 − l6s
]

l6
1
2 l1

(

s− 2
l1

)

[
1

4
l1s

2 − 4

l21
+

4

l21
− s

]

= 2l6




1

4

(

s+
2

l1

)

+
1

l21

(

s− 2
l1

) − 1

l1 − 2
s



 (3.24)
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Case III ql ≡ l21 − 4l0l2 < 0

In this case the primitive of d2 (s) is given by

∫

d2 (s) ds = −
l1
2l2

s− 1

l2
ln [cos (ωs+ ϕ)]

where ω and ϕ are defined as in the main text. Thus,

F =

∫

− l1
2
− l2d2 (s) ds

eF = cos (ωs+ ϕ)

Moreover,

∫

f0 (s) e
Fds =

∫

l3 cos (ωs+ ϕ) ds

=
2l3
η2l

cos (ϕ) [l1 cos (ωs+ ϕ) + ηl sin (ωs+ ϕ)] +K

d̃1 (s) = sec (ωs+ ϕ)

[
2l3
η2l

cos (ϕ) [l1 cos (ωs+ ϕ) + ηl sin (ωs+ ϕ)] +K

]

(3.25)

The initial condition d̃1 (0) = 0 leads to

K = −2l1l3
η2l

cos (ϕ)

Plugging in K into (3.25) leads to

d̃1 (s) = sec (ωs+ ϕ) cos (ϕ)
2l1l3
η2l

[

−1 + cos (ωs+ ϕ) +
ηl
l1

sin (ωs+ ϕ)

]

(3.26)



Chapter 4

Portfolio and Consumption Decisions

with Labor Income and a Volatility

Premium

In this chapter we present a model that is related to the preceding chapters. However, there are

crucial differences. In particular, it is assumed that the risky asset and labor income are exposed

to stochastic volatility. Furthermore, the market price of risk is assumed to rise with the square

root of volatility. Without labor income this setting is a special case of Liu (2007) and a closely

related model was analyzed by Chacko and Viceira (2005). The most striking result of these

papers is that stochastic volatility leads to hedging demand that is small in magnitude. This

stands in contrast to models that contain market premiums, which depend linearly on a state

variable as presented by Kim and Omberg (1996) and Wachter (2002). However, we show that

the presence of labor income can have a strong impact on the results and considerable hedging

demand can arise.

Moreover, in a second step we extend the basic model by integrating it into a simple life-

cycle model. This model includes a phase of retirement without any non-financial income. As

a consequence the individual has to adapt her saving behavior in order to afford the phase of

retirement.

As in the models of Chapters 2 and 3 it must be assumed that the state variable and the

risky asset are perfectly correlated. While this was not too problematic for the dividend yield,

the assumption in this model is a drawback. Nevertheless, in several studies it is shown that the

results of the special cases are close to numerically solved general cases1. Hence, we expect that

the main aspects of theoretical insights of this chapter are valid even for less restrictive models.

Finally, as before one has to assume that labor income is either locally riskfree of perfectly

correlated with the risky asset (i.e. markets are complete).

From a technical point of view, the solution can be derived by the same methods as in Chap-

1See Cocco et al. (2005), Huang and Milevsky (2008), Huang et al. (2008), Bick et al. (2009) and Dybvig and

Liu (2010).
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ter 2. In particular, the HJB can be separated into systems of ordinary differential equations

(SODE). Nevertheless, the SODE are different and other solutions apply. As a consequence, the

separation of the HJB is not described in detail and the reader is referred to the appendix of

Chapter 2. The solutions of the new SODE are shown in depth. Moreover, this chapter is written

so that the implications can be understood without reading Chapter 2 first.

The remainder of this chapter is as follows. In Section 4.1, the basic model with preferences

over intermediate consumption is introduced. In Section 4.2, the model is adapted to preferences

over terminal wealth. Section 4.3 discusses the long-horizon stability of the solution. Section 4.4

contains the results of the basic model for numerically realistic parameter values. In Section

4.5, the basic model with preferences over intermediate consumption is integrated in a simple

life-cycle model. The final Section concludes. Mathematical derivations are given in Appendices

4.A.1 - 4.A.3.

4.1 Model with Utility over Consumption

For the sake of simplicity, it is assumed that in the basic model the individual works during the

entire planning horizon [t, T ]. Thus, the conditional expected utility over the remaining horizon

for an individual at t is

Et

[∫ T

t

e−δs

1− γ (c (s)− c̄)1−γ ds
]

, γ > 1

where c̄ > 0 is the subsistence level of consumption, δ ≥ 0 is the time discount parameter and

τ ≡ T − t is the fixed and certain time horizon.

It is assumed that the risky asset and labor income are exposed to stochastic volatility and

receive a premium proportional to this exposure2. In particular,

dS1 (t)

S1 (t)
= (r0 + λ1X (t)) dt+ σs

√

X (t)dWs (t)

where λ1 > 0 and σs > 0. The riskless rate is assumed to be constant and the dynamics of a

riskless bond are given by3

dS0 (t)

S0 (t)
= r0dt

It should be noted that in this framework, the market price of risk is not linear in X (t), but

given by

θ (t) ≡ λ1
σs

√

X (t) (4.1)

In particular, the market price of risk grows only in the square root of the state variable.

The only state variable is stochastic volatility that follows4.

dX (t) = −κx
(
X (t)− X̄

)
dt+ σx

√

X (t)dWx (t) (4.2)

2A similar model for asset prices was already proposed by Merton (1980).
3A specification of the short rate of the form dS0 (t) /S0 (t) = (r0 + r1X (t)) dt could be chosen without severe

problems. Properties of affine term structure models are well-known, see, for example, Dai and Singleton (2000).

For the sake of simplicity and in order to show the effects of non-financial income clearly, this is omitted.
4This process is well-known from the term structure literature, for example Cox et al. (1985) and from the

option pricing literature, for example Heston (1993).
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where κx > 0, X̄ > 0 and σx > 0. As stated above, the specification of stochastic volatility and

a volatility premium in the financial market is a special case of Liu (2007)5.

Furthermore, it is assumed that the wage consists of two parts. In particular,

Ŷ (t) = Ȳ + Y (t)

where Ȳ ≥ 0 is a constant and thus without risk. Y (t) is risky and follows

dY (t)

Y (t)
= [y0 + y1X (t)] dt+ σy

√

X (t)dWy (t) (4.3)

where σy ≥ 0. Since Y (t) cannot become negative, this part can be interpreted as a minimum

wage that is guaranteed by a third party.

This leads to the following dynamics of the investors financial wealth

dA (t) =
[

(π (t)λ1X (t) + r0)A (t) + Ŷ (t)− c (t)
]

dt

+π (t)A (t)σs
√

X (t)dWs (t) (4.4)

The HJB is given by

0 = Jt + sup
c

[

e−δt
(ct − c̄)1−γ

1− γ − JAct
]

+sup
π




JAπ (t)A (t)λ1X (t) + 1

2JAAπ (t)
2A (t)2 σ2sX (t)

+JAXπ (t)A (t) ρsxσsσxX (t) + JAY π (t)A (t)Y (t) ρsyσsσyX (t)





+JA
[
A (t) r0 + Y (t) + Ȳ

]
− JXκx

(
X (t)− X̄

)
+ JY Y (t) [y0 + y1X (t)]

+
1

2
JXXσ

2
xX (t) +

1

2
JY Y Y (t)2 σ2yX (t) + JXY Y (t) ρxyσxσyX (t) (4.5)

Hence, the following first order conditions (FOCs) result

c∗t =
(

eδtJA

)− 1
γ
+ c̄ (4.6)

and

π∗t = − JA
JAAA (t)

λ1
σ2s
− JAX

JAAA (t)

ρsxσx
σs

− JAY

JAAA (t)

ρsyσy
σs

Y (t) (4.7)

Plugging in the FOCs (4.6) and (4.7) into the HJB equation (4.5) yields

0 = Jt +
γ

1− γ e
− δ
γ
t
J
1− 1

γ

A − JAc̄+ JAA (t) r0 + JAY (t) + JAȲ

−JXκx
(
X (t)− X̄

)
+ JY Y (t) [y0 + y1X (t)]

+
1

2
JAA (t)π∗t λ1X (t) +

1

2
JAXA (t)π∗t ρsxσxσsX (t)

+
1

2
JAYA (t)Y (t)π∗t ρsyσsσyX (t)

+JXY Y (t) ρxyσxσyX (t) +
1

2
JY Y Y (t)2 σ2yX (t) +

1

2
JXXσ

2
xX (t)

5Chacko and Viceira (2005) use a slightly different specification of the volatility process. Liu presents this case

as an example for his general model. See Liu (2007, p. 28-31).
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One guesses a value function of the following form

J =
e−δ(T−τ)

[∫ τ
0 e

1
γ
(c0(s)+c1(s)X)

ds
]γ

(A+ k (X, τ)Y −R (τ))1−γ

1− γ (4.8)

where τ ≡ T − t, k (X, τ) is a function of the state variable and the time horizon, and R (τ) is a

function of the time horizon. Both functions will be parameterized below6. The solution of the

HJB is shown in Appendix 4.A.1.

As the focus is on closed-form solutions, some assumptions have to be implemented. In fact,

similarly to Chapter 2 it must be assumed that

ρsx ∈ {−1, 1} (4.c.1)

and either

ρsy ∈ {−1, 1} ⇒ ρxy = ρsxρsy ∈ {−1, 1} (4.c.2)

or

σy = 0 (4.c.3)

Admittedly, these assumptions do not match reality one-to-one. Nevertheless, several papers have

shown that the results of the exactly solvable special cases are qualitatively similar to the cases

with non-perfect correlation7. Hence, we expect that the qualitative results hold for more general

cases. Furthermore, these assumptions come with an advantage besides the interpretability of

the closed-form solutions. In fact, in the case of ρsy /∈ {−1, 1} and σy > 0, current financial

wealth must be higher than the reserves for the future subsistence consumption8. This would be

an unrealistic assumption, especially for young individuals who generally have a low financial

wealth.

In analogy to Chapter 2, equation (4.31) from Appendix 4.A.1 can be separated into ordinary

differential equations.

4.1.1 Separating the HJB by A

Given the ordinary differential equation (4.31) from Appendix 4.A.1 and separating by A gives

the following equation

0 =

∫ τ

0
eC(X,s)







− δ
1−γ − 1

1−γ

(
∂c0(s)
∂s + ∂c1(s)

∂s X
)

+ r0

− 1
1−γκxc1 (s)X + 1

1−γκxX̄c1 (s)

+1
2
1
γ
λ2
1

σ2
s
X + 1

γ
ρsxσx
σs

λ1c1 (s)X + 1
2

1
1−γ

1
γσ

2
xc

2
1 (s)X







ds (4.9)

6For the sake of brevity, the time subscripts for financial wealth, non-financial income and the state variable

are omitted.
7See Cocco et al. (2005), Huang and Milevsky (2008), Huang et al. (2008), Bick et al. (2009) and Dybvig and

Liu (2010).
8In Koo (1998) and Munk (2000) it is shown for an individual with power utility over consumption that under

non-perfect correlation between the financial asset and labor income, total wealth and risky investment go to

zero as the financial wealth approaches zero. This is intuitive as otherwise the individual risks to ending up with

negative wealth and no income and hence, cannot afford a positive consumption level, which is clearly not optimal.
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Matching coefficients on X and constants, one gets a system of two ordinary differential equa-

tions:

∂c1 (s)

∂s
= k0 + k1c1 (s) + k2c1 (s)

2 (4.10)

∂c0 (s)

∂s
= k3 + k4c1 (s)

where

k0 ≡
1

2

1− γ
γ

λ21
σ2s
, k1 ≡ −κx +

1− γ
γ

ρsxσx
σs

λ1, k2 ≡
1

2

1

γ
σ2x

k3 ≡ (1− γ) r0 − δ, k4 ≡ κxX̄

and initial conditions c1 (0) = c0 (0) = 0. The solutions are given by

c1 (s) =
2k0 (1− e−ηs)

2η − (k1 + η) (1− e−ηs) (4.11)

c0 (s) = k3s+
2k0k4
η − k1

s+
4k0k4
η2 − k21

ln

(
2η − (k1 + η) (1− e−ηs)

2η

)

(4.12)

where q ≡ k21 − 4k0k2 and η ≡
√

|q|.

Remarks

• This is the solution from Liu (2007). It is easy to show that if γ > 1⇒ k0 < 0⇒ q > 0 and

thus, (4.10) has two real particular solutions. If q ≤ 0, different solutions would apply9.

• Since k2 > 0 ⇒ k1 + η < 2η, c1 (s) has the same sign as10 k0. Thus, the unambiguous

negativity of k0 leads to c1 (s) < 0 for s > 0.

• Given γ > 1, c1 (s) converges to a finite number as s → ∞. In other words, the solution

of the Riccati differential equation is well-defined.

4.1.2 Separating the HJB by Y

Separating (4.31) by the Y parts yields

0 =

∫ τ

0
eC(X,s)ds







−∂k
∂τ + 1− κxX ∂k

∂X + κxX̄
∂k
∂X + k [y0 + y1X (t)]

−ρsxσx
σs

λ1
∂k
∂XX −

ρsyσy
σs

λ1kX

+ρxyσxσy
∂k
∂XX + 1

2σ
2
x
∂2k
∂X2X − r0k







+

∫ τ

0
eC(X,s)c1 (s) ds







σ2x
[
−1

2ρ
2
sx − 1

2ρ
2
sx + 1

]
∂k
∂XX

σxσy
[
−1

2ρsxρsy − 1
2ρsxρsy + ρxy

]
kX







Terms similar to A are directly set to zero by the means of (4.9).

9See next page or Kim and Omberg (1996).
10This can also be shown in a more demonstrative way by a phase plane analysis as presented in the next

section.
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With the assumptions about the correlations, the equation simplifies to

0 =

∫ τ

0
eC(X,s)ds







−∂k
∂τ + 1− r0k − κxX ∂k

∂X + κxX̄
∂k
∂X

+k [y0 + y1X (t)]− ρsxσx
σs

λ1
∂k
∂XX −

ρsyσy
σs

λ1kX

+ρxyσxσy
∂k
∂XX + 1

2σ
2
x
∂2k
∂X2X







(4.13)

As
∫ τ
0 e

C(X,s)ds > 0, (4.13) is zero if the part in the brackets is zero. A function of the form

k (X, τ) =

∫ τ

0
ed0(s)+d1(s)Xds (4.14)

with initial conditions11 d1 (0) = d0 (0) = 0 will solve the equation (4.13). The relevant partial

derivatives are as follows

kτ =

∫ τ

0

(
∂d0 (s)

∂s
+
∂d1 (s)

∂s
X

)

ed0(s)+d1(s)Xds+ 1

kX =

∫ τ

0
d1 (s) e

d0(s)+d1(s)Xds

kXX =

∫ τ

0
d1 (s)

2 ed0(s)+d1(s)Xds

Plugging in the partial derivatives into (4.13) leads to

0 =

∫ τ

0
ed0(s)+d1(s)X







−
(
∂d0(s)
∂s + ∂d1(s)

∂s X
)

− r0 − κxd1 (s)X + κxX̄d1 (s)

+ [y0 + y1X (t)]− ρsxσx
σs

λ1d1 (s)X − ρsyσy
σs

λ1X

+ρxyσxσyd1 (s)X + 1
2σ

2
xd

2
1 (s)X







ds

Matching coefficients on X and the constant term leads to a system of two ordinary differential

equations.

∂d1 (s)

∂s
= l0 + l1d1 (s) + l2d1 (s)

2 (4.15)

∂d0 (s)

∂s
= l3 + l4d1 (s) (4.16)

where

l0 ≡ y1 −
ρsyσy
σs

λ1, l1 ≡ −κx −
ρsxσx
σs

λ1 + ρxyσxσy, l2 ≡
1

2
σ2x

l3 ≡ y0 − r0, l4 ≡ κxX̄

The first equation (4.15) is a Riccati differential equation with constant coefficients, the second

one (4.16) can be solved by integration.

11These are the only initial conditions that solve equation (4.13) due to the second part of kτ . Moreover, it can

be shown that only these initial conditions ensure that the solutions converge to the solutions of the constant

opportunity set model.
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The general solutions with initial conditions d1 (0) = d0 (0) = 0 are given by

d1 (s) =







2l0(1−e−ηls)
2ηl−(l1+ηl)(1−e−ηls)

, , ql > 0

− 1

l2
(

s− 2
l1

) − l1
2l2

, ql = 0

ηl
2l2

tan (ωs+ ϕ)− l1
2l2

, ql < 0

(4.17)

d0 (s) =







l3s+
2l0l4
ηl−l1

s+ 4l0l4
η2l −l

2
1
ln

(
2ηl−(l1+ηl)(1−e−ηls)

2ηl

)

, ql > 0

l3s− l1l4
2l2
s− l4

l2
ln

(
∣

∣

∣
l1
(

s− 2
l1

)
∣

∣

∣

2

)

, ql = 0

l3s− l1l4
2l2
s+ l4

l2
[cos (ωs+ ϕ)− cos (ϕ)] , ql < 0

(4.18)

where ω ≡ ηl
2 , ϕ ≡ arctan

(
l1
ηl

)

, ql ≡ l21 − 4l0l2 and ηl ≡
√

|ql|. The derivations are given in

Appendix 4.A.3.

Remarks

• From (4.14) it can be easily seen that k (X, τ) > 0 for τ > 0. This is intuitive as the risky

part of labor income Y cannot become negative and hence the individual attaches a positive

value to the future labor income stream.

• The system is identical to the system above in terms of structure. Again, since l2 > 0, if

l0 < 0 ⇒ ql > 0. While in the previous context this inequality is true for all coefficients

of risk aversion γ greater than one (hence, the normal case is always valid), a similar

statement is not possible. The sign of l0 depends on the valuation of the income stream,

which is similar to the CAPM. To be more specific, l0 = y1 − βsyλ1, where βsy ≡ ρsyσy
σs

.

If l0 < 0, labor income can be considered as an unfavorable asset since it does not deliver

the premium of the hedging financial position. In this case, it will be shown that d1 (s)

becomes negative and is stable. In the case of labor income it is a favorable asset, d1 (s)

becomes positive and for stability an extensive discussion is needed. If labor income has a

fair premium, l0 = 0⇒ d1 (s) = 0, ∀s.

• In the case of locally risk free labor income, σy = 0, labor income is unambiguously a

favorable (unfavorable) asset if y1 > 0 (y1 < 0).

• Risk aversion is not involved in the valuation of the income stream. This is intuitive as

the assumption of complete markets allows for a perfect hedge of labor income risk.

4.1.3 Separating the HJB by the Constant Terms

Finally, separating (4.31) by the constant parts,

0 =

∫ τ

0
eC(X,s)ds

{
∂R

∂τ
+ Ȳ − c̄+ r0R

}

(4.19)
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Again, terms that are similar for A and R are directly neglected because they are equal to zero

by the means of (4.9). By the same arguments as above, the equation is zero if the term in

the brackets is zero. The equation in the brackets is a linear differential equation with constant

coefficients and initial condition R (τ = 0) = 0

R (τ) =
c̄− Ȳ
r0

(
1− e−r0τ

)
(4.20)

Since c̄−Ȳ
r0

is the value of perpetual bond that pays c̄ − Ȳ as its coupon, it becomes clear that

(4.20) can be interpreted as the reserves necessary to cover the subsistence level of consumption

net of the minimum wage that is guaranteed.

Remarks

• From the derivation in Appendix 4.A.1 and (4.20) it can be noticed that the constant part

of labor income enters in the same way as the (constant) subsistence level of consumption.

For this reason, it can be stated that only the difference c̄− Ȳ really matters for the value of

total wealth (and risky investment). Nevertheless, optimal consumption is directly affected

by c̄ and hence, individuals with the same c̄− Ȳ but different c̄ hold an identical portfolio,

have same excess consumption c∗t − c̄, but have different consumption levels.

• Given the solution of k and R, total wealth can be structured in a more interpretable form

Â ≡ A+H −N . A is still the financial assets of the individual, H ≡ kY + Ȳ
r0

(1− e−r0τ )
is the human capital and N ≡ c̄

r0
(1− e−r0τ ) are the reserves covering the subsistence level

of consumption.

4.1.4 Optimal Policies

Plugging in the relevant partial derivatives from Appendix 4.A.1 into the FOCs (4.6) and (4.7)

leads to

c∗t =
Â

∫ τ
0 e

C(X,s)ds
+ c̄ (4.21)

and

Aπ∗t =
1

γ

λ1
σ2s
Â+

1

γ

ρsxσx
σs

∫ τ
0 c1 (s) e

C(X,s)ds
∫ τ
0 e

C(X,s)ds
Â

− ∂k

∂X
Y
ρsxσx
σs

− kY ρsyσy
σs

(4.22)

where total wealth Â is defined above and C (X, s) ≡ 1
γ (c0 (s) + c1 (s)X).

Remarks

• Optimal consumption (4.21) consists of two parts. Only the first part varies over time; the

subsistence part is constant. As a consequence, consumption varies less strongly than total

wealth. Indeed, in the classical Merton (1969) model, consumption has the same variation
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as financial wealth, which is implausible12. In this framework with power utility (c̄ = 0)

the relation is not one-to-one, but since the variation in
∫ τ
0 e

C(X,s)ds is low the relation is

close. Adding a subsistence level of consumption eases this issue.

• For individuals close to the margin of subsistence (Â→ 0), optimal consumption converges

to c̄ and its variation disappears.

• In contrast to models where the market price of risk of the risky asset is linear in X

(Chapter 2), the optimal risky exposure (4.22) varies less strongly with X. For example,

comparing the first component of the RHS of (4.22) with that of (2.24) shows that in

this model, myopic demand varies only with total wealth, while in the other model, the

component varies directly with X. As stated by Liu (2007), the additional risk premium at

higher volatility levels and the higher risk offset each other13. A similar statement is true

for state variable hedging demand.

• For individuals close to the margin of subsistence (Â → 0), the first two parts of (4.22)

vanish.

• The third term of optimal risky investment (2.24) is an additional state variable hedging

demand that arises under labor income. It does not vanish for individuals close to the

margin of subsistence. Furthermore, it even exists if labor income is locally riskfree (σy = 0)

or the correlation between labor income and the risky asset is zero (ρsy = 0). Of course, it

is necessary that the risky asset and the state variable are correlated (ρsx 6= 0). It is shown

below that this part is negative for individuals with unfavorable income characteristics,

which helps to explain the low equity exposure of low-educated and poor individuals.

• Furthermore, the third term of optimal risky investment (4.22) has a natural interpretation.

In fact, partitioning the third term into

−ρsx
︸ ︷︷ ︸

i)

σx
σs
︸︷︷︸

ii)

∂k

∂X
︸︷︷︸

iii)

Y

allows the following interpretation. Most importantly, iii) is the first derivative of the value

per unit of labor income on X. In other words, this part gives the change in the value of one

unit of labor income when the state variable moves. ii) is a multiplicator that relates the

strength of the shocks of the risky asset and the state variable. i) is simply plus or minus

one and gives the direction the state variable moves in relation to the risky asset. Thus, it

can be summarized that this third term is a hedge for the value of the future income stream

to changes in the state of the economy.

12Cochrane (2007, p. 76).
13For more details with respect to the first two parts of the optimal policy, the reader is referred to Liu (2007).

Although the focus of Liu is on utility over terminal wealth and incomplete markets, the statements remain valid

for this framework.
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• The last term is the hedging demand for labor income risk. This part does not vanish for

individuals close to the margin of subsistence. For positive (negative) ρsy it will decrease

(increase) the amount invested in the risky asset. Moreover, it will vanish if labor income

returns are uncorrelated with the risky asset or labor income is locally riskfree (σy = 0).

4.1.5 Dynamics of Optimal Total Wealth

In Appendix 4.A.2 it is shown that optimal total wealth follows

dÂ∗

Â∗
=

(

r0 +
1

γ

λ21
σ2s
X +

1

γ

ρsxσx
σs

λ1X

∫ τ
0 c1 (s) e

C(X,s)ds
∫ τ
0 e

C(X,s)ds
− 1

∫ τ
0 e

C(X,s)ds

)

dt

+

(

1

γ

λ1
σs

+
1

γ
ρsxσx

∫ τ
0 c1 (s) e

C(X,s)ds
∫ τ
0 e

C(X,s)ds

)
√
XdWs (t) (4.23)

Remarks

• Under the assumption of perfect correlation or locally riskfree labor income, the individual

is able to hedge labor income risk entirely. Optimal total wealth follows a geometric Brow-

nian motion with time-varying coefficients and will stay non-negative in all cases. Hence,

given that initial total wealth Â > 0, the individual will be able to afford the subsistence

level of consumption in all cases.

• As can be seen, total wealth follows the same dynamics as financial wealth in the case

without labor income and a subsistence level of consumption. The individual takes into

account the additional wealth due to human capital and the reduction in wealth due to the

reserves covering the subsistence level and controls his total wealth in the same manner as

financial wealth.

• In Appendix 3.A.1 of Chapter 3 the valuation of the future income stream is performed

using the martingale approach. Since the assumption of complete markets implies that the

market price of risk is unique and the risk-neutral valuation asks for the absence of arbi-

trage, it is not surprising that the value of the future labor income stream is a combination

of the riskfree and the risky asset. As a consequence, the special relation of financial and

non-financial assets allows them to be absorbed in one factor - total wealth.

4.1.6 Main Results

The most important results can be summarized in the following proposition.

Proposition 4.1 Given the assumptions Â(0) > 0, ρsx ∈ {−1, 1} and either ρsy ∈ {−1, 1} or

σy = 0 one obtains

J =
e−δ(T−τ)

[∫ τ
0 e

1
γ
(c0(s)+c1(s)X)

ds
]γ

(A+ k (X, τ)Y −R (τ))1−γ

1− γ
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with

∂c1 (s)

∂s
= k0 + k1c1 (s) + k2c1 (s)

2

∂c0 (s)

∂s
= k3 + k4c1 (s)

with initial conditions c0 (0) = 0 and c1 (0) = 0 and where

k0 ≡
1

2

1− γ
γ

λ21
σ2s
, k1 ≡ −κx +

1− γ
γ

ρsxσx
σs

λ1, k2 ≡
1

2

1

γ
σ2x

k3 ≡ (1− γ) r0 − δ, k4 ≡ κxX̄

The value of one unit of income is given by

k (τ,X) =

∫ τ

0
ed0(s)+d1(s)Xds

where d0 (s) and d1 (s) are the solutions to the following system of ordinary differential equations

∂d1 (s)

∂s
= l0 + l1d1 (s) + l2d1 (s)

2

∂d0 (s)

∂s
= l3 + l4d1 (s)

with initial conditions d0 (0) = 0 and d1 (0) = 0 and where

l0 ≡ y1 −
ρsyσy
σs

λ1, l1 ≡ −κx −
ρsxσx
σs

λ1 + ρxyσxσy, l2 ≡
1

2
σ2x

l3 ≡ y0 − r0, l4 ≡ κxX̄

The net reserves follow

R (τ) =
c̄− Ȳ
r0

(
1− e−r0τ

)

Optimal consumption and risky investment are given by

c∗t =
Â

∫ τ
0 e

C(X,s)ds
+ c̄ (4.24)

Aπ∗t =
1

γ

λ1
σ2s
Â+

1

γ

ρsxσx
σs

∫ τ
0 c1 (s) e

C(X,s)ds
∫ τ
0 e

C(X,s)ds
Â

−ρsxσx
σs

(∫ τ

0
d1 (s) e

d0(s)+d1(s)Xds

)

Y − ρsyσy
σs

kY (4.25)

4.2 Model with Utility over Terminal Wealth

Following from this, a similar problem for an investor with utility over terminal wealth only is

solved. Liu (2007) shows that without labor income for an individual with these preferences, the

assumption ρsx ∈ {−1, 1} is not necessary in order to get closed-form solutions. As stated in

Appendix 2.A.2 of Chapter 2 for a model that can be solved by similar methods, this is not the

case in the presence of labor income.
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Expected utility is given by

Et

[(
AT − Ā

)1−γ

1− γ

]

, γ > 1

Following the same steps as above, the following HJB-equation results

0 = Jt + JAA (t) r0 + JAY (t) + JAȲ

−JXκx
(
X (t)− X̄

)
+ JY Y (t) [y0 + y1X (t)]

+
1

2
JAA (t)π∗t λ1X (t) +

1

2
JAXA (t)π∗t ρsxσxσsX (t)

+
1

2
JAYA (t)Y (t)π∗t ρsyσsσyX (t)

+JXY Y (t) ρxyσxσyX (t) +
1

2
JY Y Y (t)2 σ2yX (t) +

1

2
JXXσ

2
xX (t)

where π∗t is the FOC also given by (4.7). The solution of the optimization problem is similar to

the consumption case and therefore omitted.

The results are summarized in the following proposition.

Proposition 4.2 Given the assumptions Â(0) > 0, ρsx ∈ {−1, 1} and either ρsy ∈ {−1, 1} or

σy = 0 one obtains

J =
e−δ(T−τ)ec0(τ)+c1(τ)X (A+ k (τ,X)Y −R (τ))1−γ

1− γ

with c0 (s) and c1 (s) and k (τ,X) identical to Proposition 4.1. The net reserves follow

R (τ) = − Ȳ
r0

(
1− e−r0τ

)
+ e−r0τ Ā

Optimal risky investment is given by

Aπ∗t =
1

γ

λ1
σ2s
Â+

1

γ

ρsxσx
σs

c1 (τ) Â

−
∫ τ

0
d1 (s) e

d0(s)+d1(s)Xds
ρsxσx
σs

Y − kY ρsyσy
σs

(4.26)

where τ ≡ T − t.

Remark

• The difference between the optimal investment rule in case of terminal wealth (4.26) and

in case of intermediate consumption (4.22) stems exclusively from the second term14.

14The impact of the described part on total allocation is rather small. For this reason there are no consider-

able differences in the investment strategies of the cases with and without consumption. As a consequence, the

discussion of the results refers to the consumption case but is valid in analogy for the case of terminal wealth.
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4.3 Long-Horizon Stability of the Solution

The first equation of the system of ODE (4.15) - (4.16) is a Riccati differential equation with

constant coefficients. In contrast to (4.10) there is no assumption that ensures that the solution

is stable as s→∞.

Figures 4.1 and 4.2 show the phase plane analysis for the Riccati differential equation. Since

l2 is unambiguously greater than zero, the parabola opens upward and six cases arise. Figure

4.1 shows the cases where (4.15) has two real particular solutions. If l0 < 0, two real solutions

with different signs exist. As can be seen in Panel (a), d1 (s) converges to the negative solution.

Given two real solutions, if l0 > 0 and l1 < 0 two positive solutions exist. From Panel (b) it can

be recognized that d1 (s) converges to the smaller solution. Given two real solutions, if l0 > 0

and l1 > 0, two negative solutions exist. From Panel (c) it has to be noticed that this setting is

unstable as d1 (s) grows without bound.

0
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∂
d

1
(s

)/
∂
s

d
1
(s)

←←←O

0

0

(b)

∂
d

1
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∂
s

d
1
(s)

→ →
O

0

0

(c)

∂
d

1
(s

)/
∂
s

d
1
(s)

→ → → → →

Figure 4.1: Phase Plane Analysis I

Panels (a), (b) and (c) show a phase plane analysis of the equation ∂d1(s)
∂s

= l0 + l1d1 (s) + l2d1 (s)
2 for ql > 0. In

all cases, two real particular solutions exist. In Panel (a), l0 < 0, in Panel (b), l0 > 0 and l1 < 0 and in Panel (c)

l0 > 0 and l1 > 0. In Panels (a) and (b), d1 (s) converges to a stable solution marked by a circle.

Panels (a) and (b) from Figure 4.2 show the case where only one real particular solution exists.

The discussion is analogous to Panels (b) and (c) from Figure 4.1. In Panel (c) there are no real



100 CHAPTER 4. LABOR INCOME AND A VOLATILITY PREMIUM

solutions and d1 (s) grows without bound. Table 4.1 summarizes the stability analysis.
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1
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Figure 4.2: Phase Plane Analysis II

Panels (a), (b) and (c) show a phase plane analysis of the equation ∂d1(s)
∂s

= l0 + l1d1 (s) + l2d1 (s)
2. In Panels

(a) and (b), one real particular solution exists (ql = 0). Panel (c) shows the case without a particular solution

(ql < 0). In Panel (a), l1 < 0 and in Panel (b), l1 > 0. In Panel (a), d1 (s) converges to a stable solution marked

by a circle.

Number of Particular Solutions Stable?

2 ql > 0, l0 < 0 yes

ql > 0, l0 > 0, l1 < 0 yes

ql > 0, l0 > 0, l1 > 0 no

1 ql = 0, l1 < 0 yes

ql = 0, l1 > 0 no

0 ql < 0 no

Table 4.1: Stability Analysis

From the definition of l0 = y1 − ρsyσy
σs

λ1 it can be seen that instable solutions do not occur
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arbitrarily, but have an economic background. In fact, for negative l0 the valuation of the future

income stream is always stable. In other words, if the corresponding hedging portfolio has a

higher drift than labor income, valuation is finite. On the other hand, if l0 is positive the

valuation of the income stream can become infinite. Loosely speaking, as long as l0 is not too

positive, equation (4.15) still has two particular solution. In this case

l1 ≡ −κx −
ρsxσx
σs

λ1 + ρxyσxσy

is crucial for stability (see Figure 4.1).

It becomes obvious that a high mean-reversion coefficient is in favor of stability, as it pushes

l1 to negativity. Furthermore, from an empirical point of view ρsx = −1 is a more reasonable

choice15 than ρsx = 1. Hence, the second term leads to a more unstable system. More impor-

tantly, −ρsxσx
σs

λ1 has a direct connection to intertemporal hedging. Indeed, ρsx < 0 implies a

higher Sharpe ratio after a decline in the value of the risky asset and this matches the goal of

intertemporal hedging: to be in a good state after a decline of wealth and vice versa. If l0 is also

positive, the effects in the financial and non-financial market go in the same direction and the

effect from l0 is strengthened.

The last term is of minor importance as σxσy is small in magnitude. The ρxy must be in-

terpreted in analogy to Section 2.4.3 of Chapter 2. From the dynamics of optimal total wealth

(4.32) of Appendix 4.A.2, it can be seen that

l0 < 0⇒ ∂k

∂X
< 0,

(

l0 > 0⇒ ∂k

∂X
> 0

)

and a negative correlation ρxy imply a positive (negative) drift in total wealth that must be

accounted for16. Since this part does not originate from a first order condition but simply from

the cross product of labor income and state variable diffusion, it is comprehensible that there is

no connection to intertemporal hedging.

In cases of one particular solution the interpretation is analogous. Finally, if l0 is sufficiently

high then this effect dominates anyway and no particular solution exists. In this case d1 (s) is

always unstable.

Thus, it can be concluded that instable solutions arise only if labor income and the risky asset

share very distinct dynamics and the labor income process has an attractive risk-growth profile.

From an equilibrium perspective there should be a connection between labor and capital markets

and therefore the rather extreme parameter sets that which lead to instability are probably not

in line with reality. This statement is similar to that in Kim and Omberg (1996, p. 151) for

their instable solutions. The other explanation of Kim and Omberg is, of course, also applicable;

namely that the real world includes constraints and costs that are not part of the model and

prevent the value of the income stream to become infinite.

Since d1 (s) grows faster than implied by a linear differential equation, in the case of instability

15ρsx = −1 implies high volatility after a decline in the value of the risky asset.
16See third element of the last line of (4.32).
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d1 (s) reaches infinity at a finite horizon17. The critical horizon sc is given by

sc =







1
ηl
ln

(
l1+ηl
l1−ηl

)

, ql > 0

2
l1

, ql = 0

π
ηl
− 2

ηl
ϕ , ql < 0

Nevertheless, it should be kept in mind that the employment phase is finite and has a horizon

of approximately 40 years. As a consequence, parameters must have extreme values to end up

with a critical horizon lower than the employment phase. A numerical example follows at the

end of the next section.

4.4 Illustration of the Results of the Basic Model

As a starting point, results for an individual with locally riskfree labor income σy = 0 are

discussed. This assumption simplifies the interpretation because some terms of the optimal

policies and some terms in the system of ODEs drop out. In a second step, risky labor income

is introduced and the impact of stochastic volatility in labor income on the optimal policies is

discussed. In the case of risky labor income it is assumed that18 ρsy = 1. Table 4.2 shows all

fixed parameters that are chosen for the numerical examples.

Financial Market

r0 = 0.0050

λ1 = 1.0000 σs = 1.0000

κx,1 = 0.1000 X̄ = 0.0400 σx,1 = 0.0323

κx,2 = 0.4000 X̄ = 0.0400 σx,2 = 0.0647

ρsx = −1

Individual

γ = 4 δ = 0.06

ȳ1 = 0.0500 ȳ2 = 0.00250 ρsy = 1 ρxy = −1
A (0) = 50 Y (0) = 10 Ȳ = 40

c̄ = 45

Table 4.2: Parameter Values

Parameters for the riskless rate, the risky asset and the volatility process are chosen at realistic

values19. Specifically, the long-run equity premium (volatility) is given as 4% (20%) and the

variation of the equity premium (volatility) will become clear from Figure 4.3.

17See Appendix 3.A.2 of Chapter 3 or Kim and Omberg (1996).
18The case ρsy = −1 can be derived in analogy.
19An empirical estimation of the model is beyond the scope of this thesis as it demands sophisticated methods

as presented in Chacko and Viceira (2003), Jiang and Knight (2002) and Singleton (2001).
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The speed of mean-reversion κx and the diffusion parameter σx can take two values20. For

κx = 0.1, mean reversion is low and shocks to volatility are more persistent. κx = 0.4 is a setting

with faster mean reversion. For the sake of comparability σx is normalized so that the stationary

gamma distributions of X are identical. This is ensured by choosing σx,i according to

σx,i =

√

2κx,iσ̄2x
X̄

, i ∈ {1, 2}

where σ̄2x is the unconditional variance of X and σ̄x is set to 0.0145. It can be verified that for

both values (κx,1, σx,1) and (κx,2, σx,2), the condition 2κxX̄ ≥ σ2x is fulfilled. Hence, stochastic

volatility X will not touch zero21.
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Figure 4.3: Distribution of the State Variable

This Figure shows the probability density function (left vertical axis) and the cumulative distribution function

(right vertical axis) of the stationary distribution of the state variable. Parameters are given as in Table 4.2. The

long-run mean of the state variable X̄ is equal to 0.04.

The stationary gamma distribution of the state variable is shown in Figure 4.3. The blue (green)

line shows the probability density function (cumulative distribution function) and belongs to the

20Empirical estimation of a model with stochastic volatility seems to be highly sensitive to the sample period

and the frequency of the data. See for example Chacko and Viceira (2005) Table 1.
21All properties are well described in Cox et al. (1985). For a textbook treatment with the derivation of the

first two moments of X (t) see Shreve (2004, pp. 151-153).
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vertical axis on the left (right). The grid points of the horizontal axis correspond to the points

displayed in the subsequent figures, which contain the results of the optimal policies. It should

be noticed that the states displayed in the right part of Figure 4.3 have only a small probability

of occuring. Nevertheless, this area shows the results in case of an unusual volatility shock and

thus, the sensitivity of the results in extreme states. In all figures the grid points of the horizontal

axis show
(
0, X̄, 2X̄, 3X̄, 4X̄, 5X̄

)
.

For the sake of comparability, the labor income growth parameters are chosen so that the

growth rates at the long-run mean are the same for all choices of y1. To be precise,

y0 = ȳ − y1X̄

where ȳ is the growth rate at the long-run mean and given in Table 4.2.

For the sake of clarity, we introduce the following definitions for the components of risky

investment

Aπ∗t =
1

γ

λ1
σ2s
Â

︸ ︷︷ ︸

”myopic”

+
1

γ

ρsxσx
σs

∫ τ
0 c1 (s) e

C(X,s)ds
∫ τ
0 e

C(X,s)ds
Â

︸ ︷︷ ︸

”state variable hedging”

−ρsxσx
σs

(∫ τ

0
d1 (s) e

d0(s)+d1(s)Xds

)

Y

︸ ︷︷ ︸

”indirect labor hedging”

−ρsyσy
σs

(∫ τ

0
ed0(s)+d1(s)Xds

)

Y

︸ ︷︷ ︸

”direct labor hedging”

(4.27)

As far as possible, the presented results are justified by an analytical argumentation and followed

by an economic intuition.

4.4.1 Locally Riskfree Labor Income

In case of σy = 0, direct labor hedging demand is equal to zero. Moreover, the SODE (4.15) -

(4.16) reduces to

∂d1 (s)

∂s
= l0 + l1d1 (s) + l2d1 (s)

2

∂d0 (s)

∂s
= l3 + l4d1 (s)

where

l0 ≡ y1, l1 ≡ −κx −
ρsxσx
σs

λ1, l2 ≡
1

2
σ2x

l3 ≡ y0 − r0, l4 ≡ κxX̄

Figure 4.4 shows the value of total wealth dependent on stochastic volatility. The blue (green)

lines show κx = 0.1 (κx = 0.4). The lines with crosses (circles) belong to an individual with low

(high) labor income growth. The panel to the left (right) contains the results for an individual

with a negative (positive) sensitivity of the labor income drift on stochastic volatility of y1 =

−0.2 (y1 = 0.2). It should be noticed that for a negative sensitivity of labor income growth to

stochastic volatility, the value of total wealth decreases with volatility. Without labor income
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volatility the sign of d1 (s) depends exclusively on the sign of the sensitivity parameter y1. From

the phase plane analysis it is known that for

l0 < 0⇒ d1 (s) < 0, (l0 > 0⇒ d1 (s) > 0) , s > 0

In addition, from

∂Â

∂X
=

∂k

∂X
Y =

∫ τ

0
d1 (s) e

d0(s)+d1(s)Xds

it becomes clear that k (τ,X) is decreasing (increasing) in X if y1 < 0 (y1 > 0). The formal

reasoning is confirmed by intuition. Indeed, in the case of a volatility shock, X rises and the

individual with a negative sensitivity to X faces lower income growth as in the long-run mean.

This clearly reduces the value of the income stream.
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Figure 4.4: Total Wealth - Locally Riskfree Labor Income

This Figure shows total wealth Â dependent on stochastic volatility. Parameters are given as in Table 4.2. The blue

(green) lines show a framework with κx = 0.1 (κx = 0.4) implying high (low) persistent shocks on volatility. The

lines with crosses (circles) display results for an individual with low (high) income growth ȳ = 0.25% (ȳ = 5%).

In the panel to the left (right) the sensitivity of the labor income growth rate to stochastic volatility is positive

(negative) and given by y1 = −0.2 (y1 = 0.2).

Furthermore, total wealth varies more strongly if volatility shocks are persistent. For low κx,
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d1 (s) becomes higher in magnitude22. The intuition behind this observation is that in a frame-

work with persistent shocks to the opportunity set, the individual is aware that it will take

longer until the shocks reverse, which leads to longer phases away from the long-run mean and

hence, to a more pronounced valuation of current income growth.
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Figure 4.5: Optimal Risky Investment - Locally Riskfree Labor Income

This Figure shows the amount optimally invested in the risky asset Aπ∗t dependent on stochastic volatility.

Parameters are given as in Table 4.2. The blue (green) lines show a framework with κx = 0.1 (κx = 0.4) implying

high (low) persistent shocks on volatility. The lines with crosses (circles) display results for an individual with low

(high) income growth ȳ = 0.25% (ȳ = 5%). In the panels to the left (right) the sensitivity of the labor income

growth rate to stochastic volatility is positive (negative) and given by y1 = −0.2 (y1 = 0.2). Panels (c) and (d)

show the contribution of the parts described in equation (4.27) for the individual that is described by the blue

line with crosses.

For identical growth rates of labor income, the level of total wealth at X = X̄ is close. From an

analytical point of view, unambiguous results with respect to the sign and the magnitude of the

difference seem not available because κx and σx have an impact on d0 (s) and d1 (s) over several

channels. However, the closeness of total wealth at X = X̄ is intuitive as both cases have the

22Since both coefficients l1 and l2 are affected by changes in κx and σx, two effects are at work. Unambiguous

results are not available because of the dependence on ρsx, σs and λ1. For the chosen parameters, d1 (s) is mainly

affected by the changes in l1. It can be verified that in l1 the change of κx dominates the change of σx.
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same stationary distribution and labor income growth is identical at X = X̄.

Figure 4.5 shows the results for optimal investment. As before, the left (right) panels show

the results for an individual with a negative (positive) sensitivity of the labor income drift

on stochastic volatility. The lower panels show the contribution of the components of (4.27)

for an individual with income growth and persistent shocks23. Myopic demand is well known

and has an unambiguously positive contribution, which varies with total wealth. Because of

the negative correlation between the risky asset and stochastic volatility (ρsx = −1 < 0) and

because c1 (s) < 0, the contribution of state variable hedging demand is unambiguously positive

and also varies with total wealth. The low importance of this part is in accordance with Table

5 in Chacko and Viceira (2005, p. 1392).

Indirect labor income hedging demand that is caused by the combination of the state variable

and labor income shows an unambiguously positive slope. Indeed, the derivative of indirect labor

hedging demand with respect to X is given by

−ρsxσx
σs

(∫ τ

0
d1 (s)

2 ed0(s)+d1(s)Xds

)

Y > 0

The results are intuitive as for y1 < 0 (y1 > 0) the lower (higher) growth rate of labor in-

come leads to a lower (higher) valuation of labor income and the exposure must be adapted

correspondingly.

If y1 < 0 (y1 > 0) the level of indirect labor hedging demand is unambiguously negative

(positive). This follows directly from the positivity of the exponential function and Y and the

sign of d1 (s). The results are intuitive as in the case y1 < 0, the individual faces lower income

growth after a negative return of the risky asset. This is clearly a deterioration of her environment

and by going short (at least for this part of the optimal investment rule) in the risky asset

brings a positive return when times of low labor income growth arrive, which is the natural

goal of intertemporal hedging. The interpretation for the case y1 > 0 follows the same line of

argumentation in the other direction.

The pattern for optimal consumption is more complicated as two dynamic effects are at work

simultaneously. On the one hand, the numerator of (4.21) follows the direction of total wealth.

On the other hand, the denominator
∫ τ
0 e

c0(s)+c1(s)Xds has an impact as X changes as well. The

effects on total wealth are described above. Since c1 (s) < 0 for s > 0, the first derivative of the

denominator with respect to X is

∫ τ

0
c1 (s) e

c0(s)+c1(s)Xds < 0

Hence, for y1 > 0 higher volatility leads to an unambiguously positive effect on consumption

because the numerator is increasing and the denominator is decreasing in X. If y1 < 0 this is

not the case, as both the numerator and the denominator of (4.21) are decreasing in X and the

combination of these two effects becomes deciding. In fact, Figure 4.6 displays that for the chosen

parameter values, consumption is falling inX. Loosely speaking, for the case y1 < 0 consumption

23This corresponds to the blue line with crosses in Panel (a) and (b) respectively. The results for the other

shown cases are qualitatively similar and therefore omitted.
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is falling in X if the percentage decline in total wealth is stronger than the percentage increase

in the denominator.

The results are of importance. On the one hand, without labor income the Sharpe ratio and

the consumption-wealth ratio have a clear relation. In particular, the consumption-wealth ratio

is high when the Sharpe ratio is high. This must clearly not be the case in the presence of labor

income. Moreover, if one goes a step further and interprets states of high volatility as recession

states24, then decreasing consumption in high states of X seems a property in line with reality.
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Figure 4.6: Optimal Excess Consumption - Locally Riskfree Labor Income

This Figure shows optimal consumption exceeding the subsistence level c∗t − c̄ dependent on stochastic volatility.

Parameters are given as in Table 4.2. The blue (green) lines show a framework with κx = 0.1 (κx = 0.4) implying

high (low) persistent shocks on volatility. The lines with crosses (circles) display results for an individual with

low (high) income growth ȳ = 0.25% (ȳ = 5%). In the panel to the left (right) the sensitivity of the labor income

growth rate to stochastic volatility is positive (negative) and given by y1 = −0.2 (y1 = 0.2).

This section ends with a second look at the stability of the valuation of the labor income stream.

It can be easily verified that the parameter values for the ‘blue’ individual imply l1 < 0. Hence,

in order to end up in a setting with a nirvana solution by altering only y1, one needs a ql < 0.

24Engle and Rangel (2008) separate stock market volatility in a persistent component with low-frequency

and transitory shocks. It is shown that the low-frequency component of volatility has a clear connection to the

business-cycle; specifically, low-frequency volatility is high when economic growth is low.
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The critical value for the sensitivity of labor income growth which leads to ql = 0 is given by

y1,c = 3.0935. Thus, it can be concluded that y1 must be unrealistically high with the given set

of parameters. Nevertheless, for even more persistent volatility, l1 > 0 cannot be excluded in

general and the non-normal cases of the solution may be of interest for future research.

4.4.2 Risky Labor Income

The main differences to the locally riskfree labor income case are the additional direct labor

income hedging part in the optimal investment policy (4.27) and the change in l0. The additional

term in l1 is small in magnitude and hence, rather irrelevant. In order to show the impact of σy,

various values are chosen. Furthermore, it is assumed that25 ρsy = 1.
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Figure 4.7: Total Wealth - Risky Labor Income

This Figure shows total wealth Â dependent on stochastic volatility. Parameters are given as in Table 4.2, ȳ = 3%

and κx = 0.1. The blue (red, green, purple) lines show a framework with labor income volatility σy = 0 (0.15,

0.30, 0.45). In the panel to the left (right) the sensitivity of the labor income growth rate to stochastic volatility

is positive (negative) and given by y1 = −0.2 (y1 = 0.2).

Figure 4.7 exhibits total wealth dependent on stochastic volatility. The blue (red, green, purple)

line shows the results for σy = 0 (0.15, 0.30, 0.45). Through the smaller l0 and thus smaller d1 (s),

25Results for ρsy = −1 can be derived in analogy.
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total wealth reacts more negatively to higher stochastic volatility. Even in the case of a positive

sensitivity parameter y1, the slope of total wealth is negative if l0 < 0⇔ σy >
y1

λ1ρsy
σs.

As expected, the level of total wealth becomes smaller for higher income volatility. In fact,

from the discussion of the dynamics of total wealth it is known that the individual controls total

wealth in the same manner as an investor without labor income and subsistence consumption.

As non-financial income becomes risky, the individual will need additional (short) positions in

the risky asset, which leads to a correspondingly lower valuation of the labor income stream26.
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Figure 4.8: Optimal Risky Investment - Risky Labor Income

This Figure shows the amount optimally invested in the risky asset Aπ∗t dependent on stochastic volatility.

Parameters are given as in Table 4.2, ȳ = 3% and κx = 0.1. The blue (red, green, purple) lines show a framework

with labor income volatility σy = 0 (0.15, 0.30, 0.45). In the panels to the left (right) the sensitivity of the labor

income growth rate to stochastic volatility is positive (negative) and given by y1 = −0.2 (y1 = 0.2). Panels (c)

and (d) show the contribution of the parts described in equation (4.27) for the individual that is described by the

green line.

This perspective is confirmed by the risk-neutral derivation of k in the Appendix of Chapter 3.

In fact, it is shown that the excess expected return (over the riskfree rate) of stochastic human

26The result is valid for reasonable parameter values. However, for very high σx, the level of total wealth can

rise with higher income volatility due to the term ρxyσxσy in l1.
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capital G ≡ kY must be in accordance with the market price of risk. Adapted to the market

price as given by (4.1), the second part of the RHS of 3.12 becomes

∂G

∂Y
Y
ρsyσy
σs

λ1X = kY
ρsyσy
σs

λ1X > 0

From the positivity of k, σy, σs and λ1, a positive ρsy in combination with high σy asks for a

high premium. As a consequence, the value of G must be low similar to a financial asset that is

discounted at a high rate.

From the positivity of k and ρsy it follows immediately that the direct labor hedging part

reduces the exposure to the risky asset. Moreover, for realistic parameter values, total wealth

and indirect labor hedging demand also become smaller. Thus, if ρsy = 1 the exposure in the

risky asset is reduced over several channels.

The optimal investment policies are shown in Figure 4.8. In Panel (a), it can be seen that for

σy = 0 the optimal policy is, as described above, decreasing in stochastic volatility. For σy > 0

this does not have to be the case. On the one hand, myopic and state variable hedging demand

become smaller because of the decline in total wealth. On the other hand, hedging demands,

where labor income is involved, become less negative. The latter effects dominates the first if σy

is large enough.

Panel (b) shows an interesting pattern; specifically, that the amount invested in the risky asset

increases in stochastic volatility for low and high σy and is rather insensitive to changes in X

for intermediate values of σy

The interpretation for the case σy = 0 is given above and the increasing pattern is comprehen-

sible. For high σy the sensitivity of total wealth to stochastic volatility becomes negative and this

effect reduces the exposure in the risky asset over myopic and state variable hedging demand as

X rises. On the other hand, for high σy the (negative) indirect and direct labor hedging demand

become important. At a certain level of σy, the importance of these parts is high enough that

they induce a stronger rise in the risky asset exposure and overcompensate the reduction from

myopic and state variable demand.

The discussion of the slope and the level of indirect labor hedging demand is analogous to the

locally riskfree case and thus omitted.

As can be seen from (4.27), direct labor hedging demand is negative, as ρsy is assumed to be

positive. The slope of direct labor income hedging demand is given by

−ρsyσy
σs

(∫ τ

0
d1 (s) e

d0(s)+d1(s)Xds

)

Y

It can be clearly recognized that the sign of the slope is determined by the sign of −d1 (s), which
is equal to the opposite of the sign of l0. As shown above, l0 is negative for high σy.

Finally, Figure 4.8 shows that total exposure in the risky asset becomes negative at a certain

level of labor income volatility27. The reasons are the decline in total wealth combined with the

growing importance of the negative indirect and direct labor hedging demand.

27In the presence of short selling restrictions it can be expected that such individuals would hold no risky

securities at all.
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Figure 4.9 displays optimal consumption. The two effects - changes in total wealth and
∫ τ
0 e

C(X,s)ds - that are at work at the same time are identical to the locally riskfree labor

income framework. In fact, the denominator (4.6) is the same for all cases and the numerator is

simply total wealth. This explains the displayed patterns.
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Figure 4.9: Optimal Excess Consumption - Risky Labor Income

This Figure shows optimal consumption exceeding the subsistence level c∗t − c̄ dependent on stochastic volatility.

Parameters are given as in Table 4.2, ȳ = 3% and κx = 0.1. The blue (red, green, purple) lines show a framework

with labor income volatility σy = 0 (0.15, 0.30, 0.45). In the panel to the left (right) the sensitivity of the labor

income growth rate to stochastic volatility is positive (negative) and given by y1 = −0.2 (y1 = 0.2).

It can be summarized that the inclusion of a labor income stream does have an impact on the

optimal policies over several channels. With appropriate parameter values as presented above,

many interesting consumption and investment patterns can be established. In particular, it is

shown that individuals with unfavorable labor income characteristics (such as negative sensitivity

of income growth on volatility and/or risky labor income and positive correlation with the risky

asset) do not want to invest a positive amount in the risky asset and reduce consumption in

times of high volatility. These insights are a resolution as to why persons with low labor income

prospects and/or low financial wealth do not hold any equity at all28. Moreover, the results show

28For example, in Figure 2 of Campbell (2006) it can be clearly recognized that a considerable fraction of the
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that for an individual with l0 ≡ y1− ρsyσy
σs

λ1 > 0, optimal consumption and optimal investment

grow with higher volatility and that in states of high volatility extreme values will occur. This

seems to be rather unrealistic behavior. Hence, in analogy to Chapter 3 it can be stated that

a positive sensitivity of labor income growth (y1 > 0) without labor income volatility leads to

unreasonably extreme results. However, as soon as the income volatility also rises with a certain

strength, realistic optimal policies result.

4.5 Life-Cycle Model

In this extension it is assumed that the life-cycle of the individual consists of two phases29. In

the first phase, the phase of employment, the individual is working and receives labor income

as described above. In the second phase, the phase of retirement, the individual is retired and

receives no non-financial income30. The most important aspect of this extension is that the

individual has a limited working period. At the end of this period human capital is exhausted

and the individual has to ensure the second phase without non-financial income. It is assumed

that the retirement date is fixed at T1. The full planning horizon is given by T2. Finally, we

assume that the subsistence level of consumption may differ in the two periods and denote the

subsistence level during the working period with c̄e and during retirement with c̄r.

The solution approach asks to work backwards from the end of the planning horizon, i.e. it is

necessary to solve the problem of the phase of retirement first. In a second step, the problem of

the phase of employment is solved and linked to the retirement phase31.

Phase of Retirement

Without labor income the HJB is a simpler version of (4.5) and is given by

0 = Jt + sup
c

[

e−δt
(ct − c̄r)1−γ

1− γ − JAct
]

+sup
π




JAπ (t)A (t)λ1X (t) + 1

2JAAπ (t)
2A (t)2 σ2sX (t)

+JAXπ (t)A (t) ρsxσsσxX (t)





+JAA (t) r0 − JXκx
(
X (t)− X̄

)
+

1

2
JXXσ

2
xX (t) (4.28)

The FOC with respect to consumption are unchanged and given by (4.6). The FOC with respect

to investment is given by

π∗t = − JA
JAAA (t)

λ1
σ2s
− JAX

JAAA (t)

ρsxσx
σs

(4.29)

population does not participate in the stock market.
29Life-cycle models have been of interest since Jagannathan and Kocherlakota (1996). More recent work includes

Cocco et al. (2005), Lynch and Tan (2009) and Koijen et al. (2010).
30Of course, one could assume that the individual receives pension benefits. For example, Lynch and Tan (2009)

simply assume that the individual receives 93% percent of his final income. Moos and Müller (2010) analyze a

life-cycle model with a pension system in a constant opportunity set framework. This system could be integrated

as well, but this is omitted for the sake of simplicity.
31For more details the reader is referred to Huang and Milevsky (2008).



114 CHAPTER 4. LABOR INCOME AND A VOLATILITY PREMIUM

Plugging in the FOCs (4.6) and (4.29) into the HJB equation (4.28) yields

0 = Jt +
γ

1− γ e
− δ
γ
t
J
1− 1

γ

A − JAc̄r + JAA (t) r0 − JXκx
(
X (t)− X̄

)

+
1

2
JAA (t)π∗t λ1X (t) +

1

2
JAXA (t)π∗t ρsxσxσsX (t) +

1

2
JXXσ

2
xX (t)

The value function that solves this problem has the following form

J =
e−δ(T2−τ2)

[∫ τ2
0 e

1
γ
(c0(s)+c1(s)X)

ds
]γ

(A−R (τ2))
1−γ

1− γ , t > T1

where τ2 ≡ T2−t. Following the steps described in Appendix 2.A.2 of Chapter 2, one will recover

(4.9) one-to-one. Hence, the system of ODE that determine c0 (s) and c1 (s) is unchanged. This

is intuitive since this system does not involve any parameters of the labor income process or the

subsistence level of consumption.

For the reserves covering the subsistence level of consumption, (4.19) changes to

0 =

∫ τ2

0
eC(X,s)ds

{
∂Rr

∂τ2
− c̄r + r0Rr

}

The initial condition Rr (τ2 = 0) = 0 implies

Rr (τ2) =
c̄r
r0

(
1− e−r0τ2

)

Phase of Employment

The HJB-equation of the phase of employment is given by (4.5). As a consequence, the solution

of this part of the model is analogous to the basic model. The solution for c0 (s) and c1 (s) are

similar to the basic model. The only difference emerges from the extended horizon.

The reserves are still governed by (4.19)

0 =

∫ τ1

0
eC(X,s)ds

{
∂Re

∂τ1
+ Ȳ − c̄+ r0Re

}

but one has to take into account the initial condition

Re (τ1 = 0) = Rr (τ2 = T2 − T1) =
c̄r
r0

(
1− e−r0τ2

)

where τ1 ≡ T1 − t. The solution is given by

Re (τ1) =
c̄r
r0

(
e−r0τ1 − e−r0τ2

)
+
c̄e − Ȳ
r0

(
1− e−r0τ1

)

Since the value function of the phase of employment is still given by (4.8), k (X, τ1 = 0) = 0

and the reserves are properly linked; the value function is a smooth function at the jump date.

Results

The results are summarized in the following proposition.

Proposition 4.3 Given the assumptions Â(0) > 0, ρsx ∈ {−1, 1} and either ρsy ∈ {−1, 1} or

σy = 0, one obtains

R (t) =







c̄r
r0

(e−r0τ1 − e−r0τ2) + c̄e−Ȳ
r0

(1− e−r0τ1) , 0 ≤ t < T1

c̄r
r0

(1− e−r0τ2) , T1 ≤ t ≤ T2
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Optimal consumption and risky investment are given by

c∗t =







Âe
∫ τ2
0 eC(X,s)ds

+ c̄e , 0 ≤ t < T1

Âr
∫ τ2
0 eC(X,s)ds

+ c̄r , T1 ≤ t ≤ T2

Aπ∗t =







1
γ
λ1
σ2
s
Âe +

1
γ
ρsxσx
σs

∫ τ2
0 c1(s)eC(X,s)ds
∫ τ2
0 eC(X,s)ds

Âe

−∂k(X,τ1)
∂X Y ρsxσx

σs
− k (X, τ1)Y ρsyσy

σs

, 0 ≤ t < T1

1
γ
λ1
σ2
s
Âr +

1
γ
ρsxσx
σs

∫ τ2
0 c1(s)eC(X,s)ds
∫ τ2
0 eC(X,s)ds

Âr , T1 ≤ t ≤ T2

where τ1 ≡ T1 − t, τ2 ≡ T2 − t, Âe ≡ A+ kY −R and Âr ≡ A−R.

Remarks

• Since c̄r ≥ 0 by assumption, the individual is in need of further reserves and thus R (t) of

the life-cycle model is higher as in the basic model.

• Compared to the basic model, optimal consumption is unambiguously smaller because the

higher reserves for future subsistence consumption lead to a lower numerator and the de-

nominator ∫ τ2

0
eC(X,s)ds =

∫ τ1

0
eC(X,s)ds+

∫ τ2

τ1

eC(X,s)ds

︸ ︷︷ ︸

≥0

is higher because of the longer horizon.

• If c̄e 6= c̄r then there is a jump in the consumption strategy at retirement. Nevertheless,

there is no jump in consumption exceeding the subsistence level.

• During the phase of employment, the impact on the optimal risky investment is more

complicated as different effects work at the same time. The lower total wealth due to the

higher reserves reduces myopic and state variable demand. Nevertheless, the longer horizon

also has an impact on state variable hedging demand.

• Since k (τ1 = 0) = ∂k(τ1=0)
∂X = 0, there is no jump in the investment strategy at retirement.

4.5.1 Illustration of the Results of the Life-Cycle Model

For the sake of simplicity we focus on the case with locally riskfree labor income. Parameters are

as in Table 4.2, κx = 0.1 and ȳ = 0.05. The phase of retirement is assumed to be 20 years and c̄e

and c̄r are assumed to be given by 45 and 40 respectively. The results of a life-cycle optimizing

individual (crosses) are compared with an individual who does not account for the retirement

period (circles).

Figures 4.10 and 4.11 show the results for an individual at the beginning of the phase of

employment. The effect of the phase of retirement on total wealth is rather simple and displayed

in Figure 4.10. The impact stems exclusively from the additional amount necessary to cover the
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subsistence level of consumption in the retirement phase. Hence, total wealth is unambiguously

lower for the life-cycle optimizer.

The effects on the optimal policies are more interesting and shown in the upper panels of

Figure 4.11. On the one hand, the analytical results show that the longer horizon has an impact

on state variable hedging demand. On the other hand, panels (a) and (b) reveal only differences

that are similar to the differences in total wealth.

The optimal investment policy is also given by (4.27) with direct labor hedging demand equal

to zero because of the assumption of locally riskfree labor income. The effect on myopic demand

is only driven by the lower total wealth and is smaller for the life-cycle optimizer. State variable

hedging demand is also affected by the lower total wealth. Nevertheless, the extended horizon

has an effect on c1 (s) and c0 (s), but this effect is small in magnitude32. In fact, in the numerical

example

∫ 60
0 c1 (s) e

C(X,s)ds
∫ 60
0 eC(X,s)ds

= −3.4106

compared to

∫ 40
0 c1 (s) e

C(X,s)ds
∫ 40
0 eC(X,s)ds

= −3.0742

In addition, because the ratio σx/σs in state variable hedging demand is small, the impact on

optimal risky investment is of minor importance.

Indirect labor income hedging demand is not affected and is the same for both types of

investors. Thus, it can be summarized that the changes in the optimal investment policy are

driven almost entirely by changes in total wealth and hence a life-cycle optimizer invests clearly

less in the risky asset.

Panels (c) and (d) of Figure 4.11 show the impact on optimal consumption. The numerator

of optimal consumption is equal to total wealth, which is reduced for the life-cycle investor.

Furthermore, as already stated, the denominator is higher because of the longer horizon. As a

result, optimal consumption is unambiguously reduced for the life-cycle investor.

32Strict analytical results seem not to be available. Nevertheless, an upper boundary for state variable hedging

demand can be calculated. Defining c−1 as the stable long-run solution of the Riccati differential equation and

keeping in mind that c1 (s) < c−1 , it follows that

∫
∞

0
c1 (s) e

C(X,s)ds
∫
∞

0
eC(X,s)ds

<

∫
∞

0
c−1 e

C(X,s)ds
∫
∞

0
eC(X,s)ds

=
c−1

∫
∞

0
eC(X,s)ds

∫
∞

0
eC(X,s)ds

= c−1

Hence, 1
γ
ρsxσx
σs

c−1 gives an upper boundary for the effect of state variable hedging demand. In the numerical

example c−1 = −4.9086.



4.5. LIFE-CYCLE MODEL 117

0 0.04 0.08 0.12 0.16 0.2
0

240

480

720

960

1200
(a)

State Variable

T
o
ta

l 
W

e
a
lt
h

0 0.04 0.08 0.12 0.16 0.2
0

360

720

1080

1440

1800
(b)

State Variable

T
o
ta

l 
W

e
a
lt
h

Figure 4.10: Total Wealth - Life-Cycle Model

This Figure shows total wealth Â dependent on stochastic volatility. Parameters are given as in Table 4.2 and in

the text at the beginning of Section 4.5.1. The lines with crosses (circles) show the results for an individual with

(without) a phase of retirement. In the panel to the left (right) the sensitivity of the labor income growth rate to

stochastic volatility is negative (positive) and given by y1 = −0.2 (y1 = 0.2).

It can be stated that the additional retirement period without non-financial income has an effect

on the optimal policies that is intuitive. The consideration of a retirement period offer a further

explanation as to why risky investment is lower, as predicted by non life-cycle models. Moreover,

in combination with a negative sensitivity of labor income growth on stochastic volatility, the

results indicate equity exposure that is on a reasonable level and risky investment falls in states

of high volatility. Furthermore, the assumption of HARA utility implies that only a fraction of

optimal consumption varies with total wealth. In the final example for the individual with a

negative sensitivity of labor income growth on X, consumption exceeding the subsistence level

makes about a quarter of total consumption. Hence, consumption volatility is considerably lower

than the volatility of total wealth33.

33The problem that consumption is as volatile as wealth is analogous to the problem to the equity premium

puzzle in the asset pricing literature. For more details see the last paragraphs of Section 2.4.4 in Chapter 2.
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Figure 4.11: Optimal Policies - Life-Cycle Model

This Figure shows the optimal policies dependent on stochastic volatility. Parameters are given as in Table 4.2

and in the text at the beginning of Section 4.5.1. The lines with crosses (circles) show the results for an individual

with (without) a phase of retirement. The upper panels exhibit the amount optimally invested in the risky asset

Aπ∗t , the lower panels display optimal consumption exceeding the subsistence level c∗t − c̄. In the panels to the

left (right) the sensitivity of the labor income growth rate to stochastic volatility is negative (positive) and given

by y1 = −0.2 (y1 = 0.2).

4.6 Conclusion

The most important results are the following:

1. The impact of time variation in non-financial income on optimal investment and consump-

tion is important. Assuming time variation in the financial market and ignoring it for

non-financial income leads to considerably distinct results.

2. The inclusion of time variation in labor income leads to an adaption of state variable hedg-

ing demand. In fact, state variable hedging demand can be separated into the usual part

that arises in the absence of labor income and a new part. This part grows monotonically

with planning horizon and can have either sign.
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3. A negative sensitivity of labor income growth on the state variable can induce falling risky

investment and consumption even if the Sharpe ratio of the risky asset is increasing in the

state variable.

4. The SODE for the valuation of the labor income stream includes a Riccati differential

equation. If the labor income process has very advantageous properties, the value of the

future labor income stream can be infinite. However, these cases ask for unrealistically

extreme parameter values.

5. The extension of the basic model to a life-cycle model with a phase of retirement is a simple

and comprehensible instrument to reduce the value of total wealth. As a consequence, risky

investment and excess consumption are on a reasonable level.

6. The reduction of total wealth in the life-cycle model implies that the importance of myopic

and state variable hedging demand is reduced compared to the two labor income hedging

demands.

Finally, it can be stated that the comments at the end of Chapter 2 remain valid. A higher

risk aversion or a higher fraction of stochastic income on total income would lead to results that

are even more affected by the labor income dynamics.
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4.A Appendix

4.A.1 Solution of the HJB-Equation

The relevant partial derivatives are given by34

Jτ = e−δ(T−τ)









δ
1−γ

[. . .]γ (. . .)1−γ

+ 1
1−γ

[. . .]γ−1 (. . .)1−γ
∫ τ

0

(
∂c0(s)
∂s

+ ∂c1(s)
∂s

X
)

eC(X,s)ds

+ γ
1−γ

[. . .]γ−1 (. . .)1−γ + [. . .]γ (. . .)−γ
(
∂k
∂τ
Y − ∂R

∂τ

)









JA = e−δ(T−τ) [. . .]γ (. . .)−γ , JAA = −γe−δ(T−τ) [. . .]γ (. . .)−γ−1

JY = e−δ(T−τ) [. . .]γ (. . .)−γ k, JY Y = −γe−δ(T−τ) [. . .]γ (. . .)−γ−1 k2

JX = e−δ(T−τ)





1
1−γ

[. . .]γ−1 (. . .)1−γ
∫ τ

0
c1 (s) e

C(X,s)ds

+ [. . .]γ (. . .)−γ ∂k
∂X
Y





Jxx = e−δ(T−τ)













− 1
γ
[. . .]γ−2 (. . .)1−γ

[∫ τ

0
c1 (s) e

C(X,s)ds
]2

+ 1
1−γ

[. . .]γ−1 (. . .)1−γ
∫ τ

0
1
γ
c21 (s) e

C(X,s)ds

+2 [. . .]γ−1 (. . .)−γ ∂k
∂X
Y

∫ τ

0
c1 (s) e

C(X,s)ds

−γ [. . .]γ (. . .)−γ−1 ( ∂k
∂X
Y
)2

+ [. . .]γ (. . .)−γ ∂2k
∂X2 Y













JAX = e−δ(T−τ)




[. . .]γ−1 (. . .)−γ

∫ τ

0
c1 (s) e

C(X,s)ds

−γ [. . .]γ (. . .)−γ−1 ∂k
∂X
Y





JAY = −γe−δ(T−τ) [. . .]γ (. . .)−γ−1 k

JXY = e−δ(T−τ)




[. . .]γ−1 (. . .)−γ k

∫ τ

0
c1 (s) e

C(X,s)ds

−γ [. . .]γ (. . .)−γ−1 ∂k
∂X
kY + [. . .]γ (. . .)−γ ∂k

∂X





where for the sake of brevity we define

[. . .] ≡
[∫ τ

0
e

1
γ
(c0(s)+c1(s)X)

ds

]

(. . .) ≡ (A+ k (τ,X)Y −R (τ))

and where

C (X, τ) ≡ 1

γ
(c0 (τ) + c1 (τ)X) (4.30)

It should be noted that for Jτ , the following rule was applied:

f (a, b) =

∫ a

b
g (x) dx = G (a)−G (b)

⇒
∂f (a, b)

∂a
=
∂G (a)

∂a
= g (a)− g (b) + g (b) =

∫ a

b

∂g (x)

∂x
dx+ g (b)

Only the initial conditions c0 (0) = c1 (0) = 0 ensure that Jτ contains γ
1−γ [. . .]γ−1 (. . .)1−γ and

this term is inevitable to find a solution for the HJB.

34More details with respect to the derivation of Jτ can be found at the bottom of the page.
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To our knowledge, closed-form solutions for the general problem do not exist. For the sake of

analytical solvability one must assume ρsx ∈ {−1, 1} and ρsy ∈ {−1, 1} or ρsx ∈ {−1, 1} and

σy = 0.

The solution follows the same steps as in Chapter 2 one-to-one and the reader is referred to

Appendix 2.A.2 for more details. The final ODE that can be separated is given by

0 = − δ

1− γ (. . .) [. . .]− 1

1− γ (. . .)

∫ τ

0

(
∂c0 (s)

∂s
+
∂c1 (s)

∂s
X

)

eC(X,s)ds−
(
∂k

∂τ
Y − ∂R

∂τ

)

[. . .]

−c̄ [. . .] + r0 (. . .) [. . .]− r0 (kY −R) [. . .] + Ȳ [. . .] + Y [. . .] + (y0 + y1X) kY [. . .]

− 1

1− γ κx
(
X − X̄

)
(. . .)

∫ τ

0

c1 (s) e
C(X,s)ds− κx

(
X − X̄

) ∂k

∂X
Y [. . .]

+
1

2

1

γ

λ2
1

σ2
s

X (. . .) [. . .] +
1

2

1

γ

ρsxσx
σs

λ1X

∫ τ

0

c1 (s) e
C(X,s)ds (. . .)

−1

2

ρsxσx
σs

λ1X
∂k

∂X
Y [. . .]− 1

2

ρsyσy
σs

λ1XkY [. . .]

+
1

2

1

γ

ρsxσx
σs

λ1X (. . .)

∫ τ

0

c1 (s) e
C(X,s)ds− 1

2
ρ2sxσ

2
xX

∂k

∂X
Y

∫ τ

0

c1 (s) e
C(X,s)ds

−1

2
ρsyσyρsxσxXkY

∫ τ

0

c1 (s) e
C(X,s)ds

−1

2

ρsxσx
σs

λ1X
∂k

∂X
Y [. . .]− 1

2
ρ2sxσ

2
xX

∂k

∂X
Y

∫ τ

0

c1 (s) e
C(X,s)ds

−1

2

ρsyσy
σs

λ1XkY [. . .]− 1

2
ρsxσxρsyσyXkY

∫ τ

0

c1 (s) e
C(X,s)ds

+ρxyσxσyXkY

∫ τ

0

c1 (s) e
C(X,s)ds+ ρxyσxσyX

∂k

∂X
Y [. . .]

+
1

2

1

γ

1

1− γ σ
2
xX (. . .)

∫ τ

0

c21 (s) e
C(X,s)ds

+σ2
xX

∂k

∂X
Y

∫ τ

0

c1 (s) e
C(X,s)ds+

1

2
σ2
xX

∂2k

∂X2
Y [. . .] (4.31)

4.A.2 The Dynamics of Total Wealth

From the definition Â ≡ A + k (X, t)Y − R (t), application of Ito’s lemma yields the dynamics

of total wealth

dÂ = dA+
∂k

∂X
Y dX +

1

2

∂2k

∂X2
Y dX2 +

∂k

∂t
Y dt+ kdY +

∂k

∂X
dXdY − ∂R

∂t
dt

Plugging in (4.2) - (4.4) and the optimal policies (4.24) and (4.25) leads to

dÂ∗ =






1
γ

λ2
1
σ2
s
XÂ∗ + 1

γ
ρsxσx
σs

λ1X
∫
τ
0 c1(s)e

C(X,s)ds
∫
τ
0 eC(X,s)ds

Â∗ − ρsxσx
σs

λ1X
∂k
∂X
Y − ρsyσy

σs
λ1XkY

+r0Â
∗ − r0 (kY −R) + Ȳ + Y − 1∫

τ
0 eC(X,s)ds

Â∗ − c̄




 dt

+






1
γ
λ1
σs

√
XÂ∗ + 1

γ
ρsxσx

√
X

∫
τ
0 c1(s)e

C(X,s)ds
∫
τ
0 eC(X,s)ds

Â∗

−ρsxσx
√
X ∂k
∂X
Y − ρsyσy

√
XkY




 dWs (t)

− ∂k

∂X
Y κx

(
X − X̄

)
dt+

∂k

∂X
Y σx

√
XdWx (t) +

1

2
σ2
xX

∂2k

∂X2
Y dt− ∂k

∂τ
Y dt

+kY (y0 + y1X) dt+ kY σy
√
XdWy (t) +

∂k

∂X
ρxyσxσyXY dt+

∂R

∂τ
dt (4.32)
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Arranging in proper order

dÂ∗ =

(

r0 +
1

γ

λ2
1

σ2
s

X +
1

γ

ρsxσx
σs

λ1X

∫ τ

0
c1 (s) e

C(X,s)ds
∫ τ

0
eC(X,s)ds

− 1
∫ τ

0
eC(X,s)ds

)

Â∗dt

+

(

1

γ

λ1

σs
+

1

γ
ρsxσx

∫ τ

0
c1 (s) e

C(X,s)ds
∫ τ

0
eC(X,s)ds

)

Â∗
√
XdWs (t)

+




− ∂k
∂τ

+ 1− r0k − ∂k
∂X
κx

(
X − X̄

)
+ k (y0 + y1X)

− ρsxσx
σs

λ1
∂k
∂X
X − ρsyσy

σs
λ1kX + ∂k

∂X
ρxyσxσyX + 1

2
σ2
xX

∂2k
∂X2



Y dt

+

[
∂R

∂τ
+ Ȳ + r0R− c̄

]

dt

+ [dWy (t)− ρsydWs (t)]σy
√
XkY + [dWx (t)− ρsxdWs (t)]σx

√
X
∂k

∂X
Y

The last line is equal to zero due to the assumptions about perfect dependence (4.c.1) - (4.c.2)

and locally riskfree labor income (4.c.3), i.e. dWx (t) = ρsxdWs (t) and dWy (t) = ρsydWs (t) or

σy = 0. Inspecting the parts in the square brackets, one can identify (4.13) and (4.19), which

are also equal to zero. Now, the dynamics of (4.23) follow directly.

4.A.3 A System of Two Ordinary Differential Equations

The system of two ordinary differential equations given by

∂f1 (s)

∂s
= m0 +m1f1 (s) +m2f1 (s)

2

∂f0 (s)

∂s
= m3 +m4f1 (s)

with initial condition f1 (0) = f0 (0) = 0 has the following solution35. Defining ql ≡ m2
1−4m0m2

and ηm ≡
√

|qm|.

Case I qm > 0

f1 (s) =
2m0 (1− e−ηms)

2ηm − (m1 + ηm) (1− e−ηms)
∫

f1 (s) ds =
2m0

ηm − k1
s+

4k0
η2m − k21

ln

(
2ηm − (m1 + ηm) (1− e−ηms)

2ηm

)

f0 (s) = m3s+m4






2m0
ηm−k1

s+ 4m0

η2m−k
2
1
ln

(
2ηm−(m1+ηm)(1−e−ηms)

2η

)

− 4m0

η2m−k
2
1
ln (1)






= m3s+
2m0m4

ηm −m1
τ +

4m0m4

η2m −m2
1

ln

(
2ηm − (m1 + ηm) (1− e−ηms)

2ηm

)

Absolute value within the natural logarithm is not necessary as 2ηm−(m1 + ηm) (1− e−ηms) > 0

for s < sc where sc is the critical horizon36.

35All solutions are verified by the use of Mathematica (Version 7.0.1.0).
36More information with respect to the critical horizon can be found in Appendix 3.A.2 of Chapter 3.
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Case II qm = 0

f1 (s) = −
1

m2

(

s− 2
m1

) − m1

2m2

∫

f1 (s) ds = −
m1

2m2
s− 1

m2
ln





∣
∣
∣m1

(

s− 2
m1

)∣
∣
∣

2





f0 (s) = m3s+m4



− m1

2m2
s− 1

m2
ln





∣
∣
∣m1

(

s− 2
m1

)∣
∣
∣

2



+ 0 +
1

m2
ln (1)





= m3s+m4



− m1

2m2
s− 1

m2
ln





∣
∣
∣m1

(

s− 2
m1

)∣
∣
∣

2









Case III qm < 0

f1 (s) =
η

2m2
tan (ωs+ ϕ)− m1

2m2
∫

f1 (s) dτ = − m1

2m2
s− 1

m2
ln [cos (ωs+ ϕ)]

f0 (s) = m3s+m4

(

− m1

2m2
s− 1

m2
ln [cos (ωs+ ϕ)] + 0 +

1

m2
ln [cos (ϕ)]

)

= m3s+m4

(

− m1

2m2
s− 1

m2
ln [cos (ωs+ ϕ)] +

1

m2
ln [cos (ϕ)]

)



124 CHAPTER 4. LABOR INCOME AND A VOLATILITY PREMIUM



Chapter 5

Portfolio and Consumption Decisions

with Labor Income and a Volatility

Premium and Non-Constant Labor

Income Parameter Values

The models of the preceding chapters implied that all parameter values are constant. While this

can be seen as a reasonable assumption for the financial market, labor income growth is unlikely

to be constant over the employment phase. In fact, Cocco et al. (2005) point out variations in

labor income growth over the life cycle1. Munk and Sørensen (2010) include a similar growth

profile in their model.

In this chapter the assumption of constant labor income parameters is relaxed. In the pre-

ceding chapters with constant parameter values it was shown that the solutions of the ordinary

differential equations, which determine the sign of indirect labor hedging demand, are monotone

and do not change sign over the horizon. In the case of non-constant parameter values this does

not have to be the case.

It is assumed that the setting is identical to Chapter 4. Nevertheless, the methods described

in this chapter could also be applied on the models of Chapters 2 and 3. The primary objective

is to show the impact of non-constant labor income parameters on the valuation of the future

income stream and the implications for total wealth and the optimal policies.

The rest of this chapter is organized as follows. In Section 5.1 the model with non-constant

labor income parameters is introduced. Section 5.2 and 5.3 contain the result of two special cases

that can be solved in closed-form. In Section 5.2 only the part of labor income growth that does

not vary with the state variable is subject to time-dependence. In Section 5.3 the parameters

that determine the effect of the state variable are non-constant. The final section concludes.

Appendix 5.A.1 contains the solution of a Riccati differential equation with the initial condition

unequal to zero.

1See Figure 1 and Table 2 in Cocco et al. (2005).
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5.1 Model

In the basic model it is assumed that all parameters are constant. However, labor income dynam-

ics are unlikely to be constant over the employment phase. For example, labor income growth

might be higher at an early age or older employees could be more exposed to a deterioration of

the economic environment.

Under non-constant labor income parameters, it is necessary to pay more attention to the

change in variable from t to τ . With non-constant labor income parameters the dynamics of the

stochastic part of labor income are given by

dY (t)

Y (t)
= [y0 (t) + y1 (t)X (t)] dt+ σy (t)

√

X (t)dWy (t)

and the term in the brackets of equation (4.13) from Chapter 4 is given by

0 =







∂k
∂t + 1− r0k − κxX ∂k

∂X + κxX̄
∂k
∂X + k [y0 (t) + y1 (t)X]

−ρsxσx
σs

λ1
∂k
∂XX −

ρsyσy(t)
σs

λ1kX + ρxyσxσy (t)
∂k
∂XX + 1

2σ
2
x
∂2k
∂X2X






(5.1)

A function of the form

k (X, t, T ) =

∫ T

t
ed0(u)+d1(u)Xdu (5.2)

with initial conditions d1 (u = t) = d0 (u = t) = 0 will solve equation (5.1).

(5.2) has a natural interpretation. In fact, k is the function that values the future income

stream relative to its current value Y (t). The initial conditions imply that the immediate point

in time is weighted by e0 = 1 which is intuitive. Future income is considered with respect to its

growth rate and risk and the derivation of k with the martingale method in Appendix 3.A.1 of

Chapter 3 confirms this notion. A similar statement is made by Wachter (2002). By solving the

consumption-investment problem with the martingale method she noticed that wealth can be

viewed as a bond that pays consumption as its coupon and hence the total value of wealth is

simply the sum over all future consumption2. In analogy, the future labor income stream is an

asset that pays Y as its coupon.

As in the previous chapters, the transformation s ≡ u− t is made which leads to

k (X, τ) =

∫ τ

0
ed0(s|t )+d1(s|t )Xds (5.3)

Equation (5.3) follows from ds = du, the upper boundary T − t = τ and the lower boundary

t − t = 0. The operator (s |t) shows that the time variable is s but the parameters depend on

the initial point in time t.

It should be noticed that in (5.2) u ∈ [t, T ] while in (5.3) s ∈ [0, τ ]. In words, t (T ) of the

original time domain matches with 0 (τ) of the new domain.

2See Wachter (2002, p. 69).
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Furthermore, because the relevant partial derivatives of (5.3) are given by3

kτ =

∫ τ

0

(
∂d0 (s |t)

∂s
+
∂d1 (s |t)

∂s
X

)

ed0(s|t )+d1(s|t )Xds+ 1

kX =

∫ τ

0
d1 (s |t) ed0(s|t )+d1(s|t )Xds

kXX =

∫ τ

0
d1 (s |t)2 ed0(s|t )+d1(s|t )Xds

and ∂k/∂t = −∂k/∂τ , (5.1) can be written as

0 =

∫ τ

0
ed0(s|t )+d1(s|t )X







−
(
∂d0(s|t )

∂s + ∂d1(s|t )
∂s X

)

− r0 − κxd1 (s |t)X

+κxX̄d1 (s |t) + [y0 (s |t) + y1 (s |t)X]

−ρsxσx
σs

λ1d1 (s |t)X − ρsyσy(s|t )
σs

λ1X

+ρxyσxσy (s |t) d1 (s |t)X + 1
2σ

2
xd1 (s |t)2X







ds (5.4)

Matching coefficients on X and the constant term leads to a system of two ordinary differential

equations

∂d1 (s |t)
∂s

= l0 (s |t) + l1 (s |t) d1 (s |t) + l2d1 (s |t)2 (5.5)

∂d0 (s |t)
∂s

= l3 (s |t) + l4d1 (s |t) (5.6)

with initial conditions d1 (s = 0 |t) = d0 (s = 0 |t) = 0 and where

l0 (s |t) ≡ y1 (s |t)−
ρsyσy (s |t)

σs
λ1, l1 (s |t) ≡ −κx −

ρsxσx
σs

λ1 + ρxyσxσy (s |t)

l2 ≡
1

2
σ2x

l3 (s |t) ≡ y0 (s |t)− r0, l4 ≡ κxX̄

It can be recognized that SODE (5.5) - (5.6) is similar to SODE (4.15) - (4.16) with the

exception of the time variation in the coefficients l0, l1 and l3.

5.2 Time Dependence in y0 only

Including time dependence in y0 only does not bring any severe difficulties. In particular, (5.5)

has only constant coefficients and thus the solutions of d1 (s) from Chapter 4 are still valid. Since

d1 (s) does not depend on the initial point in time t, (5.6) is given by

∂d0 (s |t)
∂s

= y0 (s |t)− r0 + l4d1 (s)

Since this equation can be solved by integration, d0 (s |t) is available in closed-form as long

as y0 (s |t) is integrable in closed-form. Based on the work of Cocco et al. (2005), Munk and

3More details with respect to the derivation of Jτ can be found in Appendix 2.A.2 of Chapter 2
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Sørensen (2010) assume y0 (s |t) has the following structure

y0 (s |t) = a0 + 2a1 (t+ s) + 3a2 (t+ s)2

= a0 + 2a1t+ 2a1s+ 3a2t
2 + 6a2ts+ 3a2s

2

Defining â0 (t) ≡ a0 + 2a1t+ 3a2t
2 and â1 (t) ≡ a1 + 3a2t leads to

y0 (s |t) = â0 (t) + 2â1 (t) s+ 3a2s
2

Hence, the solutions are given by

d1 (s) =







2l0(1−e−ηls)
2ηl−(l1+ηl)(1−e−ηls)

, , ql > 0

− 1

l2
(

s− 2
l1

) − l1
2l2

, ql = 0

ηl
2l2

tan (ωs+ ϕ)− l1
2l2

, ql < 0

d0 (s |t) = (â0 (t)− r0) s+ â1 (t) s
2 + a2s

3

+







+ 2l0l4
ηl−l1

s+ 4l0l4
η2l −l

2
1
ln

(
2ηl−(l1+ηl)(1−e−ηls)

2ηl

)

, ql > 0

− l1l4
2l2
s− l4

l2
ln

(
∣

∣

∣
l1
(

s− 2
l1

)∣

∣

∣

2

)

, ql = 0

− l1l4
2l2
s+ l4

l2
[cos (ωs+ ϕ)− cos (ϕ)] , ql < 0

Remarks

• Since the solution of d1 (s) is unchanged, the properties form Chapter 4 remain true, i.e.

d1 (s) is monotone and does not change sign over the horizon. As a consequence, the

qualitative properties of total wealth and the optimal policies of the aforementioned chapter

are unchanged.

• However, more realistic growth pattern can considerably affect the magnitude of total wealth

and the optimal policies. This is intuitive since

k =

∫ τ

0
ed0(s|t )+d1(s)Xds

and

kX =

∫ τ

0
d1 (s) e

d0(s|t )+d1(s)Xds

show the impact of changes in d0 (s |t). Imagine two individuals with equal average income

growth but the first individual has a higher growth rate during the first phase of employment.

For this individual, high growth rates in the beginning lead to a rapid increase in d0 (s |t)
and the higher ed0(s|t ) generates a larger area under the integral. For this reason and because

d1 (s) is the same, both k and kX become greater for the first individual compared to the

second and the results amplify. This statement is illustrated in the next section.
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5.2.1 Illustration of the Results

Parameters of the financial market and the individual are displayed in Table 5.1. For the sake of

simplicity, the individual is assumed to have locally riskfree labor income. All other values are

similar to Table 4.2 of Chapter 4.

Financial Market

r0 = 0.0050

λ1 = 1.0000 σs = 1.0000

κx = 0.1000 X̄ = 0.0400 σx = 0.0323

ρsx = −1

Individual

γ = 4 δ = 0.06

ȳ = 0.03 σy = 0

A (0) = 50 Y (0) = 10 Ȳ = 40

c̄ = 45

Table 5.1: Parameter Values

As shown in Table 5.2, three scenarios are looked at4. In the first case i), the individual has

constant labor income growth and this case therefore coincides with the model of Chapter 4.

In the second case ii), the individual has a linear trend in labor income growth. In particular,

labor income growth is high at the beginning and decreases over time. In the third case iii), the

quadratic term generates an even more pronounced growth in the beginning and lower growth

towards the end of the horizon.

i) a0 = 0.0380 (0.0220) a1 = a2 = 0

ii) a0 = 0.0980 (0.0820) a1 = −0.0015 a2 = 0

iii) a0 = 0.1113 (0.0953) a1 = −0.0025 a2 = 0.8333 · 10−5

Table 5.2: y0 (t) Growth Parameters

For the sake of comparability, we restrict

∫ T

0
a0 + 2a1t+ 3a2t

2dt (5.7)

to be constant. Moreover, it should be noticed that for the case i)

a0 = ȳ − y1X̄

For the second (third) case, a1 (a1 and a2) were chosen exogenously and a0 is chosen so that

(5.7) is fulfilled. The term in the brackets of Table 5.2 belongs to the individual with y1 = 0.2

4The signs chosen are identical to Munk and Sørensen (2010, p. 455).
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and the regular term belongs to the individual with y1 = −0.2. The growth profiles of y0 (t) are

displayed in Figure 5.1.
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Figure 5.1: Growth Profiles

This Figure shows the growth profile as displayed in Table 5.2 for the individual with a negative sensitivity of

the labor income growth rate to stochastic volatility of y1 = −0.2. Parameters are given as in Table 5.1. The blue

(red, green) line shows the case i) (ii), iii)) as described in Table 5.2.

Figure 5.1 contains the growth profile for the individual with a negative sensitivity of labor

income growth onto X. For the individual with a positive sensitivity the growth profile looks

identical with the exception of a change in level. It should be recognized that for the cases ii)

and iii), income growth at the beginning of the working period is considerably higher and turns

negative towards the end of the working period.

Figure 5.2 shows the value of total wealth. It can be clearly recognized that the statement

from above is confirmed, i.e. high labor income growth at the beginning of the working period

matters indeed. The numerical example reveals that compared to the base case i), cases ii) and

iii) show that total wealth approximately doubles. The result is intuitive since labor income is

a flow, and a fast growth at the beginning leads to more income over the phase of employment

even if final income is the same. Besides, because d1 (s) is unchanged the statements from Section

4.4.1 of Chapter 4 with respect to the properties of total wealth remain valid.

Figure 5.3 shows the impact on optimal investment. Since myopic demand and state variable

hedging demand are only affected by the changes in total wealth they are omitted. In particular,

the increased value of total wealth increases these two demands.

Panels (c) and (d) show the impact on indirect labor hedging demand which becomes larger

in magnitude. For the individual to the right, since indirect labor hedging demand in case of

y1 > 0 is positive, all components of risky investment are unambiguously greater and hence,

risky investment in cases ii) and iii) is higher compared to case i).

This does not have to be the case for the individual to the left. On the one hand, y1 < 0 implies

negative indirect labor hedging demand, which lowers risky investment for the cases ii) and iii)

compared to case i). On the other hand, because of the higher total wealth, myopic demand
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and state variable hedging demand increase. As a consequence there are ambiguous effects for

the case y1 < 0 and the change in risky investment depends on the specific parameter values. In

the numerical example the impact of higher myopic and state variable demand is stronger and

hence, risky investment also rises.
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Figure 5.2: Total Wealth - Locally Riskfree Labor Income

This Figure shows total wealth Â dependent on stochastic volatility. Parameters are given as in Table 5.1. The

blue (red, green) lines show the cases i), ii) and iii) as described in Table 5.2. In the panel to the left (right) the

sensitivity of the labor income growth rate to stochastic volatility is positive (negative) and given by y1 = −0.2

(y1 = 0.2).

The differences in excess consumption are simple and a figure with the results is thus omitted. In

fact, from optimal consumption (4.24) it can be recognized that the denominator is the same for

all cases. Hence, changes in excess consumption stem exclusively from changes in total wealth,

which are described above.

It can be summarized that the inclusion of more realistic growth pattern for labor income

leads to a considerably higher value of the future labor income stream. With the exception of

scenarios with strongly negative y1 and a high fraction of stochastic labor income, higher total

wealth will induce higher risky investment and higher consumption.
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Figure 5.3: Optimal Risky Investment - Locally Riskfree Labor Income

Panels (a) and (b) shows the amount optimally invested in the risky asset Aπ∗t dependent on stochastic volatility.

Panels (c) and (d) display indirect labor hedging demand as described in equation (4.27) of Chapter 4. Parameters

are given as in Table 5.1. The blue (red, green) lines show the cases i), ii) and iii) as described in Table 5.2.

In the panel to the left (right) the sensitivity of the labor income growth rate to stochastic volatility is positive

(negative) and given by y1 = −0.2 (y1 = 0.2).

5.3 Time Dependence in y1 and σy

Time variation in y1 and σy is more complicated. To our knowledge, closed-form solutions to

Riccati differential equations with non-constant coefficients are only available in very few special

cases5. Nevertheless, one is able to find closed form solutions for d1 (t) if y1 and σy are piecewise

constant. The assumption of piecewise constant y1 and the assumption of constant labor income

growth at the long-run meanX = X̄ imply that y0 must also be piecewise constant. Furthermore,

also assuming piecewise constant y0 enables different income growth for different time periods,

which is a desirable feature on its own.

For the sake of simplicity, we will assume that the employment phase is divided into two parts

5See Boyle et al. (2002) for an example.
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and

y0 (t) = yj,0, y1 (t) = yj,1, σy (t) = σj,y , t ≤ T1

y0 (t) = ys,0, y1 (t) = ys,1, σy (t) = σs,y , T1 < t ≤ T2

where T2 is the end of the planning horizon and T1 is the jump date.

For the second period, T1 < t ≤ T2, the solution of the SODE is easy because for this period

the solution is given by the constant parameters solution of the previous chapter with

ls,0 ≡ ys,1 −
ρsyσs,y
σs

λ1, ls,1 ≡ −κx −
ρsxσx
σs

λ1 + ρxyσxσs,y

ls,3 ≡ ys,0 − r0

Including the first period, 0 ≤ t ≤ T1, makes the solution more extensive. As shown in (5.5), for

0 ≤ s ≤ T1 − t

∂dj,1 (s)

∂s
= lj,0 + lj,1dj,1 (s) + l2dj,1 (s)

2

∂dj,0 (s)

∂s
= l3 + l4dj,1 (s)

with initial conditions d1 (s = 0) = d0 (s = 0) = 0 and where

lj,0 ≡ yj,1 −
ρsyσj,y
σs

λ1, lj,1 ≡ −κx −
ρsxσx
σs

λ1 + ρxyσxσj,y

lj,3 ≡ yj,0 − r0

For T1 − t < s ≤ T2 − t, the system is given by

∂ds,1 (s |t)
∂s

= ls,0 + ls,1ds,1 (s |t) + l2ds,1 (s |t)2

∂ds,0 (s |t)
∂s

= l3 + l4ds,1 (s |t)

Initial conditions for the second period are given by ds,1 (s = T1 − t |t) = dj,1 (s = T1 − t) and

ds,0 (s = T1 − t |t) = dj,0 (s = T1 − t) . In other words, the solution of a two period problem

involves solving a Riccati differential equation with an initial value not equal to zero. The

detailed derivation of the solution can be found in Appendix 5.A.1.

For T1 < t ≤ T2, the problem consists only of the second period and thus the solution is

completely analogous to the constant coefficient case where l0 (l1) has to be replaced by ls,0

(ls,1). Hence,

d1 (s) = ds,1 (s) =







2ls,0(1−e−ηs,ls)
2ηs,l−(ls,1+ηs,l)(1−e

−ηs,ls)
, qs,l > 0

− 1

l2

(

s− 2
ls,1

) − ls,1
2l2

, qs,l = 0

ηs,l
2l2

tan (ωs,ls+ ϕs,l)− ls,1
2l2

, qs,l < 0

where qs,l ≡ l2s,1 − 4ls,0ls,1 and ηs,l ≡
√
|qs,l| and where ̟s,l ≡ ηs,l

2 and ϕs,l ≡ arctan
(
ls,1
ηs,l

)

. For
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the case 0 ≤ t ≤ T1, the solution for 0 ≤ s ≤ T1 − t is given by

d1 (s |t) = dj,1 (s) =







2lj,0(1−e−ηj,ls)
2ηj,l−(lj,1+ηj,l)(1−e

−ηj,ls)
, qj,l > 0

− 1

l2

(

s− 2
lj,1

) − lj,1
2l2

, qj,l = 0

ηj,l
2l2

tan (ωj,ls+ ϕj,l)− lj,1
2l2

, qj,l < 0

and for T1 − t < s ≤ T2 − t

d1 (s |t) = dj,1 (τ1) +







2l̂s,0
(

1−e
−ηs,l(s−τ1)

)

2ηs,l−(l̂s,1+ηs,l)
(

1−e
−ηs,l(s−τ1)

) , qs,l > 0

− 1

l2

(

(s−τ1)−
2

l̂s,1

) − l̂s,1
2l2

, qs,l = 0

ηs,l
2l2

tan (ω̂s,l (s− τ1) + ϕ̂s,l)− l̂s,1
2l2

, qs,l < 0

where τ1 ≡ T1 − t, l̂s,0 ≡ ls,0 + ls,1dj,1 (τ1) + l2dj,1 (τ1)
2 and l̂s,1 ≡ ls,1 + 2l2ds,1 (τ1) and where

ω̂s,l, ϕ̂s,l, qj,l and ηj,l are defined in analogy to the above6.

The solution for d0 (s) follows the same steps. For T1 < t ≤ T2

d0 (s) = ds,0 (s)

=







ls,3s+
2ls,0l4
ηl−ls,1

s+
4ls,0l4
η2l −l

2
s,1

ln

(
2ηl−(ls,1+ηl)(1−e−ηls)

2ηl

)

, qs,l > 0

ls,3s− ls,1l4
2l2

s− l4
l2
ln





∣

∣

∣

∣

ls,1

(

s− 2
ls,1

)∣

∣

∣

∣

2



 , qs,l = 0

ls,3s− ls,1l4
2l2

s+ l4
l2
[cos (ωs,ls+ ϕs,l)− cos (ϕs,l)] , qs,l < 0

For the case 0 ≤ t ≤ T1, the solution for 0 ≤ s ≤ T1 − t

d0 (s |t) = dj,0 (s)

=







lj,3s+
2lj,0l4
ηl−lj,1

s+
4lj,0l4
η2l −l

2
j,1

ln

(
2ηl−(lj,1+ηl)(1−e−ηls)

2ηl

)

, qj,l > 0

lj,3s− lj,1l4
2l2

s− l4
l2
ln





∣

∣

∣

∣

lj,1

(

s− 2
lj,1

)
∣

∣

∣

∣

2



 , qj,l = 0

lj,3s− lj,1l4
2l2

s+ l4
l2
[cos (ωj,ls+ ϕj,l)− cos (ϕj,l)] , qj,l < 0

6It should be noted that qs,l = l2s,1 − 4ls,0ls,2 is unchanged. In fact, l̂2s,1 − 4l̂s,0ls,2 = l2s,1 + 4l2ls,1y + 4l22y
2 −

4l2
[
ls,0 + ls,1y + l2y

2
]
= l2j,1 − 4lj,0lj,2. This result is intuitive because Appendix 5.A.1 shows that the shape and

the vertical position of the parabola are not changed by the transformation.
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and for T1 − t < s ≤ T2 − t

d0 (s |t) = dj,0 (τ1) + ls,3 [s− τ1] + l4dj,1 (τ1) [s− τ1]

+







+
2l̂s,0l4

ηs−l̂s,1
[s− τ1] + 4l̂s,0l4

η2s−l̂
2
s,1

ln

(
2ηs−(l̂s,1+ηs)(1−e−ηs[s−τ1])

2ηs

)

, qs,l > 0

− l̂s,1l4
2l2

[s− τ1]− l4
l2
ln





∣

∣

∣

∣

l̂s,1

(

[s−τ1]−
2

l̂s,1

)
∣

∣

∣

∣

2



 , qs,l = 0

− l̂s,1l4
2l2

[s− τ1] + l4
l2
[cos (ω̂s,l [s− τ1] + ϕ̂s,l)− cos (ϕ̂s,l)] , qs,l < 0

Remarks

• Piecewise constant y1 and σy allow d1 (s |t) to evolve differently over the two periods. Most

notably, d1 (s |t) can change sign at a certain point of the horizon.

• Combined with the monotonically decreasing hedging demand, this can generate a variety

of patterns of the risky asset allocation over the horizon.

• Introducing more subperiods could generate even more sophisticated pattern.

5.3.1 Illustration of the Results

The primary differences that arise in the presence of piecewise constant labor income parameters

are changes in the valuation of the income stream k (X, τ). For this reason, the illustration of

the results focus on this factor. A detailed discussion of total wealth and the optimal policies

is omitted. Nevertheless, important implications for total wealth and the optimal policies are

pointed out explicitly. Parameters for the financial market and the individual are given as in

Table 5.1. It should be kept in mind that for the sake of simplicity it is assumed that labor

income is locally riskfree.

Furthermore, it is assumed that the entire planning horizon is T2 = 40 years and the jump

date is at T1 = 20 years.

i) yj,1 = −0.2 ys,1 = −0.2
ii) yj,1 = −0.4 ys,1 = 0

iii) yj,1 = 0 ys,1 = −0.4

Table 5.3: Parameter Values - Piecewise Constant y1

As can be seen from Table 5.3, we restrict the discussion on a setting where the individual

has a negative sensitivity on the state variable7. The first scenario i) is similar to the constant

parameter case since for both periods y1 is the same. In the second case ii) the individual faces

a strong negative sensitivity in the first period and no sensitivity during the second period. The

third case iii) is similar to the second one, but the periods are interchanged. Over the entire

7Further results can be derived in analogy.
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horizon, the sensitivity to changes in X is on average the same. For the sake of comparability,

labor income growth at the long-run mean X = X̄ is the same

yi,0 = ȳ − yi,1X̄, i ∈ {j, s}

Figure 5.4 shows the development of k (X, τ) over the time horizon. The blue (red, green) lines

display case i) (ii), iii)). In order to see the impact of different states, the lines with crosses

(circles, squares) show the state X = X̄ (X = 0, X = 0.08).

The state variable dimension does not show any surprising results. Since labor income growth

is high (low) for low (high) states of X, the lines with circles (squares) lie above (below) the line

with crosses. Furthermore, it should be noticed that for the second case (red lines), there is no

sensitivity of k over states for a horizon below 20 years. This is intuitive as this individual faces

no state variable sensitivity for the second period.
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Figure 5.4: k (X, τ) Piecewise Constant y1

This Figure shows k (X, τ) for the model with piecewise constant labor income parameters. Parameter values are

given as in Table 5.1 and Table 5.3. The blue (red, green) lines show the cases i), ii) and iii) as described in Table

5.3. The line with crosses (circles, squares) shows the state X = X̄ (X = 0, X = 0.08).

The differences between the three cases are rather small given the state. This result is intuitive

because the growth rate at the long-run mean is the same for all cases by assumption. Since
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total wealth and optimal consumption depend only on k (X, τ) (but not on ∂k (X, τ) /∂X), they

are only slightly affected by the inclusion of piecewise constant labor income parameters.

The changes in ∂k (X, τ) /∂X are far more interesting and displayed in Figure 5.5. Since this

term is determined for indirect labor hedging demand, differences in the optimal investment

policies will arise.
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Figure 5.5: ∂k (X, τ) /∂X Piecewise Constant y1

This Figure shows ∂k (X, τ) /∂X for the model with piecewise constant labor income parameters. Parameter

values are given as in Table 5.1 and Table 5.3. The blue (red, green) lines show the cases i), ii) and iii) as

described in Table 5.3. The line with crosses (circles, squares) shows the state X = X̄ (X = 0, X = 0.08).

It can be recognized that the development of

kX =

∫ τ

0
d1 (s |t) ed0(s|t )+d1(s|t )Xds (5.8)

is directly influenced by d1 (s |t). The blue lines show that for the constant parameter case, the

development of ∂k (X, τ) /∂X is a smooth function over the horizon. Thus, the statement from

the phase plane analysis of Chapter 4 that k and kX are monotone over time is confirmed. For

the red case, ∂k (X, τ) /∂X is strong in magnitude for long horizon and decreases fast with the

horizon. At the jump date, the value is equal to zero, which is intuitive as there is no sensitivity

for the second period. As a consequence, indirect labor hedging demand vanishes after the first
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period and the optimal investment policy is solely determined by myopic and state variable

hedging demand.

The third case is the most interesting. Even if the sensitivity of labor income growth on state

variable is zero during the first phase, ∂k (X, τ) /∂X is not zero. Furthermore, the first phase

∂k (X, τ) /∂X is more stable over time and remains important even for intermediate horizons.

This pattern can be explained as follows:

• During the first period, 0 ≤ τ < T1 = 20, ∂k (X, τ) /∂X changes only because of the longer

horizon that leads to changes in d0 (s |t). In fact, defining τ1 ≡ T1 − t, τ2 ≡ T2 − t and

rewriting (5.8) as

kX =

∫ τ1

0
d1 (s |t) ed0(s|t )+d1(s|t )Xds

︸ ︷︷ ︸

=0

+

∫ τ2

τ1

d1 (s |t) ed0(s|t )+d1(s|t )X
︸ ︷︷ ︸

ω

ds

reveals that the first part on the RHS is zero because from the analytical derivation it can

be seen that d1 (s |t) = 0, s ≤ τ1. Nevertheless, in the second term on the RHS d0 (s |t)
changes with horizon. In the numerical example, l3 is assumed to be positive and thus

d0 (s |t) becomes higher for longer horizons. The weighting factor ω therefore gives more

weight to d1 (s |t) and kX has a higher magnitude for longer horizon.

• As shown in the analytical part, the problem for the second period is analogous to the

constant parameter framework. Compared to the constant case i), the higher magnitude

of ys,1 = −0.4 leads to a faster decrease of kX during the second period as τ goes towards

zero.

The third case reveals that even if the labor income of a young individual is not exposed to

changes in the state variable, the individual has to take them into consideration if labor income

at a later phase of life is exposed to changes in the states.

5.4 Conclusion

The inclusion of non-constant labor income parameters give new insights. In addition to the

results of the basic model presented in Chapter 4 the most important results are the following:

1. Time dependence in y0 is rather simple to implement. In fact, d0 (s) is available in closed-

form as long as y0 (s |t) is integrable in closed-form.

2. The inclusion of high labor income growth at the beginning of the working period leads

to a higher valuation of the future income stream. As a consequence, the importance of

labor income on the optimal policies increases.

3. Time dependence in y1 or σy is difficult to implement because closed-form solutions of

Riccati differential equations with time-varying coefficients only exist in a few special

cases. Nevertheless, closed-form solutions can be found for piecewise constant parameters.
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4. The analytical results show that non-constant labor income parameters allow for more

sophisticated patterns of k and especially kX over the time horizon. Under constant pa-

rameters, kX is either positive or negative over the entire horizon. This does not have to

be the case under non-constant parameters.

5. Even if labor income from young individuals is not exposed to changes in the state of the

economy, the valuation of the future income stream depends on X if income is exposed to

changes in the state at a later time period. In this case, the sensitivity of the value of the

future income stream of a young individual is rather stable over time.
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5.A Appendix

5.A.1 Riccati Differential Equation with y (0) 6= 0

The solution of the model of Section 5.3 includes the task of solving a Riccati differential equation

with the initial condition not equal to zero. Nevertheless, the solution to this problem is rather

simple because every Riccati differential equation with initial value ȳ can be transformed into

an equation with an initial value equal to zero. In fact, starting from

dy (t)

dt
= m0 +m1y (t) +m2y (t)

2

with initial condition y (T ) = ȳ, the simple transformation8

ŷ (t) ≡ y (t)− ȳ

leads to ŷ (T ) = 0 and
dŷ (t)

dt
=
dy (t)

dt

Hence,

dŷ (t)

dt
= m0 +m1 (ŷ (t) + ȳ) +m2 (ŷ (t) + ȳ)2

= m̂0 + m̂1ŷ (t) + m̂2ŷ (t)
2 (5.9)

where m̂0 ≡ m0+m1ȳ+m2ȳ
2, m̂1 ≡ m1+2m2ȳ and m̂2 ≡ m2. Now, the standard formulas can

be applied on (5.9).

8Graphically, the transformation is simply a horizontal shift of the parabola from ȳ in to the origin.



Chapter 6

Conclusion

Section 6.1 of this final chapter aims to give a short overview of the most important results.

A detailed discussion is not intended and more information can be found at the end of the

introduction and at the end of the corresponding chapters. In Section 6.2, we take a second look

at the critical assumptions that must be taken for the sake of closed-form solutions and point

out possible topics for future research.

6.1 Summary

In this thesis, the consumption and portfolio optimization problem of an investor facing time-

varying investment opportunities and dynamic non-financial income is solved with analytical

methods. The models focus on this dimension and additional features are either completely

neglected (as, for example, life-time uncertainty) or presented as extensions (life-cycle models

with a phase of retirement). This approach allows the impact of dynamic labor income to be

studied in a pure form and allows us to evaluate its importance.

In Chapter 2, a model with time variation in the expected return of the risky asset and time

variation in labor income growth is introduced. Time variation is driven by a state variable

that follows an Ornstein-Uhlenbeck process. The financial market setting is identical to Wachter

(2002) and Campbell et al. (2004). The framework was extended to stochastic labor income

volatility in Chapter 3. The subsequent chapter presents a model with stochastic volatility for

the risky asset and an affine volatility premium. Similarly to the risky asset, labor income is also

assumed to have time-varying growth and volatility. In this model, stochastic volatility follows

a CIR-process and a similar model without labor income is presented by Liu (2007) as a special

case of his general model. In Chapter 5, the assumption of constant labor income parameters

over the time horizon is relaxed.

From a technical point of view, the assumption of perfect correlation of the state variable and

the risky asset and the assumption of perfect correlation of labor income and the risky asset or

locally riskfree labor income (complete markets) allow for a separation of the complicated HJB-

equation into ordinary differential equations. This is common to all models presented in this

thesis and the same statement is valid for models with time-varying investment opportunities

141
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without labor income. However, the resulting systems of ordinary differential equations are

different from case to case and have to be solved by appropriate methods. The separability of

the HJB-equation is intuitive. The reason is the assumption of complete markets, which enables

the individual to control total wealth from becoming negative and this implies that she is able

to afford future subsistence consumption in all cases.

The most striking result is that counter-cyclical non-financial income growth (income growth

is low when expected returns are high) or pro-cyclical income volatility (income volatility is

high when expected returns are high) lead to a strong reduction of investment in the risky

asset. In fact, calibrated on realistic data, even for frameworks that yield a strong investment

in the risky asset, as for example Wachter (2002) or Campbell et al. (2004), risky investment is

considerably reduced and can even turn negative. In fact, if the dynamics of the labor income

stream have a particular relation to the financial assets, an investment strategy with low/no risky

investment can be optimal. Hence, it can be stated that dynamic labor income is a simple and

comprehensible instrument to explain why some people do not participate in the stock market.

In other words, as opposed to common financial advice, it makes completely sense for some

individuals to disclaim from risky investment. Moreover, it could be shown that consumption

can fall even in states of rising expected returns.

The extension to non-constant labor income parameters showed that time variation in labor

income is important even if current labor income does not vary with the economic states. In fact,

if labor income is exposed to variation in the economic states towards the end of the life-cycle

this has an impact on the behavior of a young individual anyhow.

The valuation of the future income stream is the central issue and determines the impact of

dynamic labor income on the optimal policies. This task involves solving ordinary differential

equations. It could be shown that certain combinations of parameter values lead to solutions

of the differential equations that do not converge in the long-run. These settings are in fa-

vor of extreme results and this should be considered a warning for numerical studies of the

consumption-investment problem with labor income that are calibrated on empirical results.

6.2 Open Issues and Future Research

The assumption of complete markets allowed to derive analytical solutions in closed-form. Ad-

mittedly, these assumptions are not completely in line with reality and it seems a natural next

step to approach similar models with weaker assumptions. However, it was shown that in these

cases the HJB-equations cannot be solved by analytical methods and one has to rely on numeri-

cal methods. Lynch and Tan (2009) is an example but their model includes multiple feature and

the sensitivity with respect to the states is neglected.

In the models of this thesis it is assumed that all the variation in the states is driven by one

factor. Several studies have shown that one factor is not able to reproduce all characteristics of

financial assets or multifactor models lead to better results1. The inclusion of multiple factors

1For example, Campbell and Vuolteenaho (2004) use a four factor model to describe the economy.
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does not affect the separation property of the HJB-equation. In other words, as long as the

assumption of complete markets is fulfilled the HJB can be separated. However, the solution asks

to solve systems of linear differential equations and/or systems of Riccati differential equations.

Although these systems are generally solvable2, the results are rather difficult to interpret.

Nevertheless, an extension to a two factor model which allows for more autonomy of the financial

and the non-financial market seems desirable. As shown in, for example, Buraschi et al. (2010)

two-factor models can be interpreted in reasonable depth.

Munk and Sørensen (2010) analyze a joint bond-stock model with dynamic labor income. In

their model the long-term bond is described by a Vasicek model and the growth rate of labor

income varies with the (stochastic) short rate. One important advantage of this model is that

the long-term bond and the state variable (the short rate) are perfectly negatively correlated

by construction. Hence, market incompleteness arises only from the non-perfect correlation of

labor income and the financial market. A simplified version of the model of Munk and Sørensen

(2010) could be analyzed in more depth and the model could be extended to more sophisticated

quadratic term structure models. Labor growth would not have to be affine in the short rate but

only in the factor that drives the quadratic term structure model. Thus, more flexible relations

of the bond and the labor market could be analyzed.

Short sale and borrowing constraints were not included in the models. In fact, the models of

the thesis imply that the individual is able to borrow against future labor income. As shown

by Koo (1998) and Munk (2000) borrowing constraints lead to a lower valuation of the future

income stream especially for individuals with low financial wealth. Hence, by the inclusion of

additional constraints risky investment and consumption could be reduced further. Moreover,

in our models optimal investment in the risky asset can be negative in the steady state or can

turn negative in some states. This is not specific to our models and the models of, for example,

Kim and Omberg (1996), Wachter (2002) and many others share this property. The primary

intention of the thesis was to evaluate whether dynamic labor income matters and it was shown

that compared to the effects of classical state variable hedging demand and myopic demand,

the impact of dynamic labor income is important. The inclusion of these kinds of constraints

would make the model more realistic and comparable with the results of our models. However,

extended models cannot be solved with analytical methods and one must rely on numerical

procedures.

2See Grasselli and Tebaldi (2008).
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