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Summary

This dissertation consists of three chapters devoted to topics in predictive and causal machine learn-

ing. Common to all chapters is the synthesis of classical econometric methods and novel machine learning

algorithms. Hence this doctoral thesis provides new insights into applications of machine learning for

predictive tasks and for causal inference.

The first chapter investigates the estimation of heterogeneous causal effects using machine learning.

We focus on the meta-learning framework where the estimation of the causal parameter is decomposed

into separate prediction tasks. Using synthetic and empirical simulations we study the finite sample

performance of meta-learners based on the Random Forest algorithm under different implementations

using sample-splitting and cross-fitting procedures. The results imply that sample-splitting is beneficial

in large samples for bias reduction but leads to an increase in variance, whereas cross-fitting keeps the

bias low and successfully restores the full sample size efficiency. In contrast, the full-sample estimation

is preferable in small samples when using machine learning. Additionally, we provide guidelines for

applications of meta-learners in empirical studies depending on particular data characteristics such as

treatment shares and sample size.

The second chapter considers the estimation of ordered choice models using machine learning. Sim-

ilarly, as in the first chapter, we focus on the Random Forest algorithm and develop a new machine

learning estimator for models with ordered categorical outcome variable. The proposed Ordered For-

est flexibly estimates the conditional ordered choice probabilities while taking the ordering information

explicitly into account. In contrast to common machine learning estimators, it is not only suited for pre-

diction tasks, but it also enables the estimation of marginal effects and conducting statistical inference,

which provides additional interpretability as in classical econometric estimators. We conduct an extensive

simulation study and find a good predictive performance, particularly in settings with nonlinearities and

multicollinearity. Furthermore, we demonstrate the estimation of marginal effects and their standard

errors in an empirical application.

The third chapter presents an empirical application based on the estimation of causal effects using

machine learning. As in the previous two chapters, we rely on the Random Forest method and consider

its causal variant, the Modified Causal Forest. Following the rise of online dating, we study the effect

of sport activity on partner choice by exploiting a unique dataset from an online dating platform. In

particular, we estimate the causal effect of sport frequency on the contact chances, controlling for a large

set of observable user characteristics. We find that for male users, doing sport on a weekly basis increases

the probability to receive a first message by more than 50%, in comparison to no sport activity. In

contrast, we do not find such an evidence for female users. Moreover, the results indicate heterogeneity

as for male users the effect increases with higher income.

x



Zusammenfassung

Die vorliegende Dissertation besteht aus drei Kapitel, welche sich dem prädiktiven und kausalen

maschinellen Lernen widmen. Die Synthese von klassischen Methoden der Ökonometrie und neuartigen

Algorithmen des maschinellen Lernens ist allen Kapiteln gemeinsam. Somit bietet diese Doktorarbeit

neue Erkenntnisse für die Anwendung von maschinellem Lernen für die Prädiktion und kausale Inferenz.

Das erste Kapitel untersucht die Schätzung heterogener kausaler Effekte mittels maschinellen Ler-

nens. Wir fokussieren uns auf das Konzept des Meta-Learning, wobei die Schätzung kausaler Parameter

in einzelne Prädiktionsmodelle aufgeteilt wird. Anhand von synthetischen und empirischen Simulationen

analysieren wir die Eigenschaften der Meta-Learner in Stichproben mit begrenzter Anzahl an Beobachtun-

gen, basierend auf dem Random Forest Algorithmus. Den Schwerpunkt legen wir hierbei auf verschiedene

Implementierungen anhand von Sample-Splitting und Cross-Fitting Prozeduren. Die Ergebnisse belegen,

dass Sample-Splitting in grossen Stichproben für die Verzerrungsreduktion hilfreich ist, jedoch führt dies

gleichzeitig zu einer Varianzerhöhung. Ebenso reduziert Cross-Fitting in grossen Stichproben die Verzer-

rung, währenddessen die Effizienz erfolgreich wiederhergestellt wird. Demgegenüber ist bei Anwendung

des maschinellen Lernens in kleinen Stichproben die Schätzung basierend auf der ganzen Stichprobe zu

bevorzugen. Des Weiteren leiten wir Anwendungsempfehlungen für die Meta-Learner in empirischen

Studien ab, die auf bestimmten Datenmerkmalen, wie Treatmentanteile und Stichprobengrösse, beruhen.

Das zweite Kapitel befasst sich mit der Schätzung von Ordered Choice Modellen mittels maschinellen

Lernens. Ähnlich wie im ersten Kapitel betrachten wir den Random Forest Algorithmus und entwickeln

einen neuen Schätzer für Modelle mit einer geordneten kategorischen abhängigen Variable. Die vorgeschla-

gene Ordered Forest Methode schätzt flexibel die bedingten geordneten Wahlwahrscheinlichkeiten, worin

die Ordnungsinformation ausdrücklich berücksichtigt wird. Im Vergleich mit den gängigen Methoden des

maschinellen Lernens, ist die Methode nicht nur für die Prädiktion geeignet, sondern ermöglicht auch die

Schätzung marginaler Effekte sowie eine statistische Inferenzanalyse. Somit bietet sie eine zusätzliche

Interpretierbarkeit, die auf den klassischen ökonometrischen Methoden beruht. Wir führen eine umfan-

greiche Simulationsstudie durch und stellen eine gute Vorhersagekraft fest, insbesondere in Szenarien

mit Nichtlinearitäten und Multikollinearität. Ferner demonstrieren wir die Schätzung von marginalen

Effekten und deren Standardfehler in einer empirischen Anwendung.

Das dritte Kapitel präsentiert eine empirische Anwendung gestützt auf die Schätzung von kausalen

Effekten mittels maschinellen Lernens. Sowie in den vorherigen beiden Kapiteln, beziehen wir uns auf

die Random Forest Methode und betrachten ihre Kausalversion, den Modified Causal Forest. Nach dem

Aufkommen des Online-Datings analysieren wir den Effekt der Sportaktivität auf die Partnerwahl durch

die Nutzung eines einzigartigen Datensatzes einer Online-Dating Plattform. Insbesondere schätzen wir

den kausalen Effekt der Häufigkeit des Sporttreibens auf die Kontaktchancen, unter Berücksichtigung

einer grossen Anzahl von beobachtbaren Benutzercharakteristiken. Wir stellen fest, dass für männliche

Benutzer das wöchentliche Sporttreiben die Wahrscheinlichkeit eine erste Nachricht zu erhalten um mehr

als 50% erhöht, verglichen zu keiner sportlichen Aktivität. Andererseits finden wir keine solche Evidenz

für weibliche Benutzer. Zugleich weisen die Ergebnisse eine Heterogenität auf, indem der Effekt für

Männer mit einem höheren Einkommen steigt.

xi





Chapter 1

Meta-Learners for Estimation of Causal Effects:

Finite Sample Cross-Fit Performance

Abstract

Estimation of causal effects using machine learning methods has become an active research field in econo-

metrics. In this respect the meta-learning algorithms have gained considerable attention for estimation

of heterogeneous causal effects. We study the finite sample performance of various meta-learners for

estimation of heterogeneous treatment effects, while explicitly focusing on the usage of sample-splitting

and cross-fitting to reduce the overfitting bias. In both synthetic and empirical simulations we find

that the performance of the meta-learners in finite samples greatly depends on the estimation proce-

dure. The results imply that sample-splitting and cross-fitting are beneficial in large samples for bias

reduction and efficiency of the meta-learners, respectively, whereas full-sample estimation is preferable

in small samples. Furthermore, we derive practical recommendations for usage of specific meta-learners

in empirical studies depending on particular data characteristics such as treatment shares and sample size.

Keywords: Meta-learners, causal machine learning, heterogeneous treatment effects, Monte Carlo simulation,

sample-splitting, cross-fitting.

JEL classification: C15, C18, C31.
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1.1 Introduction

In recent years there has been a growing interest in the estimation of causal effects using machine

learning algorithms, particularly in the field of economics (Athey, 2018). The newly emerging synthesis of

machine learning methods with causal inference has a large potential for a more comprehensive estimation

of causal effects (Lechner, 2018). On the one hand, it enables a more flexible estimation of average

effects which are of main interest in microeconometrics (Imbens & Wooldridge, 2009). On the other

hand, it advances the estimation beyond the average effects and allows for a systematic analysis of

effect heterogeneity (Athey & Imbens, 2017). Both of these aspects contribute to a better description

of the causal mechanisms and thus to a possibly more efficient treatment allocation (Zhao, Zeng, Rush,

& Kosorok, 2012; Kitagawa & Tetenov, 2018; Athey & Wager, 2021; Nie, Brunskill, & Wager, 2021).

Hence, applied researchers can greatly benefit from the usage of machine learning methods ranging from

evaluation of public policies and business decisions to designing personalized interventions (Andini, Ciani,

de Blasio, D’Ignazio, & Salvestrini, 2018; Bansak et al., 2018).

Machine learning estimators as such are, however, primarily designed to tackle prediction problems

and thus cannot be used off-the-shelf for causal inference. Therefore, new approaches for the estimation

of causal parameters using machine learning emerged. Within the fast developing causal machine learning

literature, one strand focused on direct modifications of the existing machine learning algorithms that

adjust the objective function for the estimation of causal effects. Such approach has led for example to

the developments of Causal Trees (Athey & Imbens, 2016) and Causal Forests (Wager & Athey, 2018;

Lechner, 2018; Athey, Tibshirani, & Wager, 2019). While these methods have well-established theoretical

properties, they restrict the researcher in the choice of the machine learning method. Another strand of

the causal machine learning literature thus proposed general procedures to decompose the causal prob-

lem into separate prediction problems that can be solved by standard machine learning algorithms and

subsequently combined to estimate the causal parameters of interest. This approach has led to the devel-

opment of meta-learners for the estimation of causal effects (see e.g. Künzel, Sekhon, Bickel, & Yu, 2019;

Kennedy, 2020; or Nie & Wager, 2021).

The meta-learners have received considerable attention for several reasons. First, the meta-learners

do not modify the objective function of the machine learning methods but rather combine their pre-

dictions in order to estimate the causal effect (Künzel et al., 2019). This enables to directly leverage

the superior prediction power of machine learning estimators. Second, the meta-learners are generic

algorithms refraining from a specific usage of any particular machine learning method. This allows to

apply any suitable supervised learning method for the particular prediction problem at hand. Third,

the meta-learners are attractive due to the ease of implementation using standard statistical software.

This permits researchers to apply the meta-learners without any potential restrictions due to limited

availability in software packages and enables tailored implementation for particular types of data. Despite

the attractive features of the meta-learners, there is little guidance for applied researchers on how to choose

from a variety of the meta-learners proposed in the literature, with lack of unifying simulation evidence

for an assessment of the performance of the meta-learners in applied settings.

The complexity of the meta-learners varies widely and often hinges on the estimation of the nuisance

functions such as the conditional mean of the outcome and the treatment, respectively (Chernozhukov

et al., 2018). The basic meta-learning algorithms include the S-learner and T-learner which besides

the treatment effect function do not require estimation of any additional nuisance functions. However,

the most prominent and widely used meta-learners in the literature consist of the X-learner (Künzel

et al., 2019), the DR-learner (Kennedy, 2020), and the R-learner (Nie & Wager, 2021), which all require

2



estimation and combination of several nuisance functions to estimate the causal effect.1 Due to the

machine learning estimation of such nuisance functions the meta-learners are prone to the overfitting

bias, i.e. own observation bias. Therefore, sample-splitting has been proposed in the literature to reduce

the overfitting bias by using one part of the sample for estimation of the nuisance functions and the other

part of the sample for estimation of the causal effect. In order to regain the full sample size efficiency of

the estimator cross-fitting repeats the estimation by swapping the samples and averaging the estimated

causal effects (Chernozhukov et al., 2018). However, the usage of sample-splitting and cross-fitting is not

well understood in practice and the specific definitions of meta-learners differ substantially in their imple-

mentation of these procedures. Despite the ambiguous definitions, there is a lack of simulation evidence

concerned with the usage of sample-splitting and cross-fitting within the meta-learning framework and

thus limited guidance for or against specific implementations. Moreover, there appears to be limited

knowledge about how the asymptotic arguments translate into finite sample properties of the meta-

learners.

In this paper, we address both of the above issues and study the finite sample properties of the ma-

chine learning based meta-learners for estimation of causal effects based on the specific implementations

using the full-sample, sample-splitting and cross-fitting procedures for varying sample sizes. We focus on

evaluating the estimation of heterogeneous treatment effects as these provide the most detailed description

of the underlying causal mechanisms and thus allow for a better assessment of the individualized impacts

of an intervention. For this purpose, we review the most widely used meta-learning algorithms together

with their theoretical estimation requirements with respect to sample-splitting and cross-fitting and

identify their strengths and weaknesses. We conduct both synthetic and empirical simulations comparing

the performance of the meta-learners in various settings featuring unequal treatment shares, non-linear

functional forms and large-dimensional feature sets. Importantly, within the simulations we explicitly

study the convergence performance of the meta-learners based on growing sample sizes up to 32′000

observations. Furthermore, we derive practical recommendations on the choice of specific meta-learners

and the respective estimation procedures for applied empirical work.

The results of our simulation experiments reveal that the choice of the estimation procedure has

a large impact on the performance of the machine learning based meta-learners in finite samples. For

sufficiently large samples we provide evidence for the theoretical arguments of bias reduction via sample-

splitting and cross-fitting, while for smaller samples we observe adverse effects of these procedures when

using machine learning. The results show that, if computation time is not a constraint, cross-fitting is

always preferable to sample-splitting as it keeps the bias low, while successfully reducing the variance

of the estimators even in small samples. Additionally, the results imply heterogeneous impacts of the

estimation procedures on the performance of the meta-learners. The X-learner’s performance is quite

stable regardless of the estimation procedure, whereas the performance of the R-learner and DR-learner

is more sensitive to the choice of the estimation procedure. Assessing the performance of the particular

meta-learners reveals a clear pattern. In empirical settings with highly imbalanced treatment shares,

the X-learner performs best, irrespective of the sample size, while the DR-learner becomes unstable due

to extreme propensity scores. For less imbalanced settings the X-learner’s performance is still superior

in smaller samples, however, it gets outperformed by the DR-learner in larger samples which exhibits

the fastest convergence rate in its sample-splitting and cross-fitting version. In empirical settings with

balanced treatment shares, the performance of the DR-learner or the R-learner is superior for any sample

size considered. The results imply that the usage of less sophisticated S-learner for estimation of causal

effects should be avoided, while the T-learner might be a reasonable choice in small samples.

1Further examples of some meta-learners proposed in the literature consist of the U-learner and Y-learner (Stadie, Kunzel,
Vemuri, & Sekhon, 2018), or the IF-learner (Curth, Alaa, & van der Schaar, 2020) and RA-learner (Curth & van der Schaar,
2021).
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This paper contributes to the causal machine learning literature in several ways. First, we provide

a unifying simulation evidence of meta-learning algorithms for the estimation of heterogeneous causal

effects in large-dimensional and highly non-linear settings based on synthetic and empirical simulations.

Second, we explicitly study the meta-learners under the full-sample, sample-splitting and cross-fitting

implementations, respectively and thereby provide evidence on the contrast between the asymptotic

arguments and finite sample properties. Third, we empirically investigate the convergence performance

of the meta-learners by repeating the simulation experiments with growing sample sizes. Finally, we

derive relevant practical recommendations for applied empirical work which are based on the particular

observable data characteristics.

This paper is organized as follows. We briefly discuss the related literature in Section 1.1.1. Section

1.2 introduces the notation, the parameters of interest and their identification. Section 1.3 reviews the

considered meta-learners and the estimation procedures. Section 1.4 describes the synthetic as well as

empirical simulations and presents the corresponding results. The main findings of the study are discussed

in Section 1.5. Section 1.6 concludes. Further details including descriptive statistics, an exhaustive

summary of the main and supplementary results as well as a computation time analysis are provided in

Appendices 1.A, 1.B and 1.C, respectively.

1.1.1 Literature

In general the literature on the finite sample properties of causal machine learning estimators under

a unified framework seems to be rather scarce. An exception in the econometric literature2 is Knaus,

Lechner, and Strittmatter (2021) who study a wide range of estimators for heterogeneous as well as (group)

average treatment effects, including direct estimators as well as some meta-learners in an Empirical Monte

Carlo Study as developed in Huber, Lechner, and Wunsch (2013) and Lechner and Wunsch (2013).

Knaus et al. (2021) find no estimator to perform uniformly best, but notice that estimators which model

both the outcome as well as the treatment process are substantially more robust throughout all data

generating processes considered, which can be observed in our simulations as well. Among the meta-

learners considered, the DR-learner and the R-learner perform especially well in terms of the root mean

squared error. Moreover, using the Random Forest as a base learner turns out to be more stable with

better statistical properties in contrast to using the Lasso, particularly in smaller samples, which also

motivates the usage of the Random Forest in our simulations. However, although both meta-learners

are implemented with cross-fitting, an explicit consideration of different sample-splitting or cross-fitting

schemes is missing. Curth and van der Schaar (2021) focus directly on meta-learning algorithms for

estimation of heterogeneous treatment effects, but refrain from studying sample-splitting and cross-fit-

ting procedures and rely fully on the full-sample estimation. In this regard, Zivich and Breskin (2021)

study the performance of treatment effect estimators based on cross-fitting, including some meta-learners

as well. Similarly to Knaus et al. (2021) they find the DR-learner with an ensemble machine learning

base learners together with cross-fitting to perform the best among all considered estimators, both in

comparison to cases without cross-fitting and to parametric base learners. However, Zivich and Breskin

(2021) study exclusively the estimation of average effects without examining convergence performance of

the estimators, considering only a single sample size of 3′000 observations. Recently, Jacob (2020) focuses

on the estimation of heterogeneous treatment effects under various cross-fitting schemes for selected

meta-learning algorithms. Also, in this simulation study the DR-learner together with the R-learner

achieve consistently the best results. Nonetheless, Jacob (2020) stresses the heterogeneous impacts of the

particular sample-splitting and cross-fitting procedures on each meta-learner, which is documented in our

2Wendling et al. (2018) conduct similar empirical simulation study in medical context.
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simulations as well. Nevertheless, even though considering varying sample sizes within the simulation

experiments, the considered sample sizes are limited to 2′000 observations. Overall, none of the above

studies focuses directly on the convergence performance of the meta-learners under various estimation

procedures which still remains an open question. To the best of our knowledge, this is the first paper that

empirically studies the convergence properties of the meta-learners under full-sample, sample-splitting

and cross-fitting implementations with growing sample sizes up to several thousands of observations,

reaching 32′000 in our simulations.

Besides the meta-learning framework, there has been also a substantial development of specific causal

estimators based on direct modifications of particular machine learning algorithms. Especially, the tree-

based estimators have been studied extensively in this respect. These include the above-mentioned Causal

Trees (Athey & Imbens, 2016) as well as Causal Boosting (Powers et al., 2018) and Causal Forests (Wager

& Athey, 2018) with the extensions of the Modified Causal Forests (Lechner, 2018) and the Generalized

Random Forests (Athey et al., 2019). These methods are based on the underlying predictive algorithms

of Regression Trees (Breiman, Friedman, Olshen, & Stone, 1984), Boosted Trees (Friedman, 2001) and

Random Forests (Breiman, 2001), respectively. Furthemore, Bayesian versions of Regression Trees (Chip-

man, George, & McCulloch, 1998) have been adapted for estimation of causal effects as well (Hill, 2011;

Taddy, Gardner, Chen, & Draper, 2016; Hahn, Murray, & Carvalho, 2020). Besides the estimators based

on recursive partitioning, important causal adjustments have been applied in respect to regularization

based estimators such as the Lasso (Qian & Murphy, 2011; Belloni, Chernozhukov, & Hansen, 2013; Tian,

Alizadeh, Gentles, & Tibshirani, 2014) or Lasso-augmented Support Vector Machines (Imai & Ratkovic,

2013). Additionally, further machine learning algorithms such as the Nearest Neighbours (Fan, Lv, &

Wang, 2018) or Neural Networks (Johansson, Shalit, & Sontag, 2016; Shalit, Johansson, & Sontag, 2017;

Schwab, Linhardt, & Karlen, 2018; Shi, Blei, & Veitch, 2019) have been transformed towards causal

inference as well. For a comprehensive overview of many of these estimators, we refer the interested

reader to Athey and Imbens (2019) or Jacob (2021). In this paper, although we focus on the machine

learning estimation of causal effects, we refrain from an analysis of these methods due to major concep-

tual differences to the meta-learning framework and the lack of comparability in terms of the usage of

sample-splitting and cross-fitting procedures.

1.2 Framework and Identification

In order to describe the effects of interest and their corresponding identification assumptions we rely

on the potential outcome framework (Rubin, 1974). We assume a population P from which a realization

of N i.i.d. random variables is given consisting of a random sample {Yi(1), Yi(0),Wi, Xi} ∼ P. Here,

we consider a binary treatment variable Wi that is equal to 1 for the treated group and equal to 0 for

the control group, respectively. According to the treatment status we define the potential outcome Yi(1)

under treatment for the case whenWi = 1 and correspondingly the potential outcome Yi(0) under control

for Wi = 0. Additionally, we define a p-dimensional vector of exogenous pre-treatment covariates such

that Xi ∈ Rp. Given this definition we can characterize the Individual Treatment Effect (ITE) as follows:

ξi = Yi(1)− Yi(0).

However, the fundamental problem of causal inference is that we never observe both potential outcomes at

the same time (Holland, 1986). Hence, the observed outcomes are defined according to the observational

rule as Yi = Yi(Wi). The observed data then consists of the triple {Yi,Wi, Xi}1≤i≤N . Nevertheless, it

is still possible to identify the expectation of ξi under additional assumptions (compare Rubin, 1974; or
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Imbens & Rubin, 2015). Thus, we shift the effect of interest towards the Conditional Average Treatment

Effect (CATE) which takes the expectation of ξi, conditional on covariates Xi and is given as:

τ(x) = E
[
ξi | Xi = x

]
= E

[
Yi(1)− Yi(0) | Xi = x

]
= µ1(x)− µ0(x)

where µ1(x) = E[Yi(1) | Xi = x] and µ0(x) = E[Yi(0) | Xi = x] are the response functions for potential

outcomes under treatment and under control, respectively. In this paper we always refer to the CATE

with conditioning on all observed exogeneous covariates and thus focusing on the finest level of hetero-

geneity (see e.g. Knaus et al., 2021).3 Künzel et al. (2019) point out that the best estimator for τ(x) is

also the best estimator for ξi in terms of the mean squared error (MSE).

In order to identify the effects of interest, we need a set of identification assumptions. We operate

under the selection-on-observables strategy4 (see e.g. Imbens & Rubin, 2015) and assume that we observe

all relevant confounders, i.e. all covariates Xi that jointly influence both the treatment Wi and the

potential outcomes, Yi(0) and Yi(1). We state the following identification assumptions:

Assumption 1 (Conditional Independence)
(
Yi(0), Yi(1)

)
⊥⊥Wi | Xi = x, ∀x ∈ supp(Xi).

Assumption 2 (Common Support) 0 < P
[
Wi = 1 | Xi = x

]
< 1, ∀x ∈ supp(Xi).

Assumption 3 (SUTVA) Yi =Wi · Yi(1) + (1−Wi) · Yi(0).

Assumption 4 (Exogeneity) Xi(0) = Xi(1).

According to Assumption 1, also referred to as the conditional ignorability or unconfoudedness

assumption, we assume that the potential outcomes are independent of the treatment assignment once

conditioned on the covariates, i.e. we assume that there are no hidden confounders. Assumption 2, also

known as the overlap assumption, states that the conditional treatment probability is bounded away from

0 and 1 and thus it is possible to observe treated as well as control units for each realization of Xi = x.

Assumption 3 is known as the stable unit treatment value assumption and indicates that the observed

treatment value for a unit is independent of the treatment exposure for other units, which rules out any

general equilibrium or spillover effects between treated and controls. Lastly, Assumption 4 specifies that

the covariates are not influenced by the treatment.5 Under these assumptions it follows that

τ(x) = E
[
Yi(1)− Yi(0) | Xi = x

]
(1.2.1)

= E
[
Yi(1) | Xi = x

]
− E

[
Yi(0) | Xi = x

]
(1.2.2)

= E
[
Yi(1) | Xi = x,Wi = 1

]
− E

[
Yi(0) | Xi = x,Wi = 0

]
(1.2.3)

= E
[
Yi | Xi = x,Wi = 1

]
− E

[
Yi | Xi = x,Wi = 0

]
(1.2.4)

and thus the CATE can be nonparametrically identified from observable data (Hurwicz, 1950).

3In general, the term CATE describes conditional average treatment effects on various aggregation levels. In our case, the
CATE corresponds to the Individualized Average Treatment Effect (IATE). Additionally, researchers and especially policy
makers might be interested in a low-dimensional heterogeneity level based on some pre-specified heterogeneity covariates
of interest, which are referred to as the Group Average Treatment Effects (GATEs). Such effects are, however, beyond
the scope of our study and the interested reader is referred to Zimmert and Lechner (2019), Jacob, Härdle, and Lessmann
(2019) and Semenova and Chernozhukov (2021) for a theoretical analysis and to Knaus et al. (2021) for simulation based
results or to Cockx, Lechner, and Bollens (2019), Knaus, Lechner, and Strittmatter (2020), Hodler, Lechner, and Raschky
(2020) and Goller, Harrer, Lechner, and Wolff (2021) for empirical applications estimating policy relevant GATEs.

4For estimation of heterogeneous effects under different identification strategies see e.g. Athey et al. (2019), Bargagli Stoffi
and Gnecco (2020) and Biewen and Kugler (2021) for the case of instrumental variables and Gulyas and Pytka (2020) and
Zimmert and Zimmert (2020) for the case of difference-in-differences.

5Analogously to the definition of potential outcomes, we denote potential covariates under control and under treatment as
Xi(0) and Xi(1), respectively.
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1.3 Meta-Learning Algorithms and Estimation Procedures

In the machine learning literature meta-learning represents algorithms that exploit knowledge about

learning to improve the algorithm’s performance, as generally defined by Vilalta and Drissi (2002). These

include various algorithms that learn to solve new task from prior learning experience, i.e. learning to

learn (Schmidhuber, 1987; Thrun & Pratt, 1998), algorithms that learn from multiple related tasks,

i.e. multi-task learning (Caruana, 1997), or algorithms that learn from multiple models solving identical

task, i.e. ensemble learning (Dietterich, 2000).6 Recently, the meta-learning framework has been adopted

within the causal machine learning literature for learning causal effects from multiple prediction models

(see for example Künzel et al., 2019), which could be termed accordingly as causal learning .

At a high level the meta-learners for estimation of heterogeneous causal effects are two-step algo-

rithms. In the first step they define regression functions, in the causal machine learning literature often

denoted as the nuisance functions (Chernozhukov et al., 2018; Kennedy, 2020), which can be estimated by

any suitable supervised learning method, i.e. the base learner. In the second step they use the estimated

nuisance functions to construct an estimator for the causal effect, i.e. the meta-learner. Various meta-

learners then differ in the definitions of the nuisance functions and their subsequent usage to obtain the

final estimator for the causal effects. Depending on the algorithm complexity, some meta-learners require

estimation of only one single model whereas other require estimation of multiple models. This raises the

question of data usage within the estimation procedure and thus the possible need for sample-splitting

and cross-fitting, respectively.7

In general, the nuisance functions are defined as conditional expectations of various types. The most

common types are the propensity score function and the response function. First, the propensity score

is defined as the conditional probability of a binary treatment Wi given the covariates Xi as follows:

e(x) = P
[
Wi = 1 | Xi = x

]
.

In the causal inference literature the propensity score plays a central role (Rosenbaum & Rubin, 1983) in

many matching and reweighting methods to balance the distributions of treated and controls (see Hahn,

1998; and Huber et al., 2013, among others). Second, the response function is broadly defined as the

conditional expectation of an outcome variable Yi given a conditioning set of explanatory variables. The

particular definitions of the response function then differ in the specification of the conditioning set and

the subset of the data used. For the meta-learners studied in this paper, the following definitions of the

response function are of interest:

µ(x,w) = E[Yi | Xi = x,Wi = w] (1.3.1)

µ(x) = E[Yi | Xi = x] (1.3.2)

where Equation 1.3.1 defines the full response function with conditioning on both the covariates Xi

as well as the treatment indicator Wi, while µ(x, 1) and µ(x, 0) describe the response functions with

conditioning on the covariates Xi in the subpopulation under treatment Wi = 1 and under control

Wi = 0, accordingly. Similarly, Equation 1.3.2 defines the full response function with conditioning only

on covariates. The meta-learners then use selected nuisance functions together with the available data as

6For a recent survey on meta-learning, see Vanschoren (2019).
7Recently, related issue of data usage of the meta-learning algorithms with respect to splitting into training and validation
set for the learning to learn domain has been discussed by Bai et al. (2020) and Saunshi, Gupta, and Hu (2021).
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inputs for the estimation of the CATE function which can be generally denoted as follows:

τ(x) = ζ
(
Wi, Xi, Yi, e(x), µ(x,w), µ(x)

)
where ζ(·) is a function of the respective inputs, which is detailed for each particular meta-learning

algorithm in Section 1.3.2. The problem arises when estimating the nuisance functions using flexible

machine learning methods as these are prone to the overfitting bias, i.e. the ‘own observation bias’. The

overfitting bias emerges when the in-sample data is fitted too well such that the out-of-sample perfor-

mance is compromised (see e.g. Hastie, Tibshirani, & Friedman, 2009, for a general discussion of the

overfitting issue in machine learning). Hence, a single observation i can have a large influence on the

predictions for covariates Xi as pointed out by Athey and Imbens (2019). Chernozhukov et al. (2018)

and Newey and Robins (2018) thus propose sample-splitting procedures that allow for elimination of such

overfitting biases.8

1.3.1 Sample-Splitting and Cross-Fitting

Theoretical arguments express the need for sample-splitting when the causal estimator involves sev-

eral estimation steps such as the estimation of nuisance functions. Within the meta-learning framework

the nuisance functions are typically highly complex and potentially high-dimensional functions estimated

by supervised machine learning methods such as penalized regression, tree-based methods, neural net-

works, etc. Using the same data sample for machine learning estimation of the nuisance function as well

as for estimation of the causal effect leads to overfitting which induces a bias in the CATE estimator.

On a high level, the bias of the CATE estimator can generally be decomposed into an estimation error

of learning the CATE function itself, and the estimation error in learning the nuisance functions, en-

compassing the overfitting bias (see e.g. Kennedy, 2020). Chernozhukov et al. (2018) show that for the

ATE estimation the overfitting bias can be controlled by using sample-splitting, while Kennedy (2020)

and Nie and Wager (2021) extend this concept for the CATE estimation. In that case one part of the

sample is used to estimate the nuisance functions and the other part is used to estimate the causal effect.9

As a result, the bias term stemming from overfitting can be shown to be bounded and to converge to

zero. Building upon this result, Newey and Robins (2018) propose a different sample-splitting scheme

called double sample-splitting. In this case, not only the nuisance functions are estimated together on a

separate part of the sample but each single nuisance function is estimated on an own separate part of the

sample. In practice, the training data is split into M + 1 equally sized parts, with M being the number

of nuisance functions to estimate and the remaining part of the data serves for estimation of the causal

effect. Newey and Robins (2018) show that under the double sample-splitting the bias term converges

to zero at a faster rate compared to standard sample-splitting where all nuisances are estimated on the

same sample.10 The double sample-splitting procedure has also been recently implemented by Kennedy

(2020) in the context of the DR-learner.

In general, the overfitting bias could also be controlled for by restricting the complexity of the

nuisance functions which would, however, prevent high-dimensional settings as well as usage of a variety

8Original ideas of using sample-splitting procedures to eliminate own observation bias stem from the literature on density
estimation going back to Bickel (1982), Bickel and Ritov (1988) and Powell, Stock, and Stoker (1989) among others.

9Sample-splitting procedures are frequently used in causal machine learning literature including Double Machine Learning
(Chernozhukov et al., 2018), Causal Forests (Wager & Athey, 2018; Lechner, 2018) or the here-discussed meta-learners
(Kennedy, 2020; Nie & Wager, 2021).

10The intuition for this result comes from the observation that for estimators using multiple nuisance functions, such as the
doubly robust estimators as e.g. the herein discussed DR-learner, the estimation error involves a product of the biases
from the estimation of the M nuisance functions. This induces additional nonlinearity bias if all M nuisance functions are
estimated using the same data, which gets effectively removed by using separate samples for estimation of each of the M
functions. For more details see Newey and Robins (2018) and Kennedy (2020).
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of machine learning estimators or ensembles of those.11 Hence, the advantage of using sample-splitting

is to allow for a high degree of complexity of the nuisance functions estimated by a wide class of machine

learning estimators (Kennedy, 2020).

It follows that, theoretically, sample-splitting prevents overfitting and thus reduces the bias in the

final causal estimator (Chernozhukov et al., 2018; Wager & Athey, 2018). At the same time, however,

the variance of the estimator increases as less data is effectively used for estimation. Cross-fitting (Cher-

nozhukov et al., 2018) and respectively double cross-fitting (Newey & Robins, 2018) have been proposed

in the literature in order to reduce the variance loss induced by sample-splitting. In this procedure, the

roles of the data parts get switched such that each part has been used for both the estimation of nuisances

as well as the causal effect estimation. The final CATE estimator is then an average of the separate effect

estimators produced. This method can be further extended to use more than M + 1 splits denoted as

K-fold cross-fitting (Chernozhukov et al., 2018) with the final CATE estimator given as:

τ̂(x) =
1

K

K∑
k=1

τ̂k(x)

where τ̂k(x) is the CATE estimator based on the k-th fold.12

The above theoretical arguments have a direct impact on the implementation of various meta-learning

algorithms. Under the double sample-splitting the more models have to be estimated within the meta-

learning algorithm, the more data splits are being implicitly induced, while the impact thereof in finite

samples is not clear a priori as pointed out by Newey and Robins (2018). As such, the researcher faces

a typical bias-variance trade-off with respect to sample-splitting. In order to illustrate the issue it is

instructive to decompose the mean squared error (MSE) of a CATE estimator τ̂(x):

MSE

(
τ̂(x)

)
= V ar

(
τ̂(x)

)
+

(
Bias

(
τ̂(x)

))2

.

Naively using the full data sample for estimation of both the nuisance functions as well as the CATE

function leads to a higher bias due to overfitting but at the same time to lower variance as all available data

is used for estimation. Using sample-splitting eliminates the overfitting bias but results in higher variance

due to less data being used for estimation. In contrast, cross-fitting both removes the overfitting bias

and reduces the variance by effectively using all the available information from the data for estimation.

Figure 1.3.1 illustrates this theoretical argument by contrasting the distributions of the CATE parameter

under full-sample estimation, double sample-splitting and double cross-fitting, resulting from a Monte

Carlo simulation based on a large training sample of 32′000 observations (further details on the meta-

learner and the simulation design are provided in Sections 1.3.2 and 1.4, respectively). We observe that

the theoretical arguments can be documented in finite samples too. As such, the full sample version

exhibits substantial bias due to overfitting as its distribution is shifted away from the true value of the

CATE parameter, but with a rather low variance. On the contrary, the double sample-splitting version

successfully eliminates the overfitting bias as the simulated distribution is centered around the true value

of the CATE, however with much larger variance. Finally, the double cross-fitting version keeps the

reduction in bias whilst having a much lower variance in comparison to the double sample-splitting

version as the spread of the CATE distribution comes close to the full sample version, indicating the gain

in efficiency of this procedure.

11For results in the context of the Lasso estimation under sparsity see Belloni, Chernozhukov, Fernandez-Val, and Hansen
(2017).

12Increasing the efficiency of a sample-splitting based estimator by swapping the roles of the data samples and averaging the
resulting estimates goes back to Schick (1986) in the context of estimation of semi-parametric models.
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Figure 1.3.1: CATE distributions under full-sample, sample-splitting and cross-fitting estimation.
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Note: Distributions of the CATE parameter under full-sample estimation (blue), double sample-splitting (red) and double
cross-fitting (green) as a result of a Monte Carlo simulation. The CATE distributions are smoothed with the Gaussian
kernel using the Silverman’s bandwidth. The dashed black line defines the true value of the CATE while the solid black line
plots the normal distribution around the true parameter with variance of the estimated CATE distribution. The CATEs are
estimated by the DR-learner based on a training sample of NT = 32′000 observations with 250 simulation replications and
predicted out-of-sample. Detailed description of the simulation design is given in Section 1.4, while a detailed description
of the DR-learner is given in Section 1.3.2.

Apart from the illustrative example above, the empirical question remains the precise quantification

of this bias-variance trade-off for various meta-learners and to what degree this might vary with different

sample sizes. Different meta-learners use different nuisance functions in different ways which might have

an influence on the performance under the particular estimation procedures. Even though sample-splitting

and cross-fitting help to eliminate the overfitting bias, in finite samples less data available for estimation

might even lead to higher bias due to errors in learning the CATE function itself, especially for small

sample sizes. In this paper we address this open question via Monte Carlo simulations and compare the

performance of various meta-learners under full-sample, double sample-splitting and double cross-fitting

procedure for several different sample sizes to shed more light onto the finite sample properties. We

follow Newey and Robins (2018) and choose the double sample-splitting, respectively double cross-fitting

procedure due to its theoretically faster convergence rates. Furthermore, we opt for the setting with

equally sized K = M + 1 folds as suggested by Kennedy (2020). Additionally, we always distinguish

between the training and validation data. We use the training data for learning the nuisance function

and the CATE function, including the double sample-splitting and double cross-fitting procedure, while

we evaluate the CATEs on a set of new validation data. An illustration of the data usage under full-sample

estimation, double sample-splitting and double cross-fitting procedure is provided in Figure 1.3.2.

Further motivation for the usage of sample-splitting and cross-fitting stems from the theoretical

arguments for conducting statistical inference about the causal parameters of interest. As such, sample-

splitting plays a crucial role in obtaining estimators that are not only approximately unbiased but also

normally distributed which in turn allows for a valid construction of confidence intervals. In this vein,

Chernozhukov et al. (2018) provide results for the estimators of average treatment effect (ATE) that

rely on sample-splitting and cross-fitting procedures. Semenova and Chernozhukov (2021) and Zimmert

and Lechner (2019) extend this analysis for parametric and nonparametric estimators of group average

treatment effects (GATEs), respectively. In the context of Causal Forests, Wager and Athey (2018),

Lechner (2018), and Athey et al. (2019) also rely on sample-splitting procedures termed ‘honesty’ to

provide inference for causal effects on various levels of aggregation. Nonetheless, in the context of meta-

learning estimation of causal effects, there appears to be lack of unifying model-free theory for conducting

statistical inference so far. One exception is the study by Künzel et al. (2019) that analyses various
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Figure 1.3.2: Illustration of the full-sample, sample-splitting and cross-fitting procedure.
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Note: Illustration of the full-sample (left), double sample-splitting (middle) and double cross-fitting (right) procedures with
K = 3 folds. The propensity score function is defined by e(x), the response functions in general are denoted by µ(x) and
the CATE function is characterized by τ(x). Subscripts for the nuisance functions and the CATE function correspond to
the fold used for estimation, while the colors indicate the combination of the estimated functions across different folds.

versions of bootstrapping for estimation of standard errors for the CATEs. Recently, Jacob (2021) makes

use of such bootstrapping procedures to construct confidence intervals in an empirical application. Besides

the computational burden, however, none of the bootstrapping procedures studied by Künzel et al. (2019)

seems to reliably provide accurate coverage rates. However, the meta-learners analyzed in Künzel et al.

(2019) do not make use of sample-splitting, which could potentially improve the performance of the

bootstrapping for estimation of standard errors, given the insights from the related literature. While we

do study the properties of the distribution of the CATEs within the simulation experiments in Section

1.4, we do not further analyse the estimation of standard errors mainly due to computational reasons

and focus primarily on the point estimators. However, apart from the computational aspects, we note

that combining sample-splitting and cross-fitting with bootstrapping for statistical inference about causal

effects within the meta-learning framework might be a promising avenue for future research.

1.3.2 Meta-Learners

In the following, we review the meta-learning algorithms for estimation of heterogeneous treatment

effects and discuss their advantages and disadvantages in particular empirical settings.
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1.3.2.1 S-learner

The first meta-learning algorithm we investigate is the S-learner as denoted by Künzel et al. (2019).

According to their naming convention, S- stands for Single as this meta-learner involves only one single

model, namely the full response function, µ(x,w), that needs to be estimated. In the epidemiology lit-

erature the S-learner is also sometimes referred to as g-computation (Robins, 1986; Snowden, Rose, &

Mortimer, 2011). The final causal effect is, in this case, obtained as a difference between predictions of

the response function with setting the treatment indicator to, Wi = 1, and Wi = 0, respectively. The

algorithm can be described as follows:13

Algorithm 1: S-learner

Input: Training Data: {(Xi, Yi,Wi)}T , Validation Data: {(Xi)}V

Output: CATE: τ̂S(x) = Ê[Yi(1)− Yi(0) | Xi = x]

begin

Response Function;

estimate: µ(x,w) = E[Yi | Xi = x,Wi = w] in {(Xi, Yi,Wi)}T ;

CATE Function;

define: τ̂S(x) = µ̂(x, 1)− µ̂(x, 0);

predict: τ̂S(Xi) = µ̂(Xi, 1)− µ̂(Xi, 0) in {(Xi)}V

end

As can be seen from Algorithm 1, the S-learner does not assign any special role to the treatment indicator

Wi within the estimation procedure and uses it only post hoc in the computation of the causal effect. Thus,

if the treatment indicator is not strongly predictive for the outcome the S-learner will tend to estimate

a zero treatment effect.14 Nevertheless, the S-learner will perform particularly well if the true CATE

function is indeed zero, i.e. if τ(x) = 0, which has also been documented in the simulation experiments

of Künzel et al. (2019). For the forest based S-learner, Künzel (2019) proposes a modification of the

algorithm such that it shrinks towards the ATE instead of zero by performing a Ridge regression in the

final leaves of the trees within the forest.15 In our simulations, we study a simpler modification of the

forest based S-learner by always including the treatment indicator in the random subset of covariates when

determining the splits. By doing so, we always give the S-learner the chance to split on the treatment

indicator which might potentially alleviate the zero-bias issue. We will henceforth denote such learner

as the SW-learner, where the W reflects the enforcement of the treatment indicator into the splitting

set of covariates. We discuss the behaviour of the SW-learner more closely throughout the simulation

results in Section 1.4.3. Furthermore, notice that the Algorithm 1 consists of only one nuisance function

that needs to be estimated and thus does not require any sample-splitting or cross-fitting within the

training sample induced by multiple nuisance functions, hence it always has access to the full sample of

the training data.16

13As a matter of notation, we refer to the training data used for model estimation with superscript T as {(Xi, Yi,Wi)}T and
the validation data used for effect prediction with superscript V as {(Xi)}V .

14Künzel et al. (2019) argue that the S-learner is actually biased towards zero.
15For a detailed explanation of this procedure see Künzel (2019).
16Nevertheless, an optional additional sample-splitting or cross-fitting could potentially improve the performance of the S-
learner by reducing the possible overfitting of the base learner as such. This is, however, beyond the scope of our analysis
and is left for future research.
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1.3.2.2 T-learner

The T-learner is another common and widely used meta-learner that we investigate in our study.

In the literature it is sometimes also called as the basic (Lechner, 2018), plug-in (Kennedy, 2020) or

naive (Nie & Wager, 2021) CATE estimator. According to Künzel et al. (2019), T- stands for Two as

this meta-learner involves two models that need to be estimated, defined by the treatment indicator Wi.

These are namely the response function in the treated sample, µ(x, 1), and the response function in the

control sample, µ(x, 0). This is in contrast to the above S-learner which pools the two response functions

into a single one. However, similarly to the S-learner the causal effect is computed as a difference in

predictions of the two response functions, which is motivated by the identification result as in Equation

(1.2.4). The algorithm can be summarized as follows:17

Algorithm 2: T-learner

Input: Training Data: {(Xi, Yi,Wi)}T , Validation Data: {(Xi)}V

Output: CATE: τ̂T (Xi) = Ê[Yi(1)− Yi(0) | Xi = x]

begin

Response Functions;

estimate: µ(x, 1) = E[Yi | Xi = x,Wi = 1] in {(Xi, Yi)}TWi=1;

estimate: µ(x, 0) = E[Yi | Xi = x,Wi = 0] in {(Xi, Yi)}TWi=0;

CATE Function;

define: τ̂T (x) = µ̂(x, 1)− µ̂(x, 0);

predict: τ̂T (Xi) = µ̂(Xi, 1)− µ̂(Xi, 0) in {(Xi)}V

end

Hence the T-learner uses the treatment indicator to split the estimation of the response function into two

parts. This procedure is expected to work particularly well if the CATE function is complicated and there

are no common trends in the response functions. This phenomenon finds supportive evidence in several

simulation studies (see for example Künzel et al., 2019; Jacob, 2020; Curth & van der Schaar, 2021; or

Nie & Wager, 2021). Nonetheless, it is expected to work rather poorly if the CATE function is simple, as

the response functions are not trained jointly and thus their difference might be unstable (Lechner, 2018;

Kennedy, 2020; Nie & Wager, 2021). In terms of the estimation of the nuisance functions, the T-learner

behaves similarly to the S-learner, as only the response functions need to be estimated to compute the

CATE. As such no additional sample-splitting induced by multiple nuisance functions is required as the

response functions are themselves estimated on separate samples defined by treated and control.18

1.3.2.3 X-learner

The above mentioned problems of the T-learner are aggravated if the treatment assignment is highly

unbalanced, meaning that the vast majority of observations in the sample belongs to only one treatment

status. Künzel et al. (2019) therefore propose the X-learner which addresses this issue. The X-learner

builds on the T-learner and, as such, first estimates the two response functions µ(x, 1) and µ(x, 0). It then

uses these estimates to impute the unobserved individual treatment effects for the treated, ξ̃1i , and the

control, ξ̃0i . The imputed effects are in turn used as pseudo-outcomes to estimate the treatment effects in

17Notationwise, we refer to a subset of the data defined by a specific value of the variable as for example Wi = 1 by a subscript
as {(Xi, Yi)}Wi=1.

18Again, this does not preclude that an optional sample-splitting or cross-fitting might be beneficial for the same reason as
in the case of the S-learner (Jacob, 2020, provides some results on this issue for the T-learner). Using an honest forest as a
base learner would also add an implicit sample-splitting procedure, however, this is not analysed herein.
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the treated sample, τ(x, 1), and the control sample, τ(x, 0), respectively. The final CATE estimate τ(x)

is then a weighted average of these treatment effect estimates weighted by the propensity score, e(x).19

Thus the X-learner additionally uses the information from the treated to learn about the controls and

vice-versa in a Cross regression style, hence the X term in its naming label. The learning algorithm can

be detailed as follows:

Algorithm 3: X-learner

Input: Training Data: {(Xi, Yi,Wi)}T , Validation Data: {(Xi)}V

Output: CATE: τ̂X(Xi) = Ê[Yi(1)− Yi(0) | Xi = x]

begin

Response Functions;

estimate: µ(x, 1) = E[Yi | Xi = x,Wi = 1] in {(Xi, Yi)}TWi=1;

estimate: µ(x, 0) = E[Yi | Xi = x,Wi = 0] in {(Xi, Yi)}TWi=0;

Imputed Effects;

predict: ξ̃1i = Yi − µ̂(Xi, 0) in {(Xi, Yi)}TWi=1;

predict: ξ̃0i = Yi − µ̂(Xi, 1) in {(Xi, Yi)}TWi=0;

Treatment Effects;

estimate: τ(x, 1) = E[ξ̃1i | Xi = x,Wi = 1] in {(Xi, Yi)}TWi=1;

estimate: τ(x, 0) = E[ξ̃0i | Xi = x,Wi = 0] in {(Xi, Yi)}TWi=0;

Propensity Score;

estimate: e(x) = P [Wi = 1 | Xi = x] in {(Xi,Wi)}T ;

CATE Function;

define: τ̂X(x) = ê(x) · τ̂(x, 0) +
(
1− ê(x)

)
· τ̂(x, 1);

predict: τ̂X(Xi) = ê(Xi) · τ̂(Xi, 0) +
(
1− ê(Xi)

)
· τ̂(Xi, 1) in {(Xi)}V

end

According to Algorithm 3, the X-learner, in contrast to the T-learner, firstly uses the response functions for

imputing the unobserved individual treatment effects instead of directly estimating the CATE. Secondly,

these imputed individual treatment effects are used for estimating the CATE and reweighted by the

propensity scores. The reweighting helps to put more weight on the treatment effects which have been

estimated more precisely, i.e. the ones coming from the larger treated or control sample, respectively.

For this reason, the X-learner is expected to work particularly well in unbalanced settings, which is often

the case in practice as the share of treated might be restricted financially or otherwise (see Gerber,

Green, & Larimer, 2008; Broockman & Kalla, 2016; or Goller, Lechner, Moczall, & Wolff, 2020, for

such unbalanced empirical settings). Furthermore, by directly estimating the treatment effects in the

second step it enables the estimator to learn structural properties of the CATE function from the data

and is thus expected to work well if the CATE function is approximately linear or sparse (Künzel et al.,

2019). In simulations of Künzel et al. (2019) the X-learner performs reasonably well even in other non-

favourable settings. Notice further that Algorithm 3 requires more estimation steps than the previous

two meta-learners. Additionally to the estimation of the response functions, the X-learner requires the

estimation of the treatment effect functions as well as the propensity score function. This raises the

question of possible overfitting and hence the need for sample-splitting and cross-fitting, respectively.

However, there is theoretically no explicit requirement for sample-splitting in the case of the X-learner

19In the original definition of the X-learner, the estimation of the propensity score is not exactly specified as it could be any
weighting function in general. However, in practice the estimation of the propensity score is recommended (Künzel et al.,
2019).
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when estimating the nuisance functions, apart from training and validation data split (Künzel et al.,

2019). Yet, it might well be that the sample-splitting and further cross-fitting have a non-negligible

influence on the performance of the learner in finite samples. We address this issue by implementing the

double sample-splitting and double cross-fitting version of the X-learner in the simulation study. For the

case of the full-sample estimation we use the out-of-bag predictions of the underlying forest as estimates

of the nuisance functions. The out-of-bag predictions are based on the observations that have been left

‘out of the bag’ when drawing bootstrap samples to estimate the trees of the forest (Hastie et al., 2009).

Such observations, however, randomly appear both as training as well as validation observations and

thus such out-of-bag predictions are neither the classical in-sample fitted values nor proper out-of-sample

predictions.20

1.3.2.4 DR-learner

Although the X-learner makes use of the estimation of multiple nuisance functions, it does not pro-

vide the double robustness property which exploits the fact that the estimator remains consistent if either

the response function or the propensity score function is misspecified (Kennedy, Ma, McHugh, & Small,

2017; Lee, Okui, & Whang, 2017). Recently, Kennedy (2020) proposed the DR-learner where DR sym-

bolizes the Double Robustness property of the learner. The DR-learner constructs a doubly robust score

in the first estimation stage and estimates the CATE in the second stage. There have been many other

versions of the DR-learner proposed in the literature, but these were restricted to a particular estimator

used in the second stage and are thus not part of the meta-learning framework. For example, Semenova

and Chernozhukov (2021) propose a linear estimation of the CATE function, whereas a local-constant

estimation is proposed by Zimmert and Lechner (2019) and Fan, Hsu, Lieli, and Zhang (2020), which

works well for the estimation of GATEs, i.e. for low-dimensional conditioning set. The main advantage

of the DR-learner in comparison to the other versions lies in the general model-free second stage with

sharper error bounds and weaker conditions for oracle efficiency (see Kennedy, 2020, for details). How-

ever, common to all versions in the literature is the estimation of the doubly robust score21 by machine

learning methods in the first stage also known as Double Machine Learning (Chernozhukov et al., 2018).

For a comprehensive overview of the CATE estimators building on the doubly robust score see Knaus

(2020). The specific algorithm for the DR-learner is then defined as follows:

20We use the out-of-bag predictions for all meta-learners within our analysis.
21Also called efficient score or efficient influence function in the literature (Robins & Rotnitzky, 1995; Hahn, 1998).
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Algorithm 4: DR-learner

Input: Training Data: {(Xi, Yi,Wi)}T , Validation Data: {(Xi)}V

Output: CATE: τ̂DR(x) = Ê[Yi(1)− Yi(0) | Xi = x]

begin

Response Functions;

estimate: µ(x, 1) = E[Yi | Xi = x,Wi = 1] in {(Xi, Yi)}TWi=1;

estimate: µ(x, 0) = E[Yi | Xi = x,Wi = 0] in {(Xi, Yi)}TWi=0;

Propensity Score;

estimate: e(x) = P [Wi = 1 | Xi = x] in {(Xi,Wi)}T ;

Pseudo Outcome;

predict: ψ̂i =
Wi

(
Yi−µ̂(Xi,1)

)
ê(Xi)

− (1−Wi)
(
Yi−µ̂(Xi,0)

)
1−ê(Xi)

+ µ̂(Xi, 1)− µ̂(Xi, 0) in {(Xi, Yi,Wi)}T ;

CATE Function;

estimate: τDR(x) = E[ψ̂i | Xi = x] in {(Xi, Yi,Wi)}T ;
predict: τ̂DR(Xi) = Ê[ψ̂i | Xi = x] in {(Xi)}V

end

As can be seen in Algorithm 4 above, the DR-learner estimates the very same nuisance functions,

µ(x, 0), µ(x, 1) and e(x), as the X-learner but uses them in a completely different manner. It combines

the nuisance functions as well as the outcome and treatment data in a doubly robust way to construct

the pseudo-outcome ψi, i.e. the doubly robust score. The score is then regressed on the covariates to es-

timate the final CATE function. Therefore, the DR-learner can also adapt to structural properties of the

CATE such as smoothness or sparsity. For this reason the DR-learner is expected to work well in similar

situations as the X-learner with a more balanced treatment assignment, as too extreme propensity scores

might possibly yield the estimator unstable (Huber et al., 2013; Powers et al., 2018), especially in high

dimensions (D’Amour, Ding, Feller, Lei, & Sekhon, 2021). Moreover, it should have an additional ad-

vantage over the X-learner thanks to its double robustness property. The simulations of Kennedy (2020)

also suggest a faster convergence rate of the DR-learner in comparison to the X- and T-learner. In order

to achieve the optimal rates the DR-learner explicitly requires the double sample-splitting as defined by

Newey and Robins (2018), while the double cross-fitting procedure remains optional. Theoretically it is

not clear how important the role of the optional cross-fitting is for the DR-learner in finite samples and

how much of the efficiency loss due to sample-splitting can be thereby regained. In order to shed light

on this issue we investigate the implementations of the DR-learner with double sample-splitting, double

cross-fitting, as well as a version with full-sample estimation.

1.3.2.5 R-learner

Yet another approach of first estimating nuisance functions and then using them to learn the treat-

ment effects stems from the literature on partially linear model originally developed by Robinson (1988).

Nie and Wager (2021) build on these ideas to flexibly estimate heterogeneous treatment effects and de-

velop the R-learner, where the R stands for the recognition of the contribution of Robinson (1988) as

well as for the Residualization approach. In the first step, the R-learner estimates the full response func-

tion, µ(x), similarly to the S-learner but without conditioning on the treatment indicator, as well as the

propensity score function e(x). It then residualizes the outcome and the treatment by the predictions

of the response and the propensity score function, respectively, to construct a modified outcome. In the

second step, the R-learner regresses the modified outcome on the covariates, weighted by the squared
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residualized treatment22, i.e.
(
Wi − ê(Xi)

)2
, to estimate the CATE function (Schuler, Baiocchi, Tibshi-

rani, & Shah, 2018). Analogous transformation of the outcome is also used by the Causal Forest of Athey

et al. (2019) termed local centering, or in the G-estimation for sequential trials by Robins (2004). The

full estimation procedure of the R-learner can be summarized as follows:

Algorithm 5: R-learner

Input: Training Data: {(Xi, Yi,Wi)}T , Validation Data: {(Xi)}V

Output: CATE: τ̂R(x) = Ê[Yi(1)− Yi(0) | Xi = x]

begin

Response Function;

estimate: µ(x) = E[Yi | Xi = x] in {(Xi, Yi)}T ;

Propensity Score;

estimate: e(x) = P [Wi = 1 | Xi = x] in {(Xi,Wi)}T ;

Modified Outcome;

predict: ϕ̂i =

(
Yi−µ̂(Xi)

)(
Wi−ê(Xi)

) in {(Xi, Yi,Wi)}T ;

CATE Function;

estimate: τR(x) = E[ϕ̂i | Xi = x] weighted by
(
Wi − ê(Xi)

)2
in {(Xi, Yi,Wi)}T ;

predict: τ̂R(Xi) = Ê[ϕ̂i | Xi = x] in {(Xi)}V

end

As follows from Algorithm 5, the R-learner separates the estimation into two steps. First, it eliminates

the spurious correlations between the response function µ(x) and the propensity score function e(x) and

second, it optimizes the CATE function τR(x). From this standpoint the R-learner follows a related

estimation scheme as the DR-learner and is expected to work well in similar settings where the nuisance

functions as well as the CATE function might have a high degree of complexity. A possible advantage of

the R-learner over the DR-learner might stem from the additional weighting which reduces the impact

of extreme propensity scores as pointed out by Jacob (2021). In their simulation experiments, Nie and

Wager (2021) show good performance of the R-learner in settings with complicated nuisance functions and

rather simple CATE function. Furthermore, for the theoretical results Nie and Wager (2021) explicitly

require sample-splitting and cross-fitting, respectively. In particular, they advocate for a 5- or 10-fold

cross-fitting procedure as defined by Chernozhukov et al. (2018). In order to examine the importance of

the cross-fitting in finite samples we compare the performance of the R-learner as in the above cases with

full-sample estimation, double sample-splitting and double cross-fitting, respectively.

1.4 Simulation Study

We study the finite sample performance of meta-learners for estimation of heterogeneous treatment

effects based on Random Forests (Breiman, 2001; see also Biau & Scornet, 2016, for a comprehensive

introduction). The focus of the Monte Carlo study lies in an assessment of the influence of sample-splitting

and cross-fitting in the causal effect estimation. For this purpose we compare the above discussed meta-

learners estimated with full-sample, double sample-splitting, and double cross-fitting. We rely on the

Random Forest as the base learner for all meta-learners for several reasons. First, different meta-learners

22An estimation procedure without the weighting step is in literature referred to as the U-learner (Stadie et al., 2018; Künzel
et al., 2019; Nie & Wager, 2021). However, such estimator turned out to be quite unstable in the simulation experiments
in Nie and Wager (2021) as well as in those of Künzel et al. (2019) and will thus not be considered further in our analysis.
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require estimation of different nuisance functions which involve different types of outcome variables. As

such, the response functions mostly involve a continuous outcome variable whereas the propensity score

function includes a binary outcome. Hence, when using Random Forests no additional adjustments need

to be done in terms of estimation as it automatically estimates probabilities in case of binary outcome

and expected values in case of continuous outcomes, respectively. This is in contrast to linear learners

such as the Lasso (Tibshirani, 1996), Ridge (Hoerl & Kennard, 1970) or Elastic Net (Zou & Hastie,

2005) where the estimator needs to be modified using appropriate link function for proper probability

estimation (see for example Hastie et al., 2009, for the Logit-Lasso). Second, Random Forest is a local

nonparametric method which does not need any data pre-processing to flexibly learn the underlying

functional form from the data (Hastie et al., 2009). Thus, Random Forest is able to approximate any

function with different degrees of complexity which is often the case in treatment effect estimation where

the nuisance functions tend to be rather difficult complex functions while the CATE function itself is often

simple and sparse (Künzel et al., 2019; Kennedy, 2020). This is again an advantage in comparison to the

linear learners mentioned above which become more flexible once an augmented covariate set consisting

of polynomials and interactions is created and thus can be regarded as global nonparametric methods

(Hastie et al., 2009). Third, in contrast to other flexible state-of-the-art machine learners such as Neural

Networks the theoretical properties of Random Forest are better understood which makes it less of a

black-box method and thus more amenable to conduct statistical inference (see Meinshausen, 2006; Biau,

2012; Wager, Hastie, & Efron, 2014; Wager, 2014; Scornet, Biau, & Vert, 2015; Mentch & Hooker, 2016;

Wager & Athey, 2018; Athey et al., 2019, for a discussion of statistical properties of Random Forests).

Additionally, another reason why we do not use the Lasso and the linear learners as such is due to a

substantial increase in variance as they are prone to outliers as documented in the simulation studies

of Jacob (2020) as well as Knaus et al. (2021). Lastly, from the practical standpoint there is a vast

variety of fast and reliable software implementations of Random Forests which makes it easy to use for

practitioners.23

In order to objectively evaluate the performance and the robustness of different meta-learners in

estimating heterogeneous treatment effects with regard to the double sample-splitting and double cross-

fitting, we design several simulation scenarios. On the one hand, for each meta-learner we construct such

a data generating process (DGP) that suits the particular advantages of the respective meta-learner,

i.e. we design a simulation scenario where each meta-learner is expected to work best. Hence, we are

able to check if the particular meta-learner outperforms the others and how big the performance dis-

crepancies are for the other meta-learners in comparison to the expected best performing meta-learner.

On the other hand, we design a challenging scenario where none of the meta-learners has a priori an

explicit advantage, which serves as our main simulation design of interest. Thus we can compare the

performance of the meta-learners in an objective manner and quantify the deviations to their respective

best performance cases. Furthermore, common to all DGPs is the observational study design, i.e. there

is always selection into treatment and thus all considered meta-learners have to deal with confounding

and not only with modelling the treatment effect itself. Moreover, in contrast to many simulation studies

where the nuisances are simple low-dimensional functions (Wager & Athey, 2018; Künzel et al., 2019;

Kennedy, 2020), we model all nuisance functions as highly non-linear but sparse functions with large-

dimensional covariate space to both challenge the potential of the machine learning methods, though still

largely obeying the theory induced limitations. For other challenging simulation designs see also Jacob

(2020) or Zivich and Breskin (2021) as well as Lechner (2018) and Knaus et al. (2021) for the Empiri-

23In our simulations we use the R-package ranger which provides a fast C++ implementation of Random Forests, particularly
suited for high-dimensional data (Wright & Ziegler, 2017). Further options include the grf package written by Tibshirani
et al. (2018), the forestry package by Künzel, Liu, Saarinen, Tang, and Sekhon (2020) or the randomForest package by Liaw
and Wiener (2002).
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cal Monte Carlo Simulations. Importantly, in order to study the approximate convergence rates of the

meta-learners we repeat each simulation scenario several times with increasing training sample sizes using

NT = {500, 2′000, 8′000, 32′000}. We emphasize that the considered sample sizes substantially exceed

the ones from previous simulation studies devoted to the analysis of sample-splitting methods, which

were limited to 2′000 (Jacob, 2020) and 3′000 (Zivich & Breskin, 2021) observations, respectively. Fur-

thermore, the large samples enable us to study the performance of the meta-learners in settings in which

the application of machine learning methods is arguably more relevant. We choose to always quadruple

the sample size, which allows us to easily benchmark the results with the parametric
√
N rate, in which

case the estimation error is expected to halve with each increase of the sample size. We then evaluate

the performance measures on a validation set with sample size of NV = 10′000 to reduce the predic-

tion noise as is usual in many Monte Carlo studies (Janitza, Tutz, & Boulesteix, 2016; Hornung, 2019;

Lechner & Okasa, 2019; Jacob, 2020; Knaus et al., 2021). Lastly, in terms of the tuning parameters for

the Random Forest base-learner we stick to the default, in the literature commonly used settings, corre-

sponding to 1′000 trees, the number of randomly chosen split variables set to the square root of number

of features, and the minimum leaf size equal to 5.24 Finally, for each DGP we simulate the training data

R = {2′000, 1′000, 500, 250} times in total, where we use 2′000 replications for the smallest sample size

and decrease the number of replications down to 250 for the largest sample size, due to computational

reasons.25

1.4.1 Performance Measures

For the evaluation of the performance of the considered meta-learners with regard to the sample-

splitting and cross-fitting in detail, we employ several evaluation measures. First, to assess the overall

estimator performance we compute the root mean squared error for each observation i from the validation

sample over the R simulation replications:26

RMSE
(
τ̂(Xi)

)
=

√ 1

R

R∑
r=1

(
τ(Xi)− τ̂ r(Xi)

)2
.

Next, we decompose the root mean squared error and evaluate the bias and variance component separately

to contrast the theoretically expected asymptotic behaviour of sample-splitting and cross-fitting with the

finite sample properties. Hence, we additionally compute the mean absolute bias:

| BIAS
(
τ̂(Xi)

)
|= 1

R

R∑
r=1

| τ(Xi)− τ̂ r(Xi) |

as well as the standard deviation of the treatment effects:

SD
(
τ̂(Xi)

)
=

√ 1

R

R∑
r=1

(
τ̂ r(Xi)−

1

R

R∑
r=1

τ̂ r(Xi)

)2

.

24We refrain from cross-validation or other tuning parameter optimization procedures due to computational constraints. We
recommend such optimization in the applied work as it might considerably improve the performance of the estimator (see
Curth & van der Schaar, 2021, for an evidence based on Neural Networks), however, for the purposes of the simulation
study it would not change the relative ranking of the meta-learners as each of them uses the very same base learner.

25Notice, however, that we only halve the number of replications while quadrupling the sample size and as such we may limit
a possible deterioration of the performance in terms of the simulation error. A similar strategy for balancing the precision
and the computational burden has been used in the simulations by Lechner (2018) or Knaus et al. (2021). Detailed results
on the simulation error are provided in Appendix 1.B.2.

26We take the square root of the MSE to have the same scale as for the other performance measures, i.e. the absolute bias
and the standard deviation.
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Furthermore, inspired by the simulation study of Knaus et al. (2021) we also compute the Jarque-Bera

statistic (Jarque & Bera, 1980; Bera & Jarque, 1981) to test for the normality of the treatment effect

predictions:27

JB
(
τ̂(Xi)

)
=
R

6

(
S
(
τ̂(Xi)

)2
+

1

4
(K
(
τ̂(Xi)

)
− 3)2

)
where S

(
τ̂(Xi)

)
and K

(
τ̂(Xi)

)
is the skewness and the kurtosis of the R treatment effect predictions for

observation i, respectively. As a matter of presentation for CATEs, we report the mean values of the

RMSE, absolute bias, standard deviation and the Jarque-Bera statistic over NV validation observations.28

Additionally, we provide evaluation of further performance measures in Appendix 1.B.2.

1.4.2 Simulation Design

In the general simulation design we follow Künzel et al. (2019) and specify the response functions

for potential outcomes under treatment, µ1(x), and control, µ0(x), the propensity score, e(x), and the

treatment effect function, τ(x), respectively. First, we simulate a p-dimensional matrix of covariates

Xi ∈ Rp drawing from the uniform distribution, as previously used in simulations of Wager and Athey

(2018), Künzel et al. (2019) or Nie and Wager (2021) among others, such that:

Xi ∼ U
(
[0, 1]n×p

)
and defining the correlation structure according to Falk (1999) using a random correlation matrix Σp

generated by the method of Joe (2006).29 Second, we specify the response functions and simulate the

potential outcomes as:

Yi(0) = µ0(Xi) + ϵi(0)

Yi(1) = µ1(Xi) + ϵi(1)

with errors ϵi(0), ϵi(1)
iid∼ N (0, 1) that are independent of the covariates Xi. Third, we define the propen-

sity score function and simulate the treatment assignment according to:

Wi ∼ Bern
(
e(Xi)

)
and use the observational rule to set the observed outcomes such that:

Yi =Wi · Yi(1) + (1−Wi) · Yi(0)

to complete the observable triple {(Xi, Yi,Wi)}. The subsequent simulation designs then differ only with

respect to how the corresponding functions, namely µ0(x), µ1(x), e(x) and τ(x) are specified. For all

of our simulations we define the response function under non-treatment according to the well-known

Friedman function (1991) to create a difficult yet standardized setting, which has been used also in the

simulations of Nie and Wager (2021), as follows:

µ0(x) = sin
(
π · x1 · x2

)
+ 2 ·

(
x3 −

1

2

)2
+ x4 +

1

2
· x5 (1.4.1)

27See Thadewald and Büning (2007) for a discussion of the Jarque-Bera test and its comparison to other tests for normality.
28As such, we define the average RMSE as RMSE = 1

NV

∑NV

i=1 RMSE
(
τ̂(Xi)

)
and analogously for the remaining perfor-

mance measures. Additionally, for the Jarque-Bera statistic we report also the share of CATEs from the validation sample
for which the normality gets rejected at the 5% confidence level. For details, see Appendix 1.B.2.

29For a detailed correlation heat map of the covariates and further descriptive statistics of the simulated datasets see Appendix
1.A.
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hence effectively creating a highly non-linear but sparse response function which is challenging to estimate

on its own.30 The response function under treatment is then defined simply as:

µ1(x) = µ0(x) + τ(x)

while we vary the specification of the treatment effect function τ(x) throughout our simulation designs.

Lastly, we model the propensity score function similarly to Wager and Athey (2018) and Künzel et al.

(2019) using the β distribution with parameters 2 and 4 such that:

e(x) = α

(
1 + β2,4

(
f(x)

))
(1.4.2)

while the scale parameter α controls the share of treated in the sample and at the same time helps to

bound the resulting probabilities away from 0 and 1 and thus to avoid extreme propensity scores which

might yield some meta-learners using such propensities for reweighting unstable (Huber et al., 2013;

Powers et al., 2018). We additionally make the propensity score dependent on features Xi of dimension

pe in a non-linear fashion using the functional form specification of Nie and Wager (2021) and set:

f(x) = sin(π · x1 · x2 · x3 · x4)

which creates a non-linear setting that is challenging to model as opposed to, e.g. polynomial transforma-

tions alone. Similarly, such non-linear transformations for the propensity scores using the sine function

have been used also in simulations by Lechner (2018) and Knaus et al. (2021).

Table 1.4.1: Overview of the Simulation Study

General Settings

Number of DGPs 6
Number of Replications R {2′000, 1′000, 500, 250}
Training Sample NT {500, 2′000, 8′000, 32′000}
Validation Sample NV 10′000

DGP Settings

Covariate Space Dimension p 100
Signal Covariates in Response Function pµ 5
Signal Covariates in Propensity Score Function pe 4
Signal Covariates in Treatment Function pτ {0, 1, 2, 3}

Forest Settings

Number of Trees 1′000
Random Subset of Split Covariates

√
p

Minimum Leaf Size 5

As a matter of notation we refer to p as the dimension of the covariate space, pµ, pe and pτ as the

dimension of the signal covariates in the response function, the propensity score function, and the CATE

function, respectively. We set the aforementioned dimensions as follows: p = 100, pµ = 5, pe = 4 and pτ

varies with forthcoming simulation designs. We note that such large-dimensional covariate set is quite

unique as the majority of simulation studies relies on low-dimensional covariate sets (see e.g. Künzel

et al., 2019; Jacob, 2020; or Nie & Wager, 2021).31 We further define the sets of covariates such that

Xpτ ⊂ Xpe ⊂ Xpµ ⊂ Xp. By doing so we make it difficult for the meta-learners to accurately fit the

30Note that π refers to the mathematical constant, i.e. π ≈ 3.14.
31 An exception is the simulation study of Powers et al. (2018) who explicitly study the estimation of heterogeneous treatment
effects in high-dimensions.
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functions and eliminate the spurious correlations between the response and propensity score functions.

Moreover, it also becomes challenging to disentangle the confounding effects from the actual treatment

effect heterogeneity which the herein discussed meta-learners are specifically designed for. Finally, a

general overview of the simulation study is provided in Table 1.4.1.

1.4.2.1 Simulation 1: balanced treatment and constant zero CATE

The first simulation design features our complicated sparse non-linear nuisance functions as defined

above in Equations (1.4.1) and (1.4.2) in contrast to a very simple CATE function. In fact, the treatment

effect here is defined as being constant and equal to zero:

τ(x) = 0

with a balanced treatment assignment with the scaling factor α = 1
4 which results in approximately 50%

treated and 50% of control units. Such DGP with zero CATE serves as a benchmark and should implicitly

suit the S-learner as the treatment indicator is not predictive for the outcome. Nevertheless the other

meta-learners with the exception of the T-learner should be also capable of capturing the true zero effect

as this is often a showcase example when motivating the particular meta-learners as well as simulating

their performance (see Künzel et al., 2019; Kennedy, 2020; and Nie & Wager, 2021, for details).

1.4.2.2 Simulation 2: balanced treatment and complex nonlinear CATE

In the second simulation design we keep the balanced treatment allocation but feature a highly

complex and non-linear CATE function resulting from a completely disjoint DGPs for the response

function under treatment and under control. As such the response function under control is defined

according to Equation (1.4.1), while the response function under treatment is defined as a non-zero

constant, i.e. µ1(x) = 1. The CATE is then defined as:

τ(x) = µ1(x)− µ0(x).

Such simulation setups have been previously used also in Künzel et al. (2019) or in Nie and Wager (2021).

In this case the response functions, µ0(x) and µ1(x), are uncorrelated and thus there is no advantage

in pooling those two together. Rather, estimating these two functions separately is the best strategy as

there is nothing additional to learn from the other treatment group. For this reason, the T-learner should

perform best here, however the meta-learners which also estimate the response functions separately such

as the X- and DR-learner are expected to perform well too. Clearly, other meta-learners such as the S-

and R-learner which estimate the pooled response function have a disadvantage as they first need to learn

the disjoint structure.

1.4.2.3 Simulation 3: highly unbalanced treatment and constant non-zero CATE

In our third simulation design we change the scaling factor in the propensity score function to

α = 1
12 such that we generate approximately 15% treated units.32 We then model the treatment effect

32In contrast to Künzel et al. (2019) we do not specify the treatment imbalance as extreme as 1% treated mostly for
computational reasons. Due to our smallest sample size of N = 500 used in the simulations and the double sample-splitting
procedure, it might occasionally happen that the estimated propensity scores would be exactly zero which would prevent
estimation of the DR-learner as well as the R-learner due to the division by zero when constructing the pseudo-outcomes.
In our specification, even with the share of the treated being 16.77% in expectation, the aforementioned issue with zero
propensity scores still might occur. In such cases, we redraw the sample to ensure at least 15% of treated. However, this
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as a constant as for example in Kennedy (2020) or Nie and Wager (2021) and thus create a scenario with

highly complicated nuisance functions and very simple CATE function given as:

τ(x) = 1.

Accordingly, the X-learner should perform best in this scenario given the high imbalance in the treatment

assignment and the sparse CATE function at the same time. In contrast, other meta-learners using the

propensity score for reweighting such as the DR- and R-learner might perform worse due to potentially

extreme propensity scores close to the {0, 1} bounds. Furthermore, the T-learner is clearly disadvantaged

in this scenario due to the high treatment imbalance as well as due to the simple CATE function, whereas

the S-learner is not expected to work particularly well either due to the relatively bigger effect size bounded

away from zero.

1.4.2.4 Simulation 4: unbalanced treatment and simple CATE

In our fourth simulation design we model the CATE function similarly to the above design as a

simple non-zero constant and combine it with an indicator function as also used by Künzel et al. (2019)

to add more structure to the CATE. As such we define the treatment effect as:

τ(x) = 1 + 1 · 1(x1 > 0.5)

and otherwise keep the DGP same as in the third design while only increasing the share of treated to

roughly 25% as is the case in the simulations of Nie and Wager (2021) by setting α = 1
8 . By doing so

we should theoretically shift the advantage from the X-learner more onto the DR-learner as both meta-

learners are motivated by complex nuisance functions and a simple CATE function with the difference of

the X-learner being designed particularly for highly unbalanced treatment allocation. Also the R-learner

is expected to perform relatively well in this scenario due to the less unbalanced treatment shares, whereas

the S- and T-learner are not expected to perform well for the same reasons as in the above situations.

1.4.2.5 Simulation 5: unbalanced treatment and linear CATE

The fifth simulation design features the same nuisance functions and treatment share as the fourth

design, however, here instead of the indicator function we model the treatment effect as a low-dimensional

linear function as:

τ(x) = 1 +
1

2
x1 +

1

2
x2

as used in one of the simulation designs of Nie and Wager (2021) where the R-learner performed best and

as such it is also expected to have an advantage here. Yet again the X- and DR-learner should perform

comparatively well in this setting while the S- and T-learner not so much for the very same reasons as

stated above.

1.4.2.6 Main Simulation: unbalanced treatment and nonlinear CATE

In the last simulation design we create arguably the most challenging scenario in which none of the

meta-learners has an a priori advantage and thus presents our main simulation design of interest. In this

case not only the nuisances but also the CATE itself is modelled as a smooth non-linear function of a

occurs only a handful of times out of 2000 draws in total and only for the smallest sample size considered. Nie and Wager
(2021) also use similar restrictions on the propensity scores in their simulations due to the very same issue.
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slightly larger dimension than in the previous settings, i.e. pτ = 3. Following Wager and Athey (2018)

we specify the CATE function as follows:

τ(x) = 1 +
4

pτ

pτ∑
j=1

(
1

1 + e−12(xj−0.5)
− 1

2

)
.

We further keep the treatment share equal to about 25% and the nuisance functions as previously specified

as well. Hence, the meta-learners need to first account for the moderately imbalanced treatment shares,

second accurately estimate the complex nuisance functions and disentangle their correlation, and third

separate the treatment effect heterogeneity from the selection effects by precisely estimating the non-linear

CATE function.

1.4.3 Simulation Results

For the analysis of the simulation results we focus on the Main Simulation design with unbalanced

treatment assignment and nonlinear CATE function as this is arguably the most challenging simulation

design which does not a priori create conditions that would be advantageous for any of the considered

meta-learners. We then summarize the results for the rest of the simulation designs for which we provide

the detailed results in Appendix 1.B.1. Supplementary results providing additional measures, including

the simulation error, bias, skewness, kurtosis, share of CATEs for which the normality has been rejected,

as well as the correlation and variance ratio of the estimated and the true CATEs are presented in

Appendix 1.B.2.

1.4.3.1 Results of Main Simulation: unbalanced treatment and nonlinear CATE

The performance of the meta-learners in the Main Simulation is depicted in Table 1.4.2. We report

the results for the average values of the RMSE, absolute bias, standard deviation and the Jarque-Bera

test statistic over the NV = 10′000 predicted CATEs from the validation sample. Figure 1.4.1 details

the performance of the meta-learners implemented in the full-sample, double sample-splitting and double

cross-fitting versions.

Table 1.4.2: CATE Results for Main Simulation

RMSE |BIAS| SD JB
500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000

S 0.878 0.749 0.651 0.570 0.867 0.739 0.641 0.560 0.108 0.096 0.091 0.088 7.140 2.888 2.173 1.936
S-W 0.765 0.634 0.533 0.462 0.717 0.602 0.508 0.443 0.261 0.190 0.149 0.125 2.086 2.106 2.019 1.931
T 0.766 0.634 0.533 0.462 0.719 0.602 0.509 0.442 0.260 0.190 0.149 0.125 2.603 2.085 2.016 1.924
X-F 0.743 0.618 0.517 0.442 0.711 0.597 0.500 0.427 0.200 0.141 0.117 0.103 3.490 2.230 2.034 1.857
X-S 0.820 0.707 0.591 0.499 0.779 0.684 0.574 0.484 0.244 0.164 0.125 0.107 5.146 2.680 2.157 1.929
X-C 0.794 0.693 0.582 0.494 0.770 0.680 0.571 0.482 0.171 0.114 0.097 0.092 3.984 2.322 1.964 1.827
DR-F 0.817 0.659 0.542 0.463 0.764 0.627 0.518 0.443 0.285 0.194 0.149 0.126 141.106 40.528 5.490 2.172
DR-S 1.053 0.825 0.579 0.445 0.906 0.731 0.521 0.403 0.640 0.433 0.281 0.206 567.501 458.729 159.041 36.504
DR-C 0.880 0.727 0.523 0.409 0.809 0.680 0.490 0.383 0.359 0.255 0.179 0.143 52.224 38.216 12.644 3.162
R-F 0.815 0.679 0.590 0.529 0.746 0.632 0.554 0.499 0.346 0.251 0.201 0.172 4.583 3.499 2.225 1.983
R-S 0.932 0.788 0.659 0.580 0.833 0.721 0.613 0.546 0.468 0.333 0.243 0.195 3.959 3.365 2.666 2.028
R-C 0.825 0.725 0.621 0.554 0.779 0.694 0.597 0.533 0.261 0.196 0.155 0.136 2.416 2.184 2.036 1.959

Note: The results for the RMSE, |BIAS|, SD and JB show the mean values of the root mean squared error, absolute bias, standard deviation
and the Jarque-Bera test statistic of all 10′000 CATE estimates from the validation sample. The critical values for the JB test statistic are 5.991
and 9.210 at the 5% and 1% level, respectively. Additionally, X-F, DR-F, R-F denote the full-sample versions of the meta-learners, while X-S,
DR-S, R-S and X-C, DR-C, R-C denote the sample-splitting and cross-fitting versions, respectively. Bold numbers indicate the best performing
meta-learner for given measure and sample size.

Starting with the most simple S-learner, we observe a competitive performance in terms of the

average RMSE for the smaller sample sizes which, however, disappears for larger sample sizes. Taking
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Figure 1.4.1: CATE Results for Main Simulation
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Note: The results for RMSE, |BIAS|, and SD show the mean values of the root mean squared error, absolute bias,
and standard deviation of all 10′000 CATE estimates from the validation sample. The figure shows the results based on
the increasing training samples of {500, 2′000, 8′000, 32′000} observations displayed on the log scale. Additionally, X-F,
DR-F, R-F denote the full-sample versions of the meta-learners, while X-S, DR-S, R-S and X-C, DR-C, R-C denote the
sample-splitting and cross-fitting versions, respectively.

a closer look at the results reveals that the competitive performance of the S-learner stems mainly from

the very low standard deviation while being substantially biased. Indeed, the variance of the S-learner is

the smallest among all meta-learners for all sample sizes. This is mainly due to its tendency to predict

effects close to zero if the treatment indicator is not strongly predictive for the outcome as pointed out

by Künzel et al. (2019). This explains also the high bias of this estimator as the CATEs vary between

−1 and 3 with only a small proportions of the CATEs being equal to zero (see Figure 1.A.6 in Appendix

1.A for details). Nevertheless, the Jarque-Bera test does not indicate evidence against the normality of

the predicted CATE distribution, on average.

Considering the modified version of the S-learner with enforcement of the treatment indicator into

the forest splitting set, i.e. the SW-learner, we notice almost identical performance to the one of the

T-learner. This result can be explained by an observation that once the SW-learner finds the split

based on the treatment indicator early within the trees it mimics the disjoint structure of the T-learner.

The rest of the recursive partitioning is then very similar to the one of the T-learner which has been

also documented for the case of the S-learner in the simulation experiments conducted by Künzel et

al. (2019). As a result, it seems that enforcing the treatment indicator into the splitting set helps to

alleviate the high bias of the S-learner to some degree, however, it increases the variance of the estimator

at the same time. Nevertheless, the bias-variance trade-off in this case results in lower average RMSE

in comparison to the S-learner and the SW-learner might thus be preferred over the simple S-learner,

when using Random Forest as a base learner. Overall, the SW- and T-learner are very competitive in the

smaller sample sizes both in terms of the average RMSE as well as the average absolute bias. However,

with access to more training data these two learners do not improve fast enough and are outperformed by

the more sophisticated learners in the largest sample size consisting of 32′000 observations. Concerning

the distribution of the predicted CATEs there seems to be on average no statistical evidence against the

normality, neither for the SW-learner nor for the T-learner.
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In contrast to the above mentioned meta-learners the X-learner makes use of the additional estimation

of nuisance functions. In its full-sample version the X-learner performs best in terms of the average RMSE

for all sample sizes, except the largest one. The good RMSE performance stems partly from the relatively

low bias and partly from the relatively low variance of the estimator as the X-learner exhibits the smallest

average absolute bias for the smaller sample sizes (500 and 2′000), while having one of the lowest average

standard deviations throughout all sample sizes. Interestingly, we only partly document the theoretical

properties regarding the sample-splitting and cross-fitting procedures. As such, the full-sample version

is the best performing one in terms of the average RMSE as well as in terms of the average absolute

bias across all sample sizes, which is a pattern observed in the simulation experiments of Jacob (2020)

as well. Accordingly, the sample-splitting version exhibits not only higher values of the average standard

deviation but also higher values of the average absolute bias. Nevertheless, we observe that the cross-

fitting version successfully regains the efficiency lost due to sample-splitting as it exhibits steadily lower

variance than the sample-splitting version and even lower variance than the full-sample version, while

having a bias of roughly the same magnitude as the sample-splitting version. As for the distribution

of the predicted CATEs, on average, we do not observe evidence for deviations from normality for any

of the versions of the X-learner. Additionally, we do not observe any major differences in the speed

of convergence between the different versions as can be seen in Figure 1.4.1. Moreover, the absolute

differences in the performance measures among the different versions are small in comparison to other

meta-learners using nuisance functions. Albeit rather surprising at the first sight, the explanation for

this phenomenon comes presumably from the different usage of the propensity score by the X-learner in

comparison to the R- and DR-learner. As such, the R- and DR-learner use the propensity score together

with the response functions to construct a new pseudo-outcome which is subsequently used to estimate

the CATEs. In contrast, the X-learner uses merely the response functions to create the pseudo-outcome,

while the propensity score is used only to reweight the final CATE estimates and thus it does not enter

into any additional estimation step. Therefore, the X-learner might be less prone to overfitting bias which

would partly justify the full-sample estimation as described in Künzel et al. (2019).33

Assessing the performance of the DR-learner reveals some interesting insights. The first observation

is that the cross-fitting version performs best of all meta-learners in terms of the average RMSE for

the largest sample size of 32′000 observations. This comes mainly from the low bias of this estimator

as the average absolute bias is the lowest among all learners for the two largest sample sizes, while

the average standard deviation is relatively high. However, looking at the average value of the Jarque-

Bera statistic suggests evidence against the normality of the predicted CATEs for all but the largest

sample size. Inspecting the results more closely reveals that the issue stems from heavy tails of the

CATE distributions. The extreme values of the predicted CATEs are mainly caused by the propensity

scores which are close to the {0, 1} bounds. Similar issues of the DR-learner due to extreme propensity

scores have also been documented in the simulation experiments of Knaus et al. (2021) as well as in

the empirical application of Knaus (2020). The second observation is that for the DR-learner we clearly

see how the theoretical arguments of sample-splitting and cross-fitting translate into the finite sample

properties of the estimator. However, these can be documented only for large sample sizes. As such, the

bias of the sample-splitting version is smaller than the one of the full-sample version in the largest sample

size, while the bias of the cross-fitted version is even slightly lower than the sample-splitting version and

is lower than the bias in the full-sample version for both the largest (32′000) and the second largest

(8′000) sample considered. For the smaller sample sizes (500 and 2′000) we see that the reduction in the

overfitting bias is not large enough in comparison to the bias stemming from the estimation of the CATE

function. As such, for small sample sizes the additional splitting of the sample does not leave enough

33Nonetheless, this insight might still substantiate the need for sample-splitting, although only with two folds instead of three
as used here.
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observations to learn the non-linear structure of the CATE. Considering the variance of the estimator,

we also observe the theoretically expected pattern. The full-sample version of the DR-learner exhibits

the smallest average standard deviation throughout all sample sizes, while the standard deviation for

the sample-splitting version is roughly twice as high. Nevertheless, the cross-fitting version successfully

reduces the standard deviation for all sample sizes and comes close to the full-sample version, effectively

regaining the lost efficiency of the estimator due to sample-splitting. Overall, in terms of the average

RMSE this bias-variance trade-off results in favourable performance of the sample-splitting version in

the largest and of the cross-fitting version in the two largest samples in comparison to the full-sample

version. Considering the distribution of the predicted CATEs we see that the heavy tails problem due to

extreme propensity scores is the worst for the sample-splitting version, where even in the second largest

sample size of 8′000 observations, the normality is rejected for more than 50% of the predicted CATEs

from the validation sample (compare the supplementary results in Appendix 1.B.2). This stems from

the smaller samples used for estimation of the propensity scores which are more likely to yield extreme

values under imbalanced treatment assignment. We also observe that this issue is less pronounced for the

full-sample version. The third and the last observation is yet the probably most noticeable pattern across

all performance measures, namely the fast convergence of the sample-splitting and cross-fitting version

of the DR-learner which is substantially faster in comparison to all other meta-learners as can be seen in

Figure 1.4.1. As such the DR-learner performs almost worst of all, both in terms of the average RMSE

and average absolute bias for the smallest sample size of 500 observations, but almost best of all for the

largest sample size of 32′000 observations. This provides evidence that the DR-learner is able to learn a

highly complex CATE function once enough data becomes available and additionally highlights the need

for sample-splitting and cross-fitting in order to achieve the theoretically described optimal performance

(Kennedy, 2020).

The performance of the R-learner is competitive with the other meta-learners especially in smaller

samples, particularly for the full-sample version. In the smallest sample size of 500 observations the

R-learner outperforms the DR-learner in terms of the average RMSE, irrespective of the estimation

procedure. However, with growing sample sizes the performance evens out and eventually for the largest

sample size of 32′000 observations the R-learner lags behind the majority of the estimators. This is

in contrast to previous results from simulations of Jacob (2020) and Knaus et al. (2021) where the R-

learner exhibits rather good performance, albeit studied only in smaller samples. The decomposition of

the RMSE shows that while the full-sample version of the R-learner exhibits rather low bias, it suffers

from a higher variance as can be seen in Figure 1.4.1. Nonetheless, the distributions of the predicted

CATEs do not show on average deviations from the normal distribution. This is contrary to the DR-

learner and illustrates the advantage of the additional weighting step. As such, even though the R-learner

uses the propensity scores for reweighting to construct the modified outcome, it successfully manages to

downweight the modified outcomes based on extreme propensity scores to alleviate the heavy tails issues

observed in the case of the DR-learner. In particular, even for the sample-splitting version of the R-

learner the share of predicted CATEs for which the normality is rejected is an order of magnitude lower

in comparison to the DR-learner (see Appendix 1.B.2 for details). In terms of the estimation procedure,

we observe a similar pattern as for the X-learner in a sense that the full-sample version performs better

with respect to the average RMSE and absolute bias, while the cross-fitting version helps to reduce the

variance of the estimator not only in comparison to the sample-splitting version but even in comparison

to the full-sample version. The sample-splitting version exhibits higher values of the average absolute

bias and standard deviation for all sample sizes considered, while the convergence rates are approximately

same as for the full-sample and the cross-fitting version. Hence, there is a lack of indication that the

overfitting type of bias reduction could become relevant in bigger samples. Similarly to the DR-learner,
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also for the R-learner the differences between the different estimation procedures seem to be higher than

those for the X-learner which is again presumably due to the different usage of the propensity scores.

Inspecting the results for the rest of the simulation designs reveals further insights and helps to

generalize the findings from the main and most challenging simulation design discussed above.

1.4.3.2 Results of Simulation 1: balanced treatment and constant zero CATE

Within the benchmark Simulation 1 with zero constant CATE the S-learner, as expected, performs

best with respect to all performance measures across all sample sizes (see Table 1.B.1 in Appendix 1.B.1).

However, the results reveal poor statistical properties of the S-learner as it appears to be substantially

biased and inconsistent as the absolute bias as well as standard deviation increase with growing sample

size.34 In general, the performance of the S-learner is, in all simulation designs, plagued by the substan-

tially higher bias than all the other meta-learners, partially accompanied by the consistency issues. The

SW-learner is affected by the same issues as the S-learner in Simulation 1 but manages to substantially

reduce the bias for the rest of the simulation designs and is generally close to the performance of the

T-learner as seen in the Main Simulation.

1.4.3.3 Results of Simulation 2: balanced treatment and complex nonlinear CATE

In Simulation 2 with balanced treatment and complex nonlinear CATE we also observe, as expected,

a very good RMSE performance of the T-learner throughout all sample sizes (see Table 1.B.2 in Appendix

1.B.1). However, it exhibits quite high variance which is mostly due to the fact that it estimates two

completely disjoint response functions for estimating the CATE. Furthermore, in this design the R-learner

in its full-sample version performs particularly well, which comes rather as a surprise as it pools the two

disjoint response functions within the estimation procedure. Nevertheless, the R-learner achieves even

lower bias than the T-learner for large samples, but with rather high variance which is a pattern observed

across all simulation designs.

1.4.3.4 Results of Simulation 3: highly unbalanced treatment and constant non-zero CATE

Simulation 3 features a highly unbalanced treatment assignment and a constant CATE for which

the X-learner performs best as expected, throughout all sample sizes and irrespective of the estimation

procedure (see Table 1.B.3 in Appendix 1.B.1). Indeed, the differences between the particular versions,

i.e. full-sample, sample-splitting and cross-fitting, are quite small which is in contrast to the R- and

DR-learner confirming the insights from the Main Simulation. Within this highly unbalanced design the

estimation of the propensity score function plays a key role as in this case the estimated propensity scores

can get quite often very close to zero. This, however, does not affect the performance of the X-learner as

it uses the propensity scores in a fundamentally different way and even the most extreme {0, 1} scores

would be indeed admissible as pointed out by Künzel et al. (2019). On the contrary, the results show

that such extreme propensity scores make now both the R-learner and the DR-learner unstable, with the

instability being particularly pronounced in the latter meta-learner. In the case of the DR-learner the

34A closer look on the estimation results reveals the reason for this phenomenon. With small sample sizes, the underlying trees
of the S-learner’s forest are quite shallow and barely split on the treatment indicator resulting in quite homogeneous CATE
predictions which are very close to the actual zero effect. However, as the sample size increases, the chance of splits based on
the treatment indicator increases which results in more heterogeneous effect predictions spread around zero. Accordingly,
the bias as well as the standard deviation increase. Similar consistency issues of the forest-based S-learner seem to appear
also in the simulations of Künzel et al. (2019) where the MSE rises with growing sample size for some designs and only
stabilizes with very big sample sizes.
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heavy tail problem of the CATE distribution is aggravated by more unbalanced treatment assignment as

can be seen based on the Jarque-Bera statistic and also on the higher variance of the estimator. While

the R-learner manages to avoid this issue by downweighting the observations with extreme propensity

scores in less unbalanced settings, it is not fully able to do so when the imbalance is very high and there

is potentially a large proportion of propensity scores close to 1. This translates into the higher values of

the Jarque-Bera statistic as well as to higher variance and higher bias, too. These issues lead ultimately

to bad performance in terms of the average RMSE for both the R- and DR-learner.

1.4.3.5 Results of Simulation 4: unbalanced treatment and simple CATE

In Simulation 4 the imbalance in the treatment assignment is less pronounced which should partly

reduce the propensity score issues for the R- and DR-learner. Within this simulation design we observe

similar patterns as for the Main Simulation. For the small and medium sized samples the X-learner in the

full-sample version performs best in terms of the average RMSE, while it gets outperformed by the DR-

learner in its cross-fitting version in the largest sample-size. While the R-learner’s performance is quite

competitive in smaller samples, it lags behind in larger samples as observed in other simulation designs.

As a general pattern, the X-learner remains quite stable with respect to the estimation procedure whereas

the DR-learner in its sample-splitting and cross-fitting version exhibits substantially faster convergence

than the competing estimators. Nonetheless, based on the Jarque-Bera statistic, the heavy tail issue is

less pronounced but still present as can be seen in Table 1.B.4 in Appendix 1.B.1.

1.4.3.6 Results of Simulation 5: unbalanced treatment and linear CATE

Lastly, in Simulation 5 the CATE function gets more involved, while the treatment assignment

remains unchanged. The results once again resemble the general pattern (for details see Table 1.B.5 in

Appendix 1.B.1). As such the R-learner is competitive mainly in the smaller sample sizes, in this case best

performing in the cross-fitting version. The DR-learner in the sample-splitting and cross-fitting version

exhibits faster convergence rates, however, in this case the considered sample sizes are not large enough

to outperform the X-learner. The X-learner exhibits again little differences regarding the estimation

procedure and outperforms the other meta-learners in all performance measures across all sample-sizes.

1.4.4 Empirical Simulation

In order to compare the performance of the meta-learners outside a completely synthetic design of

the above simulations we apply the estimators in an arguably more realistic setting using an augmented

real dataset. For this purpose we use the data from the data challenge of the 2018 Atlantic Causal

Inference Conference (2018 ACIC henceforth). This data is particularly suitable for a comparison of

the meta-learners for two reasons. First, the data is based on a randomized control trial in education,

namely the National Study of Learning Mindsets (NSLM) by Yeager et al. (2019), and thus provides

us with a real data example. Second, the dataset has been augmented to an observational setting with

measured confounding and known treatment effects (Carvalho, Feller, Murray, Woody, & Yeager, 2019)

which enables us to evaluate the performance of the meta-learners for the estimation of CATEs.

The dataset includes a total of 10′391 observations with 10 covariates, a simulated continuous out-

come and a binary treatment, while the share of treated is approximately 25%.35 The variables are

35The dataset can be retrieved online from GitHub. We neglect here the information about the additional school ID for
simplicity and comparability reasons.
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described in Table 1.A.1 in Appendix 1.A.2. Additionally, to create a more challenging large-dimensional

setting, similar to the synthetic simulations, we augment the dataset further with p = 90 uniformly

distributed covariates, i.e. X11,...,100 ∼ U
(
[0, 1]n×p

)
with the same correlation structure as used within

the synthetic simulations.36 At a high level, we are interested in estimating the treatment effects of an

intervention to foster a belief to develop intelligence in students on a measure of student achievement,

conditional on observed covariates. The CATEs were generated according to the following specification:

τ(x) = 0.228 + 0.05 · 1(x1 < 0.07)− 0.05 · 1(x2 < −0.69)− 0.08 · 1(c1 ∈ 1, 13, 14)

while the conditional independence assumption holds by construction, the confounding has a complicated

functional form. For a detailed description of the data generating process used for the augmentation see

Carvalho et al. (2019).

Similarly as in the synthetic simulations we estimate the heterogeneous treatment effects with all

meta-learners and evaluate their performance with regard to the point estimates. For this purpose

we perform an empirical simulation study inspired, among others, by Lechner (2018) and Künzel et

al. (2019) where we first, set apart a validation set of size N = 1′000 observations, and second, sample

R = {2′000, 1′000, 500} training sets each of sizes N = {500, 2′000, 8′000} observations from the remaining

data. We omit the biggest sample of N = 32′000 observations due to the size restrictions of the dataset.

We report mean performance measures in a similar fashion as in the previous simulation experiments.

1.4.4.1 Results of Empirical Simulation

The CATE results of the Empirical Simulation for all meta-learners are summarized in Table 1.4.3,

while Figure 1.4.2 provides details on the meta-learners in the full-sample, double sample-splitting and

double cross-fitting versions.

The results reveal a similar picture to the synthetic simulations in general, with the largest simi-

larities to Simulation 3 and 5 in particular. Accordingly, the X-learner achieves the best performance

in terms of the average RMSE as well as average absolute bias in all considered sample-sizes, regardless

of the estimation procedure. This emphasizes the good performance of the X-learner in settings with

unbalanced treatment assignment and sparse CATE function with structural properties. In the largest

sample size of 8′000 observations, also the DR- and R-learner come close to the performance of the

X-learner in terms of the average RMSE, while the simpler SW- and T-learner are competitive mainly

in the smaller sample sizes. We also observe a slightly faster convergence of the sample-splitting and

cross-fitting version of the DR-learner as in the synthetic simulations, however, the limited sample size

in this case does not allow for a sufficiently large improvement to outperform the X-learner. Given the

smaller sample sizes in the empirical simulation, we are not able to detect the bias-variance trade-off and

the sample-splitting versions always exhibit higher values of the average RMSE, average absolute bias

and average standard deviation. This is particularly noticeable for the smallest sample size of 500 obser-

vations as there is essentially not enough data left after splitting to learn the correct CATE function. For

all meta-learners the cross-fitting versions then always perform better in terms of the variance reduction

and even lead to a lower bias in comparison to the sample-splitting versions. These results accentuate

the fact that the benefits of sample-splitting in removing the overfitting bias become apparent only for

sufficiently large samples. Additionally, we see larger discrepancies between the estimation versions of

the DR- and R-learner in comparison to very stable performance of the X-learner, similarly as in the

synthetic simulations. Lastly, the results on the distribution of the predicted CATEs resemble those of

36For more detailed descriptive statistics of the augmented empirical dataset including correlation heat map of the covariates
see Appendix 1.A.2.
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the synthetic simulations with the heavy tail problem of the DR-learner in its sample-splitting version as

well as deviations from normality of the S- and SW-learner.

Table 1.4.3: CATE Results for Empirical Simulation

RMSE |BIAS| SD JB
500 2000 8000 500 2000 8000 500 2000 8000 500 2000 8000

S 0.175 0.127 0.093 0.171 0.121 0.090 0.035 0.035 0.023 165.803 7.372 2.054
S-W 0.131 0.109 0.078 0.106 0.090 0.070 0.121 0.084 0.037 57.438 2.065 1.903
T 0.150 0.111 0.079 0.122 0.092 0.071 0.127 0.084 0.037 2.050 2.047 2.082
X-F 0.112 0.082 0.056 0.092 0.069 0.052 0.089 0.056 0.021 2.043 1.941 2.078
X-S 0.129 0.093 0.069 0.105 0.078 0.060 0.104 0.067 0.040 2.129 2.594 2.004
X-C 0.103 0.077 0.055 0.087 0.067 0.052 0.072 0.044 0.017 1.652 1.794 1.935
DR-F 0.147 0.105 0.070 0.119 0.087 0.063 0.125 0.078 0.033 7.134 3.377 2.001
DR-S 0.256 0.180 0.123 0.201 0.143 0.101 0.242 0.162 0.097 68.837 46.173 6.196
DR-C 0.159 0.116 0.078 0.128 0.096 0.071 0.135 0.088 0.037 6.334 5.329 2.969
R-F 0.183 0.131 0.089 0.146 0.107 0.078 0.167 0.109 0.051 3.819 3.862 2.027
R-S 0.237 0.174 0.123 0.189 0.140 0.100 0.224 0.158 0.099 3.490 3.494 3.117
R-C 0.144 0.109 0.076 0.117 0.091 0.068 0.123 0.084 0.037 2.060 2.222 2.225

Note: The results for the RMSE, |BIAS|, SD and JB show the mean values of the root mean squared error,
absolute bias, standard deviation and the Jarque-Bera test statistic of all 1′000 CATE estimates from the
validation sample. The critical values for the JB test statistic are 5.991 and 9.210 at the 5% and 1% level,
respectively. Additionally, X-F, DR-F, R-F denote the full-sample versions of the meta-learners, while X-S,
DR-S, R-S and X-C, DR-C, R-C denote the sample-splitting and cross-fitting versions, respectively. Bold
numbers indicate the best performing meta-learner for given measure and sample size.

Figure 1.4.2: CATE Results for Empirical Simulation
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Note: The results for RMSE, |BIAS|, and SD show the mean values of the root mean squared error, absolute bias, and
standard deviation of all 1′000 CATE estimates from the validation sample. The figure shows the results based on the
increasing training samples of {500, 2′000, 8′000} observations displayed on the log scale. Additionally, X-F, DR-F, R-F
denote the full-sample versions of the meta-learners, while X-S, DR-S, R-S and X-C, DR-C, R-C denote the sample-splitting
and cross-fitting versions, respectively.

1.5 Discussion

Given the results of our synthetic and empirical simulations there are several important findings for

the estimation of heterogeneous causal effects by the meta-learners and the associated usage of sample-

splitting and cross-fitting which are relevant for applied empirical work.
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1.5.1 Meta-Learners

In general, the results suggest that meta-learners that directly model both the outcome equations

and the selection process perform better, especially in larger samples, which is in line with the insights

from the previous literature (see e.g. Knaus et al., 2021). Meta-learners modelling only the outcome

equations are competitive only in smaller samples and tend to perform poorly in larger samples as they

fail to properly account for the selection into treatment.

In particular, we do not recommend the usage of the S-learner for estimation of heterogeneous

causal effects due to empirically documented undesirable statistical properties such as high bias and

consistency issues. The herein studied modification of the S-learner, the SW-learner, alleviates the high

bias of the S-learner, however, it does not solve the consistency issues. Hence, enforcing the treatment

variable into the splitting set of the forest does not constitute an attractive option for estimation of

causal effects. In contrast, the T-learner does not suffer from high bias or any consistency issues and has

a stable performance as it uses the full data sample without the need of sample-splitting due to potential

overfitting. Hence, the T-learner might be an interesting option, if a large sample is not available for

the empirical analysis. Related simulation studies (Jacob, 2020; Knaus et al., 2021) find also relatively

competitive performance of the T-learner, especially with the Random Forest as a base learner.

Among the meta-learners based on the estimation of nuisance functions, the X-learner performs very

well not only in settings with highly unbalanced but also in less unbalanced treatment shares with simple

CATEs and demonstrates the theoretically argued capability to learn such CATE structures (Künzel et

al., 2019). Moreover, the X-learner exhibits a quite stable performance across all simulation designs with

low bias and very low variance, even in small samples. Additionally, due to its particular usage of the

propensity scores, the X-learner is not too sensitive to the choice of the estimation procedure. As such,

both the full-sample version and the cross-fitting version of the X-learner are viable options, regardless

of the sample size. For these reasons, we recommend to use the X-learner for CATE estimation if the

researcher is facing a situation with very low number of treated units as well as in less unbalanced settings

with potentially limited sample size. In contrast to the X-learner, the DR-learner performs particularly

well in settings with nonlinear and complex CATEs if large enough samples are available. However, it

tends to be unstable in small samples with unbalanced treatment assignment due to extreme propensity

scores, which relates to the results of Jacob (2020) and Knaus et al. (2021). Additionally, for the DR-

learner the choice of the estimation procedure is crucial as its sample-splitting and cross-fitting version

exhibits the fastest convergence rates of all meta-learners which highlights the theoretical arguments

provided in Kennedy (2020). According to the simulation evidence, we advice to employ the cross-fitting

version of the DR-learner for the CATE estimation in settings with rather balanced treatment assignment

and when large sample is available. Recently, Knaus (2020) proposed the normalized DR-learner, that

addresses the problem of unstable CATE predictions due to extreme propensity scores which might be

a viable option for smaller sample sizes and settings with unbalanced treatment shares. Lastly, the

simulation evidence suggests that the R-learner is in comparison to the DR-learner less prone to unstable

performance due to extreme propensity scores. However, its performance is competitive only in smaller

samples, while the empirically approximated speed of convergence is slower than the one of the DR-learner

and seems to depend on the CATE complexity as theoretically argued by Nie and Wager (2021). With

respect to the estimation procedure we do not find a clear-cut evidence in favour of a particular version

as both the full-sample as well as the cross-fitting version exhibit comparably good performance. Based

on this evidence, the R-learner might be an attractive option for estimation of CATEs if the treatment

is not too imbalanced and if only a small sample is available. For comparable sample sizes, Knaus et al.

(2021) also find the R-learner to have good performance in a variety of settings.
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Overall, we point out that based on the simulation evidence, for all meta-learners the approximate

convergence rates appear to be substantially slower than the parametric rate of
√
N . This is expected

given the insights from previous literature that the estimation of more granular heterogeneous effects is

a more difficult task in comparison to the estimation of average effects (compare e.g. Lechner, 2018; or

Knaus et al., 2021). However, we note that the approximate convergence rates differ considerably among

the meta-learners and their specific implementations as documented in our simulation experiments.

1.5.2 Estimation Procedures

Our simulation evidence suggests that using the full sample for estimation of both the nuisance

functions as well as the CATE function leads to a remarkably good performance in terms of both bias

and variance in finite samples. Recently, Curth and van der Schaar (2021) also point out that the full-

sample estimation seems to work better in practice, especially for small samples. In theory, we would

expect lower variance yet higher bias due to overfitting (Chernozhukov et al., 2018). The possible reason

for this phenomenon might in our case be due to the out-of-bag predictions of the forest that we use

throughout the simulation experiments. Even though these predictions are not out-of-sample per se they

are not directly based on the observations used for estimation and as such might help to alleviate the

overfitting problem when using full sample (compare Athey & Imbens, 2019, for a discussion of out-of-bag

predictions in Random Forests). In the causal machine learning literature, such out-of-bag predictions

are for example also used in the case of the Generalized Random Forest for the residualization (Athey

et al., 2019), similar to the one used in the R-learner. In contrast to the full-sample estimation, using the

double sample-splitting for the estimation of the nuisance functions, we effectively use only one third of

the available data. Theoretically, we should observe a smaller bias but higher variance of the estimators.

However, in almost all cases we observe both higher bias as well as higher variance, particularly for

the small sample sizes. Nonetheless, we document the expected bias-variance trade-off for the largest

sample sizes. This stems mainly from the fact that using only a third of the smaller samples does not

allow a sensible machine learning estimation of the highly non-linear nuisance functions featured in our

simulations. However, especially for the DR-learner we do observe faster convergence rates for the sample-

splitting version which is compatible with the theoretical convergence arguments (Newey & Robins, 2018;

Kennedy, 2020). Hence, it seems to be the case that in order to benefit from the double sample-splitting

the training sample must be of sufficient size, otherwise the full sample estimation achieves a better

performance. Lastly, the double cross-fitting for estimation of the nuisance components effectively uses

all the available information from the data and substantially reduces the variance of the estimators, while

keeping the bias low at the same time. This comes at the price of longer computation time in comparison

to the sample-splitting procedure as the estimation is repeated several times. Nevertheless, the compu-

tation time of the cross-fitting procedure is on average comparable with the full-sample estimation (see

Appendix 1.C for details).

Based on the above simulation evidence, it seems reasonable to always use the full-sample estimation

together with out-of-bag predictions (if available) when a relatively small sample is available to the applied

researcher, whereas to use the double cross-fitting procedure when a relatively large data is accessible,

regardless of the choice of a meta-learner. On the contrary, the simulations do not provide any evidence

for an advantageous usage of the double sample-splitting over the double cross-fitting, apart from the

computational aspects.
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1.6 Conclusion

We investigate the finite sample performance of the meta-learners for the estimation of heterogeneous

causal effects with focus on the specific estimation implementations related to data usage. In particular,

we examine the properties of double sample-splitting and double cross-fitting as defined by Newey and

Robins (2018) in contrast to using full sample for estimation. For this purpose, we review several meta-

learning algorithms for estimation of causal effects and discuss their advantages and disadvantages in

particular empirical settings. We conduct an extensive simulation study with data generating processes

involving highly non-linear functional forms and large-dimensional feature space to challenge the machine

learning algorithms, while keeping the treatment effect specifications well-structured. Furthermore, we

perform an empirical simulation based on an augmented real dataset to reflect an actual empirical setting.

Moreover, we repeat the simulation experiments for increasing sample sizes to empirically study the

convergence properties of the meta-learners. Based on our simulation evidence, we provide a guideline

for empirical researchers and practitioners to better inform the decisions of applying certain method and

estimation procedure for their particular research objectives.

The results of our simulation study show that the choice of the estimation procedure can indeed

largely impact the performance of the meta-learners in finite samples. On the one hand, we provide an

empirical evidence for the theoretical arguments of the bias-variance trade-off related to sample-splitting

and cross-fitting which, however, become apparent only if sufficiently large samples are used. On the

other hand, we document the adverse effects of these procedures in small samples, when using machine

learning. Therefore, we argue that in empirical studies based on small samples, applied researchers should

use the full sample for machine learning estimation of both the nuisance functions as well as the treatment

effect function as the overfitting bias is in such cases of secondary importance. However, for empirical

analyses with access to large data samples, we advocate for the usage of the double cross-fitting for the

estimation of treatment effects as the overfitting bias here becomes of primary importance. The double

cross-fitting procedure then effectively reduces this overfitting bias and successfully preserves the full

sample size efficiency of the estimator. Moreover, if computation time is not a constraint, we discourage

applied researchers to use the double sample-splitting procedure due to substantial increase in variance,

while having no benefit over the double cross-fitting in terms of bias reduction.

In contrast to the typical drawbacks of simulation studies, the particular design of our simulation

experiments with varying sample size and varying treatment shares allows us to draw relevant conclusions

that are not solely dependent on the particular specification of the data generating processes, but rely on

the data characteristics that an applied researcher can observe without imposing arbitrary assumptions.

In particular, the simulation evidence implies a clear advantage for the X-learner, when a researcher is

confronted with highly unbalanced treatment shares. This finding holds irrespective of the sample size at

hand and as such we recommend the usage of X-learner for estimation of heterogeneous treatment effects

whenever the share of treated or controls is around 15% or less. With less unbalanced treatment shares at

around 25% of treated or controls, the size of the available sample becomes decisive. For smaller samples

with only few hundred observations (500 and 2′000), the simulation evidence again favours the usage

of the X-learner. However, for bigger samples with several thousand observations (8′000 and 32′000),

our findings favour the DR-learner as it can successfully learn highly complex treatment effect function

if enough data is available. Finally, with perfectly balanced treatment shares, the sample size matters

less. In such cases, the DR-learner as well as the R-learner are both the preferred estimators. However,

we advise against the usage of these two methods in highly imbalanced settings as their performance

becomes unstable due to extreme propensity scores. Finally, concerning the simpler meta-learners, we

explicitly argue against the usage of the S-learner by applied researchers for estimation of heterogeneous
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treatment effects due to the herein empirically documented undesirable statistical properties, while the

T-learner might be a reasonable choice in small samples with balanced treatment shares.

Even though we shed light on certain finite sample issues of applying different estimation procedures

when using meta-learners for estimation of heterogeneous causal effects, our findings raise new relevant

questions. Most importantly, the question of conducting statistical inference about the estimated hetero-

geneous treatment effects is worth further investigations. Based on the insights in this paper it would be

of interest to investigate the performance of the bootstrapping for estimation of standard errors as studied

by Künzel et al. (2019) for meta-learners based on the double sample-splitting and double cross-fitting

procedures. Moreover, a comparison of such bootstrapping inference procedure for meta-learners and

the approaches used in the Causal Forest literature such as the bootstrap of little bags in the General-

ized Random Forest (Athey et al., 2019) or the weight-based inference as in the Modified Causal Forest

(Lechner, 2018) would be desirable. Furthermore, the performance difference in the point estimation

using the out-of-bag vs. in-sample predictions could provide additional insights on the benefits of sample-

splitting and cross-fitting procedures and hence to assess the robustness of our results to different types

of base learners. Finally, a further simulation comparison between the X-learner, the DR-learner and its

normalized version as proposed by Knaus (2020) for highly imbalanced settings would be of interest.
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Thadewald, T. & Büning, H. (2007). Jarque-Bera test and its competitors for testing normality - A power

comparison. Journal of Applied Statistics, 34 (1), 87–105.

Thrun, S. & Pratt, L. (1998). Learning to Learn. Springer Science \& Business Media.

Tian, L., Alizadeh, A. A., Gentles, A. J., & Tibshirani, R. (2014). A Simple Method for Estimating

Interactions Between a Treatment and a Large Number of Covariates. Journal of the American

Statistical Association, 109 (508), 1517–1532.

Tibshirani, J., Athey, S., Wager, S., Friedberg, R., Miner, L., & Wright, M. (2018). grf: Generalized

Random Forests. R package version 0.10.2.

Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical

Society: Series B (Methodological), 58 (1), 267–288.

Vanschoren, J. (2019). Meta-Learning. In Automated machine learning (pp. 35–61). Springer, Cham.

Vilalta, R. & Drissi, Y. (2002). A perspective view and survey of meta-learning. Artificial Intelligence

Review, 18 (2), 77–95.

Wager, S. (2014). Asymptotic theory for random forests. arXiv preprint arXiv:1405.0352.

Wager, S. & Athey, S. (2018). Estimation and Inference of Heterogeneous Treatment Effects using Random

Forests. Journal of the American Statistical Association, 113 (523), 1228–1242.

Wager, S., Hastie, T., & Efron, B. (2014). Confidence intervals for random forests: The jackknife and the

infinitesimal jackknife. The Journal of Machine Learning Research, 15 (1), 1625–1651.

Wendling, T., Jung, K., Callahan, A., Schuler, A., Shah, N. H., & Gallego, B. (2018). Comparing meth-

ods for estimation of heterogeneous treatment effects using observational data from health care

databases. Statistics in Medicine, 37 (23), 3309–3324.

41



Wright, M. N. & Ziegler, A. (2017). ranger : A Fast Implementation of Random Forests for High Dimen-

sional Data in C++ and R. Journal of Statistical Software, 77 (1), 1–17.

Yeager, D. S., Hanselman, P., Walton, G. M., Murray, J. S., Crosnoe, R., Muller, C., . . . Dweck, C. S.

(2019). A national experiment reveals where a growth mindset improves achievement. Nature,

573 (7774), 364–369.

Zhao, Y., Zeng, D., Rush, A. J., & Kosorok, M. R. (2012). Estimating individualized treatment rules using

outcome weighted learning. Journal of the American Statistical Association, 107 (499), 1106–1118.

Zimmert, F. & Zimmert, M. (2020). Paid parental leave and maternal reemployment: Do part-time

subsidies help or harm? Economics Working Paper Series, (No. 2002).

Zimmert, M. & Lechner, M. (2019). Nonparametric estimation of causal heterogeneity under high- di-

mensional confounding. arXiv preprint arXiv:1908.08779.

Zivich, P. N. & Breskin, A. (2021). Machine learning for causal inference: On the use of cross-fit estimators.

Epidemiology, 393–401.

Zou, H. & Hastie, T. (2005). Regularization and variable selection via the elastic-net. Journal of the Royal

Statistical Society, 67 (2), 301–320.

42



Appendix

1.A Descriptive Statistics

1.A.1 Synthetic Simulations

This appendix provides the descriptive statistics for the data generated in the six main simulation

designs discussed in the main text. For each simulation design we plot the distribution of the observed

realized outcomes, Yi, as well as the potential outcomes, Yi(0) and Yi(1). Furthermore, we provide

the distribution of the treatment indicator, Wi, together with the propensity score distribution under

treatment and under control to visualize the overlap condition. Lastly, we plot the distribution of the

true treatment effects, τ(Xi). Moreover, the plots include a correlation heat map for the covariates Xi.

The respective figures for each simulation design are listed below.

43



1.A.1.1 Simulation 1: balanced treatment and constant zero CATE

Figure 1.A.1: Descriptive Statistics for the Validation Data in Simulation 1
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1.A.1.2 Simulation 2: balanced treatment and complex nonlinear CATE

Figure 1.A.2: Descriptive Statistics for the Validation Data in Simulation 2
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1.A.1.3 Simulation 3: highly unbalanced treatment and constant non-zero CATE

Figure 1.A.3: Descriptive Statistics for the Validation Data in Simulation 3
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1.A.1.4 Simulation 4: unbalanced treatment and simple CATE

Figure 1.A.4: Descriptive Statistics for the Validation Data in Simulation 4
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1.A.1.5 Simulation 5: unbalanced treatment and linear CATE

Figure 1.A.5: Descriptive Statistics for the Validation Data in Simulation 5
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1.A.1.6 Main Simulation: unbalanced treatment and nonlinear CATE

Figure 1.A.6: Descriptive Statistics for the Validation Data in Main Simulation
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1.A.2 Empirical Simulation

This appendix provides a comprehensive overview of the variables in the augmented real dataset as

well as descriptive statistics thereof. Similarly to the results from the main simulation, we plot the distri-

bution of the observed realized outcomes, Yi, as well as the distribution of the treatment indicator, Wi.

Analogously, we plot the distribution of the true treatment effects, τ(Xi) together with the correlation

heat map for the covariates Xi. The respective figures for the distributions of the potential outcomes and

the propensity scores under treatment and under control are omitted due to missing data availability for

these quantities. The corresponding figures and tables are listed below.

Table 1.A.1: Variable description of the 2018 ACIC dataset. Source: Carvalho, Feller, Murray, Woody,
and Yeager (2019).

Variable Description

Y outcome measure of achievement recorded post-treatment (continuous variable)

W treatment indicating receipt of the intervention (binary variable)

S3 student’s self-reported expectations for success in the future, a proxy for prior achievement,
measured prior to random assignment (ordered categorical variable)

C1 student’s race/ethnicity (unordered categorical variable)
C2 student’s identified gender (binary variable)
C3 student’s first generation status, i.e. first in family to go to college (binary variable)

XC urbanicity of the school, i.e. rural, suburban, etc. (unordered categorical variable)
X1 school-level mean of students’ fixed mindsets, reported prior to random assignment (contin-

uous variable)
X2 school achievement level, measured by test scores and college preparation for the previous

4 cohorts of students (continuous variable)
X3 school racial/ethnic minority composition, i.e. percentage of student body that is Black,

Latino, or Native American (continuous variable)
X4 school poverty concentration, i.e. percentage of students who are from families whose in-

comes fall below the federal poverty line (continuous variable)
X5 School size, i.e. total number of students in all four grade levels in the school (continuous

variable)
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Figure 1.A.7: Descriptive Statistics for the Validation Data in Empirical Simulation
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1.B Simulation Results

1.B.1 Main Results

1.B.1.1 Simulation 1: balanced treatment and constant zero CATE

Table 1.B.1: CATE Results for Simulation 1

RMSE |BIAS| SD JB
500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000

S 0.008 0.009 0.013 0.018 0.005 0.006 0.010 0.014 0.007 0.008 0.012 0.016 21102.232 3656.421 285.128 12.451
S-W 0.037 0.038 0.049 0.059 0.023 0.025 0.036 0.047 0.033 0.032 0.040 0.047 20410.604 4973.704 364.501 12.494
T 0.225 0.168 0.128 0.101 0.180 0.135 0.103 0.082 0.206 0.149 0.109 0.083 2.071 2.280 2.000 1.912
X-F 0.160 0.111 0.080 0.059 0.128 0.089 0.065 0.048 0.142 0.095 0.067 0.048 1.689 2.442 2.068 2.002
X-S 0.186 0.127 0.091 0.067 0.149 0.103 0.074 0.055 0.162 0.106 0.073 0.053 1.916 2.152 2.180 2.125
X-C 0.152 0.106 0.075 0.054 0.123 0.087 0.062 0.045 0.120 0.075 0.052 0.036 1.293 2.393 2.023 1.982
DR-F 0.209 0.146 0.105 0.079 0.167 0.117 0.084 0.064 0.196 0.135 0.095 0.070 4.677 18.496 17.015 7.978
DR-S 0.343 0.241 0.170 0.122 0.272 0.191 0.135 0.097 0.335 0.235 0.166 0.119 5.548 15.737 30.661 41.289
DR-C 0.207 0.147 0.103 0.074 0.166 0.118 0.082 0.059 0.194 0.137 0.097 0.070 2.606 3.632 9.329 13.029
R-F 0.261 0.192 0.145 0.114 0.208 0.153 0.116 0.092 0.249 0.180 0.132 0.102 5.911 23.800 26.134 14.008
R-S 0.334 0.243 0.181 0.137 0.265 0.193 0.144 0.109 0.321 0.232 0.168 0.124 3.192 5.140 15.179 15.980
R-C 0.208 0.156 0.118 0.092 0.166 0.125 0.096 0.075 0.186 0.135 0.098 0.072 2.117 2.586 3.209 3.779

Note: The results for the RMSE, |BIAS|, SD and JB show the mean values of the root mean squared error, absolute bias, standard deviation and
the Jarque-Bera test statistic of all 10′000 CATE estimates from the validation sample. The critical values for the JB test statistic are 5.991 and
9.210 at the 5% and 1% level, respectively. Additionally, X-F, DR-F, R-F denote the full-sample versions of the meta-learners, while X-S, DR-S, R-S
and X-C, DR-C, R-C denote the sample-splitting and cross-fitting versions, respectively. Bold numbers indicate the best performing meta-learner
for given measure and sample size.

Figure 1.B.1: CATE Results for Simulation 1
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Note: The results for RMSE, |BIAS|, and SD show the mean values of the root mean squared error, absolute bias,
and standard deviation of all 10′000 CATE estimates from the validation sample. The figure shows the results based on
the increasing training samples of {500, 2′000, 8′000, 32′000} observations displayed on the log scale. Additionally, X-F,
DR-F, R-F denote the full-sample versions of the meta-learners, while X-S, DR-S, R-S and X-C, DR-C, R-C denote the
sample-splitting and cross-fitting versions, respectively.
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1.B.1.2 Simulation 2: balanced treatment and complex nonlinear CATE

Table 1.B.2: CATE Results for Simulation 2

RMSE |BIAS| SD JB
500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000

S 0.527 0.442 0.374 0.326 0.522 0.434 0.366 0.317 0.055 0.068 0.066 0.064 711.571 17.960 4.186 2.537
S-W 0.463 0.357 0.303 0.265 0.431 0.328 0.280 0.246 0.177 0.151 0.120 0.099 268.394 2.900 2.520 2.207
T 0.434 0.358 0.303 0.265 0.392 0.328 0.280 0.246 0.204 0.154 0.120 0.099 2.206 2.464 2.466 2.250
X-F 0.432 0.377 0.331 0.296 0.407 0.361 0.318 0.285 0.143 0.103 0.083 0.072 1.915 2.167 1.936 1.906
X-S 0.460 0.411 0.362 0.321 0.432 0.393 0.349 0.310 0.160 0.110 0.085 0.073 2.048 2.046 2.156 1.957
X-C 0.443 0.400 0.356 0.317 0.424 0.389 0.347 0.309 0.119 0.082 0.068 0.062 1.417 2.139 1.955 1.900
DR-F 0.439 0.366 0.312 0.276 0.399 0.338 0.291 0.259 0.197 0.144 0.113 0.095 3.392 2.919 2.104 1.936
DR-S 0.534 0.439 0.355 0.297 0.461 0.388 0.318 0.270 0.328 0.236 0.173 0.136 5.134 8.959 4.011 2.371
DR-C 0.451 0.388 0.322 0.276 0.413 0.361 0.302 0.259 0.193 0.146 0.114 0.095 2.498 2.525 2.158 1.980
R-F 0.458 0.373 0.307 0.266 0.404 0.333 0.277 0.241 0.251 0.188 0.146 0.122 4.201 4.206 2.437 2.021
R-S 0.529 0.439 0.356 0.298 0.458 0.389 0.319 0.269 0.318 0.236 0.178 0.140 2.989 3.550 4.630 3.400
R-C 0.449 0.388 0.322 0.274 0.413 0.361 0.301 0.256 0.187 0.145 0.116 0.097 2.195 2.280 2.107 1.940

Note: The results for the RMSE, |BIAS|, SD and JB show the mean values of the root mean squared error, absolute bias, standard
deviation and the Jarque-Bera test statistic of all 10′000 CATE estimates from the validation sample. The critical values for the JB test
statistic are 5.991 and 9.210 at the 5% and 1% level, respectively. Additionally, X-F, DR-F, R-F denote the full-sample versions of the
meta-learners, while X-S, DR-S, R-S and X-C, DR-C, R-C denote the sample-splitting and cross-fitting versions, respectively. Bold numbers
indicate the best performing meta-learner for given measure and sample size.

Figure 1.B.2: CATE Results for Simulation 2
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Note: The results for RMSE, |BIAS|, and SD show the mean values of the root mean squared error, absolute bias,
and standard deviation of all 10′000 CATE estimates from the validation sample. The figure shows the results based on
the increasing training samples of {500, 2′000, 8′000, 32′000} observations displayed on the log scale. Additionally, X-F,
DR-F, R-F denote the full-sample versions of the meta-learners, while X-S, DR-S, R-S and X-C, DR-C, R-C denote the
sample-splitting and cross-fitting versions, respectively.

53



1.B.1.3 Simulation 3: highly unbalanced treatment and constant non-zero CATE

Table 1.B.3: CATE Results for Simulation 3

RMSE |BIAS| SD JB
500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000

S 0.645 0.475 0.359 0.279 0.638 0.468 0.352 0.272 0.099 0.084 0.072 0.062 2.888 2.667 2.111 1.981
S-W 0.246 0.191 0.146 0.111 0.197 0.154 0.119 0.091 0.233 0.163 0.121 0.090 4.611 2.281 2.385 1.993
T 0.244 0.191 0.146 0.111 0.195 0.154 0.119 0.091 0.227 0.164 0.121 0.090 2.806 2.271 2.243 1.964
X-F 0.180 0.123 0.090 0.068 0.144 0.098 0.072 0.054 0.175 0.118 0.085 0.061 3.663 2.552 4.441 2.820
X-S 0.226 0.149 0.110 0.078 0.180 0.119 0.087 0.062 0.219 0.143 0.104 0.072 2.367 2.678 3.058 3.192
X-C 0.159 0.102 0.073 0.054 0.127 0.081 0.059 0.043 0.150 0.092 0.064 0.046 6.541 1.969 2.263 1.994
DR-F 0.287 0.202 0.146 0.110 0.222 0.158 0.116 0.089 0.279 0.188 0.129 0.093 3060.536 812.294 244.016 38.545
DR-S 0.649 0.502 0.334 0.218 0.475 0.365 0.250 0.168 0.645 0.498 0.329 0.213 1276.433 1496.545 795.711 258.858
DR-C 0.364 0.290 0.197 0.131 0.282 0.223 0.153 0.104 0.359 0.283 0.189 0.124 112.249 149.500 126.268 43.274
R-F 0.441 0.366 0.293 0.243 0.348 0.287 0.232 0.195 0.435 0.354 0.273 0.215 14.590 27.616 19.045 8.171
R-S 0.573 0.461 0.366 0.285 0.453 0.363 0.288 0.227 0.570 0.454 0.353 0.264 7.887 12.474 18.638 11.149
R-C 0.295 0.262 0.220 0.184 0.235 0.208 0.176 0.150 0.289 0.249 0.199 0.152 2.822 3.570 4.324 3.162

Note: The results for the RMSE, |BIAS|, SD and JB show the mean values of the root mean squared error, absolute bias, standard deviation and
the Jarque-Bera test statistic of all 10′000 CATE estimates from the validation sample. The critical values for the JB test statistic are 5.991 and
9.210 at the 5% and 1% level, respectively. Additionally, X-F, DR-F, R-F denote the full-sample versions of the meta-learners, while X-S, DR-S, R-S
and X-C, DR-C, R-C denote the sample-splitting and cross-fitting versions, respectively. Bold numbers indicate the best performing meta-learner
for given measure and sample size.

Figure 1.B.3: CATE Results for Simulation 3
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Note: The results for RMSE, |BIAS|, and SD show the mean values of the root mean squared error, absolute bias,
and standard deviation of all 10′000 CATE estimates from the validation sample. The figure shows the results based on
the increasing training samples of {500, 2′000, 8′000, 32′000} observations displayed on the log scale. Additionally, X-F,
DR-F, R-F denote the full-sample versions of the meta-learners, while X-S, DR-S, R-S and X-C, DR-C, R-C denote the
sample-splitting and cross-fitting versions, respectively.

54



1.B.1.4 Simulation 4: unbalanced treatment and simple CATE

Table 1.B.4: CATE Results for Simulation 4

RMSE |BIAS| SD JB
500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000

S 0.834 0.616 0.472 0.370 0.825 0.606 0.462 0.361 0.105 0.090 0.078 0.069 1.935 2.120 2.075 1.951
S-W 0.443 0.336 0.258 0.206 0.390 0.300 0.233 0.187 0.229 0.162 0.120 0.093 2.575 2.330 2.124 1.957
T 0.443 0.335 0.258 0.206 0.390 0.300 0.233 0.187 0.229 0.163 0.120 0.093 2.552 2.278 2.130 1.938
X-F 0.428 0.329 0.247 0.191 0.394 0.308 0.233 0.180 0.171 0.114 0.083 0.064 3.731 2.312 2.210 1.978
X-S 0.501 0.399 0.307 0.232 0.456 0.375 0.291 0.220 0.213 0.136 0.097 0.073 6.602 2.762 2.298 2.113
X-C 0.477 0.385 0.300 0.227 0.453 0.374 0.292 0.220 0.148 0.091 0.068 0.055 5.617 2.026 2.023 1.898
DR-F 0.510 0.369 0.275 0.214 0.454 0.334 0.251 0.196 0.249 0.165 0.117 0.088 116.949 156.252 41.933 5.158
DR-S 0.728 0.537 0.339 0.230 0.591 0.445 0.279 0.190 0.549 0.377 0.247 0.171 497.136 530.045 407.510 97.233
DR-C 0.565 0.435 0.269 0.182 0.493 0.388 0.236 0.159 0.308 0.215 0.145 0.104 51.595 50.726 42.424 15.770
R-F 0.537 0.426 0.349 0.293 0.454 0.364 0.303 0.258 0.337 0.250 0.192 0.151 8.764 13.754 7.349 2.839
R-S 0.653 0.521 0.412 0.338 0.539 0.438 0.352 0.294 0.460 0.332 0.245 0.184 7.025 6.592 7.512 5.029
R-C 0.524 0.440 0.361 0.303 0.469 0.402 0.333 0.282 0.246 0.185 0.142 0.113 2.700 2.900 2.732 2.318

Note: The results for the RMSE, |BIAS|, SD and JB show the mean values of the root mean squared error, absolute bias, standard deviation
and the Jarque-Bera test statistic of all 10′000 CATE estimates from the validation sample. The critical values for the JB test statistic are 5.991
and 9.210 at the 5% and 1% level, respectively. Additionally, X-F, DR-F, R-F denote the full-sample versions of the meta-learners, while X-S,
DR-S, R-S and X-C, DR-C, R-C denote the sample-splitting and cross-fitting versions, respectively. Bold numbers indicate the best performing
meta-learner for given measure and sample size.

Figure 1.B.4: CATE Results for Simulation 4
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Note: The results for RMSE, |BIAS|, and SD show the mean values of the root mean squared error, absolute bias,
and standard deviation of all 10′000 CATE estimates from the validation sample. The figure shows the results based on
the increasing training samples of {500, 2′000, 8′000, 32′000} observations displayed on the log scale. Additionally, X-F,
DR-F, R-F denote the full-sample versions of the meta-learners, while X-S, DR-S, R-S and X-C, DR-C, R-C denote the
sample-splitting and cross-fitting versions, respectively.
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1.B.1.5 Simulation 5: unbalanced treatment and linear CATE

Table 1.B.5: CATE Results for Simulation 5

RMSE |BIAS| SD JB
500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000

S 0.823 0.606 0.461 0.358 0.817 0.599 0.454 0.351 0.101 0.087 0.075 0.066 1.796 2.150 2.057 1.986
S-W 0.305 0.244 0.196 0.164 0.255 0.209 0.170 0.145 0.222 0.159 0.117 0.089 2.457 2.189 2.054 1.957
T 0.305 0.244 0.196 0.164 0.255 0.209 0.171 0.145 0.222 0.159 0.117 0.089 2.497 2.173 2.026 1.936
X-F 0.237 0.178 0.137 0.109 0.200 0.154 0.120 0.097 0.164 0.110 0.078 0.058 3.329 2.228 2.102 2.022
X-S 0.276 0.210 0.163 0.126 0.230 0.181 0.143 0.112 0.202 0.130 0.092 0.067 6.639 2.811 2.296 2.421
X-C 0.231 0.182 0.144 0.114 0.200 0.165 0.132 0.105 0.139 0.086 0.061 0.046 4.474 2.014 2.004 2.037
DR-F 0.314 0.248 0.203 0.166 0.258 0.212 0.179 0.148 0.237 0.159 0.112 0.084 123.780 364.063 249.515 26.116
DR-S 0.556 0.413 0.298 0.215 0.428 0.322 0.239 0.176 0.515 0.362 0.242 0.167 453.484 685.910 651.725 174.087
DR-C 0.354 0.280 0.217 0.162 0.287 0.232 0.185 0.140 0.289 0.205 0.140 0.099 50.509 61.849 72.770 22.771
R-F 0.392 0.312 0.254 0.223 0.314 0.253 0.211 0.190 0.339 0.253 0.187 0.146 12.888 28.931 17.700 4.568
R-S 0.500 0.388 0.305 0.248 0.398 0.311 0.248 0.206 0.457 0.336 0.246 0.179 9.107 10.173 16.684 12.581
R-C 0.311 0.262 0.222 0.194 0.256 0.219 0.191 0.172 0.241 0.185 0.139 0.104 2.925 3.617 3.874 3.072

Note: The results for the RMSE, |BIAS|, SD and JB show the mean values of the root mean squared error, absolute bias, standard deviation
and the Jarque-Bera test statistic of all 10′000 CATE estimates from the validation sample. The critical values for the JB test statistic are 5.991
and 9.210 at the 5% and 1% level, respectively. Additionally, X-F, DR-F, R-F denote the full-sample versions of the meta-learners, while X-S,
DR-S, R-S and X-C, DR-C, R-C denote the sample-splitting and cross-fitting versions, respectively. Bold numbers indicate the best performing
meta-learner for given measure and sample size.

Figure 1.B.5: CATE Results for Simulation 5
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Note: The results for RMSE, |BIAS|, and SD show the mean values of the root mean squared error, absolute bias,
and standard deviation of all 10′000 CATE estimates from the validation sample. The figure shows the results based on
the increasing training samples of {500, 2′000, 8′000, 32′000} observations displayed on the log scale. Additionally, X-F,
DR-F, R-F denote the full-sample versions of the meta-learners, while X-S, DR-S, R-S and X-C, DR-C, R-C denote the
sample-splitting and cross-fitting versions, respectively.
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1.B.2 Supplementary Results

This appendix provides supplementary results based on additional performance measures, complementing those from Section 1.4.1. To understand the

simulation noise and thus the precision the average RMSE is measured with, we compute the standard error of the average RMSE following Knaus et al. (2021)

as:

SE(RMSE) =

√ 1

R

R∑
r=1

(
1

NV

NV∑
i=1

(
τ(Xi)− τ̂ r(Xi)

)2 −RMSE

)2

.

Additionally, besides the absolute bias, we evaluate also the bias without the absolute value given by:

BIAS
(
τ̂(Xi)

)
=

1

R

R∑
r=1

(
τ(Xi)− τ̂ r(Xi)

)

We further evaluate also the components of the Jarque-Bera statistic separately, namely the skewness, i.e. S
(
τ̂(Xi)

)
and the kurtosis, i.e. K

(
τ̂(Xi)

)
defined by:

S
(
τ̂(Xi)

)
=

1
R

∑R
r=1

(
τ̂ r(Xi)− 1

R

∑R
r=1 τ̂

r(Xi)
)3(

1
R

∑R
r=1

(
τ̂ r(Xi)− 1

R

∑R
r=1 τ̂

r(Xi)
)2)3/2

and K
(
τ̂(Xi)

)
=

1
R

∑R
r=1

(
τ̂ r(Xi)− 1

R

∑R
r=1 τ̂

r(Xi)
)4(

1
R

∑R
r=1

(
τ̂ r(Xi)− 1

R

∑R
r=1 τ̂

r(Xi)
)2)2 .

As in the main simulation results, we report the averages of the above measures over the validation sample NV . Complementary to the average values of the

Jarque-Bera statistic presented in the main text, herein we report the share of CATEs for which the normality gets rejected at the 5% level. In order to further

evaluate the performance on the replication level we compute the correlation between the true and the estimated treatment effects given by:

CORR =
1

R

R∑
r=1

(
ρ
(
τ , τ̂ r))

where τ is a vector of size NV containing the true treatment effects from the validation sample and τ̂ r is a vector of size NV containing the estimated treatment
effects for the validation sample at the replication r, while ρ(·) denotes the correlation function. Similarly, we compute also the variance ratio of the true and the

estimated treatment effects as follows:

V ARR =
1

R

R∑
r=1

(
V ar(τ̂ r)

V ar(τ )

)
where V ar(·) denotes the variance. The full results including the main and the supplementary performance measures are listed in Tables 1.B.6 - 1.B.12 below.
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1.B.2.1 Simulation 1: balanced treatment and constant zero CATE

Table 1.B.6: CATE Results for Simulation 1

RMSE SE(RMSE) |BIAS| BIAS SD
500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000

S 0.008 0.009 0.013 0.018 0.005 0.005 0.006 0.004 0.005 0.006 0.010 0.014 -0.003 -0.004 -0.006 -0.008 0.007 0.008 0.012 0.016
S-W 0.037 0.038 0.049 0.059 0.028 0.024 0.024 0.015 0.023 0.025 0.036 0.047 -0.017 -0.020 -0.028 -0.033 0.033 0.032 0.040 0.047
T 0.225 0.168 0.128 0.101 0.046 0.024 0.013 0.007 0.180 0.135 0.103 0.082 -0.087 -0.072 -0.060 -0.048 0.206 0.149 0.109 0.083
X-F 0.160 0.111 0.080 0.059 0.054 0.026 0.014 0.006 0.128 0.089 0.065 0.048 -0.074 -0.055 -0.041 -0.029 0.142 0.095 0.067 0.048
X-S 0.186 0.127 0.091 0.067 0.071 0.034 0.018 0.008 0.149 0.103 0.074 0.055 -0.090 -0.071 -0.053 -0.037 0.162 0.106 0.073 0.053
X-C 0.152 0.106 0.075 0.054 0.068 0.034 0.018 0.008 0.123 0.087 0.062 0.045 -0.092 -0.074 -0.052 -0.036 0.120 0.075 0.052 0.036
DR-F 0.209 0.146 0.105 0.079 0.044 0.021 0.011 0.006 0.167 0.117 0.084 0.064 -0.072 -0.055 -0.043 -0.032 0.196 0.135 0.095 0.070
DR-S 0.343 0.241 0.170 0.122 0.071 0.029 0.013 0.006 0.272 0.191 0.135 0.097 -0.069 -0.045 -0.030 -0.017 0.335 0.235 0.166 0.119
DR-C 0.207 0.147 0.103 0.074 0.046 0.020 0.009 0.004 0.166 0.118 0.082 0.059 -0.072 -0.050 -0.029 -0.015 0.194 0.137 0.097 0.070
R-F 0.261 0.192 0.145 0.114 0.039 0.020 0.012 0.006 0.208 0.153 0.116 0.092 -0.077 -0.066 -0.058 -0.048 0.249 0.180 0.132 0.102
R-S 0.334 0.243 0.181 0.137 0.073 0.032 0.018 0.010 0.265 0.193 0.144 0.109 -0.089 -0.072 -0.064 -0.055 0.321 0.232 0.168 0.124
R-C 0.208 0.156 0.118 0.092 0.050 0.026 0.015 0.008 0.166 0.125 0.096 0.075 -0.092 -0.077 -0.065 -0.054 0.186 0.135 0.098 0.072

SKEW KURT JB% CORR V ARR
500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000

S 2.638 1.809 0.929 0.307 17.334 10.674 5.654 3.539 1.000 1.000 1.000 0.539
S-W 2.744 2.171 1.150 0.339 17.212 12.179 6.003 3.493 1.000 1.000 1.000 0.586
T 0.005 -0.009 -0.004 -0.008 3.016 3.038 3.006 2.983 0.058 0.075 0.052 0.044
X-F 0.010 -0.030 -0.001 -0.022 2.990 3.058 3.002 2.985 0.028 0.091 0.055 0.051
X-S 0.017 -0.023 0.003 -0.008 2.951 3.023 3.029 3.003 0.036 0.066 0.063 0.060
X-C 0.002 -0.040 0.003 -0.018 2.985 3.061 3.006 2.986 0.010 0.086 0.052 0.049
DR-F -0.008 -0.031 -0.020 -0.010 3.112 3.235 3.196 3.100 0.211 0.253 0.154 0.086
DR-S -0.009 -0.040 -0.060 -0.040 3.150 3.308 3.410 3.359 0.271 0.359 0.274 0.164
DR-C -0.013 -0.031 -0.039 -0.019 3.054 3.099 3.158 3.128 0.102 0.158 0.152 0.099
R-F 0.017 0.015 0.013 0.007 3.145 3.296 3.256 3.147 0.275 0.296 0.181 0.104
R-S 0.027 0.009 0.014 0.012 3.077 3.161 3.251 3.222 0.150 0.216 0.211 0.132
R-C 0.003 0.003 0.001 0.008 3.024 3.065 3.081 3.067 0.065 0.092 0.104 0.083

Note: The results for the RMSE, |BIAS|, BIAS, SD, SKEW , and KURT show the mean values of the root mean squared error, absolute bias, bias, standard deviation, skewness and kurtosis of all 10′000 CATE
estimates from the validation sample. SE(RMSE) depicts the standard error of the average RMSE and JB% presents the share of CATEs for which the Jarque-Bera test has been rejected at the 5% level. The results for
CORR and V ARR show the values of the correlation and variance ratio between the true and the estimated CATEs over all replications. Additionally, X-F, DR-F, R-F denote the full-sample versions of the meta-learners,
while X-S, DR-S, R-S and X-C, DR-C, R-C denote the sample-splitting and cross-fitting versions, respectively.
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1.B.2.2 Simulation 2: balanced treatment and complex nonlinear CATE

Table 1.B.7: CATE Results for Simulation 2

RMSE SE(RMSE) |BIAS| BIAS SD
500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000

S 0.527 0.442 0.374 0.326 0.114 0.092 0.075 0.064 0.522 0.434 0.366 0.317 -0.369 -0.258 -0.190 -0.143 0.055 0.068 0.066 0.064
S-W 0.463 0.357 0.303 0.265 0.084 0.050 0.045 0.041 0.431 0.328 0.280 0.246 -0.159 -0.036 -0.029 -0.023 0.177 0.151 0.120 0.099
T 0.434 0.358 0.303 0.265 0.056 0.049 0.045 0.041 0.392 0.328 0.280 0.246 -0.040 -0.034 -0.029 -0.023 0.204 0.154 0.120 0.099
X-F 0.432 0.377 0.331 0.296 0.069 0.066 0.061 0.056 0.407 0.361 0.318 0.285 -0.031 -0.022 -0.017 -0.012 0.143 0.103 0.083 0.072
X-S 0.460 0.411 0.362 0.321 0.071 0.071 0.067 0.061 0.432 0.393 0.349 0.310 -0.041 -0.029 -0.021 -0.015 0.160 0.110 0.085 0.073
X-C 0.443 0.400 0.356 0.317 0.076 0.075 0.070 0.063 0.424 0.389 0.347 0.309 -0.042 -0.032 -0.022 -0.014 0.119 0.082 0.068 0.062
DR-F 0.439 0.366 0.312 0.276 0.058 0.053 0.048 0.044 0.399 0.338 0.291 0.259 -0.032 -0.026 -0.021 -0.016 0.197 0.144 0.113 0.095
DR-S 0.534 0.439 0.355 0.297 0.059 0.050 0.044 0.038 0.461 0.388 0.318 0.270 -0.027 -0.017 -0.013 -0.008 0.328 0.236 0.173 0.136
DR-C 0.451 0.388 0.322 0.276 0.060 0.057 0.050 0.044 0.413 0.361 0.302 0.259 -0.030 -0.021 -0.013 -0.006 0.193 0.146 0.114 0.095
R-F 0.458 0.373 0.307 0.266 0.052 0.045 0.039 0.034 0.404 0.333 0.277 0.241 -0.039 -0.034 -0.030 -0.027 0.251 0.188 0.146 0.122
R-S 0.529 0.439 0.356 0.298 0.060 0.050 0.043 0.038 0.458 0.389 0.319 0.269 -0.042 -0.036 -0.033 -0.030 0.318 0.236 0.178 0.140
R-C 0.449 0.388 0.322 0.274 0.061 0.058 0.050 0.044 0.413 0.361 0.301 0.256 -0.045 -0.040 -0.034 -0.028 0.187 0.145 0.116 0.097

SKEW KURT JB% CORR V ARR
500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000

S -1.172 -0.282 -0.138 -0.087 4.608 3.106 3.021 3.003 1.000 0.832 0.206 0.087 0.430 0.737 0.850 0.890 772.103 31.143 11.674 6.871
S-W -0.820 -0.054 -0.003 0.003 3.494 3.015 3.027 2.999 1.000 0.116 0.075 0.058 0.490 0.728 0.846 0.896 51.036 5.794 4.379 3.494
T 0.000 -0.007 0.002 0.004 3.030 3.043 3.025 3.002 0.070 0.085 0.072 0.057 0.465 0.722 0.846 0.896 6.865 5.692 4.382 3.492
X-F 0.001 -0.012 0.007 0.001 3.010 3.026 2.984 2.971 0.045 0.067 0.045 0.043 0.458 0.723 0.847 0.891 20.826 14.657 8.854 5.962
X-S 0.008 -0.014 0.011 -0.007 2.931 3.022 3.006 2.981 0.043 0.058 0.062 0.050 0.266 0.553 0.785 0.868 25.303 22.204 13.868 8.249
X-C 0.000 -0.022 0.007 -0.006 2.993 3.029 2.983 2.975 0.015 0.065 0.045 0.045 0.391 0.677 0.835 0.886 55.123 33.303 15.678 8.554
DR-F -0.003 -0.013 -0.000 0.000 3.082 3.054 3.002 2.976 0.151 0.100 0.052 0.046 0.429 0.707 0.842 0.891 7.946 6.991 5.202 4.024
DR-S -0.002 -0.021 -0.009 -0.010 3.135 3.199 3.090 3.016 0.247 0.249 0.113 0.063 0.224 0.455 0.718 0.841 3.595 4.565 4.468 3.649
DR-C -0.006 -0.017 -0.005 0.001 3.057 3.047 3.005 2.978 0.099 0.087 0.056 0.051 0.359 0.628 0.828 0.895 9.232 8.713 5.869 4.112
R-F 0.012 0.006 0.015 0.010 3.107 3.086 3.018 2.986 0.200 0.132 0.064 0.050 0.398 0.668 0.824 0.884 4.473 4.449 3.642 3.005
R-S 0.014 0.003 0.017 0.011 3.072 3.108 3.073 3.008 0.130 0.151 0.097 0.059 0.227 0.456 0.716 0.840 3.805 4.558 4.304 3.512
R-C 0.001 0.002 0.013 0.017 3.033 3.033 3.000 2.983 0.069 0.074 0.053 0.048 0.363 0.630 0.828 0.897 9.803 8.713 5.702 3.970

Note: The results for the RMSE, |BIAS|, BIAS, SD, SKEW , and KURT show the mean values of the root mean squared error, absolute bias, bias, standard deviation, skewness and kurtosis of all 10′000 CATE estimates
from the validation sample. SE(RMSE) depicts the standard error of the average RMSE and JB% presents the share of CATEs for which the Jarque-Bera test has been rejected at the 5% level. The results for CORR and
V ARR show the values of the correlation and variance ratio between the true and the estimated CATEs over all replications. Additionally, X-F, DR-F, R-F denote the full-sample versions of the meta-learners, while X-S,
DR-S, R-S and X-C, DR-C, R-C denote the sample-splitting and cross-fitting versions, respectively.
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1.B.2.3 Simulation 3: highly unbalanced treatment and constant non-zero CATE

Table 1.B.8: CATE Results for Simulation 3

RMSE SE(RMSE) |BIAS| BIAS SD
500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000

S 0.645 0.475 0.359 0.279 0.077 0.043 0.025 0.014 0.638 0.468 0.352 0.272 0.638 0.468 0.352 0.272 0.099 0.084 0.072 0.062
S-W 0.246 0.191 0.146 0.111 0.059 0.025 0.015 0.009 0.197 0.154 0.119 0.091 -0.045 -0.050 -0.042 -0.032 0.233 0.163 0.121 0.090
T 0.244 0.191 0.146 0.111 0.053 0.025 0.015 0.008 0.195 0.154 0.119 0.091 -0.057 -0.050 -0.041 -0.032 0.227 0.164 0.121 0.090
X-F 0.180 0.123 0.090 0.068 0.060 0.024 0.012 0.006 0.144 0.098 0.072 0.054 -0.041 -0.033 -0.025 -0.016 0.175 0.118 0.085 0.061
X-S 0.226 0.149 0.110 0.078 0.095 0.040 0.019 0.007 0.180 0.119 0.087 0.062 -0.058 -0.042 -0.034 -0.021 0.219 0.143 0.104 0.072
X-C 0.159 0.102 0.073 0.054 0.074 0.031 0.015 0.007 0.127 0.081 0.059 0.043 -0.053 -0.043 -0.033 -0.021 0.150 0.092 0.064 0.046
DR-F 0.287 0.202 0.146 0.110 0.058 0.022 0.012 0.007 0.222 0.158 0.116 0.089 -0.049 -0.040 -0.029 -0.017 0.279 0.188 0.129 0.093
DR-S 0.649 0.502 0.334 0.218 0.204 0.093 0.039 0.018 0.475 0.365 0.250 0.168 -0.052 -0.038 -0.025 -0.007 0.645 0.498 0.329 0.213
DR-C 0.364 0.290 0.197 0.131 0.075 0.032 0.016 0.008 0.282 0.223 0.153 0.104 -0.048 -0.036 -0.026 -0.005 0.359 0.283 0.189 0.124
R-F 0.441 0.366 0.293 0.243 0.048 0.028 0.022 0.020 0.348 0.287 0.232 0.195 0.032 0.040 0.043 0.048 0.435 0.354 0.273 0.215
R-S 0.573 0.461 0.366 0.285 0.141 0.057 0.034 0.025 0.453 0.363 0.288 0.227 0.032 0.038 0.042 0.044 0.570 0.454 0.353 0.264
R-C 0.295 0.262 0.220 0.184 0.044 0.022 0.017 0.019 0.235 0.208 0.176 0.150 0.030 0.041 0.043 0.046 0.289 0.249 0.199 0.152

SKEW KURT JB% CORR V ARR
500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000

S 0.060 0.062 0.037 0.027 2.991 3.007 2.999 2.983 0.113 0.101 0.059 0.052
S-W -0.070 -0.005 -0.011 -0.003 3.102 3.039 3.028 2.988 0.277 0.075 0.067 0.049
T -0.024 -0.007 -0.009 -0.003 3.062 3.042 3.024 2.987 0.121 0.076 0.067 0.046
X-F -0.055 -0.015 -0.023 -0.004 3.080 3.069 3.111 3.035 0.186 0.095 0.123 0.068
X-S -0.017 0.030 -0.012 -0.010 3.085 3.074 3.095 3.083 0.084 0.107 0.110 0.091
X-C -0.101 -0.014 -0.025 -0.001 3.127 3.020 3.021 2.998 0.430 0.053 0.067 0.049
DR-F -0.006 -0.035 -0.041 -0.020 5.349 4.944 3.984 3.340 0.949 0.674 0.337 0.147
DR-S -0.011 -0.070 -0.096 -0.095 6.502 7.416 6.268 4.523 1.000 0.995 0.817 0.397
DR-C -0.033 -0.047 -0.056 -0.055 4.033 4.468 4.258 3.538 0.996 0.928 0.557 0.229
R-F -0.026 -0.025 -0.012 0.006 3.325 3.511 3.375 3.159 0.658 0.542 0.282 0.121
R-S 0.035 -0.003 -0.018 -0.005 3.222 3.382 3.464 3.292 0.468 0.520 0.378 0.183
R-C -0.015 -0.011 -0.006 0.009 3.067 3.129 3.159 3.086 0.117 0.173 0.178 0.105

Note: The results for the RMSE, |BIAS|, BIAS, SD, SKEW , and KURT show the mean values of the root mean squared error, absolute bias, bias, standard deviation, skewness and kurtosis of all 10′000 CATE
estimates from the validation sample. SE(RMSE) depicts the standard error of the average RMSE and JB% presents the share of CATEs for which the Jarque-Bera test has been rejected at the 5% level. The results for
CORR and V ARR show the values of the correlation and variance ratio between the true and the estimated CATEs over all replications. Additionally, X-F, DR-F, R-F denote the full-sample versions of the meta-learners,
while X-S, DR-S, R-S and X-C, DR-C, R-C denote the sample-splitting and cross-fitting versions, respectively.
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1.B.2.4 Simulation 4: unbalanced treatment and simple CATE

Table 1.B.9: CATE Results for Simulation 4

RMSE SE(RMSE) |BIAS| BIAS SD
500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000

S 0.834 0.616 0.472 0.370 0.121 0.106 0.091 0.076 0.825 0.606 0.462 0.361 0.825 0.605 0.458 0.354 0.105 0.090 0.078 0.069
S-W 0.443 0.336 0.258 0.206 0.049 0.032 0.024 0.020 0.390 0.300 0.233 0.187 -0.077 -0.071 -0.059 -0.048 0.229 0.162 0.120 0.093
T 0.443 0.335 0.258 0.206 0.049 0.033 0.024 0.020 0.390 0.300 0.233 0.187 -0.076 -0.071 -0.059 -0.048 0.229 0.163 0.120 0.093
X-F 0.428 0.329 0.247 0.191 0.040 0.026 0.017 0.011 0.394 0.308 0.233 0.180 -0.061 -0.052 -0.038 -0.027 0.171 0.114 0.083 0.064
X-S 0.501 0.399 0.307 0.232 0.052 0.031 0.020 0.014 0.456 0.375 0.291 0.220 -0.077 -0.064 -0.050 -0.034 0.213 0.136 0.097 0.073
X-C 0.477 0.385 0.300 0.227 0.033 0.021 0.015 0.010 0.453 0.374 0.292 0.220 -0.079 -0.067 -0.048 -0.034 0.148 0.091 0.068 0.055
DR-F 0.510 0.369 0.275 0.214 0.046 0.033 0.020 0.013 0.454 0.334 0.251 0.196 -0.064 -0.055 -0.038 -0.027 0.249 0.165 0.117 0.088
DR-S 0.728 0.537 0.339 0.230 0.122 0.059 0.030 0.016 0.591 0.445 0.279 0.190 -0.055 -0.050 -0.034 -0.014 0.549 0.377 0.247 0.171
DR-C 0.565 0.435 0.269 0.182 0.043 0.035 0.021 0.012 0.493 0.388 0.236 0.159 -0.069 -0.054 -0.030 -0.010 0.308 0.215 0.145 0.104
R-F 0.537 0.426 0.349 0.293 0.046 0.030 0.021 0.015 0.454 0.364 0.303 0.258 -0.029 -0.022 -0.012 -0.005 0.337 0.250 0.192 0.151
R-S 0.653 0.521 0.412 0.338 0.092 0.049 0.032 0.023 0.539 0.438 0.352 0.294 -0.035 -0.032 -0.019 -0.014 0.460 0.332 0.245 0.184
R-C 0.524 0.440 0.361 0.303 0.032 0.026 0.018 0.015 0.469 0.402 0.333 0.282 -0.039 -0.030 -0.018 -0.011 0.246 0.185 0.142 0.113

SKEW KURT JB% CORR V ARR
500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000

S 0.015 0.028 0.030 0.019 3.010 3.000 2.993 2.976 0.050 0.056 0.056 0.047 0.598 0.816 0.904 0.942 24.819 10.142 5.669 3.726
S-W -0.027 -0.003 -0.001 -0.005 3.047 3.026 3.002 2.982 0.101 0.076 0.058 0.044 0.507 0.763 0.878 0.926 4.538 3.298 2.466 2.002
T -0.027 -0.005 -0.002 -0.006 3.044 3.025 3.003 2.977 0.094 0.076 0.060 0.044 0.509 0.764 0.878 0.927 4.528 3.295 2.467 1.994
X-F -0.064 -0.017 -0.010 -0.013 3.065 3.020 3.006 2.966 0.192 0.076 0.068 0.048 0.644 0.877 0.952 0.977 9.886 5.412 3.200 2.330
X-S -0.071 -0.027 -0.009 -0.014 3.185 3.066 3.038 2.992 0.426 0.112 0.073 0.057 0.337 0.734 0.909 0.963 14.543 9.199 4.845 2.973
X-C -0.103 -0.029 -0.017 -0.010 3.089 2.962 2.996 2.959 0.374 0.049 0.052 0.042 0.496 0.850 0.945 0.975 31.636 11.894 5.217 3.047
DR-F -0.058 -0.059 -0.034 -0.011 3.848 3.745 3.319 3.054 0.798 0.443 0.200 0.073 0.242 0.717 0.894 0.949 4.993 4.567 3.159 2.400
DR-S -0.067 -0.115 -0.101 -0.076 5.197 5.478 4.775 3.768 0.999 0.933 0.587 0.267 0.061 0.324 0.742 0.892 1.351 1.832 1.821 1.578
DR-C -0.026 -0.054 -0.059 -0.047 3.683 3.762 3.578 3.234 0.958 0.710 0.371 0.146 0.107 0.498 0.870 0.948 3.482 4.144 2.451 1.768
R-F -0.018 -0.007 -0.002 0.001 3.215 3.280 3.152 3.031 0.443 0.342 0.165 0.067 0.251 0.524 0.712 0.825 2.355 2.844 2.901 2.686
R-S 0.049 0.024 0.010 0.003 3.182 3.217 3.212 3.106 0.412 0.314 0.211 0.110 0.105 0.308 0.564 0.739 1.873 2.403 2.835 2.879
R-C -0.028 0.000 0.002 -0.004 3.053 3.076 3.060 3.016 0.110 0.118 0.098 0.066 0.174 0.476 0.731 0.846 5.354 5.714 4.761 3.722

Note: The results for the RMSE, |BIAS|, BIAS, SD, SKEW , and KURT show the mean values of the root mean squared error, absolute bias, bias, standard deviation, skewness and kurtosis of all 10′000 CATE
estimates from the validation sample. SE(RMSE) depicts the standard error of the average RMSE and JB% presents the share of CATEs for which the Jarque-Bera test has been rejected at the 5% level. The results for
CORR and V ARR show the values of the correlation and variance ratio between the true and the estimated CATEs over all replications. Additionally, X-F, DR-F, R-F denote the full-sample versions of the meta-learners,
while X-S, DR-S, R-S and X-C, DR-C, R-C denote the sample-splitting and cross-fitting versions, respectively.
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1.B.2.5 Simulation 5: unbalanced treatment and linear CATE

Table 1.B.10: CATE Results for Simulation 5

RMSE SE(RMSE) |BIAS| BIAS SD
500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000

S 0.823 0.606 0.461 0.358 0.069 0.043 0.031 0.028 0.817 0.599 0.454 0.351 0.817 0.599 0.454 0.351 0.101 0.087 0.075 0.066
S-W 0.305 0.244 0.196 0.164 0.046 0.029 0.021 0.017 0.255 0.209 0.170 0.145 -0.076 -0.067 -0.054 -0.044 0.222 0.159 0.117 0.089
T 0.305 0.244 0.196 0.164 0.046 0.029 0.021 0.017 0.255 0.209 0.171 0.145 -0.076 -0.068 -0.055 -0.044 0.222 0.159 0.117 0.089
X-F 0.237 0.178 0.137 0.109 0.044 0.026 0.017 0.014 0.200 0.154 0.120 0.097 -0.062 -0.052 -0.038 -0.028 0.164 0.110 0.078 0.058
X-S 0.276 0.210 0.163 0.126 0.068 0.032 0.021 0.015 0.230 0.181 0.143 0.112 -0.074 -0.065 -0.050 -0.034 0.202 0.130 0.092 0.067
X-C 0.231 0.182 0.144 0.114 0.049 0.030 0.022 0.017 0.200 0.165 0.132 0.105 -0.078 -0.067 -0.048 -0.034 0.139 0.086 0.061 0.046
DR-F 0.314 0.248 0.203 0.166 0.041 0.025 0.023 0.020 0.258 0.212 0.179 0.148 -0.064 -0.054 -0.038 -0.027 0.237 0.159 0.112 0.084
DR-S 0.556 0.413 0.298 0.215 0.136 0.053 0.024 0.016 0.428 0.322 0.239 0.176 -0.053 -0.051 -0.034 -0.014 0.515 0.362 0.242 0.167
DR-C 0.354 0.280 0.217 0.162 0.054 0.024 0.019 0.016 0.287 0.232 0.185 0.140 -0.068 -0.053 -0.030 -0.010 0.289 0.205 0.140 0.099
R-F 0.392 0.312 0.254 0.223 0.038 0.023 0.020 0.019 0.314 0.253 0.211 0.190 -0.021 -0.016 -0.009 -0.003 0.339 0.253 0.187 0.146
R-S 0.500 0.388 0.305 0.248 0.105 0.042 0.024 0.020 0.398 0.311 0.248 0.206 -0.023 -0.024 -0.014 -0.010 0.457 0.336 0.246 0.179
R-C 0.311 0.262 0.222 0.194 0.037 0.022 0.021 0.023 0.256 0.219 0.191 0.172 -0.028 -0.021 -0.013 -0.007 0.241 0.185 0.139 0.104

SKEW KURT JB% CORR V ARR
500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000

S 0.004 0.030 0.027 0.026 2.981 2.998 2.991 2.984 0.034 0.062 0.054 0.050 0.211 0.415 0.561 0.672 6.435 4.582 4.002 3.502
S-W -0.024 -0.005 -0.007 -0.012 3.045 3.023 3.000 2.988 0.087 0.067 0.054 0.048 -0.035 0.115 0.332 0.524 1.094 1.571 2.232 2.654
T -0.024 -0.005 -0.006 -0.008 3.045 3.025 2.996 2.981 0.091 0.065 0.053 0.047 -0.034 0.115 0.331 0.524 1.093 1.573 2.230 2.652
X-F -0.056 -0.015 -0.008 -0.012 3.061 3.020 3.015 2.987 0.163 0.067 0.059 0.051 0.202 0.481 0.728 0.849 2.966 3.413 3.225 2.767
X-S -0.063 -0.025 -0.013 -0.016 3.202 3.087 3.032 3.009 0.442 0.120 0.075 0.063 0.093 0.270 0.563 0.780 3.071 3.496 3.862 3.255
X-C -0.081 -0.026 -0.011 -0.021 3.101 2.960 2.999 2.983 0.260 0.047 0.051 0.054 0.154 0.400 0.713 0.861 7.940 7.788 6.045 3.922
DR-F -0.064 -0.072 -0.047 -0.026 3.874 4.167 3.685 3.167 0.803 0.500 0.250 0.101 -0.038 0.013 0.159 0.442 0.965 1.702 2.879 3.695
DR-S -0.073 -0.121 -0.132 -0.113 5.095 5.798 5.324 4.050 0.998 0.933 0.601 0.285 -0.012 0.016 0.101 0.345 0.251 0.361 0.691 1.205
DR-C -0.029 -0.062 -0.077 -0.061 3.678 3.871 3.805 3.335 0.957 0.750 0.407 0.167 -0.012 0.030 0.167 0.515 0.664 1.013 1.885 2.627
R-F -0.028 -0.017 -0.002 -0.007 3.282 3.454 3.273 3.069 0.563 0.445 0.203 0.082 0.004 0.055 0.114 0.150 0.400 0.631 1.037 1.510
R-S 0.043 0.020 0.004 -0.010 3.234 3.309 3.373 3.229 0.525 0.438 0.302 0.154 -0.014 0.016 0.063 0.124 0.310 0.419 0.680 1.134
R-C -0.029 -0.002 -0.002 -0.001 3.064 3.117 3.124 3.055 0.129 0.165 0.146 0.081 -0.027 0.024 0.102 0.193 0.923 1.223 1.840 2.659

Note: The results for the RMSE, |BIAS|, BIAS, SD, SKEW , and KURT show the mean values of the root mean squared error, absolute bias, bias, standard deviation, skewness and kurtosis of all 10′000 CATE
estimates from the validation sample. SE(RMSE) depicts the standard error of the average RMSE and JB% presents the share of CATEs for which the Jarque-Bera test has been rejected at the 5% level. The
results for CORR and V ARR show the values of the correlation and variance ratio between the true and the estimated CATEs over all replications. Additionally, X-F, DR-F, R-F denote the full-sample versions of the
meta-learners, while X-S, DR-S, R-S and X-C, DR-C, R-C denote the sample-splitting and cross-fitting versions, respectively.
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1.B.2.6 Main Simulation: unbalanced treatment and nonlinear CATE

Table 1.B.11: CATE Results for Main Simulation

RMSE SE(RMSE) |BIAS| BIAS SD
500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000

S 0.878 0.749 0.651 0.570 0.203 0.169 0.142 0.121 0.867 0.739 0.641 0.560 0.578 0.413 0.305 0.229 0.108 0.096 0.091 0.088
S-W 0.765 0.634 0.533 0.462 0.123 0.107 0.093 0.082 0.717 0.602 0.508 0.443 -0.135 -0.121 -0.099 -0.081 0.261 0.190 0.149 0.125
T 0.766 0.634 0.533 0.462 0.123 0.107 0.093 0.081 0.719 0.602 0.509 0.442 -0.139 -0.121 -0.099 -0.081 0.260 0.190 0.149 0.125
X-F 0.743 0.618 0.517 0.442 0.128 0.111 0.095 0.082 0.711 0.597 0.500 0.427 -0.124 -0.102 -0.077 -0.060 0.200 0.141 0.117 0.103
X-S 0.820 0.707 0.591 0.499 0.137 0.127 0.109 0.093 0.779 0.684 0.574 0.484 -0.147 -0.123 -0.096 -0.073 0.244 0.164 0.125 0.107
X-C 0.794 0.693 0.582 0.494 0.144 0.132 0.112 0.095 0.770 0.680 0.571 0.482 -0.151 -0.126 -0.095 -0.072 0.171 0.114 0.097 0.092
DR-F 0.817 0.659 0.542 0.463 0.126 0.112 0.097 0.085 0.764 0.627 0.518 0.443 -0.116 -0.095 -0.067 -0.049 0.285 0.194 0.149 0.126
DR-S 1.053 0.825 0.579 0.445 0.133 0.097 0.076 0.064 0.906 0.731 0.521 0.403 -0.102 -0.085 -0.053 -0.021 0.640 0.433 0.281 0.206
DR-C 0.880 0.727 0.523 0.409 0.118 0.112 0.088 0.072 0.809 0.680 0.490 0.383 -0.118 -0.088 -0.049 -0.017 0.359 0.255 0.179 0.143
R-F 0.815 0.679 0.590 0.529 0.112 0.101 0.095 0.090 0.746 0.632 0.554 0.499 -0.115 -0.100 -0.081 -0.066 0.346 0.251 0.201 0.172
R-S 0.932 0.788 0.659 0.580 0.120 0.110 0.100 0.095 0.833 0.721 0.613 0.546 -0.126 -0.117 -0.095 -0.081 0.468 0.333 0.243 0.195
R-C 0.825 0.725 0.621 0.554 0.130 0.123 0.110 0.102 0.779 0.694 0.597 0.533 -0.131 -0.115 -0.094 -0.077 0.261 0.196 0.155 0.136

SKEW KURT JB% CORR V ARR
500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000

S 0.115 0.071 0.047 0.024 3.006 2.966 2.990 2.968 0.466 0.115 0.062 0.045 0.624 0.831 0.904 0.934 92.890 27.182 12.760 7.598
S-W -0.024 -0.016 -0.011 -0.026 3.004 2.999 2.988 2.967 0.055 0.056 0.054 0.044 0.524 0.798 0.891 0.922 13.575 8.180 5.033 3.633
T -0.035 -0.017 -0.014 -0.027 3.035 2.996 2.986 2.967 0.097 0.055 0.051 0.044 0.514 0.798 0.891 0.922 13.471 8.176 5.034 3.626
X-F -0.060 -0.030 -0.017 -0.023 3.054 2.984 2.985 2.950 0.171 0.064 0.049 0.040 0.664 0.894 0.950 0.967 24.558 11.070 6.021 4.070
X-S -0.067 -0.030 -0.028 -0.019 3.143 3.047 3.002 2.964 0.323 0.106 0.060 0.045 0.367 0.754 0.919 0.957 38.577 21.499 9.669 5.561
X-C -0.079 -0.042 -0.021 -0.021 3.064 2.953 2.987 2.944 0.209 0.066 0.049 0.037 0.530 0.852 0.946 0.966 79.900 27.087 10.181 5.644
DR-F -0.106 -0.073 -0.034 -0.022 3.915 3.381 3.081 2.982 0.827 0.366 0.119 0.052 0.317 0.770 0.912 0.948 13.371 10.505 6.196 4.273
DR-S -0.143 -0.216 -0.148 -0.084 5.350 5.320 4.033 3.317 1.000 0.947 0.526 0.189 0.095 0.406 0.812 0.918 3.696 4.807 3.992 2.940
DR-C -0.080 -0.111 -0.075 -0.044 3.678 3.629 3.243 3.034 0.960 0.668 0.243 0.085 0.162 0.580 0.899 0.950 9.167 9.660 4.855 3.102
R-F -0.009 -0.006 -0.013 -0.018 3.126 3.077 3.012 2.982 0.233 0.128 0.063 0.049 0.368 0.692 0.832 0.890 7.963 7.751 6.147 4.980
R-S 0.031 0.018 0.002 -0.009 3.107 3.097 3.048 2.992 0.207 0.151 0.082 0.054 0.166 0.449 0.732 0.846 6.605 7.982 7.305 6.036
R-C -0.021 -0.006 -0.014 -0.020 3.043 3.018 3.003 2.966 0.088 0.063 0.052 0.042 0.271 0.624 0.843 0.902 17.941 15.725 9.647 6.705

Note: The results for the RMSE, |BIAS|, BIAS, SD, SKEW , and KURT show the mean values of the root mean squared error, absolute bias, bias, standard deviation, skewness and kurtosis of all 10′000 CATE estimates
from the validation sample. SE(RMSE) depicts the standard error of the average RMSE and JB% presents the share of CATEs for which the Jarque-Bera test has been rejected at the 5% level. The results for CORR and
V ARR show the values of the correlation and variance ratio between the true and the estimated CATEs over all replications. Additionally, X-F, DR-F, R-F denote the full-sample versions of the meta-learners, while X-S,
DR-S, R-S and X-C, DR-C, R-C denote the sample-splitting and cross-fitting versions, respectively.
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1.B.2.7 Empirical Simulation

Table 1.B.12: CATE Results for Empirical Simulation

RMSE SE(RMSE) |BIAS| BIAS SD
500 2000 8000 500 2000 8000 500 2000 8000 500 2000 8000 500 2000 8000

S 0.175 0.127 0.093 0.025 0.015 0.009 0.171 0.121 0.090 0.171 0.119 0.085 0.035 0.035 0.023
S-W 0.131 0.109 0.078 0.031 0.014 0.011 0.106 0.090 0.070 -0.011 -0.050 -0.043 0.121 0.084 0.037
T 0.150 0.111 0.079 0.027 0.014 0.011 0.122 0.092 0.071 -0.063 -0.053 -0.044 0.127 0.084 0.037
X-F 0.112 0.082 0.056 0.029 0.014 0.011 0.092 0.069 0.052 -0.056 -0.045 -0.036 0.089 0.056 0.021
X-S 0.129 0.093 0.069 0.041 0.019 0.011 0.105 0.078 0.060 -0.065 -0.054 -0.043 0.104 0.067 0.040
X-C 0.103 0.077 0.055 0.035 0.018 0.013 0.087 0.067 0.052 -0.065 -0.054 -0.043 0.072 0.044 0.017
DR-F 0.147 0.105 0.070 0.026 0.014 0.010 0.119 0.087 0.063 -0.061 -0.051 -0.042 0.125 0.078 0.033
DR-S 0.256 0.180 0.123 0.055 0.023 0.011 0.201 0.143 0.101 -0.066 -0.056 -0.047 0.242 0.162 0.097
DR-C 0.159 0.116 0.078 0.031 0.015 0.011 0.128 0.096 0.071 -0.068 -0.057 -0.046 0.135 0.088 0.037
R-F 0.183 0.131 0.089 0.022 0.011 0.009 0.146 0.107 0.078 -0.051 -0.043 -0.034 0.167 0.109 0.051
R-S 0.237 0.174 0.123 0.046 0.021 0.011 0.189 0.140 0.100 -0.058 -0.049 -0.042 0.224 0.158 0.099
R-C 0.144 0.109 0.076 0.026 0.013 0.010 0.117 0.091 0.068 -0.058 -0.050 -0.040 0.123 0.084 0.037

SKEW KURT JB% CORR V ARR
500 2000 8000 500 2000 8000 500 2000 8000 500 2000 8000 500 2000 8000

S 0.671 0.178 0.031 3.310 2.998 2.988 1.000 0.511 0.051 0.050 0.135 0.328 10.481 2.315 1.666
S-W 0.394 0.014 0.007 2.838 2.979 2.984 1.000 0.049 0.040 0.061 0.162 0.359 0.562 0.331 0.448
T 0.002 0.007 0.001 3.001 2.986 2.995 0.055 0.056 0.058 0.058 0.158 0.357 0.200 0.323 0.447
X-F 0.007 0.013 0.007 3.006 2.981 2.999 0.053 0.049 0.055 0.103 0.223 0.458 0.542 0.748 0.912
X-S 0.020 0.022 0.007 3.024 3.045 2.993 0.063 0.100 0.045 0.058 0.134 0.297 0.544 0.716 0.981
X-C 0.009 0.011 0.007 2.987 2.964 2.982 0.028 0.027 0.049 0.094 0.197 0.393 1.327 1.527 1.665
DR-F 0.012 0.008 0.001 3.100 3.025 2.986 0.209 0.105 0.054 0.059 0.139 0.372 0.209 0.388 0.645
DR-S 0.013 0.016 0.006 3.678 3.476 3.130 0.906 0.472 0.161 0.031 0.066 0.161 0.065 0.110 0.220
DR-C 0.018 0.014 -0.009 3.158 3.095 3.055 0.318 0.190 0.098 0.053 0.113 0.251 0.185 0.309 0.564
R-F -0.012 -0.009 -0.006 3.068 3.042 2.990 0.179 0.125 0.047 0.072 0.145 0.306 0.105 0.188 0.320
R-S -0.002 -0.015 -0.006 3.090 3.083 3.052 0.166 0.154 0.109 0.040 0.080 0.174 0.074 0.116 0.212
R-C 0.002 -0.006 -0.007 3.004 2.987 3.023 0.053 0.060 0.062 0.068 0.139 0.275 0.219 0.333 0.545

Note: The results for the RMSE, |BIAS|, BIAS, SD, SKEW , and KURT show the mean values of the root mean squared error, absolute bias, bias, standard
deviation, skewness and kurtosis of all 1′000 CATE estimates from the validation sample. SE(RMSE) depicts the standard error of the average RMSE and JB%
presents the share of CATEs for which the Jarque-Bera test has been rejected at the 5% level. The results for CORR and V ARR show the values of the correlation
and variance ratio between the true and the estimated CATEs over all replications. Additionally, X-F, DR-F, R-F denote the full-sample versions of the meta-learners,
while X-S, DR-S, R-S and X-C, DR-C, R-C denote the sample-splitting and cross-fitting versions, respectively.



1.C Computation Time

In order to assess the computational trade-offs among different estimation schemes as well as different

meta-learners we evaluate the computational time for each meta-learner and each estimation scheme for

each sample size over 10 replications of the Main Simulation to illustrate the performance. The results

are summarized in Table 1.C.1 and Figure 1.C.1 below.

1.C.1 Main Simulation: unbalanced treatment and nonlinear CATE

Table 1.C.1: Computation Time Results for Main Simulation

MEAN SD MIN MAX
500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000 500 2000 8000 32000

S 1.492 8.786 53.385 252.165 0.039 0.991 9.777 0.551 1.440 7.110 43.000 251.050 1.560 9.860 67.790 252.810
S-W 1.416 6.730 39.117 263.195 0.051 1.015 5.804 4.636 1.330 4.890 31.920 250.630 1.500 8.050 49.950 267.140
T 1.203 6.168 38.933 238.932 0.043 0.880 5.982 26.988 1.110 4.460 29.530 162.260 1.260 7.540 47.340 249.560
X-F 2.894 16.512 92.803 658.892 0.081 1.303 10.148 49.316 2.770 14.070 80.950 531.960 2.980 17.590 106.570 687.320
X-S 0.915 4.233 28.863 185.232 0.074 0.380 3.061 21.873 0.760 3.500 25.830 145.250 1.000 4.640 35.250 215.630
X-C 3.027 14.353 89.644 627.236 0.265 0.657 9.687 91.057 2.790 13.300 79.280 405.540 3.470 15.720 103.810 721.920
DR-F 2.262 15.998 94.615 576.230 0.129 0.696 16.618 120.102 2.080 14.920 57.130 323.300 2.490 17.040 113.820 676.650
DR-S 0.836 4.292 30.218 214.072 0.189 0.345 5.321 36.595 0.580 3.780 26.640 160.380 1.200 4.940 42.280 277.320
DR-C 2.684 17.272 105.261 664.728 0.596 3.941 14.058 60.375 2.150 12.770 88.690 572.030 4.300 22.850 128.400 744.670
R-F 2.058 10.588 78.830 530.529 0.594 1.430 18.923 78.864 0.840 8.750 28.900 354.890 2.450 13.020 91.270 603.520
R-S 0.919 6.514 31.234 208.910 0.429 2.084 7.845 49.782 0.530 4.420 21.340 154.770 2.100 10.440 43.750 308.480
R-C 2.177 11.934 72.912 435.450 0.080 1.230 23.239 140.374 2.020 9.240 53.290 312.420 2.250 12.970 134.670 780.560

Note: The results for the MEAN, SD, MIN, and MAX show the values of the mean, standard deviation, minimum and maximum for the
computation time in seconds based on 10 simulation replications. The computation time includes both the estimation as well as the prediction
task. No multithreading used within the estimation of meta-learners. Additionally, X-F, DR-F, R-F denote the full-sample versions of the
meta-learners, while X-S, DR-S, R-S and X-C, DR-C, R-C denote the sample-splitting and cross-fitting versions, respectively.

Figure 1.C.1: Computation Time Results for Main Simulation
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Note: The results for the MEAN, SD, MIN, and MAX show the values of the mean, standard deviation, minimum and
maximum for the computation time in seconds based on 10 simulation replications. The figure shows the results based
on the increasing training samples of {500, 2′000, 8′000, 32′000} observations displayed on the log scale. Additionally, X-F,
DR-F, R-F denote the full-sample versions of the meta-learners, while X-S, DR-S, R-S and X-C, DR-C, R-C denote the
sample-splitting and cross-fitting versions, respectively.
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Chapter 2

Random Forest Estimation

of the Ordered Choice Model

Co-author: Michael Lechner

Abstract

In this paper we develop a new machine learning estimator for ordered choice models based on the ran-

dom forest. The proposed Ordered Forest flexibly estimates the conditional choice probabilities while

taking the ordering information explicitly into account. In addition to common machine learning estima-

tors, it enables the estimation of marginal effects as well as conducting inference and thus provides the

same output as classical econometric estimators. An extensive simulation study reveals a good predictive

performance, particularly in settings with non-linearities and near-multicollinearity. An empirical appli-

cation contrasts the estimation of marginal effects and their standard errors with an ordered logit model.

Keywords: Ordered choice models, random forests, probabilities, marginal effects, machine learning.

JEL classification: C14, C25, C40.
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2.1 Introduction

Many empirical models deal with categorical dependent variables which have an inherent ordering.

In such cases the outcome variable is measured on an ordered scale such as level of education defined

by primary, secondary and tertiary education or income coded into low, middle and high income level.

Further examples include survey outcomes on self-assessed health status (bad, good, very good, see e.g.

Case, Lubotsky, & Paxson, 2002; or Murasko, 2008), level of life satisfaction and happiness (Boes, Staub,

& Winkelmann, 2010; and Boes & Winkelmann, 2010) or political opinions (do not agree, agree, strongly

agree, see e.g. Jackson & Darrow, 2005; or Jackman, 2009) as well as grades, scores and various ratings

and valuations (see Butler, Finegan, & Siegfried, 1998; Hamermesh & Parker, 2005; Afonso, Gomes, &

Rother, 2009; or Gogas, Papadimitriou, & Agrapetidou, 2014, for some further examples). Moreover, even

sports outcomes resulting in loss, draw and win are part of such modelling framework (e.g. Goller, Knaus,

Lechner, & Okasa, 2018). So far, the ordered probit or ordered logit model represent workhorse models

in such cases. The main advantage of these models is the ease of estimation, usually done by maximum

likelihood. However, the major disadvantage are the strong parametric assumptions which are imposed for

convenience rather than derived from any substantive knowledge about the application. Unfortunately,

the desired marginal effects are sensitive to these assumptions. Although there is a large literature on

how to generalize these assumptions in case of binary choice models (Matzkin, 1992; Ichimura, 1993;

Klein & Spady, 1993), or multinomial (unordered) choice models (Lee, 1995; Fox, 2007), limited work

has been done for ordered choice models (Lewbel, 2000; Klein & Sherman, 2002; also see Stewart, 2005,

for an overview).

In this paper, we exploit recent advances in the machine learning literature to develop an estimator

for conditional choice probabilities as well as marginal effects together with inference procedures when

the outcome variable has an ordered categorical nature. The proposed Ordered Forest estimator is based

on the regression random forest algorithm as introduced by Breiman (2001) and makes use of cumulative

probability predictions based on binary indicators of respective ordered categories to flexibly estimate

the single choice probabilities of the particular ordered category, conditional on covariates. Furthermore,

to analyze the relationship of the ordered choice probabilities with the covariates, the Ordered Forest

exploits numerical derivative approximations for estimation of the mean marginal effects and marginal

effects at mean as the typical quantities of interest in the field of discrete choice models (see e.g. Greene

& Hensher, 2010). Finally, in order to quantify the estimation uncertainty of the above parameters,

the Ordered Forest adapts the weight-based inference proposed by Lechner (2018) using the asymptotic

results of Wager and Athey (2018) for the consistency and normality of random forest predictions for the

case of ordered categorical outcomes. Thus Ordered Forest estimator provides not only the point estimate

for the conditional choice probabilities and the corresponding marginal effects, but also an estimate for

the respective standard errors.

We investigate the predictive performance of the estimator by comparing it to classical and other

competing methods via a large-scale Monte Carlo simulation study as well as using real datasets. The

results from the synthetic simulation reveal good performance of the Ordered Forest in finite samples

throughout all simulation designs, including high-dimensional settings. In particular, the superior perfor-

mance of the estimator over the parametric ordered logit becomes apparent when dealing with nonlinear

functional forms and near-multicollinearity among covariates. Furthermore, the Ordered Forest outper-

forms the competing forest-based estimators in the most complex simulation designs. Additionally, the

results from the empirical evaluation further confirm the good predictive performance of the estimator

in real datasets. Lastly, an empirical application demonstrates the estimation of the marginal effects and

the associated inference procedure. The empirical results highlight the value of the additional flexibility
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in the effect estimation of relevant economic parameters. Moreover, to enable the usage of the method by

applied researchers a free software implementation of the Ordered Forest estimator has been developed

in R (R Core Team, 2018) and is provided in an R-package orf (Lechner & Okasa, 2019) available at the

official CRAN repository.1

This paper contributes to the econometric as well as machine learning literature in several ways.

In terms of econometrics, this paper develops a new estimator of the ordered choice models based on a

machine learning algorithm. The proposed Ordered Forest estimator improves on the classical parametric

models such as ordered logit and ordered probit models by allowing ex-ante flexible functional forms as

well as allowing for a larger covariate space. The latter is a feature of many machine learning methods,

but is typically absent from standard econometrics. In terms of machine learning, this paper develops a

new type of random forest estimator adapted to ordered categorical outcomes. As such, the proposed Or-

dered Forest extends the classical regression forests as developed by Breiman (2001) and Wager and Athey

(2018) specifically for estimation of ordered choice models and thus expands the forest-based estimators

for particular econometric models such as for example the survival forest (Hothorn, Lausen, Benner,

& Radespiel-Tröger, 2004) designed for estimation of survival models or the quantile regression forest

(Meinshausen, 2006) for estimation of conditional quantiles. Additionally to the above forest-based esti-

mators, the Ordered Forest further advances machine learning methods with the estimation of marginal

effects and the inference thereof, a feature of many parametric models, but generally missing in the

machine learning literature. Hence, our contribution is twofold. First, with respect to the literature on

parametric estimation of the ordered choice models, the Ordered Forest represents a flexible estimator

without any parametric assumptions, while providing essentially the same information as an ordered

parametric model. Second, with respect to the machine learning literature, the Ordered Forest achieves

more precise estimation of ordered choice probabilities, while adding estimation of marginal effects as

well as statistical inference thereof.

This paper is organized as follows. Section 2.2 discusses the related literature concerning paramet-

ric and machine learning methods for the estimation of ordered choice models. Section 2.3 reviews the

random forest algorithm and its theoretical properties. In Section 2.4 the Ordered Forest estimator is

introduced including the estimation of the conditional choice probabilities, marginal effects and the infer-

ence procedure. The Monte Carlo simulation is presented in Section 2.5. Section 2.6 shows an empirical

application. Section 2.7 concludes. Further details regarding estimation methods, the simulation study

and the empirical application are provided in Appendices 2.A, 2.B and 2.C, respectively.

2.2 Literature

In econometrics, the ordered probit and ordered logit models are widely used when there are ordered

response variables (McCullagh, 1980). These models build on the latent regression model assuming an

underlying continuous outcome Y ∗
i as a linear function of regressors Xi with unknown coefficients β,

while assuming that the latent error term ui follows the standard normal or the logistic distribution.

Furthermore, the ordered discrete outcome Yi represents categories that cover a certain range of the

latent continuous Y ∗
i and is determined by unknown threshold parameters αm. Formally, in the case of

the ordered logit the latent model is defined as:

Y ∗
i = X ′

iβ + ui, (ui | Xi) ∼ Logistic(0, π2/3) (2.2.1)

1Additionally, an implementation of the estimator in GAUSS is available online and on ResearchGate. A Python version of
the estimator focused on prediction exercise is available on GitHub.
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with unknown threshold parameters α0 < α1 < ... < αM such that:

Yi = m if αm−1 < Y ∗
i ≤ αm for m = 1, ...,M, (2.2.2)

where the coefficients and the thresholds are commonly estimated via maximum likelihood with the delta

method or bootstrapping used for inference. Notice, that the outer thresholds are α0 = −∞ and αM = ∞.

The above latent model is also often motivated by the quantity of interest, i.e. the conditional choice

probabilities which are given by:

P [Yi = m | Xi = x] = Λ
(
αm −X ′

iβ
)
− Λ

(
αm−1 −X ′

iβ
)
, (2.2.3)

where the link function Λ(·) is the logistic cdf mapping the real line onto the unit interval. Thus, the

estimated probabilities are bounded between 0 and 1. The marginal effects are further given as partial

derivative of the probabilities in (2.2.3) as:

∂P [Yi = m | Xi = x]

∂xk
=

[
λ
(
αm−1 −X ′

iβ
)
− λ

(
αm −X ′

iβ
)]
βk, (2.2.4)

where xk is the k-th element of Xi and βk is the corresponding coefficient, while λ(·) being the logistic

pdf.

Although such models are relatively easy to estimate, they impose strong parametric assumptions

which hinder the flexibility of these models. Apart from the assumptions about the distribution of

the error term, further functional form assumptions are being imposed. As is clear from (2.2.1), the

coefficients β are constant across the outcome classes which is often labelled as the parallel regression

assumption (Williams, 2016). This inflexibility affects both the estimation of the choice probabilities as

well as the estimation of marginal effects. For these reasons, generalizations of these models have been

proposed in the literature in order to relax some of the assumptions. An example of such models is the

generalized ordered logit model (McCullagh & Nelder, 1989), where the parallel regression assumption

is abandoned. Boes and Winkelmann (2006) provide an excellent overview of several other generalized

parametric models. However, all of these models retain some of the distributional assumptions which

limit their modelling flexibility.

Besides the standard econometric literature on parametric specifications of ordered choice models

(for an overview see Agresti, 2002; or Boes & Winkelmann, 2006), a new strand of literature devoted to

relaxing the parametric assumptions by using novel machine learning methods is emerging. Particularly,

the tree-based methods have gained considerable attention. Although the classical CART algorithms

introduced by Breiman, Friedman, Olshen, and Stone (1984) are very powerful in both regression as well

as in classification (see Loh, 2011, for a review), there is a need for adjustment when predicting ordered

response. In the case of regression, the discrete nature of the outcome is not being taken into account

and in the case of classification, the ordered nature of the outcome is not being taken into account. For

these reasons, a strand of the literature focused particularly on adjustments towards ordered classification

rather than regression which excludes the estimation of the conditional probabilities as is the case in the

parametric ordered choice models. For example, Kramer, Widmer, Pfahringer, and De Groeve (2001)

propose a simple procedure for constructing a distance-sensitive classification learner using post-process-

ing classification rules. Another approach suggested in the literature is to modify the splitting criterion

directly. In particular, the usage of alternative impurity measures as opposed to the Gini coefficient in

case of classification trees have been suggested, namely the generalized Gini criterion (Breiman et al.,

1984) or the ordinal impurity function (Piccarreta, 2008). Both of these measures put higher penalty on

misclassification the more distant the predicted category is from the true one. It follows that the above
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methods focus on estimating ordered classes rather than estimating ordered class probabilities, as is the

focus of this paper.

The above ideas, however, have not been much used in practice. The reason might be the well-known

drawbacks of single trees which suffer from unstable splits and a lack of smoothness (Hastie, Tibshirani,

& Friedman, 2009). A natural extension of the CART algorithms is the random forest first introduced by

Breiman (2001). However, the random forest algorithm as well as CART is primarily suitable for either

regression or classification exercises. As such, appropriate modifications of the standard random forest

algorithm are desired in order to predict conditional probabilities of discrete outcomes while taking the

ordering nature into account. Hothorn, Hornik, and Zeileis (2006b) propose a random forest algorithm

building on their conditional inference framework for recursive partitioning which can also deal with

ordered outcomes. The difference to standard regression forests lies in a different splitting criterion using

a test statistic where the conditional distribution at each split is based on permutation tests (for details

see Strasser & Weber, 1999; and Hothorn et al., 2006b). Their proposed ordinal forest regression assumes

an underlying latent continuous response Y ∗
i as is the case in standard ordered choice models. Hothorn

et al. (2006b) define a score vector s(m) ∈ RM , with m = 1, ...,M observed ordered classes. This scores

reflect the distances between the classes. The authors suggest to set the scores as midpoints of the

intervals of Y ∗
i which define the classes. As the underlying Y ∗

i is unobserved, such a suggestion results

in s(m) = m and ordinal forest regression collapses to a standard forest regression as pointed out by

Janitza, Tutz, and Boulesteix (2016).2 However, although the tree building step coincides, the prediction

step differs as the estimates are the choice probabilities calculated as the proportions of the respective

outcome classes falling into the same leaf instead of averages of the outcomes. As such, for each leaf

within a tree, the prediction is computed for each value of the ordered categorical outcome as its share

within the leaf, resulting in a probability predictions between 0 and 1. This is in contrast to standard

prediction procedures, which would compute an average of all values of the ordered categorical outcome.

Nevertheless, after computing the single-tree predictions as the relative frequencies of the ordered out-

comes, the forest estimates of the conditional choice probabilities P̂ [Yi = m | Xi = x] are computed by

taking the averages of the choice probabilities produced by each tree, i.e. the same aggregation scheme

as in a regression forest. Hornung (2019a) points out that setting s(m) = m implies inherently assuming

that the class widths, i.e. the adjacent intervals of the continuous outcome variable Y ∗
i determining

the descrete outcome Yi are of the same length. This, however, does not have to hold in general and

these intervals might not follow any particular pattern.3 In order to address this issue, Hornung (2019a)

proposes an ordinal forest method, which optimizes these interval widths by maximizing the out-of-bag

(OOB) prediction performance of the forests.4 However, on the contrary to the approach of Hothorn

et al. (2006b), the forest algorithm used is based on the forest as developed by Breiman (2001), while

the primary target is to predict the ordinal class and the choice probabilities are obtained as relative

frequencies of trees predicting the particular class. As such, each tree predicts the most probable value of

the ordered categorical outcome. Thereupon, the forest prediction for the conditional choice probability

is computed as the share of trees predicting the particular categorical value of the ordered outcome. This

is in contrast to the estimation scheme by Hothorn et al. (2006b), where the probability prediction step

occurs at the level of trees, instead of at the level of forest as is the case here. Hornung (2019a) shows

better prediction performance of such ordinal forests which optimize the class widths of Y ∗
i in comparison

to the conditional forests. Without the optimization step, the author denotes such forest as the naive

2Janitza et al. (2016) perform also a simulation study to test the robustness of the suggested score values by setting
s(m) = m2, but do not find any significant differences to simple s(m) = m.

3Recently, Buri and Hothorn (2020) and Tutz (2021) proposed score-free methods based on random forests that do not rely
on the underlying continuous intervals of the observed ordered classes.

4This approach could be regarded as semiparametric as it uses the nonparametric structure of the trees and assumes a
particular parametric distribution (standard normal) within its optimization procedure.
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ordinal forest.5

While both of the discussed approaches take the ordering information of the outcomes into account,

they focus mainly on prediction and variable importance without considering estimation of the marginal

effects or the associated inference for the effects which are a fundamental part of the classical econometric

ordered choice models. In addition, although both of these methods demonstrate good predictive perfor-

mance, none of them provides theoretical guarantees with regards to the distribution of these predictions.

Further, it is worth to mention that in practice both methods suffer from considerable computational

costs. In case of the conditional forest, the additional permutation tests that need to be performed to

evaluate the test statistic at each split result in a considerably longer computation time. For the ordinal

forest, the additional optimization step for the class widths requires a prior estimation of a large number

of forests (1000 by default) which also leads to a substantially longer computation time (see Tables 2.B.26

and 2.B.27 in Appendix 2.B.4 for further details).

There is also a strand of literature which is concerned with the estimation of ordered outcome

models in high-dimensional settings based on regularization methods. Examples of this approach include

penalized ordered outcome models by Wurm, Rathouz, and Hanlon (2017) who make use of a standard

ordered logit/probit regression while introducing an elastic net penalization term. Harrell (2015) describes

a cumulative logit model with a ridge type of penalty. Archer et al. (2014) implement the GMIFS

(generalized monotone incremental forward stagewise) algorithm for penalized ordered outcome models

which is similar to the Lasso type penalty. However, although the penalized models can deal with high

dimensions, when the true model is relatively ”sparse”, they nevertheless belong to a specific parametric

class such as the ordered logit/probit (see Hastie et al., 2009). Such models can only become more flexi-

ble, and thus partially relax the parametric assumptions when generating a large number of polynomials

and interactions of available covariates prior to estimation. It follows that these models use a global

approximation of the functional form and cannot learn it adaptively as tree-based approaches do. In

contrast, random forests do not impose parametric assumptions and can learn any arbitrary relationship

in a nonparametric way by locally adaptive estimation in small neighbourhoods of the data. It follows

that random forests use a local approximation of the functional form, without any need for prior pre-pro-

cessing of the data. As such, random forests are nonlinear in covariates and although there are no specific

statistical tests to find such a random forest structure, essentially random forests can approximate any

structure, including a global linear structure, if a sufficient amount of data is provided. For these reasons,

the remainder of this paper focuses on the forest-based methods.

2.3 Random Forests

Random forests as introduced by Breiman (2001) became quickly a very popular prediction method

thanks to its good prediction accuracy, while being relatively simple to tune. Further advantages of

random forests as a nonparametric technique are the high degree of flexibility and ability to deal with

large number of predictors, while coping better with the curse of dimensionality problem in comparison

to classical nonparametric methods such as kernel or local linear regression (see for example Racine,

2008). Random forests are based on bootstrap aggregation, i.e. the so-called bagging of single regression

(or classification) trees where the covariates considered for each next split within a tree are selected at

random. More precisely, the random forest algorithm draws a bootstrap sample Z∗
i (Xi, Yi) of size N

from the available training data for b = 1, ..., B bootstrap replications. For each bootstrapped sample, a

random-forest tree T̂b is grown by recursive partitioning until the minimum leaf size is reached. At each

5A more detailed description of the conditional as well as the ordinal forest is provided in Appendix 2.A.2 and 2.A.3,
respectively.
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of the splits, m out of p covariates chosen at random are considered. After all B trees are grown in this

fashion, the regression random forest estimate of the conditional mean E[Yi | Xi = x] is the ensemble of

the trees:

R̂F
B
(x) =

1

B

B∑
b=1

T̂b(x) with T̂b(x) =
1

| {i : Xi ∈ Lb(x)} |
∑

{i:Xi∈Lb(x)}

Yi, (2.3.1)

where Lb(x) denotes a leaf containing x. Single trees, if grown sufficiently deep, have a low bias, but

fairly high variance. By averaging over many single trees with randomly choosing the set of observations

and split covariates, the variance of the estimator is being reduced substantially. First, the variance

reduction is achieved through bagging. The higher the number of bootstrap replications, the lower the

variance. Second, the variance is further reduced through the random selection of covariates. The lower

is the number of considered covariates for a split, the more is the correlation between the trees reduced

and consequently, the bigger is the variance reduction of the average (Hastie et al., 2009).

Another attractive feature of random forests is the weighted average representation of the final

estimate of the conditional mean E[Yi | Xi = x]. As such we can rewrite the random forest prediction as

follows:

R̂F
B
(x) =

N∑
i=1

ŵi(x)Yi, (2.3.2)

where the weights are defined as:

ŵb,i(x) =
1({Xi ∈ Lb(x)})
| {i : Xi ∈ Lb(x)} |

with ŵi(x) =
1

B

B∑
b=1

ŵb,i(x). (2.3.3)

As such the forest weights ŵi(x) are again an average over all single tree weights. These tree weights

capture if the training example Xi falls into the leaf Lb(x) scaled by the size of that leaf. Notice,

that the weights are locally adaptive. Intuitively, random forests resemble the classical nonparametric

kernel regression with an adaptive, data-driven bandwidth and with limited curse of dimensionality.

One can show that in the regression case, the random forest estimate as defined in (2.3.1) is equivalent

to the weighting estimate defined in (2.3.2). This weighting perspective of random forests has been

firstly suggested by Hothorn et al. (2004) and Meinshausen (2006) in the scope of survival and quantile

regression, respectively. Recently, Athey, Tibshirani, and Wager (2019) point out the usefulness of the

random forest weights in various estimation tasks. In this spirit, we will later on in Section 2.4.3 use the

forest induced weights explicitly for inference as has been recently suggested by Lechner (2018).

Besides the huge popularity of random forests for prediction, the statistical literature focused on

establishing asymptotic properties of random forests as well (Meinshausen, 2006; Biau, 2012; Scornet,

Biau, & Vert, 2015; Mentch & Hooker, 2016). A major step towards formally valid inference has been

done in a recent work by Wager (2014) and Wager and Athey (2018) who prove consistency and asymp-

totic normality of random forest predictions, under some modifications of the standard random forest

algorithm. These modifications concern both the tree-building procedure as well as the tree-aggregation

scheme. First, the tree aggregation is now done using subsampling without replacement instead of boot-

strapping. Second, the tree building procedure introduces the major and crucial condition of so-called

honesty as first suggested by Athey and Imbens (2016). A tree is honest, if it does not use the same

responses for both, placing splits and estimating the within-leaf predictions. This can be achieved by

the so-called double-sample trees, which split the random subsample of training data Z∗
i (Xi, Yi) into two

disjoint sets of the same size, while the one is used for placing splits and the other one for estimating
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the predictions. Furthermore, for the consistency it is essential that the size of the leaves L of the trees

becomes small relative to the sample size as N gets large.6 This is achieved by introducing some ran-

domness in choosing the splitting variables. Particularly, each covariate receives a minimum amount of

positive chance of a split. Such constructed tree is then said to be a random-split tree. Additionally, the

trees are required to be α-regular, meaning that after each split, both of the child nodes contain at least

a fraction α of the training data (specifically, α ≤ 0.2 is required). Lastly, trees have to be symmetric in

a sense that the order of the training data is independent of the predictor output. Overall, apart from

subsampling and honesty the above conditions are not particularly binding and do not fundamentally

deviate from the standard regression random forest. Lastly, some additional regularity conditions need to

be satisfied for the asymptotic arguments to hold. In particular, the data Zi(Xi, Yi) ∈ [0, 1]p × R comes

from i.i.d. sampling, the p-dimensional covariates Xi ∼ U([0, 1]p) are independently and uniformly dis-

tributed, the conditional means E[Yi | Xi = x] and E[Y 2
i | Xi = x] are Lipschitz-continuous, the variance

is bounded away from zero, V ar[Yi | Xi = x] > 0, and the number of subsampling replications is large

enough to eliminate the Monte Carlo effects, while an appropriate scaling of the subsample size sN is

ensured.7 Then, under the above assumptions, the random forest predictions can be shown to be (point-

wise) asymptotically Gaussian and unbiased. We use this result to provide an inference procedure for

the marginal effects of the Ordered Forest discussed in Section 2.4.3.

2.4 Ordered Forest Estimator

The general idea of the Ordered Forest estimator is to provide a flexible alternative for estimation

of ordered choice models that can deal with a large-dimensional covariate space. As such, the main

goal is the estimation of conditional ordered choice probabilities, i.e. P [Yi = m | Xi = x] as well as

marginal effects, i.e. the changes in the estimated probabilities in association with changes in covariates.

Correspondingly, the variability of the estimated effects is of interest and therefore a method for conduct-

ing statistical inference is provided as well. The latter two features go beyond the traditional machine

learning estimators which focus solely on the prediction exercise, and complement the prediction with

the same econometric output as the traditional parametric estimators.

2.4.1 Conditional Choice Probabilities

The main idea of the estimation of the ordered choice probabilities by a random forest algorithm lies

in the estimation of cumulative, i.e. nested probabilities based on binary indicators. As such, for an i.i.d

random sample of size N(i = 1, ..., N), consider an ordered outcome variable Yi ∈ {1, ...,M} with ordered

classes m. Then the binary indicators are given as Ym,i = 1(Yi ≤ m) for outcome classes m = 1, ...,M−1.

First, the ordered model is transformed into multiple overlapping binary models which are estimated by

random forests yielding the predictions for the cumulative probabilities, i.e Ŷm,i = P̂ [Ym,i = 1 | Xi = x].

Second, the estimated cumulative probabilities are differenced to isolate the respective class probabilities

Pm,i = P [Yi = m | Xi = x]. Hence the estimate for the conditional probability of the m-th ordered class

6Wager and Athey (2018) point out that the leaves need to be relatively small in all dimensions of the covariate space. This
implies that the high-dimensional settings are not considered and hence the theoretical asymptotic results might not hold
in such settings.

7The condition of uniformity of covariates is due to simplicity and is not particularly binding as the result holds also with a
density bounded away from zero and infinity as argued by Wager and Athey (2018). Furthermore, the Lipschitz-continuity
of the conditional mean appears not too restrictive as the random forest estimates have in general smooth response surfaces
when B → ∞, i.e. the number of bootstrap or subsampling iterations goes to infinity (Bühlmann & Yu, 2002). Lastly,
the appropriate scaling of the subsample size sN does not affect the asymptotic normality, but violations might lead to
asymptotic bias as pointed out by Wager and Athey (2018). For a detailed description of the conditions as well as of the
proof, see Wager and Athey (2018).
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is given by subtracting two adjacent cumulative probabilities as P̂m,i = Ŷm,i − Ŷm−1,i. Formally, the

proposed estimation procedure can be described as follows:

1. Create M − 1 binary indicator variables such as

Ym,i = 1(Yi ≤ m) for m = 1, ...,M − 1, (2.4.1)

where m is known and given by the definition of the dependent variable.

2. Estimate regression random forest for each of the M − 1 indicators as

P [Ym,i = 1 | Xi = x] =
N∑
i=1

wm,i(x)Ym,i for m = 1, ...,M − 1, (2.4.2)

where the forest weights are defined as wm,i(x) =
1
B

∑B
b=1 wm,b,i(x) with trees weights given by

wm,b,i(x) =
1({Xi∈Lb,m(x)})
|{i:Xi∈Lb,m(x)}| with leaves Lb,m(x) for a total of B trees.

3. Obtain forest predictions for each of the M − 1 indicators as

Ŷm,i = P̂ [Ym,i = 1 | Xi = x] =
N∑
i=1

ŵm,i(x)Ym,i for m = 1, ...,M − 1, (2.4.3)

where Ŷm,i are estimated cumulative probabilities.

4. Compute ordered probabilities for each distinct class as

P̂m,i = Ŷm,i − Ŷm−1,i for m = 2, ...,M (2.4.4)

with

ŶM,i = 1 and P̂1,i = Ŷ1,i (2.4.5)

and

P̂m,i = 0 if P̂m,i < 0 (2.4.6)

P̂m,i =
P̂m,i∑M

m=1 P̂m,i

for m = 1, ...,M, (2.4.7)

where equation (2.4.4) makes use of the cumulative (nested) probability feature. As such, the predicted

values of two subsequent binary indicator variables Ym,i are subtracted from each other to isolate the

probability of the higher order class.8 In equation (2.4.5) the first part is given by construction as follows

from the indicator function (2.4.1) that all values of Yi fullfil the condition for m =M and from the fact

that cumulative probabilities must add up to 1. The second part defines the probability of the lowest

value of the ordered outcome variable. This follows directly from the random forest estimation as the

created indicator variable Y1,i describes the very lowest value of the ordered outcome classes and as such,

no modification of its predicted value is necessary to obtain a valid probability prediction. Line (2.4.6)

ensures that the computed probabilities from (2.4.4) do not become negative. This might occasionally

happen especially if the respective outcome classes comprise of very few observations. This issue is well-

known also from the generalized ordered logit model where the parallel regression assumption is relaxed

(see McCullagh & Nelder, 1989, p. 155). However, even though it is possible in theory, growing honest

8Similar transformations of an ordered model into multiple binary models have been proposed in the classification literature.
Kwon, Han, and Lee (1997) introduce the so-called ordinal pairwise partitioning method in the context of neural networks.
Yet the closest to our work is the approach by Frank and Hall (2001) who make use of the cumulative model explicitly.
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trees seems to largely prevent this from happening in practice. Lastly, in case if negative predictions

should occur and thus being set to zero, (2.4.7) defines a normalization step to ensure that all class

probabilities sum up to 1. Notice, that such an approach requires estimation of M − 1 forests in the

training data, which might appear to be computationally expensive. However, given that most empirical

problems involve a rather limited number of outcome classes (usually not exceeding 10 distinct classes)

and the relatively fast estimation of standard regression forest9 without any additional permutation test

nor optimization steps needed as is the case for the conditional or the ordinal forests, respectively, the here

proposed procedure shall be computationally advantageous (see Tables 2.B.26 and 2.B.27 in Appendix

2.B.4).

2.4.2 Marginal Effects

After estimating the conditional ordered choice probabilities, it is of interest to investigate how the

estimated probabilities are associated with covariates, i.e. how the changes in the covariates translate into

changes in the probabilities. Typical measures for such relationships in standard nonlinear econometrics

are the marginal, or, partial effects. Thus, for nonlinear models, including ordered choice models, two

fundamental measures are of common interest, mean marginal effects and marginal effects at the mean

of the covariates.10 These quantities are feasible also in the case of the Ordered Forest estimator. Due

to the character of the ordered choice model, the marginal effects on all probabilities of different values

of the ordered outcome classes are estimated, i.e. P [Yi = m | Xi = x]. In the following, let us define the

marginal effect for an element xk of Xi as follows:

MEk,m
i (x) =

∂P [Yi = m | Xk
i = xk, X−k

i = x−k]

∂xk
, (2.4.8)

with Xk
i and X−k

i denoting the elements of Xi with and without the k-th element, respectively.11 Next,

let us define the marginal effect for categorical variables as a discrete change in the following way:

MEk,m
i (x) = P [Yi = m | Xk

i =
⌈
xk
⌉
, X−k

i = x−k]− P [Yi = m | Xk
i =

⌊
xk
⌋
, X−k

i = x−k], (2.4.9)

where ⌈·⌉ and ⌊·⌋ denote upper and lower integer values, respectively, such that a difference of one unit

is respected. Notice, that in the case of a binary variable this leads to the respective probabilities being

evaluated at
⌈
xk
⌉
= 1 and

⌊
xk
⌋
= 0 as is usual for ordered choice models. From the above definitions of

marginal effects, we obtain the desired quantity of interest, i.e. the marginal effect at mean by evaluating

MEk,m
i (x) at the population mean of Xi, for which the sample mean is a natural proxy. The mean

marginal effect is obtained by taking sample averages of MEk,m
i (x), i.e. 1

N

∑N
i=1MEk,m

i (x).

Having formally defined the desired marginal effects, the next issue is the estimation of these effects.

For the case of binary and categorical covariates Xk, this appears straightforward as the estimated

Ordered Forest model provides predicted values for all probabilities at all values xk. As such, the estimate

M̂E
k,m

i (x) of marginal effects defined in equation (2.4.9) remains as a difference of the two conditional

probabilities estimated by the Ordered Forest. However, it is less obvious for continuous variables, where

derivatives are needed. As the estimates of the choice probabilities are averaged leaf means, the marginal

effect is not explicit and not differentiable. In the nonparametric literature Stoker (1996) and Powell and

Stoker (1996), among others, are directly concerned with estimating average derivatives. However, these

9The computational speed of the regression forests depends on many tuning parameters, of which the number of bootstrap
replications, i.e. grown trees is the most decisive one.

10One can evaluate the marginal effect at any arbitrarily chosen value. The default option is usually the mean or the median.
11As a matter of notation, capitals denote random variables, whereas small letters refer to the particular realizations of the
random variable.
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methods lack convenience of estimation and have thus not been widely adopted by empirical researchers.12

Therefore, we approximate the derivative by a discrete analogue based on the definition of a derivative

as follows:

M̂E
k,m

i (x) =
P̂ [Yi = m | Xk

i = xkU , X−k
i = x−k]− P̂ [Yi = m | Xk

i = xkL, X−k
i = x−k]

xkU − xkL
(2.4.10)

=
P̂m,i(x

kU )− P̂m,i(x
kL)

xkU − xkL
, (2.4.11)

with xkU , xkL defined as xkU = xk + h · σ(xk) and xkL = xk − h · σ(xk), while ensuring that the support

of xk is respected, and where σ(·) denotes standard deviation and h controls the window size for evalu-

ating the marginal effect. We recommend to set h = 0.1 to achieve accurate evaluation at the margin.13

Hence, the approximation targets the marginal change in the value of the covariate Xk
i . Notice, that

such an estimation of marginal effects is much more demanding exercise than solely predicting the choice

probabilities. Therefore, it is expected that considerably more subsampling iterations are needed for a

good performance.

2.4.3 Inference

The building block of the Ordered Forest are the estimates of conditional probabilities such as

P [Ym,i = 1 | Xi = x]. Particularly, the Ordered Forest makes use of linear combinations of such proba-

bility estimates made by the random forest for both the conditional ordered choice probabilities as well

as for the corresponding marginal effects. Therefore, for conducting inference on these quantities, it is

sufficient to ensure that the underlying estimates of conditional probabilities are asymptotically normally

distributed. Here, we combine the results of Wager and Athey (2018) and Lechner (2018). First, we use

the asymptotic results of Wager and Athey (2018) who show that the consistency and normality of ran-

dom forest predictions hold also when dealing with binary outcomes, and thus also hold for probability

predictions of type P [Ym,i = 1 | Xi = x]. Hence, the final Ordered Forest estimates for the conditional or-

dered choice probabilities and the marginal effects, based on a forest algorithm respecting the conditions

discussed in Section 2.3, inherit the consistency and normality properties. Second, we adapt the inference

procedure for random forests as developed by Lechner (2018) to estimate the variance of the conditional

ordered choice probabilities and the corresponding marginal effects.

The here proposed method for conducting approximate inference of the estimated marginal effects

utilizes the weight-based representation of random forest predictions and adapts the weight-based infer-

ence proposed by Lechner (2018) for the case of the Ordered Forest estimator.14 The main condition for

conducting weight-based inference is to ensure that the weights and the outcomes are independent. In

general, the weights are functions of the covariates for the observation i and the training data. In order

to estimate the variance of the marginal effects successfully, the conditioning set of the weights must

be reduced. Therefore, if the observation i is not part of the training data and there is i.i.d. sampling,

then the weights depend only on the observation i and are furthermore independent of the outcomes (for

a formal analysis, see Lechner, 2018). This is achieved through sample splitting where one half of the

sample is used to build the forest, and thus to determine the weights, and the other half to estimate

12The issues range from estimation difficulty, possibly non-standard distribution of the estimator, to ambiguous choices of
nuisance parameters.

13We have additionally experimented with h = 0.5 and h = 1 which resulted in incrementally larger effect sizes. Generally,
the lower the window size h, the more local the effect and the higher the window size h, the more global the effect becomes.
As Burden and Faires (2011) point out, the window size h should not be chosen too small due to the instability of the
numerical derivative approximations. In the software implementation in the R package orf, users can control this parameter
by changing the argument window. See Lechner and Okasa (2019) for more details.

14See also Lechner (2002) and Imbens and Abadie (2006) for related approaches.
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the effects using the respective outcomes. Notice that this condition goes beyond honesty as defined in

Wager and Athey (2018) as this requires not only estimating honest trees but estimating honest forest

as a whole. The reason for this is the fact that the weights are not based on the estimated trees, but on

the estimated forest. Therefore, to ensure independence between the weights and outcomes, the honesty

condition must be w.r.t. to the forest and it is not sufficient to build honest trees only. This comes,

however, at the expense of the efficiency of the estimator as less data are effectively used. Nevertheless,

the simulation evidence in Lechner (2018) suggests that this efficiency loss is small, if present at all.15

Since the Ordered Forest estimator is based on differences of random forest predictions for adjacent

outcome categories, also the covariance term enters the variance formula of the final estimator16 as

opposed to the Modified Causal Forests developed in Lechner (2018). Further, the estimation of marginal

effects is based on differences of single Ordered Forest predictions which also needs to be taken into

account.17 Let us first rewrite the marginal effects in terms of weighted means of the outcomes as follows:

M̂E
k,m

i (x) =
P̂m,i(x

kU )− P̂m,i(x
kL)

xkU − xkL

=
1

xkU − xkL
·

([
N∑
i=1

ŵi,m(xkU )Yi,m −
N∑
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]
−

[
N∑
i=1
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])

=
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·
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]
−
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kL)Yi,m−1

])

=
1

xkU − xkL
·

(
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w̃i,m(xkUxkL)Yi,m −
N∑
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)
,

where w̃i,m(xkUxkL) = ŵi,m(xkU ) − ŵi,m(xkL), and w̃i,m−1(x
kUxkL) = ŵi,m−1(x

kU ) − ŵi,m−1(x
kL) are

the new weights defining the marginal effect. As such the quantity of interest for inference becomes the

variance of the above expression given as:
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·
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)
,

which suggests the following estimator for the variance:18

ˆV ar

(
M̂E

k,m

i (x)

)
=

N

N − 1
· 1

(xkU − xkL)2
·

·

(
N∑
i=1

(
w̃i,m(xkUxkL)Yi,m − 1

N

N∑
i=1

w̃i,m(xkUxkL)Yi,m

)2

+
N∑
i=1

(
w̃i,m−1(x

kUxkL)Yi,m−1 −
1

N

N∑
i=1

w̃i,m−1(x
kUxkL)Yi,m−1

)2

− 2 ·
N∑
i=1

(
w̃i,m(xkUxkL)Yi,m − 1

N

N∑
i=1

w̃i,m(xkUxkL)Yi,m

)
·
(
w̃i,m−1(x

kUxkL)Yi,m−1 −
1

N

N∑
i=1

w̃i,m−1(x
kUxkL)Yi,m−1

))
,

15The so-called cross-fitting to avoid the efficiency loss as suggested by Chernozhukov et al. (2018) does not appear to be
applicable here as the independence of the weights and the outcomes would not be ensured.

16One could avoid the covariance term with an additional sample split, which might, however, further lead to a decreased
efficiency of the estimator.

17Notice, that for outcome classes m = 1 and m = M , the variance formula simplifies substantially.
18Here, we estimate the variance with sample counterparts. An alternative approach, as in Lechner (2018), would be to first
apply the law of total variance and, second, estimate the conditional moments by nonparametric methods. However, due to
the presence of the covariance term the conditioning set contains 2 variables which causes the convergence rate to decrease
and hence such variance estimation might even result in less precise estimates, depending on the sample size.
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where for the marginal effects at the mean of the covariates the weights w̃i,m(xkUxkL) and the scaling

factor 1/(xkU−xkL)2 are evaluated at the respective sample means, whereas for the mean marginal effects

the average of the weights 1
N

∑N
i=1 w̃i,m(xkUxkL) and of the scaling factor 1/

(
1
N

∑N
i=1(x

kU − xkL)
)2

is

used. Notice also the fact that the scaling factor drops out in the case of categorical covariates. According

to the simulation study in Lechner (2018) the weight-based inference in case of the Modified Causal

Forests tends to be rather conservative for the individual effects and rather accurate for aggregate effects.

The results from the here conducted empirical application resemble this pattern where inference for the

marginal effects at the mean of the covariates is more conservative in comparison to inference for the

mean marginal effects (see also Appendix 2.C.2 for a comparison).

2.5 Monte Carlo Simulation

In order to investigate the finite sample performance of the proposed Ordered Forest estimator, we

perform a Monte Carlo simulation study comparing competing estimators for ordered choice models based

on the random forest algorithm. As a parametric benchmark, we take the ordered logistic regression.

The considered models are specifically the following: (i) ordered logit (McCullagh, 1980), (ii) naive

ordinal forest (Hornung, 2019a), (iii) ordinal forest (Hornung, 2019a), (iv) conditional forest (Hothorn

et al., 2006b), and (v) Ordered Forest as developed in Section 2.4. Within the simulation study the

Ordered Forest estimator is analyzed more closely to study the finite sample performance of the estimator

depending on the particular forest building schemes and the way the ordering information is being taken

into account. Regarding the former we study the Ordered Forest based on the standard random forest as

in Breiman (2001), i.e. with boostrapping and without honesty as well as based on the adjusted random

forest as in Wager and Athey (2018), i.e. with subsampling and with honesty. Regarding the latter we

study an alternative approach for estimating the conditional choice probabilities which could be labelled

as a ’multinomial’ forest. In that case, the ordering information is not being taken into account and

the probabilities of each category are estimated directly. The details of this approach are provided in

Appendix 2.A.1. Given this, the Ordered Forest estimator should perform better than the multinomial

forest in terms of the prediction accuracy thanks to the incorporation of additional information from the

ordering of the outcome classes.

Table 2.5.1: General Settings of the Simulation

Monte Carlo

observations in training set 200 (800)
observations in testing set 10000
replications 100
covariates with effect 15
trees in a forest 1000
randomly chosen covariates

√
p

minimum leaf size19 5

General settings regarding the sample size, the number of replications, as well as forest-specific

tuning parameters for the Monte Carlo simulation are depicted in Table 2.5.1. Furthermore, a detailed

description of the software implementation of the respective estimators as well as the software specific

tuning parameters are discussed in Appendix 2.B.4.

19Due to the conceptual differences of the conditional forests, an alternative stopping rule ensuring growing deep trees is
chosen. See details in Appendix 2.B.4.

79



2.5.1 Data Generating Process

In terms of the data generating process, we built upon an ordered logit model as defined in (2.2.1)

and (2.2.2). As such we simulate the underlying continuous latent variable Y ∗
i as a linear function of

regressors Xi, while drawing the error term ui from the logistic distribution. Then, the continuous

outcome Y ∗
i is discretized into an ordered categorical outcome Yi based on the threshold parameters

αm.20 Furthermore, the intercept term is fixed to zero, i.e. β0 = 0 and thus the thresholds are relative

to this value of the intercept. As a result, such DGP captures the probability of the latent variable Y ∗
i

falling into a particular class given the location defined by the deterministic component of the model

together with its stochastic component (Carsey & Harden, 2013).

In simulations of the data generating process, different numbers of possible discrete ordered classes

are considered, particularlyM = {3, 6, 9} which corresponds to the simulation set-up used in Janitza et al.

(2016) and Hornung (2019a). Further, both equal class widths, i.e. equally spaced threshold parameters

αm, as well as randomly spaced thresholds, while still preserving the monotonicity of the discrete outcome

Yi, are considered. For the latter, the threshold quantiles are drawn from the uniform distribution, i.e.

αq
m ∼ U(0, 1) and ordered afterwards. For the former, the threshold quantiles are equally spaced between

0 and 1 depending on the number of classes. The β coefficients are specified as having fixed coefficient

size, namely β1, ..., β5 = 1, β6, ..., β10 = 0.75 and β11, ..., β15 = 0.5 as is also the case in Janitza et al.

(2016) and Hornung (2019a). Moreover, an option for nonlinear effects is introduced, too. As such, the

covariates do not enter the functional form linearly, but are given by a sine function sin(2Xi) as for

example in Lin, Li, and Sun (2014), which is hard to model as opposed to other nonlinearities such as

polynomials or interactions. The set of covariates Xi is drawn from the multivariate normal distribution

with zero mean and a pre-specified variance-covariance matrix Σ, i.e. Xi ∼ N (0,Σ), where Σ is specified

either as an identity matrix and as such implying zero correlation between regressors, or it is specified to

have a specific correlation structure between regressors21 as follows:

ρi,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 for i = j

0.8 for i ̸= j; i, j ∈ {1, 3, 5, 7, 9, 11, 13, 15}

0 otherwise ,

which is inspired by the correlation structure from the simulations in Janitza et al. (2016) and Hornung

(2019a). Further, an option to include additional variables with zero effect is implemented as well. As

such, another 15 covariates are added to the covariate space with β16 = ... = β30 = 0 from which 10 are

again drawn from the normal distribution with zero mean and unit variance, i.e. Xc
i,0 ∼ N (0, 1) and 5 are

dummies drawn from the binomial distribution, i.e. Xd
i,0 ∼ B(0.5). As the performance of the Ordered

Forest estimator in high-dimensional settings is of particular interest, due to yet not fully understood

theoretical properties in such settings, we include an option for additionally enlarging the covariate space

with 1000 zero effect covariates Xi,0 ∼ N (0, 1), effectively creating a setting with p >> N . In the

high-dimensional case the ordered logit is excluded from the simulations for obvious reasons. Overall,

considering all the possible combinations for specifying the DGP, we end up with 72 different DGPs.22

20The thresholds are determined beforehand according to fixed threshold quantiles αq
m of a large sample of N = 1′000′000

observations of the latent Y ∗
i from the very same DGP to reflect the realized outcome distribution and then used afterwards

in the simulations as a part of the deterministic component.
21Note that with a too high multicollinearity, the ordered logit model breaks down. With restricting the level of multi-
collinearity, the logit model can be still reasonably compared to the other competing methods.

22For the low-dimensional setting we have n = 4 options for the DGP settings, out of which we can choose from none to all of
them, whereby the ordering does not matter, we end up with 16 possible combinations as given by the formula

∑n
r=0

(n
r

)
,

each for 3 possible numbers of outcome classes resulting in 48 different DGPs. For the high-dimensional setting we have
n = 3 options as the additional noise variables are always considered. This for all 3 distinct numbers of outcome classes
yields 24 different DGPs.
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For all of them we simulate a training dataset of size N = 200 and a testing dataset of size N = 10′000

for evaluating the prediction performance of the considered methods. We simulate the large testing set

for three main reasons. First, the large testing set enables us to reduce the prediction noise and thus

provides a more reliable measure for average out-of-sample performance of the estimators. Second, the

large testing set also helps to reduce the simulation noise and thus to obtain more precise estimates for

the performance measures. Third, we choose the large testing set to ensure further comparability with

the simulation studies performed by Janitza et al. (2016) and Hornung (2019a). Note that such a large

testing set is also common choice in many other simulation studies (see e.g. Jacob, 2020; or Knaus,

Lechner, & Strittmatter, 2021). Further, we focus more closely on the simulation designs corresponding

to the least and the most complex DGPs for which we simulate also a training set of size N = 800. The

former DGP (labelled as simple DGP henceforth) corresponds exactly to an ordered logit model as in

(2.2.1) with equal class widths, uncorrelated covariates with linear effects and without any additional zero

effect variables. The latter DGP (labelled as complex DGP henceforth) features random class widths,

correlated covariates with nonlinear effects and additional zero effect variables. For each replication, we

estimate the model on the training set and evaluate the predictions on the testing set, for all tested

methods.

2.5.2 Evaluation Measures

In order to properly evaluate the prediction performance we use two measures of accuracy, namely

the mean squared error (MSE) and the ranked probability score (RPS). The former evaluates the error

of the estimated conditional choice probabilities as a squared difference from the true values of the

conditional choice probabilities. Given our simulation design, we know these true values, which are given

as in equation (2.2.3). Hence, we can define the Monte Carlo average MSE as:

AMSE =
1

R

R∑
j=1

1

N

N∑
i=1

1

M

M∑
m=1

(
P [Yi,j = m | Xi,j = x]− P̂ [Yi,j = m | Xi,j = x]

)2

,

where j refers to the j-th simulation replication, while R being the total number of replications. The

second measure, the RPS as developed by Epstein (1969) is arguably the preffered measure for the

evaluation of probability forecasts for ordered outcomes as it takes the ordering information into account

(see Gneiting & Raftery, 2007; and Constantinou & Fenton, 2012). The Monte Carlo average RPS can

be defined as follows:

ARPS =
1

R

R∑
j=1

1

N

N∑
i=1

1

M − 1

M∑
m=1

(
P [Yi,j ≤ m | Xi,j = x]− P̂ [Yi,j ≤ m | Xi,j = x]

)2

,

where on the contrary to the MSE, the difference between the cumulative choice probabilities is measured.

The RPS can be seen as a generalization of the Brier Score (Brier, 1950) for multiple, ordered outcomes.

As such, it measures the discrepancy between the predicted cumulative distribution function and the true

one. Nevertheless, although the ordering information is taken into account, the relative distance between

the classes is not reflected as pointed out by Janitza et al. (2016).

2.5.3 Simulation Results

For the sake of brevity, here we focus mainly on the simulation results obtained for the simple and

for the complex DGP, while the results for all 72 DGPs are provided in Appendix 2.B.2. Figures 2.5.1
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and 2.5.2 summarize the results for the low-dimensional setting for the simple and the complex DGP,

respectively. Similarly, Figures 2.5.3 and 2.5.4 present the results for the simple and the complex DGP

for the high-dimensional setting. The upper panels of the figures show the ARPS, the preferred accuracy

measure, whereas the lower panels show the AMSE as a complementary measure. Within the figures

the transparent boxplots in the background show the results for the smaller sample size along with the

bold boxplots in the foreground showing the results for the bigger sample size. From left to right the

figures present the results for 3, 6 and 9 outcome classes, respectively. The figures compare the prediction

accuracy of the ordered logit, naive ordinal forest, ordinal forest, conditional forest, Ordered Forest and

the multinomial forest, where the asterisk (∗) denotes the honest version of the last two forests considered.

Further tables with more detailed results and statistical tests for mean differences in the prediction errors

are listed in Appendix 2.B.1.

Figure 2.5.1: Simulation Results: Simple DGP & Low Dimension

Note: Figure summarizes the prediction accuracy results based on 100 simulation replications. The upper panel contains the
ARPS and the lower panel contains the AMSE. The boxplots show the median and the interquartile range of the respective
measure. The transparent boxplots denote the results for the small sample size, while the bold boxplots denote the results
for the big sample size. From left to right the results for 3, 6, and 9 outcome classes are displayed.

In the low-dimensional setting with the simple DGP it is expected that the ordered logistic regression

should perform best in terms of both the AMSE as well as the ARPS. Indeed, we do observe this results

in Figure 2.5.1 as the ordered logit model performs unanimously best out of the considered models,

reaching almost zero prediction error. Among the flexible forest-based estimators, the proposed Ordered

Forest belongs to those better performing methods in terms of both accuracy measures. The honest

versions of the forests lag behind what points at the efficiency loss due to the additional sample splitting.

Overall, the ranking of the estimators stays stable with regards to the number of outcome categories.

Additional pattern common to all estimators is the lower prediction error and increased precision with

growing sample size.
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Figure 2.5.2: Simulation Results: Complex DGP & Low Dimension

Note: Figure summarizes the prediction accuracy results based on 100 simulation replications. The upper panel contains the
ARPS and the lower panel contains the AMSE. The boxplots show the median and the interquartile range of the respective
measure. The transparent boxplots denote the results for the small sample size, while the bold boxplots denote the results
for the big sample size. From left to right the results for 3, 6, and 9 outcome classes are displayed.

In the case of the complex DGP, the performance of the flexible forest-based estimators is expected

to be better in comparison to the parametric ordered logit. This can be seen in Figure 2.5.2 as the ordered

logit lags behind the majority of the flexible methods in both accuracy measures. The somewhat higher

prediction errors of the naive and the ordinal forest compared to the other forest-based methods might

be due to their different primary target which are the ordered classes instead of the ordered probabilities

as is the case for the other methods. In this respect the conditional forest exhibits considerably good

prediction performance. The Ordered Forest outperforms the competing forest-based estimators in terms

of the ARPS throughout all outcome class scenarios and also in terms of the AMSE in two scenarios, being

outperformed only by the conditional forest in case of 9 outcome classes. Interestingly, the multinomial

forest performs very well across all scenarios. However, it is consistently worse than the Ordered Forest

with bigger discrepancy between the two the more outcome classes are considered. This points to the

value of the ordering information and the ability of the Ordered Forest to utilize it in the estimation.

With regards to the sample size, we observe the same pattern as in Figure 2.5.1.

83



Figure 2.5.3: Simulation Results: Simple DGP & High Dimension

Note: Figure summarizes the prediction accuracy results based on 100 simulation replications. The upper panel contains the
ARPS and the lower panel contains the AMSE. The boxplots show the median and the interquartile range of the respective
measure. The transparent boxplots denote the results for the small sample size, while the bold boxplots denote the results
for the big sample size. From left to right the results for 3, 6, and 9 outcome classes are displayed.

Considering the high-dimensional setting for the case of the simple DGP, we see in Figure 2.5.3 that

the Ordered Forest slightly lags behind the other methods, except the scenarios with 3 outcome classes. In

comparison, the conditional forest performs best in terms of the ARPS as well as in terms of the AMSE.

Also the naive and the ordinal forest exhibit better performance compared to the previous simulation

designs. However, it should be noted that the overall differences in the magnitude of the prediction errors

are much lower within this simulation design as compared to the previous designs. Further, taking a

closer look at the ARPS results of the multinomial forest we clearly see that in the simple ordered design

the ignorance of the ordering information really harms the predictive performance of the estimator the

more outcome classes are considered. Additionally, it is interesting to see that the performance gain due

to a bigger sample size seems to be much less for the honest version of the forests in the high-dimensional

setting as opposed to the low-dimensional setting.
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Figure 2.5.4: Simulation Results: Complex DGP & High Dimension

Note: Figure summarizes the prediction accuracy results based on 100 simulation replications. The upper panel contains the
ARPS and the lower panel contains the AMSE. The boxplots show the median and the interquartile range of the respective
measure. The transparent boxplots denote the results for the small sample size, while the bold boxplots denote the results
for the big sample size. From left to right the results for 3, 6, and 9 outcome classes are displayed.

Lastly, the case of the complex DGP in the high-dimensional setting as in Figure 2.5.4 shows some

interesting patterns. In general, all of the methods exhibit good predictive performance as the loss in

the prediction accuracy due to the high-dimensional covariate space is small. Additionally, although

dealing with the most complex design, no substantial loss in the prediction accuracy can be observed in

comparison to the less complex designs. This fact demonstrates the ability of the random forest algorithm

as such to effectively cope with highly nonlinear functional forms even in high dimensions. Further, it

seems that the role of the sample size is of particular importance in this complex design. On the contrary

to the previous designs, where the prediction accuracy increases almost by a constant amount for all

estimators and thus does not change their relative ranking, here it does not hold anymore. First, some

estimators seem to learn faster than others, i.e. to have a faster rate of convergence. As such in the small

sample size the Ordered Forest has in some settings higher values of the ARPS as well as the AMSE

than the conditional forest, however manages to outperform the conditional forest in the bigger training

sample. This becomes most apparent in the case of 9 outcome classes. Here, the median of the ARPS

is almost the same for the two methods based on the small training sample, but significantly lower for

the Ordered Forest based on the larger training sample.23 Second, for the ordinal forest the prediction

accuracy even worsens with the bigger training sample, which might hint on possible convergence issues.

This might possibly come from the fact that the estimator comprises multiple distinct optimization and

partly nonlinear transformation steps that are tied together, but lack formal asymptotic arguments to

analyse the impacts and propagation of the estimation errors into the final point estimator. Overall, the

Ordered Forest achieves the lowest ARPS as well as AMSE within this design, closely followed by the

23See Appendix 2.B.1 for the detailed results of the statistical tests conducted.
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conditional and the multinomial forest. However, the generally good performance of the conditional forest

might be due to a different type of the stopping criterion, which enables growing very deep trees that are

possibly deeper than the classical Breiman (2001) trees with pre-specified minimum leaf size and as such

might achieve lower bias which is then reflected in the lower values of ARPS as well as of AMSE.

In addition to the four main simulation designs discussed above, we also inspect all 72 different

DGPs to analyze the performance and the sensitivity of the Ordered Forest to the particular features of

the simulated DGPs (for details see Appendix 2.B.2). In case of both the low-dimensional setting, as

well as the high-dimensional setting, the Ordered Forest performs particularly well if there are nonlinear

effects accompanied by near-multicollinearity of regressors as such as well as together with additional

noise variables or randomly spaced thresholds. Furthermore, the honest version of the Ordered Forest

achieves consistently lower prediction accuracy in both settings. It seems that in small samples the

increase in variance due to honesty dominates the reduction in the bias of the estimator. In order to

further investigate the impact of the honesty feature in bigger samples as well as the convergence of the

Ordered Forest, we quadruple the size of the training set once again and repeat the main simulation for

the Ordered Forest and its honest version with N = 3′200 observations (see Appendix 2.B.1 for the full

results). Firstly, for both versions we observe that with growing sample size the prediction errors get lower

and the precision increases. However, the rate of convergence seems to be slower than the parametric

rate of
√
N . Secondly, we observe the same pattern as in the smaller sample sizes, namely slightly lower

prediction accuracy for the honest version of the Ordered Forest which stays roughly constant across

all simulation designs. Hence, even in the biggest sample the additional variance dominates the bias

reduction. However, it should be noted that for a prediction exercise honesty is an optional choice, while

if inference is of interest, honesty becomes binding.

2.5.4 Empirical Results

Additionally to the above synthetic simulations, we explore the performance of the Ordered Forest

estimator based on real datasets24 previously used in Janitza et al. (2016) and Hornung (2019a). Table

2.5.2 summarizes the features of the datasets and the descriptive statistics are provided in Appendix

2.B.3.1. We compare our estimator in terms of the prediction accuracy to all the estimators used in the

above Monte Carlo simulation.

Table 2.5.2: Description of the Datasets

Datasets Summary

Dataset Sample Size Outcome Class Range Covariates

Wine Quality 4893 Quality Score 1 (moderate) - 6 (high) 11
Mammography 412 Visits History 1 (never) - 3 (over year) 5
Nhanes 1914 Health Status 1 (excellent) - 5 (poor) 26
Vlbw 218 Physical Condition 1 (threatening) - 9 (optimal) 10
Support Study 798 Disability Degree 1 (none) - 5 (fatal) 15

Similarly to Hornung (2019a) we evaluate the prediction accuracy based on a repeated cross-validation

in order to reduce the dependency of the results on the particular training and test sample splits. As such

we perform a 10-fold cross-validation on each dataset, i.e. we randomly split the dataset in 10 equally

sized folds and use 9 folds for training the model and 1 fold for validation. This process is repeated such

that each fold serves as a validation set exactly once. Lastly, we repeat this whole procedure 10 times

24The here proposed algorithm has been already applied and is in use for predicting match outcomes in football, see Goller
et al. (2018) and SEW Soccer Analytics for details.
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and report average accuracy measures. The results of the cross-validation exercise for the ARPS as well

as the AMSE are summarized in Figures 2.5.5 and 2.5.6, respectively. Similarly as for the simulation

results Appendix 2.B.3 contains more detailed statistics.

Figure 2.5.5: Cross-Validation: ARPS

Note: Figure summarizes the prediction accuracy results in terms of the ARPS based on 10 repetitions of 10-fold cross-
validation for respective datasets. The boxplots show the median and the interquartile range of the respective measure.

The main difference in evaluating the prediction accuracy in comparison to the simulation study is

the fact that we do not observe the underlying ordered class probabilities, but only the realized ordered

classes. This affects the computation of the accuracy measures and it can be expected that the prediction

errors are somewhat higher in comparison to the simulation data, which is also the case here. Overall,

the results imply a substantial heterogeneity in the prediction accuracy across the considered datasets.

On the one hand, the parametric ordered logit does well in small samples (vlbw ) whereas the forest-based

methods are somewhat lagging behind. This is not surprising as a lower precision in small samples is

the price to pay for the additional flexibility. On the other hand, in the largest sample (winequality) the

ordered logit is clearly the worst performing method and all forest-based methods perform substantially

better. With respect to the Ordered Forest estimator we observe relatively high prediction accuracy

for three datasets (mammography, supportstudy, winequality) and relatively low prediction accuracy for

two datasets (nhanes, vlbw) in comparison to the competing methods. The good performance in the

winequality and the supportstudy dataset is expected due to the large samples available. In case of

the mammography dataset, even when smaller in sample size, the Ordered Forest maintains the good

prediction performance, with its honest version doing even better. The worse performance for the vlbw

dataset might be due to the small sample size. However, the honest version of the Ordered Forest performs

rather well. The relatively poor performance in the case of the nhanes dataset comes rather at surprise

as the sample size is rather large. Nevertheless, here the differences among all estimators are very small

in magnitude, in fact the smallest among the considered datasets. Overall, the empirical results provide
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an evidence for a good predictive performance of the new Ordered Forest estimator based on various real

datasets.

Figure 2.5.6: Cross-Validation: AMSE

Note: Figure summarizes the prediction accuracy results in terms of the AMSE based on 10 repetitions of 10-fold cross-
validation for respective datasets. The boxplots show the median and the interquartile range of the respective measure.

2.6 Empirical Application

For an analysis of the relationship between the covariates and the predicted ordered choice proba-

bilities we estimate the marginal effects for the Ordered Forest and compare these to the marginal effects

estimated by the ordered logit. We estimate both common measures for marginal effects, i.e. the mean

marginal effects as well as the marginal effects at covariate means. The main difference between the

ordered logit and the Ordered Forest is the fact that the Ordered Forest does not use any parametric link

function in the estimation of the marginal effects and as such does not impose any functional form on

these estimates. As a result, the Ordered Forest does neither fix the sign of the marginal effects estimates

nor revert it exactly once within the class range as is the case for the ordered logit (the so-called ’single

crossing’ feature, see i.e. Boes & Winkelmann, 2006; or Greene & Hensher, 2010) but rather estimates

these in a data-driven manner. Nevertheless, the Ordered Forest, same as the ordered logit, still ensures

that the marginal effects across the class range sum up to zero (being more likely to be in some particular

classes must imply being less likely to be in some other classes). As such the Ordered Forest not only

enables a more flexible estimation of the ordered choice probabilities but also of the marginal effects.

In order to showcase the Ordered Forest estimation of marginal effects, we revisit the question of

self-assessed health status and its relationship with socio-economic characteristics as for example ana-

lyzed previously by Case et al. (2002) and Murasko (2008). In our empirical application we analyze

the dataset from the 2009 National Health Interview Survey (NHIS) used in Angrist and Pischke (2014)

which includes an ordered categorical outcome indicating a self-assessed health status. The specific survey
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question of interest reads as: ’Would you say your health in general is excellent, very good, good, fair,

or poor?’ and is coded on an ordered scale ranging from 1 (poor) to 5 (excellent). We examine how

the ordered choice probabilities of the self-assessed health status differ for individuals with and without

a coverage by private health insurance (see Levy & Meltzer, 2008, for a review of insurance effects on

health) as well as how these probabilities vary with further socio-demographic characteristics, namely

age, race and family size as well as economic characteristics, namely education, employment status and

family income. The considered dataset is well-suited for demonstrating the evaluation of marginal effects

for several reasons. First, the dataset features an ordered categorical outcome with 5 distinct ordered

categories, which are unevenly distributed and thus challenging for estimating the associated marginal

effects. Second, the dataset includes both continuous as well as categorical covariates which enables an

exhaustive demonstration of the evaluation of marginal effects for various variable types. Third, the

dataset contains more than 18′000 observations which allows for a precise estimation of the marginal

effects. The descriptive statistics for the considered dataset are presented in Appendix 2.C.1.25 We fol-

low the data preparation of Angrist and Pischke (2014) and discard all observations with missing values

and retain only individuals from single family households and those of age between 26 and 59 years as

those do not yet qualify for the public health insurance program Medicare.

First of all, in order to describe the differences in the health status based on the health insurance we

inspect the ordered class probabilities for the self-reported health status for individuals with and without

a private health insurance contract. The descriptive results are reported in Table 2.6.1 below, including

statistical evidence for the differences between the two groups. The descriptive evidence suggests that

individuals with health insurance have a higher probability to be in excellent or very good health condition

and at the same time have a lower probability to be in good or fair health condition. This evidence is

both statistically precise and economically relevant. Furthermore, individuals with health insurance seem

to have also a lower probability to be in poor health condition. However the evidence for that is less

pronounced, both in statistical as well as in economic terms.

Table 2.6.1: Differences in Health Status based on Health Insurance: NHIS Dataset

NHIS Dataset

Health Insurance

Health Status Yes No Diff tValue pValue

Poor 1.07 1.51 -0.44 -1.84 6.61
Fair 4.81 10.19 -5.38 -9.28 0.00
Good 23.26 35.14 -11.88 -12.66 0.00
Very good 36.31 27.54 8.77 9.70 0.00
Excellent 34.55 25.62 8.93 10.08 0.00

N 15816 2974

Next, in order to investigate the differences in the health status based on the health insurance we

estimate the ordered choice probabilities for the self-reported health status conditional on having a private

health insurance contract and further socio-economic characteristics using the Ordered Forest and the

ordered logit and evaluate the corresponding marginal effects. Table 2.6.2 contains the estimated mean

marginal effects for each outcome class for all covariates together with the associated standard errors,

t-values, p-values as well as conventional significance levels for both the Ordered Forest as well as the

ordered logit.26

25The dataset is freely accessible from the R-package stevedata (Miller, 2021) or in the data appendix of Angrist and Pischke
(2014) available online.

26The results for the marginal effects at mean are available in Appendix 2.C.2.

89

http://masteringmetrics.com/wp-content/uploads/2015/01/Data.zip


In general, we see similar patterns in terms of the effect sizes and effect direction for both the Ordered

Forest and the ordered logit. However, we do observe more variability in terms of the effect direction in

case of the Ordered Forest as we would also expect given the flexibility arguments discussed above. In

terms of uncertainty of the effects the weight-based inference seems to be slightly more conservative than

the delta method used in the ordered logit. Nevertheless, the Ordered Forest also detects very precise

effects which are not discovered by the ordered logit.

Table 2.6.2: Mean Marginal Effects: NHIS Dataset

Dataset Ordered Forest Ordered Logit

Variable Class Effect Std.Error t-Value p-Value Effect Std.Error t-Value p-Value
Health Insurance 1 0.23 0.08 2.89 0.38 *** -0.11 0.05 -2.19 2.85 **

2 -0.95 0.49 -1.93 5.35 * -0.49 0.22 -2.22 2.68 **
3 -4.51 1.99 -2.27 2.33 ** -1.32 0.59 -2.25 2.44 **
4 4.44 1.80 2.47 1.35 ** 0.02 0.03 0.65 51.88
5 0.78 2.47 0.32 75.21 1.90 0.83 2.29 2.22 **

Female 1 -0.19 0.12 -1.59 11.16 0.02 0.03 0.68 49.85
2 0.05 0.31 0.17 86.56 0.10 0.14 0.68 49.81
3 0.52 0.70 0.74 45.99 0.26 0.39 0.68 49.80
4 0.44 0.86 0.52 60.63 0.00 0.01 0.59 55.20
5 -0.82 1.16 -0.70 48.08 -0.39 0.57 -0.68 49.80

Non White 1 0.38 0.15 2.57 1.02 ** 0.36 0.05 7.02 0.00 ***
2 0.57 0.42 1.36 17.53 1.60 0.20 7.89 0.00 ***
3 5.97 1.12 5.32 0.00 *** 4.10 0.48 8.57 0.00 ***
4 -4.23 1.09 -3.87 0.01 *** -0.26 0.08 -3.12 0.18 ***
5 -2.69 1.57 -1.72 8.57 * -5.81 0.65 -8.87 0.00 ***

Age 1 0.04 0.01 4.22 0.00 *** 0.04 0.00 12.60 0.00 ***
2 0.15 0.03 5.09 0.00 *** 0.20 0.01 19.77 0.00 ***
3 0.45 0.07 6.07 0.00 *** 0.54 0.02 23.87 0.00 ***
4 -0.01 0.09 -0.13 89.49 0.01 0.01 1.24 21.54
5 -0.62 0.12 -5.10 0.00 *** -0.78 0.03 -24.15 0.00 ***

Education 1 0.00 0.00 0.41 68.03 -0.11 0.01 -11.61 0.00 ***
2 -0.01 0.00 -1.73 8.42 * -0.51 0.03 -16.80 0.00 ***
3 -0.02 0.01 -2.80 0.52 *** -1.39 0.07 -18.94 0.00 ***
4 0.00 0.01 0.71 48.08 -0.02 0.02 -1.23 21.83
5 0.02 0.01 2.57 1.03 ** 2.04 0.11 18.85 0.00 ***

Family Size 1 0.00 0.00 0.32 74.77 -0.01 0.01 -0.81 42.01
2 -0.00 0.01 -0.21 83.33 -0.04 0.05 -0.81 41.95
3 -0.06 0.02 -3.49 0.05 *** -0.12 0.14 -0.81 41.93
4 -0.03 0.02 -1.78 7.51 * -0.00 0.00 -0.67 50.41
5 0.10 0.02 4.97 0.00 *** 0.17 0.21 0.81 41.94

Employed 1 -3.99 0.50 -7.94 0.00 *** -0.42 0.06 -7.30 0.00 ***
2 -3.81 0.73 -5.19 0.00 *** -1.86 0.23 -8.21 0.00 ***
3 2.58 1.15 2.25 2.44 ** -4.77 0.53 -8.98 0.00 ***
4 4.37 1.24 3.51 0.04 *** 0.39 0.11 3.55 0.04 ***
5 0.84 1.82 0.46 64.34 6.66 0.71 9.42 0.00 ***

Income 1 -0.11 0.04 -3.00 0.27 *** -0.00 0.00 -12.07 0.00 ***
2 -0.46 0.14 -3.27 0.11 *** -0.00 0.00 -17.73 0.00 ***
3 -0.06 0.51 -0.12 90.68 -0.00 0.00 -20.61 0.00 ***
4 0.36 0.37 0.97 33.42 -0.00 0.00 -1.24 21.41
5 0.27 0.45 0.61 54.03 0.00 0.00 20.96 0.00 ***

Significance levels correspond to: ∗ ∗ ∗. < 0.01, ∗ ∗ . < 0.05, ∗. < 0.1.

Notes: Table shows the comparison of the mean marginal effects in % points between the Ordered Forest and the ordered logit. The
effects are estimated for all classes, together with the corresponding standard errors, t-values and p-values. The standard errors for the
Ordered Forest are estimated using the weight-based inference and for the ordered logit are obtained via the delta method.

In particular, inspecting the variable of interest, namely the indicator for private health insurance,

we immediately see the additional flexibility of the Ordered Forest. While both methods estimate positive

marginal effects of having a private health insurance on the probability of being in very good or excellent

health condition and negative marginal effects for being in good or fair health condition, the Ordered

Forest estimates also a positive effect for being in poor health condition, whereas the ordered logit is
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forced to estimate a negative effect due to its above-mentioned single-crossing property. As such, the

Ordered Forest estimates a non-monotonic effect of having a private health insurance across the class

probabilities. The results suggest that on one hand individuals with health insurance are less likely to be

in good or fair health condition by 4.51 or 0.95 % points, respectively. On the other hand, individuals

with health insurance are more likely to be in very good or excellent health condition by 4.44 or 0.78

% points, respectively, but they are also more likely to be in poor health condition by 0.23 % points.

As the decision to sign up for a private health insurance is not random, i.e. the data comes from a

non-experimental setting, it is not possible to uncover the causal effect without strong assumptions. One

might, however, argue that based on the partial correlation evidence, due to the regular medical care

and prevention the health insurance increases the likelihood of being in rather good health condition,

but also that individuals with rather poor health condition are more likely to sign up for a private health

insurance to cover up for the expected medical care costs. As can be seen, the Ordered Forest enables

for such a non-monotonic effects analysis, while the ordered logit does not permit such mechanism to

take place at all. Overall, in terms of effect sizes, for both estimators we observe smaller magnitudes in

comparison to the unconditional differences presented in Table 2.6.1. However, the effect sizes estimated

by the Ordered Forest are slightly bigger than those of the ordered logit. With regards to the statistical

uncertainty around the estimated marginal effects, both methods exhibit similar level of precision.

Inspecting the effects of the additional conditioning variables, we see that neither the Ordered Forest

nor the ordered logit find evidence for gender influencing the health class probabilities as the estimated

effects are of small magnitude and lack statistical precision. In contrast, both methods estimate a higher

probability of being in poor, fair or good health condition and conversely a lower probability of being

in very good or excellent health condition for people of color, an effect that is sizeable and statistically

precise. In this case, we note the slightly more conservative standard errors of the Ordered Forest.

Furthermore, both methods estimate a higher likelihood of being in rather bad health condition and a

lower likelihood of being in rather good health condition for increasing age with similar effect sizes as well

as with similar statistical precision. In terms of education, there seem to be a positive relationship with

regard to the probability of being in an excellent health condition. However, this effect is less pronounced

for the Ordered Forest considering both the effect size and the precision in comparison to the ordered

logit. The same positive relationship can be observed also for the family size and although the economic

relevance of this effect is rather small, the Ordered Forest estimates this effect with high statistical

precision, whereas the ordered logit does not find statistical evidence in this respect. Considering the

employment status, both methods estimate lower likelihood of being in rather bad health condition and

a higher likelihood of being in good health condition with comparable effect sizes as well as statistical

precision. Lastly, the Ordered Forest and the ordered logit both estimate a positive relationship with

regards to the income level. As such, individuals with higher income are less likely to be in rather bad

health condition and more likely to be in rather good health condition. In case of the Ordered Forest,

the effect sizes are slightly larger, but with lower statistical precision, finding relevant evidence only for

the negative effects on the fair and poor health status, whereas in case of the ordered logit the statistical

precision is higher, however with effectively estimating a zero effect. This might be due to the somewhat

higher collinearity between the education and income level (0.45), which suggests a better handling of

near-multicollinearity among covariates of the Ordered Forest as has been documented in the simulation

study. Overall, however, the main advantage of the estimation of the marginal effects by the Ordered

Forest stems from a more flexible, data-driven approximation of possible nonlinearities in the functional

form.
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2.7 Conclusion

In this paper, we develop and apply a new machine learning estimator of the econometric ordered

choice models based on the random forest algorithm. The Ordered Forest estimator is a flexible alternative

to parametric ordered choice models such as the ordered logit or ordered probit which does not rely on any

distributional assumptions and provides essentially the same output as the parametric models, including

the estimation of the marginal effects as well as the associated inference. The proposed estimator utilizes

the flexibility of random forests and can thus naturally deal with nonlinearities in the data and with

a large-dimensional covariate space, while taking the ordering information of the categorical outcome

variable into account. Hence, the estimator flexibly estimates the conditional ordered choice probabilities

without restrictive assumptions about the distribution of the error term, or other assumptions such as the

single index and constant threshold assumptions as is the case for the parametric ordered choice models

(see Boes & Winkelmann, 2006, for a discussion of these assumptions). Further, the estimator allows

also the estimation of the marginal effects, i.e. how the estimated conditional ordered choice probabilities

vary with changes in covariates. The weighted representation of these effects enables the weight-based

inference as suggested by Lechner (2018). The fact that the estimator comprises of linear combinations

of random forest predictions ensures that the theoretical guarantees of Wager and Athey (2018) are sat-

isfied. Additionally, a free software implementation of the Ordered Forest estimator is available in the

R-package orf on the official CRAN repository to enable the usage of the method by applied researchers.

The performance of the Ordered Forest estimator is studied and compared to other competing es-

timators in an extensive Monte Carlo simulation as well as using real datasets. The simulation results

suggest good performance of the estimator in finite samples, including also high-dimensional settings.

The advantages of the machine learning estimation compared to a parametric method become appar-

ent when dealing with near-multicollinearity and highly nonlinear functional forms. In such cases all of

the considered forest-based estimators perform better than the ordered logit in terms of the prediction

accuracy. Among the forest-based estimators the Ordered Forest proposed in this paper performs well

throughout all simulated DGPs and outperforms the competing methods in the most complex simulation

designs. The empirical evidence using real datasets supports the findings from the Monte Carlo simu-

lation. Additionally, the estimation of the marginal effects as well as the inference procedure seems to

work well in the presented empirical example.

Despite the attractive properties of the Ordered Forest estimator, many interesting questions are

left open. Particularly, a further extension of the Monte Carlo simulation to study the sensitivity of the

Ordered Forest in respect to tuning parameters of the underlying random forest as well as in respect to

different simulation designs would be of interest. Similarly, the performance of the estimator with and

without honesty for larger sample sizes should be further investigated. Also, the optimal choice of the

size of the window for evaluating the marginal effects would be worth to explore. Additionally, besides

the theoretical guarantees for the point estimator, a rigorous asymptotic analysis of the weight-based

inference procedure for the estimation of standard errors would be beneficial to describe the exact theo-

retical properties. Lastly, it would be of great interest to see more real data applications of the Ordered

Forest estimator such as for example in Kim, Lym, and Kim (2021), especially for large samples.
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Appendix

2.A Other Machine Learning Estimators

2.A.1 Multinomial Forest

Considering the Ordered Forest estimator a possible modification for models with categorical outcome

variable without an inherent ordering appears to be straightforward. Instead of estimating cumulative

probabilities and afterwards isolating the respective class probabilities, we can estimate the class proba-

bilities Pm,i = P [Yi = m | Xi = x] directly. As such the binary outcomes are now constructed to indicate

the particular outcome classes separately. Then the random forest predictions for each class yield the con-

ditional choice probabilities which need to be afterwards normalized to sum up to 1. Formally, consider

(un)ordered categorical outcome variable Yi ∈ {1, ...,M} with classes m and sample size N(i = 1, ..., N).

Then, the estimation procedure can be described as follows:

1. Create M binary indicator variables such as

Ym,i = 1(Yi = m) for m = 1, ...,M. (2.A.1)

where m is known and given by the definition of the dependent variable.

2. Estimate regression random forest for each of the M indicators as

P [Ym,i = 1 | Xi = x] =

N∑
i=1

wm,i(x)Ym,i for m = 1, ...,M, (2.A.2)

where the forest weights are defined as wm,i(x) =
1
B

∑B
b=1 wm,b,i(x) with trees weights given by

wm,b,i(x) =
1({Xi∈Lb,m(x)})
|{i:Xi∈Lb,m(x)}| with leaves Lb,m(x) for a total of B trees.

3. Obtain forest predictions for each of the M indicators as

Ŷm,i = P̂ [Ym,i = 1 | Xi = x] =
N∑
i=1

ŵm,i(x)Ym,i for m = 1, ...,M, (2.A.3)

where Ŷm,i are estimated probabilities.

4. Compute probabilities for each class as

P̂m,i = Ŷm,i for m = 1, ...,M (2.A.4)

P̂m,i =
P̂m,i∑M

m=1 P̂m,i

for m = 1, ...,M, (2.A.5)

where the equation (2.A.4) defines the probabilities of all M classes and subsequent equation (2.A.5)

ensures that the probabilities sum up to 1 as this might not be the case otherwise. Similarly to the

98



Ordered Forest estimator, also the multinomial forest is a linear combination of the respective forest

predictions and as such also inherits the theoretical properties stemming from random forest estimation

as described in Section 2.3 of the main text.

2.A.2 Conditional Forest

The conditional forest as discussed in Section 2.2 of the main text is grown with the so-called

conditional inference trees. The main idea is to provide an unbiased way of recursive splitting of the trees

using a test statistic based on permutation tests (Strasser & Weber, 1999). To describe the estimation

procedure, consider an ordered categorical outcome Yi ∈ (1, ...,M) with ordered classes m and sample

size N(i = 1, ..., N). Further, define binary case weights wi ∈ {0, 1} which determine if the observation

is part of the current leaf. Then, the algorithm developed by Hothorn et al. (2006b) can be described as

follows:

1. Test the global null hypothesis of independence between any of the P covariates and the outcome,

for the particular case weights, given a bootstrap sample Zb. Afterwards, select the p-th covariate

Xi,p with the strongest association with the outcome Yi, or stop if the null hypothesis cannot be

rejected. The association is measured by a linear statistic T given as:

Tp(Zb, w) =

N∑
i=1

wigp(Xi,p)h(Yi), (2.A.6)

where gp(·) and h(·) are specific transformation functions.

2. Split the covariate sample space Xp into two disjoint sets I and J with adapted case weights

wi1(Xi,p ∈ I) and wi1(Xi,p ∈ J ) determining the observations falling into the subset I and J ,

respectively. Then, the split is chosen by evaluating a two-sample statistic as a special case of 2.A.6:

T I
p (Zb, w) =

N∑
i=1

wi1(Xi,p ∈ I)h(Yi) (2.A.7)

for all possible subsets I of the covariate sample space Xp.

3. Repeat steps 1 and 2 recursively with modified case weights.

Hence, the above algorithm distinguishes between variable selection (step 1) and splitting rule (step 2),

while both relying on the variations of the test statistic Tp(Zb, w). In practice, however, the distribution

of this statistic under the null hypothesis is unknown and depends on the joint distribution of Yi and

Xi,p. For this reason, the permutation tests are applied to abstract from the dependency by fixing the

covariates and conditioning on all possible permutations of the outcomes. Then, the conditional mean

and covariance of the test statistic can be derived and the asymptotic distribution can be approximated

by Monte Carlo procedures, while Strasser and Weber (1999) proved its normality. Finally, variables and

splits are chosen according to the lowest p-value of the test statistic Tp(Zb, w) and T
I
p (Zb, w), respectively.

Besides the permutation tests, the choice of the tranformation functions gp(·) and h(·) is important

and depends on the type of the variables. For continuous outcome and covariates, identity transformation

is suggested. For the case of an ordinal regression which is of interest here, the transformation function

is given through the score function s(m). If the underlying latent Y ∗
i is unobserved, it is suggested

that s(m) = m and thus h(Yi) = Yi. Hence, in the tree building the ordered outcome is treated as a

continuous one (Janitza et al., 2016). Then, however, the leaf predictions are the choice probabilities

computed as proportions of the outcome classes falling within the leaf, instead of fitting a within leaf

99



constant. The final conditional forest predictions for the choice probabilities are the averaged conditional

tree probability predictions. Such obtained choice probabilities are analyzed in the Monte Carlo study

in Section 2.5 of the main text.

2.A.3 Ordinal Forest

In the following, the algorithm for the ordinal forest as developed by Hornung (2019a) is described.

To begin with, consider an ordered categorical outcome Yi ∈ (1, ...,M) with ordered classes m and sample

size N(i = 1, ..., N). Then, for a set of optimization forests b = 1, ..., Bsets:

1. DrawM−1 uniformly distributed variables Db,m ∼ U(0, 1) and sort them according to their values.

Further, set Db,1 = 0 and Db,M+1 = 1.

2. Define a score set Sb,m = {Sb,1, ..., Sb,M} with scores constructed as Sb,m = Φ−1
(Db,m+Db,m+1

2

)
for

m = 1, ...,M , where Φ(·) is the cdf of the standard normal.

3. Create a new continuous outcome Zb,i = (Zb,1, ..., Zb,N ) by replacing each class value m of the

original ordered categorical Yi by the m-th value of the score set Sb,m for all m = 1, ...,M .

4. Use Zb,i as dependent variable and estimate a regression forest RFSb,m
with Bprior trees.

5. Obtain the out-of-bag (OOB) predictions for the continuous Zb,i and transform them into predic-

tions for Yi as follows: Ŷb,i = m if Ẑb,i ∈
]
Φ−1(Db,m,Φ

−1(Db,m+1)
]
for all i = 1, ..., N .

6. Compute a performance measure for the given forest R̂FSb,m
based on some performance function

of type f(Yi, Ŷb,i).

After estimating Bsets of optimization forests, take Sbest of these which achieved the best performance

according to the performance function. Then, construct the final set of uniformly distributed variables

D1, ..., DM+1 as an average of those from Sbest for m = 1, ...,M +1. Finally, form the optimized score set

Sm = {S1, ..., SM} with scores constructed as Sm = Φ−1
(Dm+Dm+1

2

)
for m = 1, ...,M . The continuous

outcome Zi = (Z1, ..., ZN ) is then similarly as in the optimization procedure constructed by replacing each

m value of the original outcome Yi by the m-th value of the optimized score set Sm for all m = 1, ...,M .

Finally, estimate the regression forest RFfinal using Zi as the dependent variable. On one hand, the

class prediction of such an ordinal forest is one of the M ordered classes which has been predicted the

most by the respective trees of the forest. On the other hand, the probability prediction is obtained as a

relative frequency of trees predicting the particular class. Such predicted choice probabilities are analyzed

in the conducted Monte Carlo study in Section 2.5 of the main text. Further, the so-called naive forest

corresponds to the ordinal forest with omitting the above described optimization procedure.
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2.B Simulation Study

2.B.1 Main Simulation Results

In the following Tables 2.B.1, 2.B.2, 2.B.3, 2.B.4 and 2.B.5 are summarized the simulation results

presented in Section 2.5.3 of the main text. Each table specifies the particular simulation design as

follows: the column Class indicates the number of outcome classes, Dim. specifies the dimension, DGP

characterizes the data generating process as defined in the main text and Statistic contains summary

statistics of the simulation results. In particular, the mean of the respective accuracy measure and its

standard deviation. Furthermore, rows t-test and wilcox-test contain the p-values of the parametric t-test

as well as the nonparametric Wilcoxon test for the equality of means between the results of the Ordered

Forest and all the other methods. The alternative hypothesis is that the mean of the Ordered Forest is

less than the mean of the other method to test if the Ordered Forest achieves significantly lower prediction

error than the other considered methods. Furthermore, Figures 2.B.1, 2.B.2, 2.B.3 and 2.B.4 complement

the results presented in Section 2.5.3 of the main text for the simulations with the increased sample size.
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2.B.1.1 ARPS: Sample Size = 200

Table 2.B.1: Simulation results: Accuracy Measure = ARPS & Sample Size = 200

Simulation Design Comparison of Methods

Class Dim. DGP Statistic Ologit Naive Ordinal Cond. Ordered Ordered* Multi Multi*

3 Low Simple mean 0.0097 0.0765 0.0755 0.0625 0.0609 0.0954 0.0619 0.0954
st.dev. 0.0042 0.0056 0.0055 0.0018 0.0020 0.0011 0.0019 0.0012
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 Low Complex mean 0.1156 0.1044 0.1028 0.0593 0.0466 0.0748 0.0491 0.0760
st.dev. 0.0047 0.0039 0.0038 0.0023 0.0026 0.0028 0.0024 0.0027
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 High Simple mean 0.1135 0.1139 0.1112 0.1140 0.1180 0.1139 0.1179
st.dev. 0.0009 0.0010 0.0009 0.0008 0.0006 0.0008 0.0006
t-test 1.0000 0.7676 1.0000 0.0000 0.7268 0.0000
wilcox-test 0.9999 0.8438 1.0000 0.0000 0.7191 0.0000

3 High Complex mean 0.1476 0.1474 0.1156 0.1102 0.1316 0.1110 0.1317
st.dev. 0.0013 0.0010 0.0041 0.0029 0.0031 0.0029 0.0031
t-test 0.0000 0.0000 0.0000 0.0000 0.0287 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0272 0.0000

6 Low Simple mean 0.0062 0.0687 0.0665 0.0554 0.0544 0.0833 0.0577 0.0872
st.dev. 0.0020 0.0048 0.0050 0.0012 0.0014 0.0009 0.0016 0.0010
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 Low Complex mean 0.1122 0.1093 0.1058 0.0574 0.0452 0.0719 0.0536 0.0842
st.dev. 0.0040 0.0045 0.0044 0.0017 0.0020 0.0022 0.0021 0.0024
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 High Simple mean 0.0974 0.0972 0.0951 0.0983 0.1012 0.0998 0.1016
st.dev. 0.0006 0.0006 0.0006 0.0005 0.0004 0.0005 0.0004
t-test 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000

6 High Complex mean 0.0927 0.0927 0.0766 0.0772 0.0882 0.0898 0.0952
st.dev. 0.0006 0.0005 0.0020 0.0016 0.0014 0.0018 0.0006
t-test 0.0000 0.0000 0.9878 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.9887 0.0000 0.0000 0.0000

9 Low Simple mean 0.0054 0.0653 0.0629 0.0528 0.0519 0.0789 0.0569 0.0850
st.dev. 0.0018 0.0042 0.0042 0.0012 0.0014 0.0009 0.0017 0.0009
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

9 Low Complex mean 0.0973 0.0912 0.0887 0.0515 0.0421 0.0647 0.0537 0.0845
st.dev. 0.0031 0.0033 0.0032 0.0015 0.0016 0.0019 0.0018 0.0017
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

9 High Simple mean 0.0921 0.0918 0.0900 0.0931 0.0959 0.0955 0.0964
st.dev. 0.0006 0.0006 0.0006 0.0005 0.0003 0.0004 0.0003
t-test 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000

9 High Complex mean 0.1007 0.1004 0.0817 0.0819 0.0945 0.0997 0.1036
st.dev. 0.0007 0.0007 0.0020 0.0017 0.0015 0.0019 0.0006
t-test 0.0000 0.0000 0.7875 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.8473 0.0000 0.0000 0.0000

Notes: Table reports the average measures of the RPS based on 100 simulation replications for the sample size of 200
observations. The first column denotes the number of outcome classes. Columns 2 and 3 specify the dimension and the DGP,
respectively. The fourth column Statistic shows the mean and the standard deviation of the accuracy measure for all methods.
Additionally, t-test and wilcox-test contain the p-values of the parametric t-test as well as the nonparametric Wilcoxon test
for the equality of means between the results of the Ordered Forest and all the other methods.
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2.B.1.2 AMSE: Sample Size = 200

Table 2.B.2: Simulation results: Accuracy Measure = AMSE & Sample Size = 200

Simulation Design Comparison of Methods

Class Dim. DGP Statistic Ologit Naive Ordinal Cond. Ordered Ordered* Multi Multi*

3 Low Simple mean 0.0103 0.0669 0.0682 0.0565 0.0587 0.0800 0.0587 0.0800
st.dev. 0.0044 0.0041 0.0044 0.0015 0.0022 0.0009 0.0016 0.0010
t-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.3900 0.0000
wilcox-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.2614 0.0000

3 Low Complex mean 0.1081 0.0985 0.0965 0.0637 0.0543 0.0752 0.0572 0.0768
st.dev. 0.0039 0.0034 0.0029 0.0020 0.0026 0.0021 0.0022 0.0019
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 High Simple mean 0.0923 0.0931 0.0908 0.0930 0.0952 0.0926 0.0952
st.dev. 0.0008 0.0013 0.0009 0.0009 0.0007 0.0007 0.0007
t-test 1.0000 0.2408 1.0000 0.0000 0.9980 0.0000
wilcox-test 1.0000 0.5433 1.0000 0.0000 0.9977 0.0000

3 High Complex mean 0.1081 0.1079 0.0863 0.0828 0.0970 0.0834 0.0971
st.dev. 0.0012 0.0009 0.0028 0.0019 0.0021 0.0020 0.0021
t-test 0.0000 0.0000 0.0000 0.0000 0.0264 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0364 0.0000

6 Low Simple mean 0.0043 0.0284 0.0283 0.0248 0.0291 0.0324 0.0287 0.0327
st.dev. 0.0014 0.0012 0.0018 0.0007 0.0010 0.0005 0.0008 0.0005
t-test 1.0000 1.0000 0.9998 1.0000 0.0000 0.9958 0.0000
wilcox-test 1.0000 1.0000 1.0000 1.0000 0.0000 0.9953 0.0000

6 Low Complex mean 0.0433 0.0438 0.0413 0.0270 0.0260 0.0314 0.0274 0.0339
st.dev. 0.0014 0.0017 0.0014 0.0008 0.0011 0.0009 0.0010 0.0008
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 High Simple mean 0.0352 0.0352 0.0347 0.0361 0.0361 0.0360 0.0361
st.dev. 0.0003 0.0004 0.0004 0.0004 0.0004 0.0003 0.0004
t-test 1.0000 1.0000 1.0000 0.8112 0.9994 0.6394
wilcox-test 1.0000 1.0000 1.0000 0.8788 0.9989 0.6579

6 High Complex mean 0.0383 0.0386 0.0343 0.0350 0.0367 0.0378 0.0387
st.dev. 0.0003 0.0004 0.0006 0.0005 0.0005 0.0005 0.0004
t-test 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

9 Low Simple mean 0.0025 0.0150 0.0149 0.0134 0.0170 0.0170 0.0168 0.0172
st.dev. 0.0008 0.0005 0.0007 0.0004 0.0006 0.0003 0.0005 0.0002
t-test 1.0000 1.0000 1.0000 1.0000 0.5492 0.9993 0.0040
wilcox-test 1.0000 1.0000 1.0000 1.0000 0.3269 0.9985 0.0003

9 Low Complex mean 0.0203 0.0194 0.0190 0.0142 0.0159 0.0161 0.0162 0.0179
st.dev. 0.0006 0.0006 0.0005 0.0003 0.0005 0.0003 0.0004 0.0003
t-test 0.0000 0.0000 0.0000 1.0000 0.0006 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 1.0000 0.0004 0.0000 0.0000

9 High Simple mean 0.0180 0.0181 0.0178 0.0189 0.0185 0.0188 0.0185
st.dev. 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
t-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
wilcox-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

9 High Complex mean 0.0200 0.0200 0.0178 0.0187 0.0193 0.0201 0.0202
st.dev. 0.0002 0.0002 0.0003 0.0003 0.0003 0.0003 0.0002
t-test 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

Notes: Table reports the average measures of the MSE based on 100 simulation replications for the sample size of 200
observations. The first column denotes the number of outcome classes. Columns 2 and 3 specify the dimension and the DGP,
respectively. The fourth column Statistic shows the mean and the standard deviation of the accuracy measure for all methods.
Additionally, t-test and wilcox-test contain the p-values of the parametric t-test as well as the nonparametric Wilcoxon test
for the equality of means between the results of the Ordered Forest and all the other methods.
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2.B.1.3 ARPS: Sample Size = 800

Table 2.B.3: Simulation results: Accuracy Measure = ARPS & Sample Size = 800

Simulation Design Comparison of Methods

Class Dim. DGP Statistic Ologit Naive Ordinal Cond. Ordered Ordered* Multi Multi*

3 Low Simple mean 0.0023 0.0701 0.0685 0.0484 0.0466 0.0799 0.0483 0.0803
st.dev. 0.0009 0.0043 0.0045 0.0007 0.0009 0.0008 0.0008 0.0008
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 Low Complex mean 0.0849 0.0828 0.0813 0.0394 0.0323 0.0495 0.0344 0.0516
st.dev. 0.0009 0.0024 0.0026 0.0012 0.0009 0.0013 0.0010 0.0012
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 High Simple mean 0.1055 0.1055 0.1017 0.1044 0.1136 0.1047 0.1136
st.dev. 0.0007 0.0007 0.0006 0.0005 0.0004 0.0005 0.0003
t-test 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 1.0000 0.0000 0.0001 0.0000

3 High Complex mean 0.0944 0.0949 0.0681 0.0616 0.0738 0.0635 0.0770
st.dev. 0.0007 0.0010 0.0010 0.0010 0.0010 0.0009 0.0011
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 Low Simple mean 0.0015 0.0619 0.0595 0.0435 0.0417 0.0702 0.0443 0.0748
st.dev. 0.0005 0.0037 0.0039 0.0006 0.0007 0.0007 0.0006 0.0006
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 Low Complex mean 0.0947 0.1020 0.0986 0.0408 0.0330 0.0510 0.0384 0.0608
st.dev. 0.0009 0.0031 0.0031 0.0009 0.0007 0.0010 0.0008 0.0012
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 High Simple mean 0.0905 0.0898 0.0874 0.0905 0.0978 0.0940 0.0995
st.dev. 0.0006 0.0005 0.0004 0.0003 0.0002 0.0004 0.0002
t-test 0.6597 1.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 0.8939 1.0000 1.0000 0.0000 0.0000 0.0000

6 High Complex mean 0.1069 0.1060 0.0774 0.0698 0.0840 0.0781 0.0931
st.dev. 0.0007 0.0007 0.0010 0.0009 0.0010 0.0013 0.0011
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

9 Low Simple mean 0.0013 0.0603 0.0570 0.0417 0.0400 0.0668 0.0432 0.0741
st.dev. 0.0004 0.0032 0.0035 0.0006 0.0006 0.0006 0.0007 0.0006
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

9 Low Complex mean 0.0837 0.0867 0.0836 0.0368 0.0305 0.0459 0.0375 0.0614
st.dev. 0.0009 0.0023 0.0027 0.0008 0.0006 0.0008 0.0006 0.0009
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

9 High Simple mean 0.0857 0.0847 0.0826 0.0860 0.0927 0.0920 0.0949
st.dev. 0.0005 0.0005 0.0004 0.0003 0.0002 0.0004 0.0001
t-test 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000

9 High Complex mean 0.0956 0.0947 0.0708 0.0648 0.0773 0.0781 0.0933
st.dev. 0.0006 0.0007 0.0007 0.0006 0.0007 0.0011 0.0009
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: Table reports the average measures of the RPS based on 100 simulation replications for the sample size of 800
observations. The first column denotes the number of outcome classes. Columns 2 and 3 specify the dimension and the DGP,
respectively. The fourth column Statistic shows the mean and the standard deviation of the accuracy measure for all methods.
Additionally, t-test and wilcox-test contain the p-values of the parametric t-test as well as the nonparametric Wilcoxon test
for the equality of means between the results of the Ordered Forest and all the other methods.
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2.B.1.4 AMSE: Sample Size = 800

Table 2.B.4: Simulation results: Accuracy Measure = AMSE & Sample Size = 800

Simulation Design Comparison of Methods

Class Dim. DGP Statistic Ologit Naive Ordinal Cond. Ordered Ordered* Multi Multi*

3 Low Simple mean 0.0025 0.0618 0.0624 0.0451 0.0461 0.0688 0.0472 0.0691
st.dev. 0.0009 0.0032 0.0036 0.0006 0.0010 0.0006 0.0007 0.0006
t-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

3 Low Complex mean 0.0875 0.0848 0.0834 0.0482 0.0414 0.0574 0.0439 0.0602
st.dev. 0.0008 0.0020 0.0020 0.0011 0.0010 0.0011 0.0011 0.0010
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 High Simple mean 0.0866 0.0870 0.0840 0.0861 0.0920 0.0861 0.0920
st.dev. 0.0005 0.0007 0.0005 0.0005 0.0003 0.0004 0.0003
t-test 0.0000 0.0000 1.0000 0.0000 0.5234 0.0000
wilcox-test 0.0000 0.0000 1.0000 0.0000 0.4713 0.0000

3 High Complex mean 0.0969 0.0977 0.0717 0.0656 0.0749 0.0675 0.0789
st.dev. 0.0006 0.0008 0.0009 0.0010 0.0009 0.0009 0.0011
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 Low Simple mean 0.0010 0.0260 0.0260 0.0206 0.0231 0.0287 0.0234 0.0292
st.dev. 0.0003 0.0010 0.0014 0.0003 0.0005 0.0002 0.0003 0.0002
t-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

6 Low Complex mean 0.0376 0.0406 0.0384 0.0219 0.0208 0.0257 0.0221 0.0280
st.dev. 0.0003 0.0010 0.0009 0.0004 0.0004 0.0004 0.0004 0.0003
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 High Simple mean 0.0333 0.0332 0.0325 0.0339 0.0350 0.0343 0.0353
st.dev. 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001
t-test 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000

6 High Complex mean 0.0404 0.0399 0.0308 0.0287 0.0325 0.0313 0.0352
st.dev. 0.0002 0.0002 0.0003 0.0003 0.0004 0.0004 0.0003
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

9 Low Simple mean 0.0006 0.0140 0.0138 0.0113 0.0136 0.0153 0.0135 0.0156
st.dev. 0.0002 0.0004 0.0006 0.0002 0.0003 0.0001 0.0002 0.0001
t-test 1.0000 0.0000 0.0121 1.0000 0.0000 1.0000 0.0000
wilcox-test 1.0000 0.0000 0.0241 1.0000 0.0000 1.0000 0.0000

9 Low Complex mean 0.0178 0.0187 0.0181 0.0114 0.0124 0.0132 0.0126 0.0149
st.dev. 0.0001 0.0004 0.0005 0.0002 0.0003 0.0002 0.0002 0.0001
t-test 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

9 High Simple mean 0.0171 0.0171 0.0167 0.0179 0.0179 0.0184 0.0181
st.dev. 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
t-test 1.0000 1.0000 1.0000 0.9803 0.0000 0.0000
wilcox-test 1.0000 1.0000 1.0000 0.9670 0.0000 0.0000

9 High Complex mean 0.0191 0.0191 0.0162 0.0161 0.0170 0.0176 0.0187
st.dev. 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: Table reports the average measures of the MSE based on 100 simulation replications for the sample size of 800
observations. The first column denotes the number of outcome classes. Columns 2 and 3 specify the dimension and the DGP,
respectively. The fourth column Statistic shows the mean and the standard deviation of the accuracy measure for all methods.
Additionally, t-test and wilcox-test contain the p-values of the parametric t-test as well as the nonparametric Wilcoxon test
for the equality of means between the results of the Ordered Forest and all the other methods.
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2.B.1.5 ARPS & AMSE: Sample Size = 3200

Table 2.B.5: Simulation results: Accuracy Measure = ARPS/AMSE & Sample Size = 3200

Simulation Design ARPS AMSE

Class Dim. DGP Statistic Ordered Ordered* Ordered Ordered*

3 Low Simple mean 0.0373 0.0670 0.0376 0.0591
st.dev. 0.0004 0.0005 0.0005 0.0004
t-test 0.0000 0.0000
wilcox-test 0.0000 0.0000

3 Low Complex mean 0.0285 0.0415 0.0243 0.0336
st.dev. 0.0004 0.0005 0.0003 0.0004
t-test 0.0000 0.0000
wilcox-test 0.0000 0.0000

3 High Simple mean 0.0956 0.1069 0.0798 0.0872
st.dev. 0.0003 0.0002 0.0002 0.0002
t-test 0.0000 0.0000
wilcox-test 0.0000 0.0000

3 High Complex mean 0.0498 0.0620 0.0557 0.0653
st.dev. 0.0004 0.0005 0.0005 0.0005
t-test 0.0000 0.0000
wilcox-test 0.0000 0.0000

6 Low Simple mean 0.0335 0.0593 0.0188 0.0253
st.dev. 0.0004 0.0004 0.0002 0.0001
t-test 0.0000 0.0000
wilcox-test 0.0000 0.0000

6 Low Complex mean 0.0255 0.0367 0.0162 0.0197
st.dev. 0.0003 0.0004 0.0002 0.0002
t-test 0.0000 0.0000
wilcox-test 0.0000 0.0000

6 High Simple mean 0.0825 0.0923 0.0314 0.0335
st.dev. 0.0002 0.0002 0.0001 0.0000
t-test 0.0000 0.0000
wilcox-test 0.0000 0.0000

6 High Complex mean 0.0526 0.0656 0.0264 0.0292
st.dev. 0.0004 0.0004 0.0002 0.0001
t-test 0.0000 0.0000
wilcox-test 0.0000 0.0000

9 Low Simple mean 0.0321 0.0565 0.0110 0.0136
st.dev. 0.0003 0.0003 0.0001 0.0001
t-test 0.0000 0.0000
wilcox-test 0.0000 0.0000

9 Low Complex mean 0.0244 0.0350 0.0098 0.0110
st.dev. 0.0002 0.0003 0.0001 0.0001
t-test 0.0000 0.0000
wilcox-test 0.0000 0.0000

9 High Simple mean 0.0783 0.0875 0.0165 0.0172
st.dev. 0.0002 0.0002 0.0000 0.0000
t-test 0.0000 0.0000
wilcox-test 0.0000 0.0000

9 High Complex mean 0.0559 0.0697 0.0145 0.0160
st.dev. 0.0004 0.0004 0.0001 0.0001
t-test 0.0000 0.0000
wilcox-test 0.0000 0.0000

Notes: Table reports the average measures of the RPS and MSE based on 100 simulation
replications for the sample size of 3200 observations. The first column denotes the number
of outcome classes. Columns 2 and 3 specify the dimension and the DGP, respectively. The
fourth column Statistic shows the mean and the standard deviation of the accuracy measure
for all methods. Additionally, t-test and wilcox-test contain the p-values of the parametric
t-test as well as the nonparametric Wilcoxon test for the equality of means between the
results of the Ordered Forest and the honest version of the Ordered Forest.
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Figure 2.B.1: Ordered Forest Simulation Results: Simple DGP & Low Dimension

Note: Figure summarizes the prediction accuracy results based on 100 simulation replications. The upper panel contains
the ARPS and the lower panel contains the AMSE. The boxplots show the median and the interquartile range of the
respective measure. The transparent boxplots denote the results for the small sample size, the semi-transparent ones denote
the medium sample size, while the bold boxplots denote the results for the big sample size. From left to right the results
for 3, 6, and 9 outcome classes are displayed.
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Figure 2.B.2: Ordered Forest Simulation Results: Complex DGP & Low Dimension

Note: Figure summarizes the prediction accuracy results based on 100 simulation replications. The upper panel contains
the ARPS and the lower panel contains the AMSE. The boxplots show the median and the interquartile range of the
respective measure. The transparent boxplots denote the results for the small sample size, the semi-transparent ones denote
the medium sample size, while the bold boxplots denote the results for the big sample size. From left to right the results
for 3, 6, and 9 outcome classes are displayed.
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Figure 2.B.3: Ordered Forest Simulation Results: Simple DGP & High Dimension

Note: Figure summarizes the prediction accuracy results based on 100 simulation replications. The upper panel contains
the ARPS and the lower panel contains the AMSE. The boxplots show the median and the interquartile range of the
respective measure. The transparent boxplots denote the results for the small sample size, the semi-transparent ones denote
the medium sample size, while the bold boxplots denote the results for the big sample size. From left to right the results
for 3, 6, and 9 outcome classes are displayed.
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Figure 2.B.4: Ordered Forest Simulation Results: Complex DGP & High Dimension

Note: Figure summarizes the prediction accuracy results based on 100 simulation replications. The upper panel contains
the ARPS and the lower panel contains the AMSE. The boxplots show the median and the interquartile range of the
respective measure. The transparent boxplots denote the results for the small sample size, the semi-transparent ones denote
the medium sample size, while the bold boxplots denote the results for the big sample size. From left to right the results
for 3, 6, and 9 outcome classes are displayed.
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2.B.2 Complete Simulation Results

Tables 2.B.6 to 2.B.17 below summarize the simulation results for all 72 different DGPs, comple-

menting the main results presented in Section 2.5.3 of the main text. Each table specifies the particular

simulation design as follows: the first column DGP provides the identifier for the data generating process.

Columns 2 to 5 specify the particular characteristics of the respective DGP, namely if the DGP features

additional noise variables (noise), 15 in the low-dimensional case and 1000 in the high-dimensional case,

nonlinear effects (nonlin), multicollinearity among covariates (multi ), and randomly spaced thresholds

(random). The sixth column Statistic contains summary statistics of the simulation results. In particular,

the mean of the respective accuracy measure (mean) and its standard deviation (st.dev.). Furthermore,

rows t-test and wilcox-test contain the p-values of the parametric t-test as well as the nonparametric

Wilcoxon test for the equality of means between the results of the Ordered Forest and all the other

methods. The alternative hypothesis is that the mean of the Ordered Forest is less than the mean of the

other method to test if the Ordered Forest achieves significantly lower prediction error than the other

considered methods.
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2.B.2.1 ARPS: Low Dimension with 3 Classes

Table 2.B.6: Simulation Results: Accuracy Measure = ARPS & Low Dimension with 3 Classes

Simulation Design Comparison of Methods

DGP noise nonlin multi random Statistic Ologit Naive Ordinal Cond. Ordered Ordered* Multi Multi*

1 ✗ ✗ ✗ ✗ mean 0.0097 0.0765 0.0755 0.0625 0.0609 0.0954 0.0619 0.0954
st.dev. 0.0042 0.0056 0.0055 0.0018 0.0020 0.0011 0.0019 0.0012
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 ✓ ✗ ✗ ✗ mean 0.0216 0.0840 0.0832 0.0738 0.0754 0.1041 0.0763 0.1041
st.dev. 0.0054 0.0046 0.0048 0.0015 0.0016 0.0013 0.0016 0.0013
t-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0001 0.0000
wilcox-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0001 0.0000

3 ✗ ✓ ✗ ✗ mean 0.0904 0.0715 0.0726 0.0688 0.0681 0.0824 0.0672 0.0824
st.dev. 0.0045 0.0031 0.0033 0.0021 0.0022 0.0013 0.0020 0.0013
t-test 0.0000 0.0000 0.0000 0.0132 0.0000 0.9988 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0070 0.0000 0.9976 0.0000

4 ✗ ✗ ✓ ✗ mean 0.0097 0.1236 0.1194 0.0316 0.0297 0.0449 0.0297 0.0493
st.dev. 0.0031 0.0079 0.0079 0.0015 0.0015 0.0013 0.0014 0.0013
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.4099 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.3721 0.0000

5 ✗ ✗ ✗ ✓ mean 0.0104 0.0730 0.0698 0.0611 0.0594 0.0942 0.0607 0.0948
st.dev. 0.0035 0.0072 0.0066 0.0017 0.0020 0.0015 0.0021 0.0016
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 ✓ ✓ ✗ ✗ mean 0.1052 0.0772 0.0781 0.0763 0.0768 0.0863 0.0759 0.0862
st.dev. 0.0066 0.0025 0.0030 0.0021 0.0020 0.0011 0.0019 0.0011
t-test 0.0000 0.1612 0.0004 0.9717 0.0000 0.9998 0.0000
wilcox-test 0.0000 0.1979 0.0004 0.9589 0.0000 0.9996 0.0000

7 ✓ ✗ ✓ ✗ mean 0.0221 0.1349 0.1321 0.0344 0.0335 0.0502 0.0353 0.0569
st.dev. 0.0064 0.0060 0.0057 0.0013 0.0011 0.0021 0.0013 0.0022
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 ✓ ✗ ✗ ✓ mean 0.0196 0.0750 0.0753 0.0669 0.0694 0.0938 0.0699 0.0940
st.dev. 0.0056 0.0036 0.0040 0.0017 0.0019 0.0010 0.0018 0.0010
t-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0412 0.0000
wilcox-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0339 0.0000

9 ✗ ✓ ✓ ✗ mean 0.1116 0.1204 0.1170 0.0486 0.0401 0.0706 0.0422 0.0722
st.dev. 0.0030 0.0077 0.0075 0.0022 0.0021 0.0025 0.0021 0.0024
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 ✗ ✓ ✗ ✓ mean 0.0905 0.0703 0.0693 0.0673 0.0668 0.0808 0.0672 0.0809
st.dev. 0.0047 0.0042 0.0042 0.0023 0.0023 0.0013 0.0023 0.0013
t-test 0.0000 0.0000 0.0000 0.0650 0.0000 0.0923 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0862 0.0000 0.0921 0.0000

11 ✗ ✗ ✓ ✓ mean 0.0111 0.1299 0.1284 0.0312 0.0295 0.0428 0.0298 0.0463
st.dev. 0.0042 0.0115 0.0121 0.0017 0.0017 0.0014 0.0016 0.0015
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0868 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0901 0.0000

12 ✓ ✓ ✓ ✗ mean 0.1297 0.1232 0.1209 0.0639 0.0483 0.0809 0.0512 0.0819
st.dev. 0.0051 0.0058 0.0055 0.0024 0.0025 0.0028 0.0023 0.0027
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13 ✓ ✓ ✗ ✓ mean 0.0915 0.0682 0.0697 0.0675 0.0689 0.0764 0.0677 0.0764
st.dev. 0.0063 0.0022 0.0024 0.0020 0.0020 0.0011 0.0019 0.0011
t-test 0.0000 0.9877 0.0036 1.0000 0.0000 1.0000 0.0000
wilcox-test 0.0000 0.9813 0.0032 1.0000 0.0000 1.0000 0.0000

14 ✓ ✗ ✓ ✓ mean 0.0235 0.1219 0.1194 0.0319 0.0312 0.0468 0.0324 0.0524
st.dev. 0.0068 0.0052 0.0050 0.0015 0.0014 0.0020 0.0014 0.0021
t-test 1.0000 0.0000 0.0000 0.0012 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0008 0.0000 0.0000 0.0000

15 ✗ ✓ ✓ ✓ mean 0.1118 0.1222 0.1204 0.0482 0.0396 0.0688 0.0411 0.0712
st.dev. 0.0042 0.0087 0.0092 0.0024 0.0025 0.0026 0.0024 0.0026
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

16 ✓ ✓ ✓ ✓ mean 0.1156 0.1044 0.1028 0.0593 0.0466 0.0748 0.0491 0.0760
st.dev. 0.0047 0.0039 0.0038 0.0023 0.0026 0.0028 0.0024 0.0027
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: Table reports the average measures of the RPS based on 100 simulation replications for the sample size of 200 observations with 3
outcome classes. Columns 1 to 5 specify the DGP identifier and its features, namely 15 additional noise variables (noise), nonlinear effects
(nonlin), multicollinearity among covariates (multi), and randomly spaced thresholds (random). The sixth column Statistic shows the mean
and the standard deviation of the accuracy measure for all methods. Additionally, t-test and wilcox-test contain the p-values of the parametric
t-test as well as the nonparametric Wilcoxon test for the equality of means between the results of the Ordered Forest and all the other methods.
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2.B.2.2 ARPS: Low Dimension with 6 Classes

Table 2.B.7: Simulation Results: Accuracy Measure = ARPS & Low Dimension with 6 Classes

Simulation Design Comparison of Methods

DGP noise nonlin multi random Statistic Ologit Naive Ordinal Cond. Ordered Ordered* Multi Multi*

17 ✗ ✗ ✗ ✗ mean 0.0062 0.0687 0.0665 0.0554 0.0544 0.0833 0.0577 0.0872
st.dev. 0.0020 0.0048 0.0050 0.0012 0.0014 0.0009 0.0016 0.0010
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

18 ✓ ✗ ✗ ✗ mean 0.0129 0.0726 0.0708 0.0645 0.0669 0.0901 0.0709 0.0932
st.dev. 0.0034 0.0026 0.0028 0.0013 0.0012 0.0007 0.0013 0.0007
t-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

19 ✗ ✓ ✗ ✗ mean 0.0749 0.0610 0.0608 0.0585 0.0593 0.0707 0.0597 0.0725
st.dev. 0.0022 0.0030 0.0027 0.0016 0.0018 0.0010 0.0020 0.0010
t-test 0.0000 0.0000 0.0000 0.9996 0.0000 0.0947 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.9995 0.0000 0.0966 0.0000

20 ✗ ✗ ✓ ✗ mean 0.0059 0.1111 0.1071 0.0285 0.0273 0.0407 0.0292 0.0539
st.dev. 0.0016 0.0050 0.0061 0.0010 0.0009 0.0011 0.0010 0.0015
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

21 ✗ ✗ ✗ ✓ mean 0.0062 0.0670 0.0648 0.0544 0.0537 0.0816 0.0569 0.0853
st.dev. 0.0022 0.0044 0.0044 0.0013 0.0014 0.0009 0.0015 0.0009
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

22 ✓ ✓ ✗ ✗ mean 0.0853 0.0650 0.0651 0.0644 0.0664 0.0735 0.0675 0.0748
st.dev. 0.0049 0.0022 0.0022 0.0016 0.0014 0.0008 0.0014 0.0006
t-test 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000

23 ✓ ✗ ✓ ✗ mean 0.0106 0.1177 0.1145 0.0313 0.0307 0.0462 0.0377 0.0640
st.dev. 0.0028 0.0038 0.0049 0.0010 0.0008 0.0014 0.0011 0.0018
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24 ✓ ✗ ✗ ✓ mean 0.0148 0.0745 0.0722 0.0655 0.0677 0.0919 0.0718 0.0946
st.dev. 0.0040 0.0032 0.0029 0.0012 0.0013 0.0009 0.0014 0.0008
t-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

25 ✗ ✓ ✓ ✗ mean 0.0952 0.0995 0.0961 0.0439 0.0372 0.0630 0.0418 0.0747
st.dev. 0.0020 0.0041 0.0043 0.0016 0.0016 0.0017 0.0016 0.0020
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

26 ✗ ✓ ✗ ✓ mean 0.0733 0.0590 0.0594 0.0573 0.0582 0.0691 0.0586 0.0707
st.dev. 0.0024 0.0021 0.0020 0.0015 0.0015 0.0010 0.0015 0.0009
t-test 0.0000 0.0017 0.0000 1.0000 0.0000 0.0660 0.0000
wilcox-test 0.0000 0.0041 0.0000 1.0000 0.0000 0.0809 0.0000

27 ✗ ✗ ✓ ✓ mean 0.0053 0.1069 0.1046 0.0278 0.0266 0.0401 0.0286 0.0533
st.dev. 0.0014 0.0048 0.0056 0.0010 0.0009 0.0011 0.0009 0.0015
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

28 ✓ ✓ ✓ ✗ mean 0.1090 0.1022 0.1001 0.0564 0.0447 0.0709 0.0527 0.0843
st.dev. 0.0041 0.0031 0.0030 0.0015 0.0018 0.0020 0.0018 0.0024
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

29 ✓ ✓ ✗ ✓ mean 0.0881 0.0666 0.0662 0.0658 0.0676 0.0751 0.0697 0.0764
st.dev. 0.0051 0.0024 0.0022 0.0016 0.0015 0.0008 0.0015 0.0006
t-test 0.0000 0.9997 1.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000

30 ✓ ✗ ✓ ✓ mean 0.0118 0.1214 0.1161 0.0317 0.0309 0.0469 0.0378 0.0642
st.dev. 0.0032 0.0046 0.0055 0.0009 0.0008 0.0014 0.0012 0.0019
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

31 ✗ ✓ ✓ ✓ mean 0.0931 0.0956 0.0925 0.0434 0.0368 0.0619 0.0414 0.0731
st.dev. 0.0019 0.0044 0.0045 0.0015 0.0014 0.0016 0.0014 0.0020
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

32 ✓ ✓ ✓ ✓ mean 0.1122 0.1093 0.1058 0.0574 0.0452 0.0719 0.0536 0.0842
st.dev. 0.0040 0.0045 0.0044 0.0017 0.0020 0.0022 0.0021 0.0024
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: Table reports the average measures of the RPS based on 100 simulation replications for the sample size of 200 observations with 6
outcome classes. Columns 1 to 5 specify the DGP identifier and its features, namely 15 additional noise variables (noise), nonlinear effects
(nonlin), multicollinearity among covariates (multi), and randomly spaced thresholds (random). The sixth column Statistic shows the mean
and the standard deviation of the accuracy measure for all methods. Additionally, t-test and wilcox-test contain the p-values of the parametric
t-test as well as the nonparametric Wilcoxon test for the equality of means between the results of the Ordered Forest and all the other methods.
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2.B.2.3 ARPS: Low Dimension with 9 Classes

Table 2.B.8: Simulation Results: Accuracy Measure = ARPS & Low Dimension with 9 Classes

Simulation Design Comparison of Methods

DGP noise nonlin multi random Statistic Ologit Naive Ordinal Cond. Ordered Ordered* Multi Multi*

33 ✗ ✗ ✗ ✗ mean 0.0054 0.0653 0.0629 0.0528 0.0519 0.0789 0.0569 0.0850
st.dev. 0.0018 0.0042 0.0042 0.0012 0.0014 0.0009 0.0017 0.0009
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

34 ✓ ✗ ✗ ✗ mean 0.0112 0.0693 0.0672 0.0609 0.0638 0.0855 0.0704 0.0901
st.dev. 0.0028 0.0027 0.0027 0.0012 0.0012 0.0007 0.0013 0.0006
t-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

35 ✗ ✓ ✗ ✗ mean 0.0706 0.0573 0.0572 0.0555 0.0567 0.0669 0.0590 0.0698
st.dev. 0.0023 0.0026 0.0027 0.0014 0.0015 0.0009 0.0016 0.0007
t-test 0.0000 0.0220 0.0445 1.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0788 0.2389 1.0000 0.0000 0.0000 0.0000

36 ✗ ✗ ✓ ✗ mean 0.0052 0.1057 0.1047 0.0277 0.0263 0.0396 0.0303 0.0601
st.dev. 0.0014 0.0046 0.0056 0.0009 0.0009 0.0010 0.0010 0.0014
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

37 ✗ ✗ ✗ ✓ mean 0.0054 0.0627 0.0608 0.0518 0.0511 0.0774 0.0558 0.0835
st.dev. 0.0019 0.0036 0.0035 0.0012 0.0014 0.0009 0.0016 0.0010
t-test 1.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000

38 ✓ ✓ ✗ ✗ mean 0.0806 0.0607 0.0608 0.0606 0.0629 0.0695 0.0661 0.0715
st.dev. 0.0036 0.0016 0.0018 0.0013 0.0012 0.0008 0.0014 0.0007
t-test 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000

39 ✓ ✗ ✓ ✗ mean 0.0086 0.1122 0.1102 0.0301 0.0295 0.0443 0.0408 0.0710
st.dev. 0.0017 0.0036 0.0041 0.0009 0.0008 0.0012 0.0011 0.0017
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

40 ✓ ✗ ✗ ✓ mean 0.0106 0.0663 0.0646 0.0586 0.0615 0.0820 0.0679 0.0866
st.dev. 0.0028 0.0026 0.0026 0.0011 0.0012 0.0008 0.0012 0.0007
t-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

41 ✗ ✓ ✓ ✗ mean 0.0897 0.0929 0.0897 0.0417 0.0356 0.0596 0.0424 0.0776
st.dev. 0.0017 0.0037 0.0038 0.0014 0.0013 0.0015 0.0014 0.0018
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

42 ✗ ✓ ✗ ✓ mean 0.0701 0.0565 0.0564 0.0545 0.0556 0.0657 0.0579 0.0685
st.dev. 0.0025 0.0024 0.0024 0.0015 0.0014 0.0008 0.0016 0.0007
t-test 0.0000 0.0006 0.0010 1.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0028 0.0066 1.0000 0.0000 0.0000 0.0000

43 ✗ ✗ ✓ ✓ mean 0.0051 0.1034 0.1025 0.0273 0.0258 0.0394 0.0298 0.0593
st.dev. 0.0015 0.0040 0.0045 0.0008 0.0007 0.0010 0.0009 0.0014
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

44 ✓ ✓ ✓ ✗ mean 0.1018 0.0956 0.0933 0.0534 0.0432 0.0673 0.0550 0.0873
st.dev. 0.0035 0.0031 0.0031 0.0013 0.0016 0.0017 0.0019 0.0021
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

45 ✓ ✓ ✗ ✓ mean 0.0763 0.0587 0.0588 0.0582 0.0605 0.0664 0.0638 0.0684
st.dev. 0.0040 0.0019 0.0018 0.0014 0.0012 0.0007 0.0011 0.0006
t-test 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000

46 ✓ ✗ ✓ ✓ mean 0.0084 0.1079 0.1066 0.0292 0.0286 0.0432 0.0391 0.0699
st.dev. 0.0021 0.0034 0.0040 0.0008 0.0007 0.0012 0.0012 0.0017
t-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

47 ✗ ✓ ✓ ✓ mean 0.0881 0.0915 0.0887 0.0411 0.0352 0.0588 0.0414 0.0765
st.dev. 0.0017 0.0039 0.0041 0.0014 0.0012 0.0014 0.0014 0.0016
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

48 ✓ ✓ ✓ ✓ mean 0.0973 0.0912 0.0887 0.0515 0.0421 0.0647 0.0537 0.0845
st.dev. 0.0031 0.0033 0.0032 0.0015 0.0016 0.0019 0.0018 0.0017
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: Table reports the average measures of the RPS based on 100 simulation replications for the sample size of 200 observations with 9
outcome classes. Columns 1 to 5 specify the DGP identifier and its features, namely 15 additional noise variables (noise), nonlinear effects
(nonlin), multicollinearity among covariates (multi), and randomly spaced thresholds (random). The sixth column Statistic shows the mean
and the standard deviation of the accuracy measure for all methods. Additionally, t-test and wilcox-test contain the p-values of the parametric
t-test as well as the nonparametric Wilcoxon test for the equality of means between the results of the Ordered Forest and all the other methods.
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2.B.2.4 ARPS: High Dimension with 3 Classes

Table 2.B.9: Simulation Results: Accuracy Measure = ARPS & High Dimension with 3 Classes

Simulation Design Comparison of Methods

DGP noise nonlin multi random Statistic Naive Ordinal Cond. Ordered Ordered* Multi Multi*

49 ✓ ✗ ✗ ✗ mean 0.1135 0.1139 0.1112 0.1140 0.1180 0.1139 0.1179
st.dev. 0.0009 0.0010 0.0009 0.0008 0.0006 0.0008 0.0006
t-test 1.0000 0.7676 1.0000 0.0000 0.7268 0.0000
wilcox-test 0.9999 0.8438 1.0000 0.0000 0.7191 0.0000

50 ✓ ✓ ✗ ✗ mean 0.0896 0.0899 0.0901 0.0903 0.0907 0.0901 0.0907
st.dev. 0.0008 0.0010 0.0008 0.0007 0.0007 0.0007 0.0006
t-test 1.0000 0.9997 0.9840 0.0002 0.9973 0.0004
wilcox-test 1.0000 1.0000 0.9929 0.0000 0.9989 0.0000

51 ✓ ✗ ✓ ✗ mean 0.1534 0.1529 0.0827 0.0766 0.1082 0.0867 0.1134
st.dev. 0.0011 0.0012 0.0024 0.0025 0.0029 0.0024 0.0026
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

52 ✓ ✗ ✗ ✓ mean 0.1253 0.1252 0.1224 0.1248 0.1296 0.1250 0.1296
st.dev. 0.0013 0.0013 0.0010 0.0009 0.0007 0.0009 0.0007
t-test 0.0011 0.0115 1.0000 0.0000 0.1664 0.0000
wilcox-test 0.0013 0.0140 1.0000 0.0000 0.1515 0.0000

53 ✓ ✓ ✓ ✗ mean 0.1299 0.1300 0.1048 0.1016 0.1200 0.1021 0.1202
st.dev. 0.0011 0.0012 0.0034 0.0027 0.0026 0.0027 0.0025
t-test 0.0000 0.0000 0.0000 0.0000 0.0674 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0494 0.0000

54 ✓ ✓ ✗ ✓ mean 0.0997 0.0996 0.0999 0.0998 0.1004 0.0997 0.1004
st.dev. 0.0012 0.0013 0.0012 0.0012 0.0011 0.0011 0.0012
t-test 0.5772 0.8438 0.3065 0.0000 0.6432 0.0000
wilcox-test 0.6792 0.9705 0.2427 0.0000 0.7183 0.0000

55 ✓ ✗ ✓ ✓ mean 0.1678 0.1667 0.0862 0.0836 0.1167 0.0906 0.1195
st.dev. 0.0015 0.0013 0.0026 0.0030 0.0029 0.0029 0.0029
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

56 ✓ ✓ ✓ ✓ mean 0.1476 0.1474 0.1156 0.1102 0.1316 0.1110 0.1317
st.dev. 0.0013 0.0010 0.0041 0.0029 0.0031 0.0029 0.0031
t-test 0.0000 0.0000 0.0000 0.0000 0.0287 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0272 0.0000

Notes: Table reports the average measures of the RPS based on 100 simulation replications for the sample size of 200 observations
with 3 outcome classes. Columns 1 to 5 specify the DGP identifier and its features, namely 1000 additional noise variables (noise),
nonlinear effects (nonlin), multicollinearity among covariates (multi), and randomly spaced thresholds (random). The sixth column
Statistic shows the mean and the standard deviation of the accuracy measure for all methods. Additionally, t-test and wilcox-test
contain the p-values of the parametric t-test as well as the nonparametric Wilcoxon test for the equality of means between the results
of the Ordered Forest and all the other methods.
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2.B.2.5 ARPS: High Dimension with 6 Classes

Table 2.B.10: Simulation Results: Accuracy Measure = ARPS & High Dimension with 6 Classes

Simulation Design Comparison of Methods

DGP noise nonlin multi random Statistic Naive Ordinal Cond. Ordered Ordered* Multi Multi*

57 ✓ ✗ ✗ ✗ mean 0.0974 0.0972 0.0951 0.0983 0.1012 0.0998 0.1016
st.dev. 0.0006 0.0006 0.0006 0.0005 0.0004 0.0005 0.0004
t-test 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000

58 ✓ ✓ ✗ ✗ mean 0.0762 0.0762 0.0765 0.0773 0.0772 0.0776 0.0773
st.dev. 0.0006 0.0006 0.0006 0.0005 0.0005 0.0004 0.0004
t-test 1.0000 1.0000 1.0000 0.9803 0.0000 0.7833
wilcox-test 1.0000 1.0000 1.0000 0.9838 0.0000 0.7449

59 ✓ ✗ ✓ ✗ mean 0.1336 0.1327 0.0747 0.0675 0.0968 0.0912 0.1152
st.dev. 0.0008 0.0010 0.0013 0.0016 0.0015 0.0016 0.0017
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

60 ✓ ✗ ✗ ✓ mean 0.0845 0.0845 0.0826 0.0857 0.0880 0.0872 0.0883
st.dev. 0.0005 0.0005 0.0006 0.0004 0.0003 0.0004 0.0003
t-test 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000

61 ✓ ✓ ✓ ✗ mean 0.1091 0.1088 0.0891 0.0885 0.1026 0.1010 0.1105
st.dev. 0.0009 0.0008 0.0025 0.0021 0.0018 0.0023 0.0010
t-test 0.0000 0.0000 0.0547 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0626 0.0000 0.0000 0.0000

62 ✓ ✓ ✗ ✓ mean 0.0658 0.0659 0.0660 0.0669 0.0665 0.0672 0.0666
st.dev. 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005
t-test 1.0000 1.0000 1.0000 1.0000 0.0006 0.9998
wilcox-test 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000

63 ✓ ✗ ✓ ✓ mean 0.1167 0.1163 0.0682 0.0606 0.0872 0.0820 0.1052
st.dev. 0.0007 0.0008 0.0014 0.0016 0.0015 0.0018 0.0015
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

64 ✓ ✓ ✓ ✓ mean 0.0927 0.0927 0.0766 0.0772 0.0882 0.0898 0.0952
st.dev. 0.0006 0.0005 0.0020 0.0016 0.0014 0.0018 0.0006
t-test 0.0000 0.0000 0.9878 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.9887 0.0000 0.0000 0.0000

Notes: Table reports the average measures of the RPS based on 100 simulation replications for the sample size of 200 observations
with 6 outcome classes. Columns 1 to 5 specify the DGP identifier and its features, namely 1000 additional noise variables (noise),
nonlinear effects (nonlin), multicollinearity among covariates (multi), and randomly spaced thresholds (random). The sixth column
Statistic shows the mean and the standard deviation of the accuracy measure for all methods. Additionally, t-test and wilcox-test
contain the p-values of the parametric t-test as well as the nonparametric Wilcoxon test for the equality of means between the results
of the Ordered Forest and all the other methods.
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2.B.2.6 ARPS: High Dimension with 9 Classes

Table 2.B.11: Simulation Results: Accuracy Measure = ARPS & High Dimension with 9 Classes

Simulation Design Comparison of Methods

DGP noise nonlin multi random Statistic Naive Ordinal Cond. Ordered Ordered* Multi Multi*

65 ✓ ✗ ✗ ✗ mean 0.0921 0.0918 0.0900 0.0931 0.0959 0.0955 0.0964
st.dev. 0.0006 0.0006 0.0006 0.0005 0.0003 0.0004 0.0003
t-test 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000

66 ✓ ✓ ✗ ✗ mean 0.0721 0.0720 0.0724 0.0732 0.0730 0.0739 0.0731
st.dev. 0.0006 0.0005 0.0006 0.0005 0.0004 0.0004 0.0004
t-test 1.0000 1.0000 1.0000 0.9959 0.0000 0.8717
wilcox-test 1.0000 1.0000 1.0000 0.9991 0.0000 0.9308

67 ✓ ✗ ✓ ✗ mean 0.1268 0.1260 0.0713 0.0648 0.0926 0.0979 0.1175
st.dev. 0.0008 0.0009 0.0013 0.0013 0.0014 0.0017 0.0015
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

68 ✓ ✗ ✗ ✓ mean 0.0904 0.0902 0.0884 0.0915 0.0941 0.0937 0.0946
st.dev. 0.0006 0.0006 0.0005 0.0005 0.0003 0.0004 0.0003
t-test 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000

69 ✓ ✓ ✓ ✗ mean 0.1031 0.1028 0.0838 0.0838 0.0967 0.1024 0.1061
st.dev. 0.0007 0.0007 0.0021 0.0017 0.0016 0.0016 0.0005
t-test 0.0000 0.0000 0.4695 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.5044 0.0000 0.0000 0.0000

70 ✓ ✓ ✗ ✓ mean 0.0706 0.0707 0.0710 0.0718 0.0716 0.0724 0.0717
st.dev. 0.0007 0.0007 0.0006 0.0006 0.0005 0.0005 0.0006
t-test 1.0000 1.0000 1.0000 0.9903 0.0000 0.8186
wilcox-test 1.0000 1.0000 1.0000 0.9983 0.0000 0.8723

71 ✓ ✗ ✓ ✓ mean 0.1246 0.1238 0.0704 0.0636 0.0911 0.0966 0.1153
st.dev. 0.0007 0.0008 0.0014 0.0013 0.0014 0.0016 0.0018
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

72 ✓ ✓ ✓ ✓ mean 0.1007 0.1004 0.0817 0.0819 0.0945 0.0997 0.1036
st.dev. 0.0007 0.0007 0.0020 0.0017 0.0015 0.0019 0.0006
t-test 0.0000 0.0000 0.7875 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.8473 0.0000 0.0000 0.0000

Notes: Table reports the average measures of the RPS based on 100 simulation replications for the sample size of 200 observations
with 9 outcome classes. Columns 1 to 5 specify the DGP identifier and its features, namely 1000 additional noise variables (noise),
nonlinear effects (nonlin), multicollinearity among covariates (multi), and randomly spaced thresholds (random). The sixth column
Statistic shows the mean and the standard deviation of the accuracy measure for all methods. Additionally, t-test and wilcox-test
contain the p-values of the parametric t-test as well as the nonparametric Wilcoxon test for the equality of means between the results
of the Ordered Forest and all the other methods.
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2.B.2.7 AMSE: Low Dimension with 3 Classes

Table 2.B.12: Simulation Results: Accuracy Measure = AMSE & Low Dimension with 3 Classes

Simulation Design Comparison of Methods

DGP noise nonlin multi random Statistic Ologit Naive Ordinal Cond. Ordered Ordered* Multi Multi*

1 ✗ ✗ ✗ ✗ mean 0.0103 0.0669 0.0682 0.0565 0.0587 0.0800 0.0587 0.0800
st.dev. 0.0044 0.0041 0.0044 0.0015 0.0022 0.0009 0.0016 0.0010
t-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.3900 0.0000
wilcox-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.2614 0.0000

2 ✓ ✗ ✗ ✗ mean 0.0227 0.0723 0.0727 0.0648 0.0682 0.0859 0.0684 0.0859
st.dev. 0.0056 0.0034 0.0038 0.0013 0.0015 0.0010 0.0014 0.0010
t-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.1609 0.0000
wilcox-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.1287 0.0000

3 ✗ ✓ ✗ ✗ mean 0.0700 0.0576 0.0609 0.0552 0.0586 0.0644 0.0565 0.0644
st.dev. 0.0032 0.0024 0.0032 0.0016 0.0021 0.0011 0.0016 0.0011
t-test 0.0000 0.9980 0.0000 1.0000 0.0000 1.0000 0.0000
wilcox-test 0.0000 0.9954 0.0000 1.0000 0.0000 1.0000 0.0000

4 ✗ ✗ ✓ ✗ mean 0.0124 0.1217 0.1166 0.0378 0.0370 0.0500 0.0367 0.0554
st.dev. 0.0040 0.0068 0.0068 0.0017 0.0018 0.0014 0.0017 0.0016
t-test 1.0000 0.0000 0.0000 0.0005 0.0000 0.8458 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0003 0.0000 0.8530 0.0000

5 ✗ ✗ ✗ ✓ mean 0.0096 0.0594 0.0567 0.0495 0.0511 0.0726 0.0517 0.0732
st.dev. 0.0032 0.0057 0.0047 0.0015 0.0018 0.0011 0.0017 0.0011
t-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0044 0.0000
wilcox-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0024 0.0000

6 ✓ ✓ ✗ ✗ mean 0.0809 0.0612 0.0636 0.0604 0.0638 0.0671 0.0617 0.0670
st.dev. 0.0048 0.0019 0.0030 0.0016 0.0017 0.0010 0.0015 0.0010
t-test 0.0000 1.0000 0.7436 1.0000 0.0000 1.0000 0.0000
wilcox-test 0.0000 1.0000 0.9265 1.0000 0.0000 1.0000 0.0000

7 ✓ ✗ ✓ ✗ mean 0.0283 0.1297 0.1262 0.0411 0.0407 0.0548 0.0427 0.0634
st.dev. 0.0083 0.0052 0.0049 0.0015 0.0015 0.0020 0.0017 0.0022
t-test 1.0000 0.0000 0.0000 0.0734 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0494 0.0000 0.0000 0.0000

8 ✓ ✗ ✗ ✓ mean 0.0230 0.0722 0.0746 0.0660 0.0705 0.0855 0.0701 0.0857
st.dev. 0.0065 0.0028 0.0038 0.0014 0.0018 0.0008 0.0015 0.0008
t-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.9630 0.0000
wilcox-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.9578 0.0000

9 ✗ ✓ ✓ ✗ mean 0.0968 0.1066 0.1012 0.0493 0.0443 0.0660 0.0465 0.0680
st.dev. 0.0024 0.0070 0.0060 0.0018 0.0021 0.0018 0.0019 0.0016
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 ✗ ✓ ✗ ✓ mean 0.0667 0.0538 0.0533 0.0507 0.0530 0.0599 0.0529 0.0600
st.dev. 0.0034 0.0033 0.0031 0.0017 0.0019 0.0010 0.0018 0.0010
t-test 0.0000 0.0119 0.1801 1.0000 0.0000 0.6401 0.0000
wilcox-test 0.0000 0.0332 0.2314 1.0000 0.0000 0.7041 0.0000

11 ✗ ✗ ✓ ✓ mean 0.0132 0.1201 0.1172 0.0328 0.0326 0.0427 0.0327 0.0472
st.dev. 0.0050 0.0111 0.0113 0.0017 0.0018 0.0013 0.0018 0.0016
t-test 1.0000 0.0000 0.0000 0.1763 0.0000 0.3026 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.1287 0.0000 0.3376 0.0000

12 ✓ ✓ ✓ ✗ mean 0.1104 0.1064 0.1027 0.0616 0.0506 0.0737 0.0540 0.0751
st.dev. 0.0039 0.0051 0.0043 0.0020 0.0024 0.0022 0.0021 0.0019
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13 ✓ ✓ ✗ ✓ mean 0.0765 0.0595 0.0630 0.0587 0.0632 0.0646 0.0605 0.0646
st.dev. 0.0050 0.0016 0.0029 0.0016 0.0019 0.0011 0.0016 0.0011
t-test 0.0000 1.0000 0.7290 1.0000 0.0000 1.0000 0.0000
wilcox-test 0.0000 1.0000 0.8231 1.0000 0.0000 1.0000 0.0000

14 ✓ ✗ ✓ ✓ mean 0.0311 0.1273 0.1244 0.0413 0.0408 0.0553 0.0420 0.0626
st.dev. 0.0090 0.0044 0.0043 0.0019 0.0019 0.0021 0.0018 0.0023
t-test 1.0000 0.0000 0.0000 0.0584 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.0428 0.0000 0.0000 0.0000

15 ✗ ✓ ✓ ✓ mean 0.0878 0.1016 0.0962 0.0420 0.0374 0.0566 0.0387 0.0593
st.dev. 0.0031 0.0081 0.0072 0.0019 0.0022 0.0018 0.0020 0.0018
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

16 ✓ ✓ ✓ ✓ mean 0.1081 0.0985 0.0965 0.0637 0.0543 0.0752 0.0572 0.0768
st.dev. 0.0039 0.0034 0.0029 0.0020 0.0026 0.0021 0.0022 0.0019
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: Table reports the average measures of the MSE based on 100 simulation replications for the sample size of 200 observations with 3
outcome classes. Columns 1 to 5 specify the DGP identifier and its features, namely 15 additional noise variables (noise), nonlinear effects
(nonlin), multicollinearity among covariates (multi), and randomly spaced thresholds (random). The sixth column Statistic shows the mean
and the standard deviation of the accuracy measure for all methods. Additionally, t-test and wilcox-test contain the p-values of the parametric
t-test as well as the nonparametric Wilcoxon test for the equality of means between the results of the Ordered Forest and all the other methods.
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2.B.2.8 AMSE: Low Dimension with 6 Classes

Table 2.B.13: Simulation Results: Accuracy Measure = AMSE & Low Dimension with 6 Classes

Simulation Design Comparison of Methods

DGP noise nonlin multi random Statistic Ologit Naive Ordinal Cond. Ordered Ordered* Multi Multi*

17 ✗ ✗ ✗ ✗ mean 0.0043 0.0284 0.0283 0.0248 0.0291 0.0324 0.0287 0.0327
st.dev. 0.0014 0.0012 0.0018 0.0007 0.0010 0.0005 0.0008 0.0005
t-test 1.0000 1.0000 0.9998 1.0000 0.0000 0.9958 0.0000
wilcox-test 1.0000 1.0000 1.0000 1.0000 0.0000 0.9953 0.0000

18 ✓ ✗ ✗ ✗ mean 0.0083 0.0294 0.0292 0.0272 0.0311 0.0337 0.0310 0.0341
st.dev. 0.0021 0.0007 0.0010 0.0005 0.0006 0.0003 0.0005 0.0003
t-test 1.0000 1.0000 1.0000 1.0000 0.0000 0.9791 0.0000
wilcox-test 1.0000 1.0000 1.0000 1.0000 0.0000 0.9805 0.0000

19 ✗ ✓ ✗ ✗ mean 0.0245 0.0216 0.0222 0.0207 0.0257 0.0237 0.0240 0.0237
st.dev. 0.0007 0.0009 0.0009 0.0006 0.0009 0.0004 0.0008 0.0004
t-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
wilcox-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 ✗ ✗ ✓ ✗ mean 0.0065 0.0600 0.0568 0.0238 0.0259 0.0299 0.0263 0.0356
st.dev. 0.0017 0.0019 0.0023 0.0008 0.0009 0.0007 0.0008 0.0007
t-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0006 0.0000
wilcox-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0002 0.0000

21 ✗ ✗ ✗ ✓ mean 0.0043 0.0283 0.0282 0.0248 0.0291 0.0324 0.0289 0.0327
st.dev. 0.0014 0.0013 0.0015 0.0007 0.0009 0.0005 0.0007 0.0005
t-test 1.0000 1.0000 1.0000 1.0000 0.0000 0.9689 0.0000
wilcox-test 1.0000 1.0000 1.0000 1.0000 0.0000 0.9661 0.0000

22 ✓ ✓ ✗ ✗ mean 0.0273 0.0223 0.0228 0.0220 0.0263 0.0242 0.0249 0.0243
st.dev. 0.0015 0.0007 0.0008 0.0005 0.0007 0.0004 0.0006 0.0003
t-test 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
wilcox-test 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

23 ✓ ✗ ✓ ✗ mean 0.0114 0.0607 0.0580 0.0258 0.0266 0.0319 0.0305 0.0396
st.dev. 0.0030 0.0014 0.0017 0.0007 0.0007 0.0008 0.0008 0.0007
t-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

24 ✓ ✗ ✗ ✓ mean 0.0088 0.0306 0.0296 0.0274 0.0306 0.0346 0.0310 0.0350
st.dev. 0.0023 0.0010 0.0011 0.0005 0.0006 0.0004 0.0006 0.0004
t-test 1.0000 0.6721 1.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.3992 1.0000 1.0000 0.0000 0.0000 0.0000

25 ✗ ✓ ✓ ✗ mean 0.0374 0.0396 0.0377 0.0234 0.0256 0.0292 0.0254 0.0315
st.dev. 0.0007 0.0016 0.0013 0.0008 0.0011 0.0008 0.0009 0.0007
t-test 0.0000 0.0000 0.0000 1.0000 0.0000 0.9637 0.0000
wilcox-test 0.0000 0.0000 0.0000 1.0000 0.0000 0.9567 0.0000

26 ✗ ✓ ✗ ✓ mean 0.0245 0.0215 0.0224 0.0207 0.0256 0.0236 0.0241 0.0237
st.dev. 0.0008 0.0007 0.0009 0.0006 0.0008 0.0004 0.0007 0.0005
t-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
wilcox-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

27 ✗ ✗ ✓ ✓ mean 0.0060 0.0587 0.0560 0.0236 0.0254 0.0297 0.0262 0.0355
st.dev. 0.0015 0.0017 0.0019 0.0007 0.0009 0.0007 0.0009 0.0007
t-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

28 ✓ ✓ ✓ ✗ mean 0.0416 0.0396 0.0384 0.0271 0.0272 0.0312 0.0280 0.0338
st.dev. 0.0014 0.0012 0.0009 0.0006 0.0009 0.0008 0.0008 0.0006
t-test 0.0000 0.0000 0.0000 0.8880 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.8212 0.0000 0.0000 0.0000

29 ✓ ✓ ✗ ✓ mean 0.0292 0.0239 0.0240 0.0231 0.0268 0.0255 0.0261 0.0256
st.dev. 0.0016 0.0009 0.0008 0.0005 0.0007 0.0003 0.0005 0.0003
t-test 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
wilcox-test 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

30 ✓ ✗ ✓ ✓ mean 0.0115 0.0618 0.0580 0.0242 0.0246 0.0306 0.0285 0.0375
st.dev. 0.0029 0.0018 0.0020 0.0006 0.0006 0.0007 0.0008 0.0006
t-test 1.0000 0.0000 0.0000 0.9999 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 0.9999 0.0000 0.0000 0.0000

31 ✗ ✓ ✓ ✓ mean 0.0378 0.0394 0.0375 0.0236 0.0256 0.0295 0.0256 0.0317
st.dev. 0.0008 0.0014 0.0013 0.0007 0.0009 0.0007 0.0008 0.0006
t-test 0.0000 0.0000 0.0000 1.0000 0.0000 0.6494 0.0000
wilcox-test 0.0000 0.0000 0.0000 1.0000 0.0000 0.6416 0.0000

32 ✓ ✓ ✓ ✓ mean 0.0433 0.0438 0.0413 0.0270 0.0260 0.0314 0.0274 0.0339
st.dev. 0.0014 0.0017 0.0014 0.0008 0.0011 0.0009 0.0010 0.0008
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: Table reports the average measures of the MSE based on 100 simulation replications for the sample size of 200 observations with 6
outcome classes. Columns 1 to 5 specify the DGP identifier and its features, namely 15 additional noise variables (noise), nonlinear effects
(nonlin), multicollinearity among covariates (multi), and randomly spaced thresholds (random). The sixth column Statistic shows the mean
and the standard deviation of the accuracy measure for all methods. Additionally, t-test and wilcox-test contain the p-values of the parametric
t-test as well as the nonparametric Wilcoxon test for the equality of means between the results of the Ordered Forest and all the other methods.
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2.B.2.9 AMSE: Low Dimension with 9 Classes

Table 2.B.14: Simulation Results: Accuracy Measure = AMSE & Low Dimension with 9 Classes

Simulation Design Comparison of Methods

DGP noise nonlin multi random Statistic Ologit Naive Ordinal Cond. Ordered Ordered* Multi Multi*

33 ✗ ✗ ✗ ✗ mean 0.0025 0.0150 0.0149 0.0134 0.0170 0.0170 0.0168 0.0172
st.dev. 0.0008 0.0005 0.0007 0.0004 0.0006 0.0003 0.0005 0.0002
t-test 1.0000 1.0000 1.0000 1.0000 0.5492 0.9993 0.0040
wilcox-test 1.0000 1.0000 1.0000 1.0000 0.3269 0.9985 0.0003

34 ✓ ✗ ✗ ✗ mean 0.0046 0.0155 0.0154 0.0144 0.0176 0.0175 0.0175 0.0178
st.dev. 0.0011 0.0004 0.0004 0.0003 0.0004 0.0002 0.0003 0.0002
t-test 1.0000 1.0000 1.0000 1.0000 0.9697 0.9696 0.0011
wilcox-test 1.0000 1.0000 1.0000 1.0000 0.9359 0.9544 0.0003

35 ✗ ✓ ✗ ✗ mean 0.0123 0.0110 0.0114 0.0107 0.0147 0.0121 0.0137 0.0121
st.dev. 0.0004 0.0004 0.0005 0.0004 0.0006 0.0003 0.0005 0.0003
t-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
wilcox-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

36 ✗ ✗ ✓ ✗ mean 0.0044 0.0333 0.0321 0.0148 0.0168 0.0185 0.0175 0.0222
st.dev. 0.0010 0.0008 0.0009 0.0004 0.0005 0.0005 0.0005 0.0003
t-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

37 ✗ ✗ ✗ ✓ mean 0.0026 0.0152 0.0154 0.0136 0.0173 0.0172 0.0170 0.0175
st.dev. 0.0009 0.0005 0.0006 0.0003 0.0006 0.0002 0.0004 0.0002
t-test 1.0000 1.0000 1.0000 1.0000 0.8591 1.0000 0.0034
wilcox-test 1.0000 1.0000 1.0000 1.0000 0.7952 1.0000 0.0032

38 ✓ ✓ ✗ ✗ mean 0.0136 0.0112 0.0115 0.0111 0.0144 0.0122 0.0137 0.0122
st.dev. 0.0006 0.0003 0.0004 0.0003 0.0004 0.0002 0.0003 0.0002
t-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
wilcox-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

39 ✓ ✗ ✓ ✗ mean 0.0066 0.0335 0.0323 0.0159 0.0167 0.0192 0.0200 0.0242
st.dev. 0.0012 0.0006 0.0007 0.0005 0.0005 0.0006 0.0005 0.0004
t-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

40 ✓ ✗ ✗ ✓ mean 0.0046 0.0152 0.0152 0.0142 0.0175 0.0172 0.0173 0.0174
st.dev. 0.0011 0.0004 0.0005 0.0003 0.0004 0.0002 0.0003 0.0002
t-test 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9655
wilcox-test 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9525

41 ✗ ✓ ✓ ✗ mean 0.0190 0.0198 0.0192 0.0127 0.0158 0.0156 0.0152 0.0170
st.dev. 0.0004 0.0007 0.0007 0.0004 0.0006 0.0004 0.0005 0.0003
t-test 0.0000 0.0000 0.0000 1.0000 0.9652 1.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 1.0000 0.9503 1.0000 0.0000

42 ✗ ✓ ✗ ✓ mean 0.0125 0.0112 0.0117 0.0108 0.0147 0.0122 0.0138 0.0122
st.dev. 0.0004 0.0004 0.0007 0.0003 0.0005 0.0002 0.0005 0.0002
t-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
wilcox-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

43 ✗ ✗ ✓ ✓ mean 0.0043 0.0335 0.0324 0.0149 0.0167 0.0187 0.0176 0.0225
st.dev. 0.0013 0.0007 0.0009 0.0005 0.0005 0.0005 0.0005 0.0004
t-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

44 ✓ ✓ ✓ ✗ mean 0.0208 0.0198 0.0193 0.0143 0.0159 0.0164 0.0162 0.0181
st.dev. 0.0007 0.0006 0.0005 0.0003 0.0006 0.0004 0.0005 0.0003
t-test 0.0000 0.0000 0.0000 1.0000 0.0000 0.0001 0.0000
wilcox-test 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

45 ✓ ✓ ✗ ✓ mean 0.0130 0.0110 0.0113 0.0108 0.0142 0.0118 0.0134 0.0118
st.dev. 0.0006 0.0003 0.0003 0.0003 0.0004 0.0003 0.0003 0.0002
t-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
wilcox-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

46 ✓ ✗ ✓ ✓ mean 0.0070 0.0335 0.0325 0.0166 0.0173 0.0200 0.0204 0.0250
st.dev. 0.0016 0.0005 0.0007 0.0004 0.0005 0.0005 0.0005 0.0004
t-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

47 ✗ ✓ ✓ ✓ mean 0.0192 0.0203 0.0198 0.0130 0.0159 0.0158 0.0153 0.0173
st.dev. 0.0004 0.0007 0.0007 0.0004 0.0006 0.0004 0.0005 0.0003
t-test 0.0000 0.0000 0.0000 1.0000 0.6681 1.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 1.0000 0.5336 1.0000 0.0000

48 ✓ ✓ ✓ ✓ mean 0.0203 0.0194 0.0190 0.0142 0.0159 0.0161 0.0162 0.0179
st.dev. 0.0006 0.0006 0.0005 0.0003 0.0005 0.0003 0.0004 0.0003
t-test 0.0000 0.0000 0.0000 1.0000 0.0006 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 1.0000 0.0004 0.0000 0.0000

Notes: Table reports the average measures of the MSE based on 100 simulation replications for the sample size of 200 observations with 9
outcome classes. Columns 1 to 5 specify the DGP identifier and its features, namely 15 additional noise variables (noise), nonlinear effects
(nonlin), multicollinearity among covariates (multi), and randomly spaced thresholds (random). The sixth column Statistic shows the mean
and the standard deviation of the accuracy measure for all methods. Additionally, t-test and wilcox-test contain the p-values of the parametric
t-test as well as the nonparametric Wilcoxon test for the equality of means between the results of the Ordered Forest and all the other methods.
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2.B.2.10 AMSE: High Dimension with 3 Classes

Table 2.B.15: Simulation Results: Accuracy Measure = AMSE & High Dimension with 3 Classes

Simulation Design Comparison of Methods

DGP noise nonlin multi random Statistic Naive Ordinal Cond. Ordered Ordered* Multi Multi*

49 ✓ ✗ ✗ ✗ mean 0.0923 0.0931 0.0908 0.0930 0.0952 0.0926 0.0952
st.dev. 0.0008 0.0013 0.0009 0.0009 0.0007 0.0007 0.0007
t-test 1.0000 0.2408 1.0000 0.0000 0.9980 0.0000
wilcox-test 1.0000 0.5433 1.0000 0.0000 0.9977 0.0000

50 ✓ ✓ ✗ ✗ mean 0.0692 0.0698 0.0696 0.0702 0.0699 0.0696 0.0699
st.dev. 0.0009 0.0013 0.0010 0.0009 0.0009 0.0008 0.0008
t-test 1.0000 0.9907 0.9999 0.9649 1.0000 0.9852
wilcox-test 1.0000 1.0000 1.0000 0.9887 1.0000 0.9944

51 ✓ ✗ ✓ ✗ mean 0.1385 0.1379 0.0864 0.0752 0.1008 0.0881 0.1087
st.dev. 0.0009 0.0010 0.0019 0.0021 0.0023 0.0019 0.0018
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

52 ✓ ✗ ✗ ✓ mean 0.0906 0.0904 0.0884 0.0902 0.0931 0.0902 0.0931
st.dev. 0.0011 0.0013 0.0008 0.0008 0.0007 0.0008 0.0007
t-test 0.0006 0.0794 1.0000 0.0000 0.3296 0.0000
wilcox-test 0.0010 0.1853 1.0000 0.0000 0.2606 0.0000

53 ✓ ✓ ✓ ✗ mean 0.1079 0.1083 0.0910 0.0888 0.1010 0.0892 0.1013
st.dev. 0.0009 0.0011 0.0025 0.0020 0.0019 0.0019 0.0019
t-test 0.0000 0.0000 0.0000 0.0000 0.0936 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0745 0.0000

54 ✓ ✓ ✗ ✓ mean 0.0706 0.0703 0.0703 0.0705 0.0706 0.0704 0.0706
st.dev. 0.0010 0.0011 0.0010 0.0009 0.0009 0.0008 0.0009
t-test 0.1479 0.9409 0.8941 0.1495 0.7655 0.1796
wilcox-test 0.1712 0.9972 0.9496 0.0718 0.8048 0.1178

55 ✓ ✗ ✓ ✓ mean 0.1291 0.1276 0.0725 0.0678 0.0914 0.0758 0.0954
st.dev. 0.0016 0.0010 0.0020 0.0021 0.0021 0.0020 0.0020
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

56 ✓ ✓ ✓ ✓ mean 0.1081 0.1079 0.0863 0.0828 0.0970 0.0834 0.0971
st.dev. 0.0012 0.0009 0.0028 0.0019 0.0021 0.0020 0.0021
t-test 0.0000 0.0000 0.0000 0.0000 0.0264 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0364 0.0000

Notes: Table reports the average measures of the MSE based on 100 simulation replications for the sample size of 200 observations
with 3 outcome classes. Columns 1 to 5 specify the DGP identifier and its features, namely 1000 additional noise variables (noise),
nonlinear effects (nonlin), multicollinearity among covariates (multi), and randomly spaced thresholds (random). The sixth column
Statistic shows the mean and the standard deviation of the accuracy measure for all methods. Additionally, t-test and wilcox-test
contain the p-values of the parametric t-test as well as the nonparametric Wilcoxon test for the equality of means between the results
of the Ordered Forest and all the other methods.
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2.B.2.11 AMSE: High Dimension with 6 Classes

Table 2.B.16: Simulation Results: Accuracy Measure = AMSE & High Dimension with 6 Classes

Simulation Design Comparison of Methods

DGP noise nonlin multi random Statistic Naive Ordinal Cond. Ordered Ordered* Multi Multi*

57 ✓ ✗ ✗ ✗ mean 0.0352 0.0352 0.0347 0.0361 0.0361 0.0360 0.0361
st.dev. 0.0003 0.0004 0.0004 0.0004 0.0004 0.0003 0.0004
t-test 1.0000 1.0000 1.0000 0.8112 0.9994 0.6394
wilcox-test 1.0000 1.0000 1.0000 0.8788 0.9989 0.6579

58 ✓ ✓ ✗ ✗ mean 0.0246 0.0246 0.0246 0.0257 0.0248 0.0252 0.0248
st.dev. 0.0003 0.0003 0.0003 0.0004 0.0003 0.0002 0.0003
t-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
wilcox-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

59 ✓ ✗ ✓ ✗ mean 0.0622 0.0617 0.0459 0.0383 0.0494 0.0479 0.0553
st.dev. 0.0003 0.0003 0.0005 0.0007 0.0007 0.0006 0.0006
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

60 ✓ ✗ ✗ ✓ mean 0.0339 0.0341 0.0335 0.0350 0.0347 0.0348 0.0348
st.dev. 0.0003 0.0004 0.0004 0.0004 0.0004 0.0003 0.0004
t-test 1.0000 1.0000 1.0000 1.0000 0.9993 0.9999
wilcox-test 1.0000 1.0000 1.0000 1.0000 0.9995 1.0000

61 ✓ ✓ ✓ ✗ mean 0.0397 0.0397 0.0351 0.0358 0.0383 0.0380 0.0399
st.dev. 0.0004 0.0004 0.0007 0.0006 0.0005 0.0006 0.0004
t-test 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

62 ✓ ✓ ✗ ✓ mean 0.0229 0.0231 0.0229 0.0241 0.0231 0.0235 0.0231
st.dev. 0.0004 0.0005 0.0005 0.0005 0.0005 0.0004 0.0005
t-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
wilcox-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

63 ✓ ✗ ✓ ✓ mean 0.0628 0.0629 0.0481 0.0405 0.0512 0.0506 0.0583
st.dev. 0.0003 0.0004 0.0005 0.0008 0.0007 0.0006 0.0005
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

64 ✓ ✓ ✓ ✓ mean 0.0383 0.0386 0.0343 0.0350 0.0367 0.0378 0.0387
st.dev. 0.0003 0.0004 0.0006 0.0005 0.0005 0.0005 0.0004
t-test 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

Notes: Table reports the average measures of the MSE based on 100 simulation replications for the sample size of 200 observations
with 6 outcome classes. Columns 1 to 5 specify the DGP identifier and its features, namely 1000 additional noise variables (noise),
nonlinear effects (nonlin), multicollinearity among covariates (multi), and randomly spaced thresholds (random). The sixth column
Statistic shows the mean and the standard deviation of the accuracy measure for all methods. Additionally, t-test and wilcox-test
contain the p-values of the parametric t-test as well as the nonparametric Wilcoxon test for the equality of means between the results
of the Ordered Forest and all the other methods.
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2.B.2.12 AMSE: High Dimension with 9 Classes

Table 2.B.17: Simulation Results: Accuracy Measure = AMSE & High Dimension with 9 Classes

Simulation Design Comparison of Methods

DGP noise nonlin multi random Statistic Naive Ordinal Cond. Ordered Ordered* Multi Multi*

65 ✓ ✗ ✗ ✗ mean 0.0180 0.0181 0.0178 0.0189 0.0185 0.0188 0.0185
st.dev. 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
t-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
wilcox-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

66 ✓ ✓ ✗ ✗ mean 0.0123 0.0123 0.0123 0.0133 0.0124 0.0129 0.0124
st.dev. 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
t-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
wilcox-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

67 ✓ ✗ ✓ ✗ mean 0.0339 0.0337 0.0263 0.0224 0.0281 0.0284 0.0316
st.dev. 0.0002 0.0002 0.0003 0.0005 0.0004 0.0003 0.0003
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

68 ✓ ✗ ✗ ✓ mean 0.0181 0.0181 0.0179 0.0190 0.0186 0.0188 0.0186
st.dev. 0.0002 0.0002 0.0003 0.0003 0.0003 0.0002 0.0003
t-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
wilcox-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

69 ✓ ✓ ✓ ✗ mean 0.0198 0.0199 0.0178 0.0187 0.0193 0.0201 0.0201
st.dev. 0.0002 0.0002 0.0003 0.0003 0.0003 0.0002 0.0002
t-test 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

70 ✓ ✓ ✗ ✓ mean 0.0124 0.0124 0.0124 0.0133 0.0125 0.0130 0.0125
st.dev. 0.0002 0.0002 0.0002 0.0003 0.0002 0.0002 0.0002
t-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
wilcox-test 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

71 ✓ ✗ ✓ ✓ mean 0.0338 0.0337 0.0262 0.0225 0.0281 0.0285 0.0315
st.dev. 0.0002 0.0002 0.0004 0.0005 0.0005 0.0003 0.0004
t-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

72 ✓ ✓ ✓ ✓ mean 0.0200 0.0200 0.0178 0.0187 0.0193 0.0201 0.0202
st.dev. 0.0002 0.0002 0.0003 0.0003 0.0003 0.0003 0.0002
t-test 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

Notes: Table reports the average measures of the MSE based on 100 simulation replications for the sample size of 200 observations
with 9 outcome classes. Columns 1 to 5 specify the DGP identifier and its features, namely 1000 additional noise variables (noise),
nonlinear effects (nonlin), multicollinearity among covariates (multi), and randomly spaced thresholds (random). The sixth column
Statistic shows the mean and the standard deviation of the accuracy measure for all methods. Additionally, t-test and wilcox-test
contain the p-values of the parametric t-test as well as the nonparametric Wilcoxon test for the equality of means between the results
of the Ordered Forest and all the other methods.
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2.B.3 Empirical Results

In this section we present more detailed and supplementary results regarding the empirical results

(Section 2.5.4) discussed in the main text. In the following the descriptive statistics for the considered

datasets and the results for the prediction accuracy are summarized.

2.B.3.1 Descriptive Statistics

Table 2.B.18: Descriptive Statistics: mammography dataset

Mammography Dataset

variable type mean sd median min max

SYMPT* Categorical 2.97 0.95 3.00 1.00 4.00
PB Numeric 7.56 2.10 7.00 5.00 17.00
HIST* Categorical 1.11 0.31 1.00 1.00 2.00
BSE* Categorical 1.87 0.34 2.00 1.00 2.00
DECT* Categorical 2.66 0.56 3.00 1.00 3.00
y* Categorical 1.61 0.77 1.00 1.00 3.00

Table 2.B.19: Descriptive Statistics: nhanes dataset

Nhanes Dataset

variable type mean sd median min max

sex* Categorical 1.51 0.50 2.00 1.00 2.00
race* Categorical 2.87 1.00 3.00 1.00 5.00
country of birth* Categorical 1.34 0.79 1.00 1.00 4.00
education* Categorical 3.37 1.24 3.00 1.00 5.00
marital status* Categorical 2.31 1.74 1.00 1.00 6.00
waistcircum Numeric 100.37 16.37 99.40 61.60 176.70
Cholesterol Numeric 196.89 41.59 193.00 97.00 432.00
WBCcount Numeric 7.30 2.88 6.90 1.60 83.20
AcuteIllness* Categorical 1.25 0.43 1.00 1.00 2.00
depression* Categorical 1.39 0.76 1.00 1.00 4.00
ToothCond* Categorical 3.05 1.24 3.00 1.00 5.00
sleepTrouble* Categorical 2.28 1.28 2.00 1.00 5.00
wakeUp* Categorical 2.41 1.30 2.00 1.00 5.00
cig* Categorical 1.51 0.50 2.00 1.00 2.00
diabetes* Categorical 1.14 0.34 1.00 1.00 2.00
asthma* Categorical 1.15 0.36 1.00 1.00 2.00
heartFailure* Categorical 1.03 0.16 1.00 1.00 2.00
stroke* Categorical 1.03 0.18 1.00 1.00 2.00
chronicBronchitis* Categorical 1.07 0.26 1.00 1.00 2.00
alcohol Numeric 3.93 20.18 2.00 0.00 365.00
heavyDrinker* Categorical 1.17 0.37 1.00 1.00 2.00
medicalPlaceToGo* Categorical 1.92 0.67 2.00 1.00 5.00
BPsys Numeric 124.44 18.62 122.00 78.00 230.00
BPdias Numeric 71.18 11.84 72.00 10.00 114.00
age Numeric 49.96 16.68 50.00 20.00 80.00
BMI Numeric 29.33 6.66 28.32 14.20 73.43
y* Categorical 2.77 1.00 3.00 1.00 5.00
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Table 2.B.20: Descriptive Statistics: supportstudy dataset

Supportstudy Dataset

variable type mean sd median min max

age Numeric 62.80 16.27 65.29 20.30 100.13
sex* Categorical 1.54 0.50 2.00 1.00 2.00
dzgroup* Categorical 3.23 2.48 2.00 1.00 8.00
num.co Numeric 1.90 1.34 2.00 0.00 7.00
scoma Numeric 12.45 25.29 0.00 0.00 100.00
charges Numeric 59307.91 86620.70 28416.50 1635.75 740010.00
avtisst Numeric 23.53 13.60 20.00 1.67 64.00
race* Categorical 1.36 0.88 1.00 1.00 5.00
meanbp Numeric 84.52 27.64 77.00 0.00 180.00
wblc Numeric 12.62 9.31 10.50 0.05 100.00
hrt Numeric 98.59 32.93 102.50 0.00 300.00
resp Numeric 23.60 9.54 24.00 0.00 64.00
temp Numeric 37.08 1.25 36.70 32.50 41.20
crea Numeric 1.80 1.74 1.20 0.30 11.80
sod Numeric 137.64 6.34 137.00 118.00 175.00
y* Categorical 2.90 1.81 2.00 1.00 5.00

Table 2.B.21: Descriptive Statistics: vlbw dataset

Vlbw Dataset

variable type mean sd median min max

race* Categorical 1.57 0.50 2.00 1.00 2.00
bwt Numeric 1094.89 260.44 1140.00 430.00 1500.00
inout* Categorical 1.03 0.16 1.00 1.00 2.00
twn* Categorical 1.24 0.43 1.00 1.00 2.00
lol Numeric 7.73 19.47 3.00 0.00 192.00
magsulf* Categorical 1.18 0.39 1.00 1.00 2.00
meth* Categorical 1.44 0.50 1.00 1.00 2.00
toc* Categorical 1.24 0.43 1.00 1.00 2.00
delivery* Categorical 1.41 0.49 1.00 1.00 2.00
sex* Categorical 1.50 0.50 1.00 1.00 2.00
y* Categorical 5.09 2.58 6.00 1.00 9.00

Table 2.B.22: Descriptive Statistics: winequality dataset

Winequality Dataset

variable type mean sd median min max

fixed.acidity Numeric 6.85 0.84 6.80 3.80 14.20
volatile.acidity Numeric 0.28 0.10 0.26 0.08 1.10
citric.acid Numeric 0.33 0.12 0.32 0.00 1.66
residual.sugar Numeric 6.39 5.07 5.20 0.60 65.80
chlorides Numeric 0.05 0.02 0.04 0.01 0.35
free.sulfur.dioxide Numeric 35.31 17.01 34.00 2.00 289.00
total.sulfur.dioxide Numeric 138.38 42.51 134.00 9.00 440.00
density Numeric 0.99 0.00 0.99 0.99 1.04
pH Numeric 3.19 0.15 3.18 2.72 3.82
sulphates Numeric 0.49 0.11 0.47 0.22 1.08
alcohol Numeric 10.51 1.23 10.40 8.00 14.20
y* Categorical 3.87 0.88 4.00 1.00 6.00
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2.B.3.2 Prediction Accuracy

Tables 2.B.23 and 2.B.24 summarize in detail the results of the prediction accuracy exercise using

real datasets for the ARPS and the AMSE, respectively. The first column Data specifies the dataset,

the second column Class defines the number of outcome classes of the dependent variable and the third

column Size indicates the number of observations. Similarly to the simulation results, the column Statistic

contains summary statistics and statistical tests results for the equality of means between the results of

the Ordered Forest and all the other methods.

Table 2.B.23: Empirical Results: Accuracy Measure = ARPS

Dataset Summary Comparison of Methods

Data Class Size Statistic Ologit Naive Ordinal Cond. Ordered Ordered* Multi Multi*

mammography 3 412 mean 0.1776 0.2251 0.2089 0.1767 0.1823 0.1766 0.1826 0.1767
st.dev. 0.0010 0.0027 0.0021 0.0013 0.0018 0.0008 0.0019 0.0007
t-test 1.0000 0.0000 0.0000 1.0000 1.0000 0.3999 1.0000
wilcox-test 1.0000 0.0000 0.0000 1.0000 1.0000 0.3153 1.0000

nhanes 5 1914 mean 0.1088 0.1089 0.1100 0.1085 0.1103 0.1137 0.1104 0.1159
st.dev. 0.0004 0.0003 0.0004 0.0001 0.0002 0.0001 0.0002 0.0001
t-test 1.0000 1.0000 0.9839 1.0000 0.0000 0.2106 0.0000
wilcox-test 1.0000 1.0000 0.9738 1.0000 0.0000 0.2179 0.0000

supportstudy 5 798 mean 0.1872 0.1849 0.1834 0.1800 0.1823 0.1931 0.1857 0.1944
st.dev. 0.0011 0.0010 0.0009 0.0008 0.0008 0.0003 0.0007 0.0004
t-test 0.0000 0.0000 0.0052 1.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0073 1.0000 0.0000 0.0000 0.0000

vlbw 9 218 mean 0.1595 0.1713 0.1724 0.1603 0.1686 0.1623 0.1685 0.1642
st.dev. 0.0011 0.0026 0.0030 0.0014 0.0021 0.0005 0.0020 0.0003
t-test 1.0000 0.0100 0.0023 1.0000 1.0000 0.5143 1.0000
wilcox-test 1.0000 0.0116 0.0010 1.0000 1.0000 0.5733 1.0000

winequality 6 4893 mean 0.0756 0.0501 0.0503 0.0596 0.0507 0.0673 0.0504 0.0683
st.dev. 0.0000 0.0003 0.0002 0.0001 0.0002 0.0001 0.0002 0.0000
t-test 0.0000 1.0000 0.9992 0.0000 0.0000 0.9971 0.0000
wilcox-test 0.0000 0.9999 0.9986 0.0000 0.0000 0.9966 0.0000

Notes: Table reports the average measures of the RPS based on 10 repetitions of 10-fold cross-validation. The fourth column Statistic
shows the mean and the standard deviation of the accuracy measure for all methods. Additionally, t-test and wilcox-test contain
the p-values of the parametric t-test as well as the nonparametric Wilcoxon test for the equality of means between the results of the
Ordered Forest and all the other methods.

Table 2.B.24: Empirical Results: Accuracy Measure = AMSE

Dataset Summary Comparison of Methods

Data Class Size Statistic Ologit Naive Ordinal Cond. Ordered Ordered* Multi Multi*

mammography 3 412 mean 0.1754 0.2593 0.2222 0.1720 0.1766 0.1726 0.1770 0.1726
st.dev. 0.0007 0.0025 0.0031 0.0008 0.0012 0.0004 0.0013 0.0004
t-test 0.9923 0.0000 0.0000 1.0000 1.0000 0.2467 1.0000
wilcox-test 0.9943 0.0000 0.0000 1.0000 1.0000 0.2179 1.0000

nhanes 5 1914 mean 0.1310 0.1309 0.1332 0.1304 0.1332 0.1329 0.1319 0.1343
st.dev. 0.0003 0.0003 0.0003 0.0002 0.0003 0.0001 0.0003 0.0001
t-test 1.0000 1.0000 0.7067 1.0000 0.9936 1.0000 0.0000
wilcox-test 1.0000 1.0000 0.6579 1.0000 0.9955 1.0000 0.0000

supportstudy 5 798 mean 0.1124 0.1110 0.1094 0.1078 0.1088 0.1129 0.1101 0.1135
st.dev. 0.0005 0.0004 0.0004 0.0004 0.0004 0.0002 0.0003 0.0002
t-test 0.0000 0.0000 0.0020 1.0000 0.0000 0.0000 0.0000
wilcox-test 0.0000 0.0000 0.0008 0.9999 0.0000 0.0000 0.0000

vlbw 9 218 mean 0.0944 0.0986 0.0990 0.0956 0.1008 0.0958 0.1006 0.0956
st.dev. 0.0002 0.0008 0.0009 0.0004 0.0008 0.0003 0.0009 0.0002
t-test 1.0000 1.0000 0.9999 1.0000 1.0000 0.7224 1.0000
wilcox-test 1.0000 1.0000 0.9999 1.0000 1.0000 0.7821 1.0000

winequality 6 4893 mean 0.1001 0.0692 0.0698 0.0831 0.0702 0.0906 0.0693 0.0913
st.dev. 0.0000 0.0003 0.0003 0.0001 0.0003 0.0001 0.0003 0.0001
t-test 0.0000 1.0000 0.9960 0.0000 0.0000 1.0000 0.0000
wilcox-test 0.0000 1.0000 0.9974 0.0000 0.0000 1.0000 0.0000

Notes: Table reports the average measures of the MSE based on 10 repetitions of 10-fold cross-validation. The fourth column
Statistic shows the mean and the standard deviation of the accuracy measure for all methods. Additionally, t-test and wilcox-test
contain the p-values of the parametric t-test as well as the nonparametric Wilcoxon test for the equality of means between the results
of the Ordered Forest and all the other methods.
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2.B.4 Software Implementation

The Monte Carlo study has been conducted using the R statistical software (R Core Team, 2018)

in version 3.5.2 (Eggshell Igloo) and the respective packages implementing the estimators used. With

regards to the forest-based estimators the main tuning parameters, namely the number of trees, the

number of randomly chosen covariates and the minimum leaf size have been specified according to the

values in Table 2.5.1 in the main text.

Table 2.B.25: Overview of Software Packages and Tuning Parameters

Software Implementation and Tuning Parameters

method Ologit Naive Ordinal Conditional Ordered Ordered* Multi Multi*
package rms ordinalForest ordinalForest party ranger grf ranger grf
function lrm ordfor ordfor cforest ranger regression forest ranger regression forest

max. iterations 25 - - - - - - -
trees - 1000 1000 1000 1000 1000 1000 1000
random subset -

√
p

√
p

√
p

√
p

√
p

√
p

√
p

leaf size - 5 5 0 5 5 5 5
Bsets - 0 1000 - - - - -
Bprior - 0 100 - - - - -
performance - equal equal - - - - -
Sbest - 0 10 - - - - -

In terms of the particular R packages used the ordered logistic regression has been implemented

using the rms package (version 5.1-3) written by Harrell (2019). The respective lrm function for fitting

the ordered logit has been used with the default parameters, except setting the maximum number of

iterations, maxit=25 as for some of the DGPs the ordered logit has experienced convergence issues. Next,

the naive and the ordinal forest have been applied based on the ordinalForest package in version 2.3

(Hornung, 2019b) with the ordfor function. As described in Appendix 2.A.3 the ordinal forest introduces

additional tuning parameters for which we use the default parameters as suggested in the package manual.

Further, the conditional forest has been estimated with the package party in version 1.3-1 (Hothorn,

Bühlmann, Dudoit, Molinaro, & Van Der Laan, 2006a; Strobl, Boulesteix, Zeileis, & Hothorn, 2007;

Strobl, Boulesteix, Kneib, Augustin, & Zeileis, 2008). Regarding the choice of the tuning parameters, we

rely on the default parameters of the cforest function. A particularity of the conditional forest is, due to

the conceptual differences to standard regression forest in terms of the splitting criterion, the choice of the

stopping rule. This is controlled by the significance level α (see Appendix 2.A.2 for details). However, in

order to grow deep trees we follow the suggestion in the package manual to set mincriterion= 0, which has

been also used in the simulation study conducted in Janitza et al. (2016). Lastly, the Ordered Forest as well

as the multinomial forest algorithms are implemented using the package ranger in version 0.11.1 (Wright

& Ziegler, 2017) with the default hyperparameters. The honest versions of the above two estimators rely

on the grf package in version 0.10.2 (Tibshirani et al., 2018) with the default hyperparameters as well. A

detailed overview of packages with the corresponding tuning parameters is provided in Table 2.B.25.

Furthermore, Tables 2.B.26 and 2.B.27 compare the absolute and relative computation time of the

respective methods. For comparison purposes, we measure the computation time for the four main DGPs

presented in Section 2.5.3 of the main text, namely the simple DGP in the low- and high-dimensional

case as well as the complex DGP in the low- and high-dimensional case, for both the small sample size

(N = 200) and the big sample size (N = 800) for all considered number of outcome classes. We estimate

the model based on the training set and predict the class probabilities for a test set of size N = 10′000

as in the main simulation. We repeat this procedure 10 times and report the average computation time.

The tuning parameters and the software implementations are chosen as defined in Table 2.5.1 in the main

text and Table 2.B.25 herein, respectively. All simulations are computed on a 64-Bit Windows machine
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with 4 cores (1.80GHz) and 16GB RAM storage.

Table 2.B.26: Absolute Computation Time in Seconds

Simulation Design Comparison of Methods

Class Dim. DGP Size Ologit Naive Ordinal Cond. Ordered Ordered* Multi Multi*

3 Low Simple 200 0.01 1.22 10.33 46.61 0.62 1.24 0.91 1.86
3 Low Simple 800 0.02 1.58 40.83 150.84 1.03 1.96 1.61 2.98
3 Low Complex 200 0.02 1.19 11.93 47.43 0.63 1.26 0.98 1.92
3 Low Complex 800 0.03 1.71 52.45 150.59 1.08 1.94 1.73 3.06

3 High Simple 200 3.50 61.89 64.28 4.05 5.08 6.06 7.27
3 High Simple 800 13.91 332.60 175.76 7.19 7.10 12.19 11.02
3 High Complex 200 3.46 60.25 59.98 4.02 4.96 6.02 7.10
3 High Complex 800 13.83 325.65 173.63 6.83 6.61 11.50 10.66

6 Low Simple 200 0.02 1.88 12.79 46.80 1.47 3.00 1.74 3.52
6 Low Simple 800 0.03 2.28 48.98 151.58 2.45 4.75 3.10 5.82
6 Low Complex 200 0.03 1.85 14.75 46.97 1.56 3.12 1.85 3.66
6 Low Complex 800 0.04 2.54 64.44 151.84 2.68 4.82 3.30 6.02

6 High Simple 200 4.21 69.80 64.14 10.24 11.74 12.01 13.63
6 High Simple 800 15.86 386.02 176.27 19.34 17.43 26.24 19.97
6 High Complex 200 4.11 70.51 60.85 9.98 11.52 11.95 13.61
6 High Complex 800 15.85 371.69 174.17 18.11 17.18 24.43 19.52

9 Low Simple 200 0.03 2.32 20.53 46.70 2.27 4.71 2.44 5.03
9 Low Simple 800 0.04 2.69 57.22 145.21 3.82 7.29 4.61 7.99
9 Low Complex 200 0.03 2.29 22.86 47.36 2.40 4.83 2.65 5.28
9 Low Complex 800 0.05 3.07 79.15 151.36 4.27 7.75 5.81 8.68

9 High Simple 200 4.85 80.76 63.25 16.05 17.84 17.69 19.56
9 High Simple 800 16.91 413.74 169.91 31.34 26.91 38.95 27.38
9 High Complex 200 4.62 78.86 57.68 15.79 17.78 17.57 19.59
9 High Complex 800 18.10 437.04 175.07 31.12 27.33 37.59 28.16

Notes: Table reports the average absolute computation time in seconds based on 10 simulation replications of training and prediction.
The first column denotes the number of outcome classes. Columns 2 and 3 specify the dimension and the DGP, respectively. The
fourth column contains the number of observations in the training set. The prediction set consists of 10 000 observations.

The results reveal the expected pattern for the Ordered Forest. The more outcome classes the longer

the computation time as by definition of the algorithm more forests have to be estimated. Furthermore,

we also observe a longer computation time if the number of observation and/or the number of considered

splitting covariates increases which is also an expected behaviour. However, the computation time is not

sensitive to the particular DGP which it should not be either. The latter two patterns are true for all

considered methods. In comparison to the other forest-based methods, the computational advantage of

the Ordered Forest becomes apparent. The Ordered Forest outperforms the ordinal and the conditional

forest in all cases. In some cases the Ordered Forest is even more than 100 times faster and even in the

closest cases it is more than 3 times faster than the two. In absolute terms this translates to computation

time of around 1 second for the Ordered Forest and around 50 seconds for the ordinal and around

150 seconds for the conditional forest in the most extreme case. Contrarily, in the closest case, the

computation time for the Ordered Forest is around 15 seconds, while for the ordinal forest this is around

80 seconds and around 60 seconds for the conditional forest. This points to the additional computation

burden of the ordinal and the conditional forest due to the optimization procedure and the permutation

tests, respectively. The only exception is the naive forest which does not include the optimization step.

Furthermore, we observe a slightly longer computation time for the multinomial forest in comparison to

the Ordered Forest, which is due to one extra forest being estimated. The honest versions of the two

forests take a bit longer in general, but this seems to reverse once bigger samples are considered (in terms
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of both number of observations as well as number of considered covariates).

Table 2.B.27: Relative Computation Time

Simulation Design Comparison of Methods

Class Dim. DGP Size Ologit Naive Ordinal Cond. Ordered Ordered* Multi Multi*

3 Low Simple 200 0.02 1.98 16.76 75.66 1 2.02 1.48 3.02
3 Low Simple 800 0.02 1.53 39.68 146.59 1 1.91 1.56 2.90
3 Low Complex 200 0.03 1.87 18.79 74.70 1 1.99 1.55 3.03
3 Low Complex 800 0.03 1.59 48.79 140.09 1 1.81 1.61 2.84

3 High Simple 200 0.86 15.27 15.86 1 1.25 1.50 1.79
3 High Simple 800 1.94 46.28 24.46 1 0.99 1.70 1.53
3 High Complex 200 0.86 14.99 14.92 1 1.23 1.50 1.77
3 High Complex 800 2.02 47.68 25.42 1 0.97 1.68 1.56

6 Low Simple 200 0.02 1.28 8.73 31.95 1 2.05 1.19 2.40
6 Low Simple 800 0.01 0.93 19.95 61.74 1 1.94 1.26 2.37
6 Low Complex 200 0.02 1.18 9.45 30.09 1 2.00 1.19 2.34
6 Low Complex 800 0.02 0.94 24.02 56.59 1 1.80 1.23 2.24

6 High Simple 200 0.41 6.81 6.26 1 1.15 1.17 1.33
6 High Simple 800 0.82 19.96 9.11 1 0.90 1.36 1.03
6 High Complex 200 0.41 7.07 6.10 1 1.16 1.20 1.36
6 High Complex 800 0.88 20.52 9.62 1 0.95 1.35 1.08

9 Low Simple 200 0.01 1.02 9.03 20.54 1 2.07 1.07 2.21
9 Low Simple 800 0.01 0.70 14.98 38.01 1 1.91 1.21 2.09
9 Low Complex 200 0.01 0.95 9.51 19.69 1 2.01 1.10 2.19
9 Low Complex 800 0.01 0.72 18.55 35.48 1 1.82 1.36 2.03

9 High Simple 200 0.30 5.03 3.94 1 1.11 1.10 1.22
9 High Simple 800 0.54 13.20 5.42 1 0.86 1.24 0.87
9 High Complex 200 0.29 5.00 3.65 1 1.13 1.11 1.24
9 High Complex 800 0.58 14.04 5.63 1 0.88 1.21 0.90

Notes: Table reports the average relative computation time with regards to the Ordered Forest estimator based on 10 simulation
replications of training and prediction. The first column denotes the number of outcome classes. Columns 2 and 3 specify the
dimension and the DGP, respectively. The fourth column contains the number of observations in the training set. The prediction
set consists of 10 000 observations.

Generally, the sensitivity with regards to the computation time appears to be very different for

the considered methods. For the Ordered Forest as well as the multinomial forest, including their honest

versions, the most important aspect is clearly the number of outcome classes. For the naive and the ordinal

forest the number of observations seems to be most decisive and for the conditional forest paradoxically

the size of the prediction set is most relevant. Overall, the above result support the theoretical argument of

the Ordered Forest being computationally advantageous in comparison to the ordinal and the conditional

forest.

129



2.C Empirical Application

In this appendix we provide the descriptive statistics for the dataset used in the empirical application

of the main text as well as supplementary results containing the estimation of marginal effects.

2.C.1 Descriptive Statistics

Table 2.C.1: Descriptive Statistics: NHIS Dataset

NHIS Dataset

variable type mean sd median min max

Health Status* Categorical 3.93 0.95 4.00 1.00 5.00
Health Insurance* Categorical 0.84 0.37 1.00 0.00 1.00
Female* Categorical 0.50 0.50 0.50 0.00 1.00
Non White* Categorical 0.20 0.40 0.00 0.00 1.00
Age Numeric 42.72 8.70 43.00 26.00 59.00
Education Numeric 13.74 2.99 14.00 0.00 18.00
Family Size Numeric 3.63 1.37 4.00 2.00 18.00
Employed* Categorical 0.82 0.39 1.00 0.00 1.00
Income* Categorical 94178.04 56738.46 85985.78 19282.93 167844.53

Table 2.C.2: Descriptive Statistics by Class: NHIS Dataset

NHIS Dataset

Health Status

variable poor fair good very good excellent

Health Status 1.14 5.66 25.14 34.92 33.13
Health Insurance 79.07 71.50 77.88 87.52 87.76
Female 49.77 51.08 49.28 50.43 49.92
Non White 31.63 23.89 22.84 18.18 18.21
Age 47.65 45.37 43.75 42.73 41.30
Education 12.11 12.20 12.89 13.97 14.46
Family Size 3.33 3.68 3.68 3.59 3.64
Employed 28.84 65.57 80.99 84.35 84.21
Income 53409.03 62473.99 78957.11 99685.45 106743.21

N 215 1063 4724 6562 6226
share in % 1.14 5.66 25.14 34.92 33.13

Note: Means of variables for respective outcome class displayed. Shares for dummy var-

iables are indicated in %.
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2.C.2 Marginal Effects

In what follows, the results for the marginal effects at mean are presented for the considered NHIS

dataset. Similarly as in the main text, the effects are computed for each outcome class of the dependent

variable both for the Ordered Forest as well as for the ordered logit. The estimations are done in R

version 3.6.1 using the orf package (Lechner & Okasa, 2019) in version 0.1.3 for the Ordered Forest and

the oglmx package (Carroll, 2018) in version 3.0.0.0 for the ordered logit.

Table 2.C.3: Marginal Effects at Mean: NHIS Dataset

Dataset Ordered Forest Ordered Logit

Variable Class Effect Std.Error t-Value p-Value Effect Std.Error t-Value p-Value
Age 1 0.01 0.01 0.69 48.80 0.04 0.00 12.77 0.00 ***

2 0.31 0.20 1.55 12.07 0.18 0.01 20.08 0.00 ***
3 -3.76 3.10 -1.21 22.49 0.62 0.03 22.63 0.00 ***
4 -1.31 4.67 -0.28 77.93 0.00 0.01 0.15 87.78
5 4.75 5.63 0.84 39.88 -0.83 0.04 -23.38 0.00 ***

Education 1 0.00 0.00 0.00 100.00 -0.09 0.01 -11.83 0.00 ***
2 0.00 0.00 0.00 100.00 -0.46 0.03 -16.90 0.00 ***
3 0.00 0.00 0.00 100.00 -1.60 0.09 -18.19 0.00 ***
4 0.00 0.00 0.00 100.00 -0.00 0.02 -0.15 87.78
5 0.00 0.00 0.00 100.00 2.16 0.12 18.63 0.00 ***

Employed 1 -2.07 0.56 -3.73 0.02 *** -0.35 0.05 -7.22 0.00 ***
2 -1.79 1.39 -1.28 19.89 -1.69 0.21 -8.08 0.00 ***
3 -6.76 11.87 -0.57 56.88 -5.49 0.61 -8.94 0.00 ***
4 4.13 9.18 0.45 65.29 0.57 0.15 3.86 0.01 ***
5 6.49 16.14 0.40 68.74 6.96 0.73 9.52 0.00 ***

FamilySize 1 0.08 0.09 0.95 34.06 -0.01 0.01 -0.81 42.00
2 -5.07 4.12 -1.23 21.81 -0.04 0.05 -0.81 41.95
3 3.81 15.41 0.25 80.45 -0.13 0.16 -0.81 41.94
4 2.96 33.98 0.09 93.07 -0.00 0.00 -0.15 87.99
5 -1.78 39.79 -0.04 96.43 0.18 0.22 0.81 41.94

Female 1 -0.01 0.01 -0.58 56.51 0.02 0.03 0.68 49.85
2 0.21 0.79 0.27 78.66 0.09 0.13 0.68 49.81
3 -2.61 5.01 -0.52 60.28 0.30 0.45 0.68 49.80
4 -3.07 10.21 -0.30 76.38 0.00 0.00 0.15 88.10
5 5.47 11.73 0.47 64.10 -0.41 0.60 -0.68 49.80

HealthInsurance 1 -0.00 0.02 -0.01 98.90 -0.09 0.04 -2.17 2.97 **
2 -1.15 1.26 -0.91 36.12 -0.44 0.20 -2.20 2.77 **
3 2.96 6.17 0.48 63.14 -1.52 0.68 -2.25 2.43 **
4 -9.14 16.51 -0.55 57.96 0.05 0.05 0.98 32.83
5 7.34 17.48 0.42 67.48 2.01 0.87 2.30 2.16 **

Income 1 0.02 0.01 1.46 14.45 -0.00 0.00 -12.16 0.00 ***
2 -0.36 0.92 -0.39 69.70 -0.00 0.00 -18.01 0.00 ***
3 1.87 10.11 0.18 85.36 -0.00 0.00 -19.87 0.00 ***
4 -4.32 10.98 -0.39 69.37 -0.00 0.00 -0.15 87.78
5 2.80 16.54 0.17 86.56 0.00 0.00 20.36 0.00 ***

NonWhite 1 0.03 0.03 0.92 35.56 0.30 0.04 6.99 0.00 ***
2 0.96 1.59 0.60 54.76 1.45 0.19 7.81 0.00 ***
3 1.98 6.55 0.30 76.22 4.76 0.56 8.48 0.00 ***
4 0.37 10.52 0.04 97.18 -0.41 0.12 -3.52 0.04 ***
5 -3.34 12.61 -0.27 79.10 -6.09 0.68 -8.94 0.00 ***

Significance levels correspond to: ∗ ∗ ∗. < 0.01, ∗ ∗ . < 0.05, ∗. < 0.1.

Notes: Table shows the comparison of the marginal effects at mean in % points between the Ordered Forest and the ordered logit. The
effects are estimated for all classes, together with the corresponding standard errors, t-values and p-values. The standard errors for the
Ordered Forest are estimated using the weight-based inference and for the ordered logit are obtained via the delta method.
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Chapter 3

The Effect of Sport in Online Dating:

Evidence from Causal Machine Learning

Co-authors: Daniel Boller, Michael Lechner

Abstract

Online dating emerged as a key platform for human mating. Previous research focused on socio-

demographic characteristics to explain human mating in online dating environments, neglecting the com-

monly recognized relevance of sport. This research investigates the effect of sport activity on human

mating by exploiting a unique data set from an online dating platform. Thereby, we leverage recent

advances in the causal machine learning literature to estimate the causal effect of sport frequency on the

contact chances. We find that for male users, doing sport on a weekly basis increases the probability to

receive a first message from a woman by 50%, relatively to not doing sport at all. For female users, we

do not find evidence for such an effect. In addition, for male users the effect increases with higher income.

Keywords: Online dating, sports economics, big data, causal machine learning, effect heterogeneity, Modified

Causal Forest.

JEL classification: J12, Z29, C21, C45.
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3.1 Introduction

Human interactions that have traditionally taken place in physical reality have increasingly shifted

to the online world and the Covid-19 pandemic has substantially accelerated this trend. Human mating

is also affected by this development, resulting in numerous novel formats of online dating. Indeed, online

dating emerged as pivotal instrument for human mating. Rosenfeld, Thomas, and Hausen (2019), for

instance, showed, that online dating represents the most common way for heterosexual couples to meet in

the US. Cacioppo, Cacioppo, Gonzaga, Ogburn, and Vanderweele (2013) furthermore showed, that more

than one-third of marriages in the US (2005-2012) are attributed to an initial contact via online dating.

Understanding the mechanisms that explain human mating in online dating environments is, in turn,

decisive to elucidate the structure of societal evolution and to derive algorithms increasing the efficiency

of the matching of potential partners. Explaining human mating in online dating environments relies

essentially on the information that users share online, including socio-demographic, psychological, and

physical traits. Indeed, previous research referred to socio-demographic (e.g., age; Hitsch, Hortaçsu, &

Ariely, 2010a) and psychological (e.g., extroversion; Cuperman & Ickes, 2009) traits to explain human

mating in online dating environments (for a detailed review, see Eastwick, Luchies, Finkel, & Hunt,

2014). Research considering physical traits, commonly interpreted as sport activity (Schulte-Hostedde,

Eys, Emond, & Buzdon, 2012), to explain human mating in online dating environments, however, remains

sparse even though few research provides indications that sport activity has substantial effects on human

mating (Schulte-Hostedde et al., 2012). However, the effect of sport activity on human mating has not

yet been fully understood. This paper attempts to fill this gap. In particular, this paper is, to the best

of our knowledge, the first to investigate the causal effect of sport activity on human mating in online

dating environments. It is also the first paper to analyze the heterogeneity of this causal effect using the

novel causal machine learning methods.

Following this notion, we leverage unique data of more than 16’000 users, forming altogether almost

180’000 interactions. The data allows us not only to map interactions among users on a second-by-second

basis, including visiting a user profile and contacting a user via private message, but also to observe more

than 600 user characteristics describing the socio-demographic, psychological, and importantly, physical

traits, including the frequency of the sport activity. This setting allows us to create a credible research

design that eliminates potential sources of endogeneity by focusing on the first, one-way interactions

between users, and by observing essentially the very same information, and even beyond, as an actual user.

Hence, we can reliably identify the effect of sport activity on contact chances by relying on the conditional

independence, i.e. the unconfoundedness research design. Moreover, we exploit recent advances in causal

machine learning to estimate the causal effect of sport activity on contact chances in our large-dimensional

setting in a very flexible way, while considering potential effect heterogeneities. In particular, we apply the

Modified Causal Forest (Lechner, 2018), an estimator that reams the concept of Causal Trees and Forests,

by allowing for multiple treatments, as applicable to our measure of sport activity. Furthermore, the

Modified Causal Forest improves the splitting rule to account for selection bias and the mean correlated

error. Additionally, it allows for estimation and inference on different aggregation levels in one estimation

step. All of these aspects are crucial and beneficial for our research. Specifically, we can relax on the

functional form assumptions, unlike classical parametric approaches, which is particularly important in

large-dimensional settings as ours. Moreover, we can go beyond average effects and can flexibly investigate

effect heterogeneities on various aggregation levels.

Leveraging the benefits of the Modified Causal Forest, we find different patterns for males and

females. Particularly, for male users, we observe uniformly increasing contact chances by a potential
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female partner, for increasing levels of sport activity. Specifically, the contact chances increase by more

than 50% if male users practice sport on a weekly basis, relative to no sport at all. However, for female

users, we do not find evidence for such an effect. Beyond the average effects, we uncover interesting

effect heterogeneities both for males and females. In particular, for male users, we find that the effect

of sport frequency on contact chances increases with higher income. This holds true for the income

levels of the male users themselves, as well as for the income levels of the potential female partners.

This implies that higher income male users enjoy a higher effect of a weekly sport activity, and that

higher income female users value the regular sport activity of the potential male partners more. These

heterogeneous effects are both statistically precise, as well as substantially relevant. In addition, for

female users, we find indications that the effect of sport activity on contact chances increases with a

higher sport frequency of the potential male partner. Furthermore, analysing the individualized effects

provides additional descriptive evidence for these heterogeneous effects. It reveals further insights for

potential heterogeneity mechanisms driven by education level or relationship preferences, among others.

Lastly, a placebo test shows the robustness of our results.

This study contributes to research and practice as well as to the society. First, this paper provides

new insights for the literature on human mating by demonstrating that sport activity, a key behavioral

trait, affects human mating. Second, this paper supports social science research in assessing causal effects

in large-dimensional data environments by showcasing an empirical approach, which allows for a very

flexible estimation of average effects as well as a systematic assessment of underlying heterogeneities.

Third, this paper helps individuals to increase their dating success by exhibiting how sport activities can

contribute to the likelihood to be recognized by potential partners, finally highlighting the relevance of

sport activity not only from a health but also from a human mating perspective. Finally, this paper serves

product developers to improve the architecture of online dating platforms by highlighting the relevance

of sport activity, while considering effect heterogeneities (e.g., demographic characteristics) at the same

time.

This paper is structured as follows. Section 3.2 provides a short overview on prior work related to our

research. Section 3.3 describes the online dating platform and the respective data. Section 3.4 explains

the empirical approach, including the identification strategy and the estimation method. Following this,

Section 3.5 presents the results, comprising the average and disaggregated effects. Section 3.6 discusses

the results and the implications for research, practice, and society.

3.2 Literature

In this section we briefly describe prior work related to our research, comprising literature on sport

activity in general as well as literature on sport activity and human mating.

3.2.1 Sport Activity

Sport activity has been ascribed relevant effects on human life, including physical and mental health

as well as social outcomes, some of which are summarized next.

First, sport activity was shown to affect health outcomes. For instance Warburton, Nicol, and

Bredin (2006) confirmed, based on an extensive review of the literature, that sport activity facilitates

the prevention of several chronic diseases (e.g., cardiovascular disease and diabetes). In a similar vein,

Humphreys, McLeod, and Ruseski (2014) found, that sport activity reduces self-reported incidences of

diabetes, high blood pressure, heart disease, asthma, and arthritis (for a review, see Penedo & Dahn,
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2005, and; Eime, Young, Harvey, Charity, & Payne, 2013).

Second, sport activity was demonstrated to enfold effects on mental health. Hillman, Erickson, and

Kramer (2008), for instance, showed that sport activity enhances cognition and brain functions (for a

review, see Strong et al., 2005, and; Janssen & LeBlanc, 2010). Moreover, sport activity was shown to

increase self-reported life satisfaction and happiness (Huang & Humphreys, 2012; Ruseski, Humphreys,

Hallman, Wicker, & Breuer, 2014).

Third, sport activity was proven to affect social outcomes. For instance, Caruso (2011) showed

that sport activity decreases property and juvenile crime among young adults. Moreover, sport activity

was found to enfold positive effects on economic outcomes such as wages and earnings (e.g. Lechner,

2009; Rooth, 2011), human capital (Steckenleiter & Lechner, 2020), and quality of work performance

(Pronk et al., 2004). Finally, sport activity has been confirmed to lead to higher academic achievements

(Fox, Barr-Anderson, Neumark-Sztainer, & Wall, 2010; Pfeifer & Cornelißen, 2010; Felfe, Lechner, &

Steinmayr, 2016; Lechner, 2017; Fricke, Lechner, & Steinmayr, 2018), to positively affect concentration,

memory and classroom behavior (Trudeau & Shephard, 2008), and to improve social relations (Stempel,

2005).

The effects of sport activity are, thus, explored in various spheres of human life. The effect of sport

activity on human mating, however, is almost unexplored, as discussed next.

3.2.2 Sport Activity and Human Mating

Research on human mating has established in sociology, psychology, economics, and, more recently,

computer science, mostly attributable to the range of potential explanatory factors that determine human

mating (Eastwick et al., 2014) and novel data opportunities due to computer-mediated approaches for

human mating (i.e., online dating). In addition to various studies referring to socio-demographic and

psychological characteristics to explain human mating (for a detailed review, see Eastwick et al., 2014),

a few studies also consider sport activity as potentially relevant factor in explaining human mating.

Schulte-Hostedde, Eys, and Johnson (2008) studied the effect of males’ practiced sport discipline on

females’ willingness to engage in a relationship, applying an experimental setting. The authors showed

that ’[. . . ] team sport athletes were perceived as being more desirable as potential mates than individual

sport athletes and non-athletes’ (p. 114). Moreover, the authors argued that ’team sport athletes may

have traits associated with good parenting such as cooperation, likeability, and role acceptance’ (p. 114)

to explain the positive effect of team sport participation on desirability. However, the authors restrict

sport activities to a particular type of sport, namely team vs. individual sport, which, in turn, impedes

a valid assessment of the general effect of sport activity on human mating. In a similar vein, Farthing

(2005) showed, also applying an experimental setting, that ’[. . . ] females and males preferred heroic sport

risk takers as mates, with the preference being stronger for females’ (p. 171) , while interpreting (non-)

heroic sport risk as, for example, engaging in (non-) risky sport activities. However, the previously raised

concerns apply in the same way to the findings by Farthing (2005).

Further research provides insights on potential indirect effects of sport activity on human mating.

In particular, previous research indicated that sport activity improves, inter alia, attractiveness (Park,

Buunk, & Wieling, 2007), health (Warburton et al., 2006), and income generation (Lechner, 2009),

all of which have been shown to affect human mating (e.g. Hitsch et al., 2010a; Hitsch, Hortaçsu, &

Ariely, 2010b; Eastwick et al., 2014). However, these studies remain inconclusive with respect to human

mating, given the missing integration of relevant context-factors (i.e., further relevant personal/sport

characteristics) affecting human mating.
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Taken together, sport activity seems relevant for explaining human mating. However, a conclusive,

finally valid, assessment on the effect of sport activity on human mating is missing, given that previous

research assessed the effect of sport activity on human mating either in the absence of potentially relevant

socio-demographic characteristics or by utilizing a narrowed interpretation, respectively representation,

of sport activity. These limitations surprise given that information on sport activity are one of the most

articulated and visible features on online dating platforms. Furthermore, as discussed previously, sport

activity is ascribed relevant effects on various spheres of human life, including physical and mental health

as well as social and economic conditions. Following the above mentioned limitations, we focus on the

analysis of the effect of sport activity on human mating.

3.3 Setup and Data

In the course of this research, we collaborated with a German online dating platform operator. The

operator provided us both with information on the functionality as well as with data from the online

dating platform.

3.3.1 Online Dating

The online dating platform allows a user to virtually meet and communicate with other users. The

user has to pay a monthly fixed subscription fee to register and to utilize the online dating platform.

The registration at the online dating platform is subdivided into three major sections. First, the user is

requested to provide socio-demographic information (e.g., sex, age, education, and income). Second, the

user is requested to specify search criteria for potential partners (e.g., sex, age, education, and income).

Third, the user is requested to answer a personality test that relates to the users’ life style, personality,

attitudes and views (79 categories in total). Moreover, the user articulates the language preferences

and may include one or more photos on the personal profile page. However, these photos remain fully

blurred until the user decides to release the photo for the potential partner.1 Most importantly, with

specific regard to the intended analysis, a user articulates her/his sport preferences and actual sport

activities within a total of 27 disciplines, how often she/he actively practices sport, and, finally, which

recreational activities dominate in her/his leisure time. A detailed description of the survey questions

and the corresponding variables together with descriptive statistics can be found in Appendix 3.D.

Following the registration at the online dating platform, the user can define a query, indicating

the preferred sex, age, and geographic location to explore potential partners. The search query returns

a shortlist of potential partners, who correspond to the previously defined qualifications. The shortlist

includes the potential partners’ username, age, a blurred version of the photo, and a matching score, which

is computed by the online dating platform operator in order to support users in finding a potentially fitting

partner.2 The user can investigate the potential partner in detail by browsing on the potential partners’

profile page, which displays a blurred version of the photo as well as information on the previously

described survey. The user can then choose from multiple possible actions. As such, the user can either

send a private text message, a ’Smile’ icon, or a ’Smile Back’ icon (if initially received a ’Smile’ icon) to

a potential partner. Additionally, a user may leave a ’like’ or a text note on a potential partners’ profile

page. Moreover, the user can initiate a friendship with a potential partner by initiating a profile release

1In our analysis we restrict the user interactions by excluding the actions involving the release of the blurred photo. We
discuss this point in Detail in Section 3.4.2.

2The online dating platform operator does not provide the formula to calculate the matching score. However, it provided us
with all data required for its calculation. We elaborate more on this point in Section 3.4.2.
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or accepting an initial profile release by a potential partner. Furthermore, a user may request an ’Applet’

(game with questions) to a potential partner, which works out similarities/differences between the user

and the potential partner. Finally, a user may prevent unwanted users from contacting in any form.

3.3.2 Data

The acquired data consists of two samples. The first, user sample, contains personal information

about the registered users on the platform. The second, interaction sample, contains information about

the users’ interactions on the platform.

The user sample includes 18’036 newly registered users who joined the platform between January

1st, 2016 and April 30th, 2016.3 For each registered user, we observe the full information filled upon

the registration, which comprises 667 variables in total. For our intended analysis with regard to the

sport activity, we exclude the users with daily sport frequency, as these comprise only around 3% of

all users, which would prevent a meaningful analysis for this group. Furthermore, we restrict ourselves

to the sample of users, whose residency is located in Germany, as only for these users we observe full

location information, including the ZIP codes. This restriction affects only about 2% of the observations

as the platform provider operates on the German market. Lastly, we exclude users with incomplete

information (around 1% of the sample) and those with implausible and inconsistent values (less than 1%

of the sample).4 This leaves us with an available sample consisting of 16’864 users for our analysis. A

descriptive summary of selected variables for the user sample is presented in Appendix 3.A.

The interaction sample includes 1’415’645 user actions among the population of newly registered

users over the same time period. For each action, we observe the IDs of both users involved in the action,

as well as the precise time stamp and the type of action. Each interaction between users must begin with

a visit action (invisible to a user), upon which further types of actions are possible, such as a message,

like or smile (visible to a user). We refer to the user who initiates an interaction as a sender of an action,

and the user who gets involved in an interaction as a recipient of an action. For the purposes of our

analysis, we filter the interactions such that we consider only one-way interactions initiated by a visit

action, with either no further action at all, or immediately followed by any visible action from the sender,

without considering any visible recipient’s response to the initial action from the sender. Thus, we select

only unique interactions in the sense that the sender was visibly or invisibly active, while the recipient

stayed visibly passive. Thereby, we restrict the interactions between the users until the point of a possible

reciprocal interaction taking place.5 This selection of the sample will be later important for the validity

of our identification strategy (see Section 3.4.2 for details). We further shape our sample such that each

observation represents a valid interaction accompanied by indicators of visible sender actions that have

taken place within the particular interaction as well as the sender and recipient user IDs. This leaves us

with an available sample consisting of 178’372 valid unique interactions for our analysis.

Lastly, to construct our final estimation sample, we merge the interaction sample with the user sam-

ple. As a result, each observation in our estimation sample represents a valid interaction between two

users and consists of sender and recipient user IDs together with sender’s actions from the interaction

sample, and both the sender’s as well as recipient’s characteristics obtained from the user sample. Fur-

thermore, as the data contains only heterosexual users based on a binary measure for gender, i.e. we

never observe a sender and recipient of the same sex in our sample, we split the sample based on gender

for a clearer interpretation of the results. Hence, we refer to the sample with only female recipients as

3Other empirical studies using online dating data focused on observation periods of similar length (see Hitsch et al., 2010a,
and; Hitsch et al., 2010b).

4This includes, for example, users with more than one single value for a mutually exclusive answer selection, among others.
5For a more detailed definition of valid user interactions with practical examples, see Appendix 3.B.
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the female sample, as here the females are in the role of an approached user upon receiving a visit action,

and possibly further actions, by a male sender of an action. Analogously, we refer to the sample with

only male recipients as the male sample, as in this case the males are in the role of an approached user

upon receiving a visit action, and possibly further actions, by a female sender of an action.

Thus, we are left with 108’456 observations for the female sample and with 69’916 observations for

the male sample. The corresponding descriptive statistics of selected variables for the two samples are

listed in Appendix 3.A.

3.3.2.1 Sport Activity

In order to investigate the effect of sport in online dating, we leverage the rich information set

regarding the sport activities on the user profile. In particular, each profile includes a detailed statement

of the user’s sport frequency. This information stems from the initial questionnaire filled by the user

upon registration. First, the user is asked about the sport types done actively, namely: ’What sports do

you do actively?’, with multiple options (mutually inclusive) such as basketball, fitness, hiking, soccer,

tennis, etc., or specifying the option ’none’. Second, only if the user has not specified the option ’none’,

a further question regarding the particular sport frequency is asked: ’How often do you practice sport?’.

The possible values (mutually exclusive) include the following answers: ’every day’, ’several times a

week’, ’several times a month’, or ’less common’. Thus, we not only observe the user’s binary indication

of practicing sport or not, i.e. the extensive margin, but also the particular sport frequency, i.e. the

intensive margin. This provides us with a much finer measure of the actual sport activity. Accordingly,

we define the sport activity measure to be multi-valued with sport frequencies of weekly, monthly, rarely

and never. We omit the daily frequency for lack of data within this category, as previously mentioned.

Furthermore, we leave the sport types out of consideration too, as these include many different and not

mutually exclusive values, which prevents a clear separation of the categories.

Table 3.3.1 shows the descriptive statistics for the sport frequency shares in the samples of males

and females, respectively as well as the corresponding shares from the innovation sample of the German

socioeconomic panel (SOEP-IS; Richter, Schupp, et al., 2015) for a comparison with a representative

population sample.6 First, we see that the sport frequency is unevenly distributed in both samples.

Second, we can also observe that the shares are very similar in both samples. Nonetheless, the never

category is more represented in the female sample, while the weekly category is more represented in the

male sample. Additionally, we also observe that the subjective sport frequency of the users from the online

dating platform is in general much higher than the one of the representative individuals from Germany.7

Third, with respect to the number of observations in the corresponding samples, we immediately see that

even though we have a balanced user sample in terms of gender,8 females get visited more often than

males do.

6Similar values for the sport frequency statistics for Germany are documented also in the Eurobarometer Survey (Euro-
barometer, 2014), as pointed out by Steckenleiter and Lechner (2020).

7Note, that this might be both due to truly higher sport frequency of the registered users as well as due to an overestimation
of own actual sport frequency of the users, or the combination of both. Also note, that our sample consists only of singles,
which is in contrast to the representative population sample.

8The user sample consists of 48% of females and 52% of males. For more descriptive statistics with regard to the user sample,
see Appendix 3.A.
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Table 3.3.1: Shares of Sport Frequency for Male and Female Sample

Never Rarely Monthly Weekly Observations

Males 0.07 0.08 0.29 0.56 69’916

Females 0.12 0.09 0.29 0.49 108’456

SOEP-IS 0.33 0.23 0.10 0.34 25’544

Note: Color intensity represents the corresponding share sizes for males and females.

Finally, given our definition, the impact of sport activity can be illustrated as follows. The user,

here the sender, visits a profile of another user, here the recipient, and gets exposed to an information

revealed on the profile. Among other indicators, the sender observes the recipient’s indication of the

sport frequency, i.e. the variable of interest. Based on the available information, the sender then decides

to perform or not to perform a further action.

3.3.2.2 The Interaction between Users

We are interested in the one-way actions of a sender upon visiting a recipient’s profile on the website.

Even though there are multiple actions a sender can initiate, we focus explicitly on the action of sending

a text message for several reasons. First, a text message is the most evident action of showing a serious

interest, as in order to compose a text message, the sender has to exhibit a substantial effort, in comparison

to other available options, such as simply sending a smile or like. Second, unlike the other generic options,

by sending a text message, the sender directly approaches the recipient in an individualized manner.

Third, an outcome measure of sending a text message or an email has been previously used in the online

dating literature under the assumption that users send a message if and only if the potential utility of the

match exceeds some minimum threshold value (compare e.g. Hitsch et al., 2010a; or Bruch, Feinberg, &

Lee, 2016). Hence, we define our action of interest as a binary measure of sending (1) or not sending (0)

a text message upon a profile visit. Given the binary scale, the natural interpretation as contact chances

in terms of message probabilities arises.

Figure 3.3.1: Average Contact Chances according to Sport Activity for Males and Females

Figure 3.3.1 shows the average message probability in percentages for males and females according to
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the sport frequency. First, we see that the levels of females are substantially higher than those of males,

i.e. women have unconditionally a higher probability to get messaged than men do. This is in line with

previous evidence from studies based on online dating data (Bruch et al., 2016). Second, we observe a

slightly increasing message probability with higher sport frequency for males, while for females no clear

pattern can be identified.

3.3.2.3 Information about Users

In our sample, we have access to complete information filled by the user upon registration. Hence,

we not only observe the condensed information displayed on the main user profile page, but also the

expanded information stored in the background of the user profile. Thus, we effectively observe the very

same information that a real user observes upon a profile visit of a potential partner, and even beyond.

The full information observable to us includes the following components. First, we observe the user’s

demographic information such as gender, age, height, etc., the socio-demographic information such as

education and income level, type of occupation, etc., as well as personal information such as place of

residence, smoking habits, or even (self-judged) appearance. Second, in addition to the user specific

information, we observe the user’s preferences for a potential partner in terms of the search criteria

related to the above mentioned socio-demographic information as well. Third, we furthermore observe

the user’s information stemming from the detailed personality test, which reflects on the user’s life style,

personality, attitudes and preferences. This includes an extensive information on topics like religion,

political views, music and travel preferences, or even partner requirements. The aforementioned user

information comprises of an exhaustive list of 663 variables in total. However, given the structure of

our data, we include the user information both for the recipient as well as for the sender, resulting in

effectively more than thousand variables. Apart from the information coming directly from the platform,

we additionally generate a variable measuring the distance between the recipient and the sender, based

on the available ZIP codes.9

We consider all the aforementioned variables as controls in the sense of potential confounders, i.e.

as variables jointly influencing both the recipient’s sport activity as well as the recipient’s potential

outcome of receiving or not receiving a text message, and thus, de facto the sender’s action to contact or

not to contact the recipient. Conditioning on such a large-dimensional covariate space is a challenging

estimation task. However, we refrain ourselves from an arbitrary selection of the confounding variables

in order to reduce the dimension of the estimation problem. Rather, we apply a novel causal machine

learning estimator, which can effectively deal with such large-dimensional setting, performing implicit

variable selection in a flexible and data-driven way. The only variable deselection we perform manually is

related to endogenous variables.10 Thus, we remove all variables that could be potentially influenced by

the sport frequency. These include mainly variables indicating the specific sport type, but also variables

describing sport-related choices such as holiday and leisure time preferences, as well as variables regarding

the body type and clothing style. In total, we dismiss 38 endogenous variables. Lastly, we leave out 2

variables without any variation. As a result, we are left with 1247 covariates in total (1229 ordered,

including dummies and 18 unordered), reflecting the recipient and sender characteristics.

Apart from the confounding role, the covariates are useful for analysing the effect heterogeneity, too.

For this purpose, we pre-specify a small subset of heterogeneity variables, consisting of age, income and

education level on both recipient as well as sender side, together with the corresponding distance between

the recipient and the sender. We focus on these heterogeneity variables for two main reasons. First, these

9The average distance between the recipient and the sender in our sample is 67.32 km. A detailed plot of the distribution of
the distance between the users can be found in Appendix 3.A.

10We elaborate on this issue more closely when discussing the identifying assumptions in Section 3.4.2.
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socio-demographic information are widely recognized in the literature as being the main determinants of

the partner choice (for a review of the importance of selected socio-demographic characteristics see Hitsch

et al., 2010a; and Eastwick et al., 2014). Second, these are also the main variables that are most visible

to the user on the profile summary and thus can potentially impact the shape of the effect. Additionally,

we analyze the heterogeneous effects also along the sport frequency for the recipient as well as for the

sender. Complementary to the pre-specified subset of heterogeneity variables, the remaining variables

might serve for a supplementary descriptive analysis of the effects.

3.4 Empirical Approach

To analyze the effect of sport activity on human mating, we leverage the recent advances in the causal

machine learning literature. Below, we outline the parameters of interest together with the identification

and estimation thereof.

3.4.1 Parameters of Interest

In order to define the parameters of interest, we rely on the Rubin’s (1974) potential outcome

framework. We denote the treatment variable of a user i by Di, which in our case can take on four

different integer values, i.e. Di ∈ {0, 1, 2, 3}, corresponding to sport frequencies of never, rarely, monthly,

and weekly, respectively. According to the treatment status, d, we define the potential outcomes for the

user i by Y d
i , which in this case is the action of receiving or not receiving a text message. However, we

only observe the potential outcome under the treatment which the user i is associated with (see Holland,

1986, for a discussion of the fundamental problem of causal inference). Thus, the realized outcome can

be defined through the observational rule as follows: Yi =
∑3

d=0 I(Di = d) · Y d
i , which implies that we

observe the action of receiving the text message only under a particular sport frequency of the recipient.

Further, we denote the observed vector of covariates by Xi, which contains the recipient and sender

characteristics, together with a subset of pre-specified heterogeneity variables Zi, such that Zi ⊂ Xi.

To analyze the effect of sport frequency on the message probability, we are interested in the following

causal parameters. First, the Average Treatment Effect (ATE) of treatment Di = m compared to

treatment Di = l is defined as

ATE = θ = E[Y m
i − Y l

i ]

and constitutes the classical parameter of interest in microeconometrics, which provides us with an aggre-

gated effect measure (compare e.g. Imbens & Wooldridge, 2009). Second, the Group Average Treatment

Effect (GATE) is characterized as

GATE = θ(z) = E[Y m
i − Y l

i | Zi = z]

and measures the differential effects along the heterogeneity variables Zi. Thus, it provides us with a

disaggregated effect measure according to the specific variables of interest, as in our case is the age,

income and education level, distance as well as the sport frequency itself. In the latter case, the GATE

corresponds to the Average Treatment Effect on the Treated (ATET). Third, the Individualized Average

Treatment Effect (IATE) is denoted as

IATE = θ(x) = E[Y m
i − Y l

i | Xi = x]

and describes the heterogeneous effects based on the full set of observed covariates Xi. As such, the
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IATEs present the disaggregated effects on the finest level of granularity and thus provide us with user-

type specific effects.

Notice, that both the treatment variable, i.e. the sport frequency, as well as the outcome variable,

i.e. receiving a text message, are measured on the recipient side, and hence, also the above defined causal

effects refer to the recipient.

3.4.2 Identification Strategy

Given our observational study design, it is not possible to only compare the unconditional message

probabilities for different sport frequencies, as displayed in Figure 3.3.1, to infer the causal effects, since

the user decision regarding the sport activity is not random. The level of sport frequency might be

influenced by other variables representing socio-demographic information, which might also influence the

potential outcome of receiving or not receiving a text message. For example, recipients with a higher

level of education might have a higher probability of doing sport on a weekly basis, as well as a higher

probability of getting messaged. This phenomenon is known as selection bias (Imbens & Wooldridge,

2009). In order to disentangle the causal effect from the selection effect, we need to eliminate such

confounding via credible identification strategy.

For the identification of the aforementioned parameters of interest in a multiple treatment case,

we rely on the so-called selection-on-observables strategy (see Imbens, 2000; or Lechner, 2001). Such

identification approach assumes that all confounding variables jointly influencing both the treatment

as well as the potential outcomes are observed, and thus, can be conditioned on. Given our rich data

on user characteristics and the unique research design, we argue to capture all possible confounding

effects for two main reasons. First, for both the recipient and the sender, we observe socio-demographic

(e.g., age, education, income) and personal (e.g., family status, smoking habits, place of residence)

characteristics, together with the preferences for a potential partner as well as the answers given in a

detailed personality test. Thereby we have access to even richer personal information than the actual

users when browsing the profiles, and as such, we are able to control for confounding effects stemming

from the user’s characteristics. Second, given our research design, focusing only on the very first one-way

interactions between the recipient and the sender, we effectively eliminate any possible unobserved effects

coming from the reciprocal interaction between the users such as sympathy or kindness. By doing so, we

explicitly focus only on situations, in which the recipient’s profile gets visited by a sender, upon which the

recipient does receive or does not receive the very first text message from the sender, without any visible

encouragement to do so from the recipient her/him-self. In such a situation, the sender decides solely

based on the information visible on the recipient’s profile to send or not to send the message. Within

our research design, we observe exactly the same information, and even beyond, as the actual sender

when facing the decision of sending the first text message. For this reason, we are also able to control for

confounding effects stemming from the user’s interaction.

Taken together, combining the highly-detailed user information, which exceeds the information di-

rectly observable by the actual users, with the unique research design, which eliminates any possible

unobservable information, we are confident to capture all confounding effects. In particular, our selection-

on-observables strategy relies on the following set of identification assumptions.

First, the so-called conditional independence assumption (CIA), states that the potential outcomes

and the treatment are independent once conditioned on the covariates. This hinges on the availability of

all covariates that jointly influence the potential outcome and the treatment. As we argue, we observe

sufficiently rich information on both the recipient as well as the sender side to ensure the plausibility
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of the CIA. In addition, our research design eliminates any further influence from a possible reciprocal

interaction between the users. Thus, we are confident about the validity of the CIA in this particular case.

There are only two potential sources of vulnerability of the CIA in this case. First, it could be caused

by the availability of the blurred photo of the user. Even though the photo remains blurred, as we do

not allow interactions between the users which would include the action to release the photo, we cannot

rule out that information such as the shape of the face or the hair and skin colour could be, nonetheless,

inferred. However, despite the information inferred from the blurred photo might possibly affect the

outcome, i.e. the message probability of the recipient, we argue that this information should not have

an effect on the treatment itself, i.e. the recipient’s sport frequency. Thus, it arguably does not qualify

as a potential confounder. Nevertheless, limitations in the availability of profile pictures, respectively

opportunities to represent the information in profile pictures, are common in the literature on online

dating (Fiore, Taylor, Mendelsohn, & Hearst, 2008). Second, it could be caused by the availability of the

matching score. However, despite the fact, that we do not observe the score directly, we know that we

observe, and indeed condition on, all information which serves for its calculation. Moreover, even though

we do not know the exact formula, by using a very flexible estimation approach, we are able to reproduce

any arbitrary functional form of the matching score. Nonetheless, if the matching score would consist

of the user’s sport frequency, the treatment would be indirectly observed as a part of the shortlist of

potential partners even before actually visiting the user profile. However, this would not violate the CIA

as such, it could rather potentially reduce the size of our effect estimates. For this reason, we conduct

a placebo test to provide evidence that this is indeed not the case. We discuss the placebo test in more

detail in Section 3.5.3.

Second, the common support assumption, ensures that for each value in the support of the covariates,

there is a possibility to observe all treatments. This means that we find users with the same age, education,

income, etc., for all sport frequency levels. Thus, we are able to check the validity of the common support

assumption in the data directly, but do not find any violations thereof (see Lechner & Strittmatter, 2019,

for a discussion of common support issues).

Third, the stable unit treatment value assumption (see e.g. Rubin, 1991), implies that for each user

we observe only one of the potential outcomes based on the treatment status. It further implies that

there is no interference among users, hence ruling out any general equilibrium or spillover effects. This

means that the sport frequency of one particular user does not affect the message probability of other

users. We argue that the SUTVA is plausible in this case, as we analyze only a short time period after

the user registration such that general equilibrium or learning effects would not yet emerge.

Fourth, the exogeneity of confounders assumptions, indicates that the values of the covariates are

not influenced by the treatment. In other words, the user characteristics should not be impacted by the

sport frequency. For this reason, we discard all potentially endogenous variables such as indicators of

particular sport type, sporty clothing style, preferences for sport holidays or sport club memberships.

Therefore, we are confident that the exogeneity assumption holds.

Under the aforementioned assumptions, it can be shown that the above parameters of interest are

identified. For technical details, see Lechner (2018).

3.4.3 Estimation Method

In our analysis, we face two major challenges with regard to the estimation of the causal effects of

interest. First, we need to deal with a very large conditioning set with an unknown functional form of

the covariates. Second, we want to investigate potential effect heterogeneity. In order to overcome these
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challenges, we take advantage of the newly developing causal machine learning literature (see Athey,

2018; Athey & Imbens, 2019; or Knaus, Lechner, & Strittmatter, 2021, for overviews). It combines

the flexibility and prediction power of machine learning (Hastie, Tibshirani, & Friedman, 2009) with the

causal inference from econometrics (Imbens & Wooldridge, 2009). One of the most popular machine

learning methods are the so-called regression trees (Breiman, Friedman, Olshen, & Stone, 1984) and

random forests (Breiman, 2001). The trees and forests are highly flexible, local nonparametric prediction

methods, which can effectively deal with large-dimensional settings (Biau & Scornet, 2016). Adapting

these prediction algorithms towards causal inference has lead to developments of Causal Trees (Athey

& Imbens, 2016) and Causal Forests (Wager & Athey, 2018), respectively. These methods inherit the

advantages of the prediction versions, while flexibly estimating the causal effects with systematically

uncovering their heterogeneity. Furthermore, Lechner (2018) extends the Causal Forest for the multiple

treatment case, and additionally improves the splitting rule to account for selection bias and for the mean

correlated error. The resulting Modified Causal Forest also allows for estimation as well as inference for

the parameters of interest at all aggregation levels in one estimation step. Since our application involves

multiple treatments with potential confounding, while analyzing various heterogeneity levels of the causal

effects, we opt for the latter approach.

In our analysis, we rely on estimating the so-called ’honest’ forest, which has been shown to lower

the bias of the causal effect estimates and to enable valid statistical inference (Wager & Athey, 2018, and;

Lechner, 2018). As such, we randomly split the estimation sample in two equally sized parts and use one

sample, i.e. the training sample, to build the Modified Causal Forest and the other sample, i.e. the honest

sample, to estimate the causal effects.11 Then, the estimation procedure of the Modified Causal Forest

can be described as follows. First, the estimator draws a random subsample s of the training sample and

subsequently estimates a single causal tree. As such, the subsample gets recursively splitted into smaller

subsets, the so-called ’leaves’ of the tree L(x) . The partitioning follows a splitting rule which removes

selection bias and reveals effect heterogeneity. As a result, the observations are homogeneous with regard

to the covariate values within the leaf, while being heterogeneous across the leaves. Then, the treatment

effect is estimated within each terminal leaf by simply subtracting the mean outcomes of the respective

treatment levels Di = m and Di = l from the honest sample as

θ̂s(x) =
1

{i : Di = m,Xi ∈ L(x)}
∑

{i:Di=m,Xi∈L(x)}

Yi − 1

{i : Di = l,Xi ∈ L(x)}
∑

{i:Di=l,Xi∈L(x)}

Yi.

Second, as a single tree might be quite unstable due to its path-dependent nature, the forest estimates

many such trees by drawing S random subsamples in total. The Causal Forest estimate is then given by

the ensemble of many causal trees as

ÎATE = θ̂(x) =
1

S

S∑
s=1

θ̂s(x).

The additional averaging of the trees helps to reduce the variance and to smooth the edges of

the leaves (Bühlmann & Yu, 2002). Conceptionally, the Causal Forest can be thought of as a nearest

neighbor matching estimator with an adaptive neighbor choice and can be thus described using a weighted

representation, too (Wager & Athey, 2018; Athey, Tibshirani, & Wager, 2019).

Third, the Modified Causal Forest estimates the GATEs by averaging the IATEs in the corresponding

11Lechner (2018) shows in a simulation study that the efficiency loss of the ’honest’ forest due to sample-splitting is minimal
in comparison to the case of ’honest’ trees as in Wager and Athey (2018).
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subsets defined by the heterogeneity variables Zi and the ATE by averaging the IATEs in the whole sample

as follows

ĜATE = θ̂(z) =
1

{i : Zi = z}
∑

{i:Zi=z}

θ̂(Xi)

and

ÂTE = θ̂ =
1

N

N∑
i=1

θ̂(Xi).

Thus, it provides a computationally attractive option to estimate the effects of interest on all desired

levels of heterogeneity without the need for re-estimating the whole forest for each single aggregation

level.12

Fourth, the Modified Causal Forest then explicitly uses the weighted representation of the estimated

effects for inference. The weight-based inference can be then conveniently applied to all aggregation levels

as well.13 For an in-depth discussion of the Modified Causal Forest, see Lechner (2018) as well as Cockx,

Lechner, and Bollens (2019) and Hodler, Lechner, and Raschky (2020) for empirical applications.

Estimating the effects of sport frequency on the message probability by applying causal machine

learning allows us to improve on previous empirical studies in an online dating setting in several di-

mensions. First of all, we do not have to specify the exact functional relationship between outcome,

treatment and covariates, as in the case of using parametric approaches such as the logistic regression

(see e.g. Hitsch et al., 2010a; Hitsch et al., 2010b; or Bruch et al., 2016). This is particularly important

when dealing with a large-dimensional covariate space, including the characteristics of both the recipient

and the sender, as the functional form of the interactions thereof is not a priori clear. Furthermore, using

causal machine learning also advances the semiparametric approaches used in online dating studies (see

e.g. Lee, 2016, for a matching estimation), thanks to more flexible adaptive estimation and its implicit

variable selection properties. Lastly, causal machine learning allows us to go beyond the average effects

and systematically investigate the effect heterogeneity on various aggregation levels, without the need to

specify interactions or to build subsets of data in an ad-hoc fashion.

3.5 Results

Below, we present the results for the average and heterogeneous effects of sport activity on contact

chances, based on the Modified Causal Forest estimation.

3.5.1 Average Effects

The results for the average effects of the sport activity on the contact chances are summarized in

Table 3.5.1. The diagonal presents the potential outcomes, while the corresponding effects are depicted

in the lower triangle.

In case of the male sample, for increasing sport frequency, the results show a clear and increasing

pattern of the potential outcomes, i.e. of the potential message probability. While the potential message

12In our setting, we additionally apply treatment sampling probability weights for the ATE and GATEs aggregation of the
IATEs to account for the unbalanced treatment shares.

13Athey et al. (2019) further suggest usage of the forest weights for solving many different econometric estimation problems.
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probability for users who never practice sport is on average only 2.50%, for users doing sport on a weekly

basis, the chances to get messaged increase by more than 50% and amount to 3.82%. Comparing the

respective potential outcomes across the sport frequency levels yields the corresponding causal effects

measured in percentage points. Accordingly, all effects for all sport frequency comparisons are positive.

The most sizeable and the most precise effects are estimated for the most distinct sport frequencies, as

one would intuitively expect. Thus, the average effect of a weekly sport activity versus no sport activity at

all, is equal to an 1.32 percentage points increase. Similarly, the average effect of a weekly in comparison

to only rare sport activity amounts to an 1.20 percentage point increase. Moreover, these effects are both

substantively as well as statistically relevant. As such, a male user increasing his sport activity from no

sport or only rare sport activity to doing sport on a weekly basis significantly increases the probability of

getting messaged by 52.80% and 45.80%, respectively. In practice, this implies receiving 13, respectively,

12 extra messages out of 1000 profile visits. Hence, the contact chances of a male user can be substantially

increased solely by becoming more sporty. The remaining effects comparing less distinct sport frequencies

lack the statistical relevance, which stems mainly from the substantially lower number of observations

for these categories (see Table 3.3.1).

Regarding the female sample, the results do not suggest increasing contact chances with increasing

frequency of sport activity, as in the case of the male sample. The potential outcomes thus do not

indicate any clear pattern as the message probability firstly drops, when switching from no sport to rare

sport activity, and then increases steadily throughout the monthly and weekly sport frequencies, reaching

comparable levels with the category of never doing sport. Accordingly, the estimated average effects do

not show any explicit structure and lack statistical relevance. The only exception is the precise estimate

of the effect of the weekly vs. rare sport activity, with a sizeable increase of an 1.61 percentage points,

yet this represents only a minor relative increase of 17.18% in comparison to the effects seen in the male

sample. Taken together, based on the overall results, no substantial conclusions can be drawn.

Table 3.5.1: Average Effects of Sport Activity on the Contact Chances for Males and Females

Males Females

Never Rarely Monthly Weekly Never Rarely Monthly Weekly

Never 2.50 10.67

(0.46) (0.60)

Rarely 0.12 2.62 -1.30 9.37

(0.63) (0.43) (0.88) (0.63)

Monthly 0.86 0.74 3.36 -0.29 1.01 10.38

(0.52) (0.50) (0.26) (0.71) (0.72) (0.40)

Weekly 1.32∗∗∗ 1.20∗∗ 0.46 3.82 0.31 1.61∗∗ 0.60 10.98

(0.50) (0.47) (0.32) (0.19) (0.67) (0.68) (0.45) (0.30)

Note: Effects in % points. Potential outcomes on the diagonal. Standard errors in parentheses. Significance levels

refer to: ∗∗∗ < 0.01, ∗∗ < 0.05, ∗ < 0.1. Color intensity represents the corresponding level sizes.

In general, based on the results of the average effects, we find sizeable and significant positive effects

of a more frequent sport activity, when analyzing the male users, while we find only weak evidence for such

effects for the case of female users. It means that for men a higher sport frequency substantially increases

the probability of getting messaged by a woman, on average. However, higher sport frequency for women

does not seem to consistently lead on average to considerably higher chances of getting messaged by a

man.
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3.5.2 Heterogeneous Effects

While the average effects provide a general measure for the causal effects of sport activity, a more

detailed description of the effect heterogeneity beyond gender, remains unknown. Therefore, we study

the heterogeneous effects in respect to the pre-defined set of variables of interest, i.e. the group average

treatment effects (GATEs), to uncover possibly differential effects of the sport activity on the contact

chances. For the sake of clarity, we focus on the effects comparing the most distinct cases, namely the

weekly sport frequency with no sport activity. In this regard, we analyze the effect heterogeneity along

age, education and income of the users, on both the recipient as well as the sender side, together with the

mutual user distance, based on the following considerations. First, these variables have been previously

identified as the main determinants of the partner choice (Hitsch et al., 2010a; Eastwick et al., 2014) and

second, these are also the variables which appear on the main profile summary. Thus, we expect these

variables to have a higher potential to influence the shape of the effect of the sport activity. Lastly, we

investigate the effect heterogeneity based on the particular recipient’s as well as sender’s sport frequency,

which is a natural choice as it corresponds to the effect on the treated, a classical microeconometric

parameter of interest (compare e.g. Abadie & Cattaneo, 2018). Essentially, the heterogeneity analysis

enables us to investigate if the benefits of the regular sport activity in terms of higher contact chances

vary among specific groups of users. Thus, we shed light on the open questions such as if potentially

the users with higher age, or with lower education and income level enjoy higher benefits of weekly sport

activity than those with lower age, or with higher education and income level, or vice versa.

In order to test for the presence of heterogeneity along the variables of interest, we conduct the

Wald test of equality of the estimated GATEs. Additionally, we conduct t-tests for differences of the

estimated GATEs from the average effect. Rejection of both tests thus gives support for the existence of

heterogeneity with respect to the particular variable.14

The results of the Wald test suggest heterogeneous effects with regard to the income level for males,

both for the recipient as well as the corresponding sender, however, no evidence of heterogeneity in case

of females. Furthermore, the heterogeneous effects for males are statistically different from the average

effect as well, indicating an explicit pattern, while none of this is the case for females. The respective

income level GATE estimates are depicted in Figure 3.5.1 for the recipient and the sender in the male

sample. The corresponding results for the female sample are presented in Figure 3.C.1 in Appendix 3.C.

Concerning the male sample, we observe a clear increasing trend of the GATEs for increasing levels

of income. As such, for a male recipient, the effect of weekly sport activity in contrast to no sport is

greater, the higher the income level of the male recipient himself, and the higher the income level of

the female sender, too. As a result, male users with a higher income level, benefit from a regular sport

activity on a weekly basis in comparison to no sport, more than male users with a lower income level.

This implies that particularly the wealthy males, who earn more than 100’000 EUR in a year, can increase

their contact chances the most by practicing sport on a weekly basis. In a similar vein, male users having

a potential female partner with high income level, benefit from the higher sport frequency more than

the male users, which have a potential female partner with low income level. This pattern suggests also

that more wealthy female users value the regular sport activity of a male user more. In addition, not

only are these heterogeneous effects statistically relevant, the substantive relevance is documented, too,

as the effect sizes are relatively large. As such, the magnitudes of the income level GATEs are ranging

from 1.06% points to 1.46% points with respect to the income level of a male recipient, and similarly,

from 1.15% points to 1.47% points with respect to the income level of a female sender, in reference to the

14Detailed results of the Wald test for equality of the GATEs as well as the tests for differences from the ATE are listed in
Appendix 3.C.
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average effect of 1.32% points. This implies an increase in the message probability of at least 42.40% for

the low income users, up to an increase of 58.80% for the high income users, respectively. This results in

a 16.40% difference in message probability solely due to the user’s income. A simple back of the envelope

calculation reveals this difference in income levels to amount to 4 extra messages out of 1000 profile visits.

Figure 3.5.1: Heterogeneous Effects of Sport Activity based on Income for Males

Note: Effects in % points as GATE deviations from the ATE (zero dotted line) with 90% confidence intervals.

As opposed to the male sample, we do not find such evidence of heterogeneity, if we switch the roles

of the recipient and the sender (see Figure 3.C.1 in Appendix 3.C). As such, even though we observe a

similar increasing pattern for female recipients associated with male senders, the estimated effects lack

statistical relevance.

However, in contrast to the results for income heterogeneity, we find supportive evidence for hetero-

geneity for females in terms of the sport activity, while no such evidence is detected for males. As such,

for females, both the Wald test of effect equality as well as the t-tests for differences from the average

effect suggest presence of heterogeneity with respect to the level of sport frequency of the male sender

with a clear increasing pattern, whilst the heterogeneity with respect to the female recipient lacks the

statistical precision. Contrarily, for the male sample, even though we observe a similar increasing pattern

as for the female sample, the statistical relevance is, however, absent. The corresponding results for the

female sample regarding the sport frequency GATE estimates are presented in Figure 3.5.2 for both the

female recipient and the male sender. The respective results for the male sample are depicted in Figure

3.C.2 in Appendix 3.C.

The heterogeneity results with respect to the sport frequency suggest that for a female user, the

effect of a weekly sport activity in contrast to no sport is greater, the higher the sport frequency of the

potential male partner. Thus, females enjoy a higher effect of their own weekly sport activity, if the

sport activity of a potential male partner is on a weekly basis as well. This further suggests that sporty

male users appreciate sporty female users more. Nevertheless, despite the clear statistical pattern of the

heterogeneity itself, in this case the overall substantive implications remain rather limited as the effect

sizes are only moderate, ranging from 0.08% points to 0.41% points, given the average effect of 0.31%

points. Additionally, neither for the average effect nor for the respective group effects the presence of an

actual null effect can be ruled out.
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Figure 3.5.2: Heterogeneous Effects of Sport Activity based on Sport for Females

Note: Effects in % points as GATE deviations from the ATE (zero dotted line) with 90% confidence intervals.

Further results of the Wald tests regarding the remaining heterogeneity variables do not indicate dif-

ferential effects at conventional significance levels in terms of age or the mutual user distance, concerning

both males as well as females. Neither do the differences of the estimated GATEs from the ATE support

the evidence for heterogeneous effects. Furthermore, although the Wald test of equality of GATEs based

on the education level suggests presence of effect heterogeneity, the differences from the average effect

are not statistically relevant and lack an explicit pattern.15

Altogether, based on the GATEs analysis, we conclude to find a supporting evidence, both statistical

as well as substantive, for heterogeneity in terms of the income level for males and statistical, however,

not substantive evidence, in terms of the sport frequency for females, whereas, we find lack of evidence in

general, for heterogeneous effects along the age, distance and education level for both males and females.

Additionally, in order to gain more insight for the effect heterogeneity, we analyze the effects on

the finest level possible and study the underlying individualized average treatment effects. Figure 3.5.3

provides the distribution of the IATEs for the weekly vs. never comparison, for both the male as well as

the female sample, respectively. In both cases, we observe that there is indeed substantial heterogeneity

in the considered effects as the effect distributions are noticeably spread out around the mean, i.e. the

realized ATE.16 Additionally, we see that for males, virtually all effects are positive, while for females,

about half of the effects are positive and half are negative. This further substantiates the findings on the

aggregated levels in terms of the GATEs and the ATE.

15The exhaustive results for the effect heterogeneity analysis can be found in Appendix 3.C.
16Part of the observed variability is also due to estimation uncertainty: the average standard error for the IATEs is 0.61 for
the male and 1.06 for the female sample, respectively.
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Figure 3.5.3: Distribution of the Individualized Effects of Sport Activity for Males and Females

Note: Distribution of IATEs smoothed with the Epanechnikov kernel using the Silverman’s bandwidth.

To understand these effect distributions more thoroughly, we apply the k-means++ clustering (Arthur

& Vassilvitskii, 2007) to provide further descriptive evidence of the dependence of the effects on the

heterogeneity variables (see Cockx et al., 2019, for an analogous approach). For this purpose, we perform

the clustering by using the IATEs for the weekly vs. never comparison to form distinct clusters, which

we sort increasingly according to the mean effect size. We then describe the clusters by the means of the

corresponding heterogeneity variables, which however, have not been used to form the clusters. Table

3.5.2 presents the clusters for the IATEs of the male and female sample, respectively.

In general, the clustering reveals consistent patterns with the heterogeneity analysis based on the

GATEs. For the male sample, the increasing effects of the sport frequency along the clusters are associated

with an increasing level of income on both the recipient as well as the sender side. As such, the lowest

effects of sport are clearly for the users with the lowest income level, and vice-versa, the highest effects

are evidently for those users with the highest income level. Complementary to the GATEs analysis,

the clustering additionally reveals similar increasing patterns in terms of education level and the sport

frequency for males. This indicates a further positive relationship, which, however, lacks statistical

relevance within the GATEs analysis. Nonetheless, the clustering does not find any particularly clear

patterns in terms of age or mutual distance, which is consistent with the GATE estimates.

In case of the female sample, complementary to the GATEs, the clusters suggest an increasing

effect for higher sport frequency as documented within the GATEs analysis. However, according to the

cluster analysis, this holds true not only for the sender, but also for the recipient side, for which the

statistical evidence in terms of the GATEs is missing. In a similar vein, the clusters also suggest a

relevant heterogeneity with respect to the income level with an increasing pattern. Furthermore, as for

the male clusters, also the female clusters suggest additionally a positive association of the IATEs with

the education level, however, no apparent indication of heterogeneity for age or mutual distance.

In addition to the GATE analysis, the clusters further allow for a more detailed description of the

IATEs based on the user characteristics, beyond the pre-specified subset of heterogeneity variables. No-

tably, the cluster analysis reveals a particular relationship between the IATEs and the behavior and

preferences of the users, both for males and females. As such, higher IATEs are associated with in-
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creasing preference to find the significant other and to have an intimate relationship, as well as with

increasing satisfaction of own appearance. In contrast, lower IATEs are associated with increasing smok-

ing frequency, as well as increasing preference for media consumption and comfortable dining. These

insights provide not only a better understanding of the specific individualized effects of sport activity on

the contact chances, but might serve as a basis and guidance for a selection of relevant heterogeneity

variables in future research. An overview of the relevant clusters with variable description is provided in

Table 3.C.3 in Appendix 3.C.

Table 3.5.2: Clusters of the Individualized Effects of Sport Activity for Males and Females

Males Females

Clusters 1 2 3 4 5 1 2 3 4 5

IATEs: Weekly vs. Never 0.41 0.88 1.22 1.52 1.85 -1.41 -0.52 0.12 0.71 1.38

Recipient Features

Age 45.77 45.19 44.57 43.80 43.71 33.53 37.07 38.39 38.15 36.90

Education Level 3.51 3.86 4.24 4.58 4.76 3.65 3.74 3.80 3.93 4.05

Income Level 3.69 3.98 4.26 4.57 4.83 2.98 3.16 3.32 3.46 3.53

Sport Frequency 1.85 2.16 2.37 2.46 2.49 1.55 1.92 2.15 2.34 2.43

Sender Features

Age 43.94 43.09 42.37 41.53 41.43 36.33 40.15 41.68 41.46 40.23

Education Level 3.46 3.69 3.96 4.16 4.34 3.74 3.82 3.93 4.06 4.25

Income Level 2.94 3.25 3.52 3.79 4.07 3.51 3.82 3.99 4.10 4.14

Sport Frequency 1.86 2.03 2.16 2.24 2.32 1.91 2.06 2.15 2.27 2.44

Shared Features

Distance 70.39 71.65 70.23 70.16 64.91 64.43 66.22 67.10 66.36 62.97

Observations

Share 0.07 0.18 0.29 0.31 0.15 0.07 0.20 0.29 0.29 0.15

Total 2288 6439 10153 10826 5252 3753 11048 15896 15484 8047

Note: Means of clustered effects sorted in an increasing order, matched with the heterogeneity variables. Color

intensity represents the corresponding effect sizes and highlights the relevant GATEs.

Overall, the cluster analysis of the IATEs emphasizes the results from the GATEs, and as such

provides additional evidence for the income heterogeneity for males, as well as the sport heterogeneity

for females. Moreover, it reveals further descriptive evidence for increasing effects based on education

level, albeit no particular heterogeneity patterns for age or mutual distance. Lastly, it provides valuable

insights for additional heterogeneity channels such as relationship preferences.

3.5.3 Placebo Test

In our analysis of the effect of sport activity on contact chances, we assume that the treatment, i.e.

the sport frequency is observed once a profile of a recipient has been visited by a sender. However, as

discussed in Section 3.4.2, the sport frequency might potentially be entailed in the matching score, which

is observable already before the actual profile visit as part of the shortlist of potential partners suggested

by the online dating platform. If that would be the case, the sport frequency could potentially indirectly

influence already the decision to visit the profile, and not only the decision to send a text message after a

profile visit. However, even under such circumstances, this would not violate the CIA per se, but rather

reduce the size of the estimated effect, which could be then interpreted as a lower bound of the true

underlying effect. In order to examine if such mechanism takes place in our setting, we conduct a placebo

test inspired by Imbens and Wooldridge (2009) to assess the validity of the CIA by testing for a zero effect
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on an outcome variable assumed to be unaffected by the treatment, here the decision to visit the user

profile. Accordingly, we redo our main analysis, while swapping the message outcome for a visit outcome.

Thus, we estimate the average treatment effects of sport frequency on the visit probability, given the

same conditioning set. Therefore, if the sport frequency is, as assumed, not part of the matching score,

its effect on the probability to visit a user profile should be equal to zero.

In order to implement such placebo test, we first need to impute the ’potential’ visits, as by con-

struction, we only observe the realized visits. For a given user, we consider all registered user profiles

with opposite sex and within a specified distance radius as potential visits.17 We end up with a sample

consisting of 38’552’821 observations, out of which 178’372 represent the actual realized and the rest the

imputed potential visits. Analogously as in the main analysis, we split the sample into a male and a

female sample. Furthermore, due to the computational feasibility and general consistency of the analysis,

we randomly draw an identically sized male and female sample as in the main estimation, such that we

replicate the corresponding sport frequency shares, too.18 A similar approach to impute the potential

visits has been used also in previous studies focusing on online dating platforms (Bruch et al., 2016).

Table 3.5.3: Average Effects of Sport Activity on the Visit Chances for Males and Females

Males Females

Never Rarely Monthly Weekly Never Rarely Monthly Weekly

Never 0.23 0.66

(0.14) (0.15)

Rarely 0.29 0.52 -0.07 0.59

(0.24) (0.20) (0.22) (0.16)

Monthly 0.08 -0.22 0.31 -0.20 -0.13 0.46

(0.16) (0.22) (0.08) (0.17) (0.17) (0.08)

Weekly 0.18 -0.12 0.10 0.41 -0.08 -0.01 0.12 0.58

(0.15) (0.21) (0.10) (0.06) (0.16) (0.17) (0.10) (0.07)

Note: Effects in % points. Potential outcomes on the diagonal. Standard errors in parentheses. Significance levels

refer to: ∗∗∗ < 0.01, ∗∗ < 0.05, ∗ < 0.1. Color intensity represents the corresponding level sizes.

Table 3.5.3 summarizes the ATE results of the Modified Causal Forest estimation for the placebo

test. First of all, we observe that the potential outcomes for both males and females do not exhibit

any particular upward or downward trend as is the case for the main analysis. Furthermore, for neither

the male nor the female sample, we find evidence for statistically relevant effects. Moreover, the effect

sizes and the levels of potential outcomes are an order of magnitude lower than our main results, being

effectively zero in terms of the substantive relevance. Even though the results of such placebo tests do

not completely rule out the possibility of a presence of an effect on the visit probability, they provide

a supportive evidence that this is, indeed, not the case. Hence, we conclude that our main analysis

estimates the full causal effects of sport activity on the contact chances, rather than only lower bounds

thereof.

17We restrict the potential visits to opposite sex as we observe only heterosexual users in our sample. Furthermore, we restrict
the distance of potential users due to dimensionality concerns, as the share of the realized visits would otherwise be almost
completely diminished, if unrestricted. Here, we remain rather conservative and set the potential distance to 95% of the
maximum observed distance of an actual realized visit.

18We repeated the random draw several times, while the results remained qualitatively robust.
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3.6 Discussion

The main objective of this paper was to analyze the effect of sport activity on human mating.

Following this objective, we examined the effect of sport frequency on contact chances based on a unique

dataset from an online dating platform and applying the Modified Causal Forest estimator (Lechner,

2018). We found that for male users, doing sport on a weekly basis increases the probability to receive a

first message by more than 50% relatively to not doing sport at all, while for female users, we do not find

evidence for such an effect. In addition, we uncover important effect heterogeneities. In particular, the

effect of sport frequency on contact chances increases with higher income for male, but not for female,

users.

This paper offers notable implications for research and practice. First, this study contributes to the

literature on human mating. In particular, we demonstrate that sport activity, as an essential behavioral

trait and pivotal information on online dating platforms, enfolds a causal effect on contact chances. In

turn, this paper overcomes limitations of previous work that did not consider or comprehensively map the

effect of sport activity on human mating. Moreover, this paper expands previous work on the effects of

sport activity by demonstrating that sport activity does not only affect physical/mental health and social

and economic conditions, as well-documented by prior research (Strong et al., 2005; Lechner, 2009), but

also one of the most decisive spheres of human existence, that is human mating.

Second, this paper advances empirical approaches for assessing causal effects in large-dimensional

data environments, as applicable, for example, to remote-sensing data. In particular, this research applies

a very flexible estimation procedure, which offers not only greater flexibility in considering (interrelated

effects of) covariates, but also a systematic analysis of the underlying heterogeneities of the effects on

different levels of aggregation (Lechner, 2018). Thus, this paper may support future research in analyzing

human behavior in large-dimensional data environments. However, even though the causal machine

learning approach is capable of detecting statistically relevant heterogeneities, it is crucial to assess

also its substantive relevance. Following this notion, the effect heterogeneities in this research provide

different perspectives on practical implications. In particular, the increasing effect of sport activity on

contact chances with higher income for male users is both statistically justified as well as substantially

relevant, leading to the above mentioned implication. Contrarily, potential implications, resulting from

the observation that the effect of sport frequency on contact chances increases with higher sport frequency

for females, are limited as the particular evidence in our setting is not substantially relevant, even though

it is statistical justified. In addition to the main heterogeneity analysis, the post-estimation descriptive

cluster analysis of the most disaggregated effects provides additional insights for possible heterogeneity

channels, such as the education level or relationship preferences of the users.

Third, this study may support individuals to increase their chances of finding a mate on online

dating platforms by demonstrating if and to what extent sport activity contributes to the likelihood to

be recognized. In particular, men may benefit from the insights of this research by being aware that

sport on a weekly basis relative to no sport can increase their probability to receive a first message by

more than 50%, or even up to 60% in case of higher income individuals, while for women the effect of

sport activity on the contact chances is not entirely evident. Thus, this study may incentivise individuals

to increase the level of sport activity, not only because of the well-documented effects on, for example,

health (Penedo & Dahn, 2005), but also for their chances of finding a mate.

Moreover, from a public health perspective, this paper provides empirical reasoning for justifying

and evaluating incentives for public health promotion due to the impact of sport activities for human

partnering, family planning, and reproduction.
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Finally, this paper may serve practitioners, namely product developers and software engineers, as a

foundation to improve the architecture of online dating platforms, including interface designs and match-

ing algorithms. In particular, this study points out the relevance of sport activity for mate evaluation

and selection patterns, while considering effect heterogeneities based on established socio-demographic

characteristics at the same time. In turn, this research may help practitioners to assess humans’ mate

evaluation and selection in much more detail and, correspondingly, to evaluate improvements of the ar-

chitecture of online dating platforms (e.g., customized weighting of sport activity in matching algorithms

or specific placement of information on sport activity on individual profile pages). In a similar vein, the

insights of this research are applicable to engineer architectures of other platforms with a likewise high

degree of interpersonal computer-mediated interaction, for example, social networks.
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Appendix

3.A Descriptive Statistics

Table 3.A.1: Descriptive Statistics for the User Sample

Mean SD Min Max

Sport Frequency

Never 0.13 0.34 0.00 1.00

Rarely 0.10 0.31 0.00 1.00

Monthly 0.29 0.45 0.00 1.00

Weekly 0.48 0.50 0.00 1.00

Demographic Features

Gender (=1 if female) 0.48 0.50 0.00 1.00

Age (in years) 40.05 11.41 18.00 82.00

Income Level

Lowest 0.12 0.32 0.00 1.00

Low 0.16 0.37 0.00 1.00

Medium 0.20 0.40 0.00 1.00

High 0.24 0.43 0.00 1.00

Highest 0.22 0.42 0.00 1.00

Highest+ 0.06 0.24 0.00 1.00

Education Level

Lowest 0.00 0.06 0.00 1.00

Low 0.08 0.27 0.00 1.00

Medium 0.37 0.48 0.00 1.00

High 0.16 0.37 0.00 1.00

Highest 0.39 0.49 0.00 1.00

Note: Main variables describing the population displayed.

Figure 3.A.1: Distribution of the Distance between Users
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Table 3.A.2: Descriptive Statistics by Sport Frequency for Female Sample

Never Rarely Monthly Weekly Total

Outcome

First Message 0.11 0.10 0.10 0.11 0.11

Recipient Features

Age 35.49 37.65 37.84 37.83 37.53

Income Level

Lowest 0.20 0.20 0.10 0.07 0.10

Low 0.28 0.23 0.19 0.14 0.18

Medium 0.28 0.25 0.23 0.22 0.23

High 0.17 0.21 0.27 0.33 0.28

Highest 0.05 0.11 0.18 0.21 0.18

Highest+ 0.01 0.01 0.03 0.04 0.03

Education Level

Lowest 0.00 0.00 0.00 0.00 0.00

Low 0.08 0.06 0.02 0.02 0.03

Medium 0.61 0.52 0.41 0.36 0.42

High 0.20 0.21 0.21 0.22 0.21

Highest 0.11 0.21 0.35 0.41 0.33

Sender Features

Age 38.57 40.80 41.11 41.07 40.75

Income Level

Lowest 0.09 0.07 0.05 0.04 0.05

Low 0.16 0.13 0.09 0.07 0.09

Medium 0.23 0.21 0.17 0.16 0.18

High 0.26 0.26 0.27 0.27 0.27

Highest 0.21 0.26 0.32 0.35 0.32

Highest+ 0.04 0.07 0.10 0.11 0.09

Education Level

Lowest 0.00 0.00 0.00 0.00 0.00

Low 0.11 0.10 0.07 0.05 0.06

Medium 0.47 0.41 0.32 0.28 0.33

High 0.14 0.14 0.16 0.17 0.16

Highest 0.28 0.35 0.45 0.50 0.44

Sport Frequency

Never 0.16 0.14 0.11 0.09 0.11

Rarely 0.13 0.12 0.10 0.09 0.10

Monthly 0.29 0.30 0.31 0.28 0.29

Weekly 0.42 0.44 0.49 0.55 0.50

Observations

Total Share 0.12 0.09 0.29 0.49 1.00

Total Observations 13’408 98’33 31’801 53’414 108’456

Note: Means of variables displayed in all columns.
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Table 3.A.3: Descriptive Statistics by Sport Frequency for Male Sample

Never Rarely Monthly Weekly Total

Outcome

First Message 0.02 0.03 0.03 0.04 0.04

Recipient Features

Age 44.88 46.21 45.56 43.43 44.37

Income Level

Lowest 0.06 0.03 0.02 0.02 0.02

Low 0.15 0.08 0.05 0.04 0.05

Medium 0.21 0.19 0.14 0.12 0.14

High 0.22 0.32 0.27 0.25 0.26

Highest 0.30 0.30 0.41 0.42 0.40

Highest+ 0.05 0.07 0.11 0.15 0.13

Education Level

Lowest 0.00 0.01 0.00 0.00 0.00

Low 0.11 0.07 0.03 0.02 0.03

Medium 0.37 0.36 0.24 0.17 0.22

High 0.15 0.20 0.15 0.15 0.16

Highest 0.37 0.37 0.58 0.66 0.59

Sender Features

Age 43.15 44.20 43.37 41.19 42.19

Income Level

Lowest 0.13 0.09 0.07 0.06 0.07

Low 0.20 0.18 0.13 0.11 0.13

Medium 0.25 0.25 0.23 0.22 0.23

High 0.26 0.29 0.31 0.33 0.32

Highest 0.14 0.16 0.21 0.23 0.21

Highest+ 0.03 0.03 0.04 0.04 0.04

Education Level

Lowest 0.00 0.00 0.00 0.00 0.00

Low 0.05 0.04 0.03 0.02 0.02

Medium 0.48 0.47 0.39 0.33 0.37

High 0.18 0.20 0.19 0.18 0.19

Highest 0.28 0.29 0.40 0.47 0.42

Sport Frequency

Never 0.18 0.16 0.12 0.10 0.12

Rarely 0.12 0.11 0.10 0.09 0.09

Monthly 0.30 0.30 0.31 0.30 0.30

Weekly 0.40 0.44 0.47 0.52 0.49

Observations

Total Share 0.07 0.08 0.29 0.56 1.00

Total Observations 4’690 5’827 19’970 39’429 69’916

Note: Means of variables displayed in all columns.
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3.B Online Dating Platform

3.B.1 Valid User Interactions

In our analysis, we restrict ourselves to one-way user interactions. These interactions are always

initiated by a visit from the sender, which is invisible to the recipient. The visit is then immediately

followed by either a visible action from the sender, or possibly no further action at all. However, in both

cases a visible reply of the recipient to this initial action by the sender is not permitted. In that sense, we

retain only one-way interactions such that the sender was visibly or invisibly active, while the recipient

stayed visibly passive. Hence, we do not allow for any visible reciprocal interaction between the sender

and the recipient.

For instance, a sender visit followed by a sender message is a valid interaction. Also, two successive

sender visits followed by a message is a valid interaction. A single sender visit is valid interaction, too.

Further notice, that a sender visit followed by a recipient visit and afterwards a sender message is a valid

interaction as well, as the sender has not seen the recipient’s visit. However, a sender visit and sender like

followed by a recipient visit and like back inducing a sender message is not a valid interaction anymore as

the sender message has already been provoked by the recipient. Hence, we always restrict the interactions

until the point a possible reciprocal interaction taking place.

3.C Additional Results

3.C.1 Heterogeneous Effects

Table 3.C.1: Wald Tests for Equality of Group Effects for Males and Females

GATEs: Weekly vs. Never Males Females

Wald Test χ2 p-Value χ2 p-Value

Recipient Features

Age 23.56 37.08 13.17 96.32

Education Level 14.03 0.72 7.63 10.62

Income Level 22.67 0.04 1.79 87.72

Sport Frequency 9.15 2.74 3.43 32.94

Sender Features

Age 32.18 7.45 24.18 50.90

Education Level 20.40 0.04 9.75 4.49

Income Level 17.33 0.39 6.49 26.13

Sport Frequency 6.55 8.76 4.41 0.24

Shared Features

Distance 23.01 40.12 13.59 96.84

Note: Wald tests of Equality of the GATEs. p-Values in %.
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Table 3.C.2: Tests for Differences of GATEs to ATE for Males and Females

GATEs: Weekly vs. Never Males Females

t-Test Group ∆ SE p-Value Group ∆ SE p-Value

Recipient Features

Age 23.50 -0.02 0.08 80.04 21.00 -0.09 0.27 75.02

30.00 0.02 0.07 83.72 25.00 -0.12 0.23 59.96

31.50 0.06 0.07 40.97 26.50 0.01 0.21 95.03

33.00 0.04 0.07 56.74 27.50 -0.10 0.14 48.40

34.50 0.05 0.06 45.19 28.50 -0.09 0.13 49.29

35.50 0.03 0.09 76.92 29.50 -0.07 0.09 47.27

36.50 0.06 0.08 49.74 30.50 -0.04 0.10 66.35

37.50 -0.01 0.04 83.13 31.50 0.14 0.12 22.45

39.00 0.04 0.05 40.91 32.50 -0.01 0.09 88.68

40.50 0.03 0.06 60.45 33.50 0.13 0.10 17.17

42.50 -0.02 0.03 40.11 34.50 0.06 0.06 36.87

45.00 -0.05 0.04 14.49 35.50 0.07 0.09 45.64

46.50 -0.01 0.05 76.75 36.50 0.07 0.06 26.29

48.00 -0.00 0.05 91.87 37.50 0.12 0.07 9.96

49.50 0.02 0.05 74.89 38.50 0.03 0.08 69.35

50.50 0.01 0.06 82.71 40.00 0.01 0.08 93.72

51.50 0.00 0.06 94.83 42.00 -0.05 0.11 67.89

52.50 -0.05 0.07 44.77 43.50 -0.09 0.13 48.02

54.00 0.02 0.07 72.17 45.00 0.07 0.11 51.04

55.50 -0.06 0.07 41.80 46.50 0.06 0.12 62.45

57.00 -0.02 0.10 84.60 48.00 0.03 0.12 80.54

59.50 -0.07 0.12 54.40 49.50 0.02 0.14 89.29

71.50 -0.09 0.13 52.15 51.00 -0.02 0.14 88.52

53.50 -0.05 0.15 75.73

67.00 -0.03 0.16 87.07

Education Level Lowest -0.15 0.11 17.30 Lowest 0.11 0.29 70.80

Low -0.42 0.19 2.36 Low -0.22 0.20 27.04

Medium -0.27 0.15 7.51 Medium -0.10 0.07 19.95

High 0.03 0.02 15.84 High 0.04 0.04 30.37

Highest 0.09 0.05 9.19 Highest 0.09 0.10 35.32

Income Level Lowest -0.19 0.09 3.62 Lowest -0.15 0.26 56.30

Low -0.26 0.09 0.47 Low -0.11 0.12 33.82

Medium -0.16 0.07 1.83 Medium -0.00 0.04 95.63

High -0.03 0.02 13.33 High 0.04 0.06 51.80

Highest 0.06 0.03 3.07 Highest 0.08 0.10 41.01

Highest+ 0.14 0.08 6.43 Highest+ 0.09 0.13 51.46

Sport Frequency Never -0.24 0.12 5.62 Never -0.42 0.39 28.34

Rarely -0.16 0.10 14.20 Rarely -0.30 0.27 26.33

Monthly -0.05 0.05 34.31 Monthly -0.16 0.16 33.56

Weekly 0.03 0.02 26.99 Weekly 0.09 0.09 30.43

Sender Features

Age 22.50 -0.03 0.09 76.98 22.00 -0.16 0.29 58.20

28.00 0.02 0.07 75.51 27.00 -0.08 0.22 71.84

29.50 0.05 0.08 55.52 28.50 -0.14 0.17 40.21

30.50 0.06 0.08 43.37 29.50 -0.14 0.15 36.84

32.00 0.05 0.08 50.57 30.50 -0.01 0.11 90.90

33.50 0.02 0.08 78.09 31.50 -0.04 0.12 72.55

34.50 0.06 0.07 43.61 32.50 -0.03 0.09 73.61

35.50 0.00 0.05 94.99 33.50 0.03 0.08 66.48

36.50 0.04 0.06 48.48 34.50 0.02 0.07 82.77

38.00 0.03 0.03 34.29 35.50 0.09 0.07 17.47

40.00 -0.02 0.03 36.95 36.50 0.16 0.08 4.37

42.00 -0.00 0.03 96.81 37.50 0.06 0.05 28.04

44.00 -0.07 0.05 12.42 38.50 0.06 0.06 34.36

45.50 -0.00 0.04 89.46 40.00 0.10 0.06 8.29

47.00 -0.01 0.05 77.00 41.50 0.01 0.07 87.26

48.50 -0.00 0.05 98.54 43.00 0.05 0.07 52.76

49.50 0.03 0.06 63.18 44.50 0.00 0.08 95.30

continued on next page
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t-Test Group ∆ SE p-Value Group ∆ SE p-Value

50.50 0.02 0.06 74.85 46.00 0.04 0.09 69.01

51.50 0.00 0.07 95.22 47.50 -0.01 0.11 95.12

53.00 -0.01 0.08 93.70 48.50 0.07 0.11 48.48

55.00 -0.09 0.10 36.01 50.00 0.01 0.12 91.68

57.50 -0.07 0.11 50.78 51.50 -0.10 0.13 46.68

68.50 -0.09 0.14 52.80 53.00 0.02 0.12 88.61

55.00 0.01 0.13 91.37

57.50 0.02 0.15 87.36

70.50 -0.05 0.16 73.96

Education Level Lowest 0.09 0.10 36.18 Lowest 0.04 0.15 75.74

Low -0.39 0.16 1.36 Low -0.22 0.15 13.95

Medium -0.10 0.06 8.91 Medium -0.12 0.08 15.74

High 0.00 0.02 91.15 High -0.01 0.03 62.60

Highest 0.09 0.07 16.89 Highest 0.10 0.06 8.18

Income Level Lowest -0.17 0.08 3.20 Lowest -0.14 0.19 46.40

Low -0.14 0.06 2.89 Low -0.15 0.16 35.62

Medium -0.05 0.02 0.91 Medium -0.04 0.07 58.00

High 0.02 0.02 22.64 High -0.05 0.02 4.74

Highest 0.12 0.04 0.74 Highest 0.07 0.06 28.41

Highest+ 0.15 0.06 1.22 Highest+ 0.16 0.11 12.86

Sport Frequency Never -0.10 0.06 10.27 Never -0.24 0.09 1.17

Rarely -0.05 0.04 22.08 Rarely -0.14 0.06 1.00

Monthly -0.00 0.01 64.62 Monthly -0.05 0.02 2.98

Weekly 0.03 0.02 8.75 Weekly 0.10 0.03 0.12

Shared Features

Distance 1.57 0.00 0.20 99.86 1.45 0.03 0.11 79.53

4.60 0.03 0.20 86.16 4.26 0.01 0.11 89.61

7.79 0.04 0.15 79.16 7.09 -0.02 0.11 88.02

12.00 0.01 0.08 87.52 10.38 0.05 0.07 48.18

16.69 0.00 0.04 92.73 14.24 0.03 0.06 58.33

21.58 0.01 0.03 72.92 18.09 0.06 0.05 19.38

26.98 0.00 0.02 83.19 22.23 0.01 0.04 85.48

32.37 -0.01 0.02 62.77 26.85 0.02 0.03 63.64

37.99 0.00 0.03 92.04 31.26 0.02 0.03 55.16

43.78 0.01 0.03 72.41 35.62 -0.04 0.03 15.40

49.55 -0.00 0.04 99.40 40.15 -0.03 0.03 35.87

56.12 0.00 0.03 87.98 44.60 -0.03 0.04 50.06

63.60 -0.02 0.04 58.70 49.10 -0.04 0.03 24.65

71.36 0.01 0.04 72.91 54.62 -0.00 0.03 96.65

79.30 0.00 0.04 98.34 61.12 -0.03 0.04 38.27

87.72 -0.02 0.04 70.56 67.78 -0.02 0.03 55.05

96.77 -0.02 0.04 61.96 74.76 -0.02 0.04 62.73

108.00 -0.04 0.04 39.33 82.10 0.02 0.04 58.04

121.75 -0.01 0.04 74.22 89.77 0.01 0.05 84.55

136.80 -0.00 0.04 90.50 97.78 -0.00 0.04 99.96

153.36 0.02 0.03 64.38 107.76 -0.01 0.05 86.38

173.89 -0.02 0.04 67.71 120.60 -0.03 0.05 60.48

203.71 -0.02 0.04 64.58 134.74 -0.00 0.05 99.07

149.88 0.02 0.06 75.90

170.12 -0.01 0.05 92.23

202.07 -0.02 0.06 78.49

Note: t-tests for Differences of the GATEs from the ATE. ∆ in % points. p-Values in %.
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Figure 3.C.1: Heterogeneous Effects of Sport Activity based on Income for Females

Note: Effects in % points as GATE deviations from the ATE (zero dotted line) with 90% confidence intervals.

Figure 3.C.2: Heterogeneous Effects of Sport Activity based on Sport for Males

Note: Effects in % points as GATE deviations from the ATE (zero dotted line) with 90% confidence intervals.
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Figure 3.C.3: Heterogeneous Effects of Sport Activity based on Age for Males

Note: Effects in % points as GATE deviations from the ATE (zero dotted line) with 90% confidence intervals.

Figure 3.C.4: Heterogeneous Effects of Sport Activity based on Age for Females

Note: Effects in % points as GATE deviations from the ATE (zero dotted line) with 90% confidence intervals.
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Figure 3.C.5: Heterogeneous Effects of Sport Activity based on Education for Males

Note: Effects in % points as GATE deviations from the ATE (zero dotted line) with 90% confidence intervals.

Figure 3.C.6: Heterogeneous Effects of Sport Activity based on Education for Females

Note: Effects in % points as GATE deviations from the ATE (zero dotted line) with 90% confidence intervals.
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Figure 3.C.7: Heterogeneous Effects of Sport Activity based on Distance

Note: Effects in % points as GATE deviations from the ATE (zero dotted line) with 90% confidence intervals.

3.C.2 Clustering Analysis

Table 3.C.3: Descriptive Clusters of IATEs based on the k-means++ Clustering

Code Males Females

Clusters 1 2 3 4 5 1 2 3 4 5

IATEs: Weekly vs. Never 0.41 0.88 1.22 1.52 1.85 -1.41 -0.52 0.12 0.71 1.38

Recipient Features

5 Smoking Frequency 1.30 0.85 0.32 0.10 0.03 0.50 0.47 0.45 0.37 0.29

14 Relevance of Sexuality 0.38 0.44 0.47 0.49 0.52 0.21 0.27 0.31 0.32 0.31

108 TV in Leisure Time 0.27 0.26 0.25 0.25 0.28 0.32 0.27 0.21 0.15 0.11

223 Radio/TV at Home 0.62 0.62 0.60 0.59 0.60 0.73 0.68 0.65 0.64 0.67

284 Appearance Satisfaction 0.18 0.19 0.20 0.21 0.22 0.11 0.16 0.18 0.20 0.21

292 Importance of Sexuality 0.29 0.33 0.36 0.38 0.40 0.21 0.24 0.28 0.29 0.30

303 Comfortable Dining 0.67 0.63 0.57 0.55 0.55 0.73 0.66 0.60 0.57 0.58

324 Wish Significant Other 0.27 0.28 0.29 0.32 0.33 0.26 0.26 0.26 0.27 0.30

Sender Features

5 Smoking Frequency 0.69 0.52 0.36 0.31 0.27 0.48 0.50 0.49 0.42 0.32

14 Relevance of Sexuality 0.24 0.28 0.29 0.33 0.40 0.35 0.40 0.44 0.45 0.46

108 TV in Leisure Time 0.23 0.21 0.20 0.19 0.17 0.29 0.30 0.29 0.27 0.24

223 Radio/TV at Home 0.65 0.61 0.60 0.58 0.55 0.67 0.66 0.64 0.63 0.61

284 Appearance Satisfaction 0.18 0.17 0.17 0.19 0.22 0.12 0.16 0.17 0.19 0.23

292 Importance of Sexuality 0.21 0.24 0.23 0.25 0.28 0.29 0.32 0.33 0.35 0.38

303 Comfortable Dining 0.68 0.65 0.60 0.56 0.54 0.63 0.62 0.60 0.58 0.54

324 Wish Significant Other 0.23 0.23 0.25 0.25 0.27 0.28 0.29 0.31 0.32 0.35

Observations

Share 0.07 0.18 0.29 0.31 0.15 0.07 0.20 0.29 0.29 0.15

Total 2288 6439 10153 10826 5252 3753 11048 15896 15484 8047

Note: Means of clustered effects sorted in an increasing order, matched with selected user characteristics. Variable

codes refer to the exact questions from the registration questionnaire presented in Table 3.D.1.

169



170

3.D Supplementary Material

3.D.1 Registration Questionnaire and Descriptive Statistics

Table 3.D.1: Summary of the Registration Questionnaire and the Descriptive Statistics

Code Mean SD Min Max Question Coding Answer

No. 1 0.48 0.50 0.00 1.00 Gender. Dummy Female

No. 2 40.05 11.41 18.00 82.00 Age (in years). Ordered

No. 3 3.47 1.45 1.00 6.00 Gross annual income (EUR). Ordered Lowest income level ( 15,000 Euro)

Ordered Low income level (15,000 – 25,000

Euro)

Ordered Medium income level (25,000 –

35,000 Euro)

Ordered High income level (35,000 – 50,000

Euro)

Ordered Highest income level (50,000 –

100,000 Euro)

Ordered Highest income level (plus) (above

100,000 Euro)

No. 4 3.86 1.04 1.00 5.00 Education. Ordered Lowest education level (Lower

Completion)

Ordered Low education level (Graduation)

Ordered Medium education level

(Commercial- / Technical School

Diploma)

Ordered High education level (High School)

Ordered Highest education level (Com-

pleted Studies)

continued on next page
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Code Mean SD Min Max Question Coding Answer

No. 5 0.47 0.75 0.00 2.00 Smoking. Ordered No

Ordered Sometimes

Ordered Yes

No. 6 174.95 9.23 133.00 208.00 Body height (in cm). Ordered

No. 7 0.61 0.49 0.00 1.00 Family status. Unordered Single.

0.13 0.34 0.00 1.00 Unordered Separated.

0.21 0.40 0.00 1.00 Unordered Divorced.

0.05 0.21 0.00 1.00 Unordered Widowed.

No. 8 0.70 1.04 0.00 30.00 Number of children. Ordered

No. 9 0.27 0.68 0.00 30.00 Number of children in own house-

hold.

Ordered

No. 10 0.46 0.50 0.00 1.00

Desire to have children.

Unordered No information.

0.05 0.23 0.00 1.00 Unordered No.

0.45 0.50 0.00 1.00 Unordered Irrelevant.

0.03 0.17 0.00 1.00 Unordered Yes.

No. 11 0.38 0.49 0.00 1.00 Apart from love and affection,

what are the main reasons for your

desire for partnership? A maxi-

mum of 3 answers is possible.

Dummy Life is easier to master when there

are two of you.

No. 12 0.48 0.50 0.00 1.00 Dummy A partner would give me emotional

comfort.

No. 13 0.41 0.49 0.00 1.00 Dummy I need someone I trust completely.

No. 14 0.34 0.47 0.00 1.00 Dummy I want to live regular sexuality.

No. 15 0.45 0.50 0.00 1.00 Dummy I would like to spend much of my

free time together with a partner.

No. 16 0.30 0.46 0.00 1.00 Dummy I do not want to grow old alone.

continued on next page
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Code Mean SD Min Max Question Coding Answer

No. 17 0.11 0.31 0.00 1.00 Dummy A partnership offers more security

in every respect.

No. 18 0.03 0.18 0.00 1.00 Which statement should apply

most to your preferred partner?

Dummy We fit together based on our exter-

nal appearance.

No. 19 0.42 0.49 0.00 1.00 Dummy We both have the same interests.

No. 20 0.55 0.50 0.00 1.00 Dummy He / she has a strong appeal to me.

No. 21 0.19 0.40 0.00 1.00 What would you be most inter-

ested in if you found someone at-

tractive? Exact two answers re-

quired.

Dummy What he / she does professionally.

No. 22 0.16 0.37 0.00 1.00 Dummy Whether he / she lives in secure

financial circumstances.

No. 23 0.30 0.46 0.00 1.00 Dummy Health and vitality.

No. 24 0.79 0.41 0.00 1.00 Dummy Warm-heartedness.

No. 25 0.55 0.50 0.00 1.00 Dummy The external appearance.

No. 26 0.32 0.47 0.00 1.00 Suppose you and your partner

are invited to a wedding party of

friends. You are just getting ready.

Just as you know yourself: Which

thoughts are going through your

mind most likely?

Dummy Whether we make a good impres-

sion.

No. 27 0.27 0.44 0.00 1.00 Dummy Whether what we bring along is

appropriate.

No. 28 0.19 0.39 0.00 1.00 Dummy Whether there are not too many

people, I do not know.

No. 29 0.23 0.42 0.00 1.00 Dummy I am starting to realize once again

that dress codes are not for me.

continued on next page
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Code Mean SD Min Max Question Coding Answer

No. 30 0.30 0.46 0.00 1.00 Why do you think you have not yet

found the right partner?

Dummy I am very demanding with respect

to the future partner.

No. 31 0.17 0.37 0.00 1.00 Dummy I simply was not ready yet.

No. 32 0.18 0.38 0.00 1.00 Dummy I am too shy or too inhibited.

No. 33 0.10 0.29 0.00 1.00 Dummy I probably had too little time or

opportunities to make more deep

contacts.

No. 34 0.26 0.44 0.00 1.00 Dummy I have closed myself too much in

the past for some reason.

No. 35 0.47 0.50 0.00 1.00 If you really liked a book or mag-

azine article, would you like your

partner to read it too?

Dummy Yes, I would have more pleasure

with it.

No. 36 0.53 0.50 0.00 1.00 Dummy I do not care.

No. 37 0.84 0.37 0.00 1.00 Suppose you live together with

your partner in a two-room apart-

ment. How would you furnish the

apartment?

Dummy In any case a shared bedroom.

No. 38 0.16 0.37 0.00 1.00 Dummy Everyone should have an own

room, but at least one of them

should have space for shared

nights.

No. 39 0.47 0.50 0.00 1.00 How do you react to lovesickness? Dummy I lose the joy of eating.

No. 40 0.12 0.32 0.00 1.00 Dummy I eat more.

No. 41 0.41 0.49 0.00 1.00 Dummy Neither nor.

No. 42 0.68 0.46 0.00 1.00 Which statement about sexual loy-

alty in the partnership comes clos-

est to your attitude?

Dummy Absolute loyalty without excep-

tion!
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Code Mean SD Min Max Question Coding Answer

No. 43 0.18 0.39 0.00 1.00 Dummy It is important to always strive to

be loyal.

No. 44 0.04 0.20 0.00 1.00 Dummy To be loyal in the heart is much

more important than physical loy-

alty.

No. 45 0.05 0.22 0.00 1.00 Dummy Especially in a long partnership a

gaffe can happen.

No. 46 0.04 0.20 0.00 1.00 Dummy To demand absolute loyalty is pos-

sessive thinking.

No. 47 0.34 0.47 0.00 1.00 What is your idea of the external

form of a marriage?

Dummy In any case some kind of ritual, like

a church wedding can be.

No. 48 0.09 0.29 0.00 1.00 Dummy A legally binding contract is suffi-

cient for me.

No. 49 0.29 0.45 0.00 1.00 Dummy Nothing special, I would fully

agree with the wishes of my part-

ner in that case.

No. 50 0.28 0.45 0.00 1.00 Dummy I have no concept of it.

No. 51 0.03 0.18 0.00 1.00 Which terms describe characteris-

tics that you would like the other

person to appreciate in you? A

maximum of 5 answers is possible.

Dummy Seriously.

No. 52 0.06 0.23 0.00 1.00 Dummy Cheerful.

No. 53 0.53 0.50 0.00 1.00 Dummy Humorous.

No. 54 0.24 0.42 0.00 1.00 Dummy Uncomplicated.

No. 55 0.26 0.44 0.00 1.00 Dummy Naturally.

No. 56 0.11 0.31 0.00 1.00 Dummy Justice-loving.

No. 57 0.07 0.25 0.00 1.00 Dummy Adaptable.

No. 58 0.30 0.46 0.00 1.00 Dummy Sensitive.
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Code Mean SD Min Max Question Coding Answer

No. 59 0.28 0.45 0.00 1.00 Dummy Tender.

No. 60 0.08 0.27 0.00 1.00 Dummy Spirited.

No. 61 0.04 0.19 0.00 1.00 Dummy Restrained.

No. 62 0.01 0.11 0.00 1.00 Dummy Frugal.

No. 63 0.06 0.23 0.00 1.00 Dummy Domesticated.

No. 64 0.13 0.34 0.00 1.00 Dummy Close to nature.

No. 65 0.17 0.37 0.00 1.00 Dummy Optimistic.

No. 66 0.05 0.22 0.00 1.00 Dummy Capable.

No. 67 0.17 0.37 0.00 1.00 Dummy Fond of children.

No. 68 0.13 0.33 0.00 1.00 Dummy Strong of character.

No. 69 0.11 0.32 0.00 1.00 Dummy Handsome.

No. 70 0.30 0.46 0.00 1.00 Dummy Warm-hearted.

No. 71 0.15 0.36 0.00 1.00 Dummy Educated.

No. 72 0.07 0.26 0.00 1.00 Dummy Value-conscious.

No. 73 0.08 0.28 0.00 1.00 Dummy Good manners.

No. 74 0.05 0.23 0.00 1.00 Dummy Thoughtful.

No. 75 0.09 0.28 0.00 1.00 Dummy Independent.

No. 76 0.11 0.32 0.00 1.00 Dummy Tolerant.

No. 77 0.14 0.34 0.00 1.00 Dummy Spontaneous.

No. 78 0.15 0.36 0.00 1.00 Dummy Self-confident.

No. 79 0.07 0.26 0.00 1.00 Dummy Imaginative.

No. 80 0.03 0.16 0.00 1.00 Dummy Career conscious.

No. 81 0.41 0.49 0.00 1.00 Dummy Reliable.

No. 82 0.09 0.29 0.00 1.00 Dummy Calm.

No. 83 0.18 0.38 0.00 1.00 Dummy Sympathetic.
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Code Mean SD Min Max Question Coding Answer

No. 84 0.25 0.43 0.00 1.00 What do you think people who

know you well are most likely to

think about you? Exact two an-

swers required.

Dummy Is ready for any fun.

No. 85 0.23 0.42 0.00 1.00 Dummy Gets the bright side out of life.

No. 86 0.26 0.44 0.00 1.00 Dummy Thinks a lot and seriously about

life.

No. 87 0.21 0.41 0.00 1.00 Dummy Is always in a good mood and

happy.

No. 88 0.11 0.31 0.00 1.00 Dummy A little dreamy.

No. 89 0.33 0.47 0.00 1.00 Dummy Approaches the problem objec-

tively and deliberately.

No. 90 0.29 0.46 0.00 1.00 Dummy Finds a good solution even in un-

pleasant situations for herself /

himself.

No. 91 0.19 0.40 0.00 1.00 Dummy Nothing can upset her / him.

No. 92 0.13 0.34 0.00 1.00 Dummy Takes lively part in everything.

No. 93 0.29 0.45 0.00 1.00 What seems most important to

you in a partnership? Exact two

answers required.

Dummy Give each other plenty of space.

No. 94 0.65 0.48 0.00 1.00 Dummy To coordinate the wishes of the in-

dividual with each other.

No. 95 0.38 0.49 0.00 1.00 Dummy Do not always weigh everything on

the gold scale.

No. 96 0.16 0.37 0.00 1.00 Dummy Steer life in a calmer direction.

No. 97 0.30 0.46 0.00 1.00 Dummy Also let five be straight sometimes.

No. 98 0.15 0.36 0.00 1.00 Dummy Taking completely new paths.

No. 99 0.08 0.27 0.00 1.00 Dummy Preserving the tried and tested.
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Code Mean SD Min Max Question Coding Answer

No. 100 0.23 0.42 0.00 1.00 Imagine family and friends: What

reaction would you attach partic-

ular importance to when it comes

to your choice of your partner?

Dummy I would value that my family

agrees with my choice of partner.

No. 101 0.31 0.46 0.00 1.00 Dummy That my friends are happy about

my choice of partner.

No. 102 0.24 0.43 0.00 1.00 Dummy I do not care what families or

friends think of my choice of part-

ner.

No. 103 0.22 0.41 0.00 1.00 Dummy I would value that my partner’s

family likes me.

No. 104 0.22 0.41 0.00 1.00 Do you drink alcohol? Dummy Yes, for example at meals, in soci-

ety, for relaxation.

No. 105 0.68 0.47 0.00 1.00 Dummy Occasionally.

No. 106 0.10 0.30 0.00 1.00 Dummy No.

No. 107 0.32 0.47 0.00 1.00 What do you like to do in your

leisure time? A maximum of 3 an-

swers is possible.

Dummy Reading.

No. 108 0.25 0.43 0.00 1.00 Dummy Watching TV.

No. 109 0.43 0.50 0.00 1.00 Dummy Relaxing.

No. 110 0.66 0.47 0.00 1.00 Dummy Going out.

No. 111 0.30 0.46 0.00 1.00 Dummy Cinema.

No. 112 0.58 0.49 0.00 1.00 Dummy Pursuing my hobbies.

No. 113 0.12 0.33 0.00 1.00 Dummy Playing in convivial gatherings.

No. 114 0.42 0.49 0.00 1.00 What is your favorite way to spend

your leisure time?

Dummy At home—or I visit a friend.

No. 115 0.32 0.47 0.00 1.00 Dummy In the free nature.

No. 116 0.26 0.44 0.00 1.00 Dummy In convivial gatherings.
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Code Mean SD Min Max Question Coding Answer

No. 117 0.26 0.44 0.00 1.00 Do you like cooking? Dummy Yes, I really enjoy cooking.

No. 118 0.39 0.49 0.00 1.00 Dummy Yes, very much.

No. 119 0.13 0.33 0.00 1.00 Dummy I only cook when I have to.

No. 120 0.10 0.30 0.00 1.00 Dummy I only like to cook when I want to

host visitors.

No. 121 0.12 0.33 0.00 1.00 Dummy I cannot cook well.

No. 122 0.02 0.15 0.00 1.00 What special interests / hobbies do

you have? A maximum of 6 an-

swers is possible.

Dummy Theater.

No. 123 0.55 0.50 0.00 1.00 Dummy Photography.

No. 124 0.10 0.30 0.00 1.00 Dummy Film / Video.

No. 125 0.04 0.20 0.00 1.00 Dummy Literature.

No. 126 0.06 0.23 0.00 1.00 Dummy Art.

No. 127 0.04 0.20 0.00 1.00 Dummy Music.

No. 128 0.07 0.26 0.00 1.00 Dummy Cooking.

No. 129 0.16 0.37 0.00 1.00 Dummy Cinema.

No. 130 0.13 0.34 0.00 1.00 Dummy Architecture.

No. 131 0.08 0.27 0.00 1.00 Dummy History.

No. 132 0.00 0.06 0.00 1.00 Dummy Carpentry / crafts.

No. 133 0.13 0.34 0.00 1.00 Dummy Pottery.

No. 134 0.25 0.43 0.00 1.00 Dummy Handworks.

No. 135 0.02 0.14 0.00 1.00 Dummy Collecting.

No. 136 0.17 0.37 0.00 1.00 What kind of music do you like

to listen to? Multiple answers are

possible.

Dummy Musicals / Operettas.

No. 137 0.09 0.29 0.00 1.00 Dummy Operas.

No. 138 0.17 0.37 0.00 1.00 Dummy Symphony concerts.

No. 139 0.05 0.21 0.00 1.00 Dummy Chamber music.
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No. 140 0.04 0.18 0.00 1.00 Dummy Folk Music.

No. 141 0.22 0.41 0.00 1.00 Dummy Schlager.

No. 142 0.11 0.31 0.00 1.00 Dummy Chansons / Songs.

No. 143 0.03 0.17 0.00 1.00 Dummy Ethno.

No. 144 0.25 0.43 0.00 1.00 Dummy Jazz.

No. 145 0.82 0.38 0.00 1.00 Dummy Rock.

No. 146 0.24 0.43 0.00 1.00 Dummy Metal / Hard Rock.

No. 147 0.17 0.38 0.00 1.00 Dummy Reggae.

No. 148 0.26 0.44 0.00 1.00 Dummy Rap.

No. 149 0.35 0.48 0.00 1.00 Dummy Dance.

No. 150 0.30 0.46 0.00 1.00 Dummy House.

No. 151 0.00 0.01 0.00 1.00 Dummy Other

No. 152 0.78 0.41 0.00 1.00 Do you play an instrument? Dummy No.

No. 153 0.22 0.41 0.00 1.00 Dummy Yes.

No. 154 0.51 0.50 0.00 1.00 What is your favorite form of hol-

iday? Multiple answers are possi-

ble.

Dummy Sun and beach.

No. 155 0.10 0.30 0.00 1.00 Dummy Study trips.

No. 156 0.04 0.19 0.00 1.00 Dummy Meditation.

No. 157 0.13 0.34 0.00 1.00 Dummy Boat trips.

No. 158 0.17 0.38 0.00 1.00 Dummy At home.

No. 159 0.54 0.50 0.00 1.00 Dummy Cities, culture and art.

No. 160 0.49 0.50 0.00 1.00 Dummy Relaxation holidays.

No. 161 0.70 0.46 0.00 1.00 Dummy At the sea.

No. 162 0.38 0.48 0.00 1.00 Dummy In the mountains.

No. 163 0.17 0.38 0.00 1.00 Dummy Camping.

No. 164 0.25 0.43 0.00 1.00 Dummy Adventure holidays.

No. 165 0.27 0.45 0.00 1.00 Dummy Beauty / wellness holidays.
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No. 166 0.06 0.24 0.00 1.00 Dummy Group tours.

No. 167 0.10 0.29 0.00 1.00 How do you plan your holiday? Dummy As little as possible: I prefer to

drive into the blue.

No. 168 0.41 0.49 0.00 1.00 Dummy I plan and organize my holiday

carefully and early.

No. 169 0.49 0.50 0.00 1.00 Dummy Once the date and destination are

fixed, I like to leave everything else

to the moment.

No. 170 0.83 0.37 0.00 1.00 Do you like to take longer walks? Dummy Yes.

No. 171 0.17 0.37 0.00 1.00 Dummy No.

No. 172 0.00 0.02 0.00 1.00 How do you proceed when you

have private plans?

Dummy I am proceeding fairly systemati-

cally.

No. 173 0.00 0.01 0.00 1.00 Dummy I think it will work out somehow.

No. 174 0.47 0.50 0.00 1.00 Do you usually feel more comfort-

able at home than in society?

Dummy Yes.

No. 175 0.53 0.50 0.00 1.00 Dummy No.

No. 176 0.81 0.39 0.00 1.00 How must a living room be tem-

pered so that you feel really com-

fortable?

Dummy Well warm (21C [69.8F] or slightly

more).

No. 177 0.19 0.39 0.00 1.00 Dummy Rather cool (19C [66.2F] or a little

less).

No. 178 0.11 0.31 0.00 1.00 Do you sleep with the window

open?

Dummy Yes, absolutely.

No. 179 0.49 0.50 0.00 1.00 Dummy Yes, if it is possible.

No. 180 0.17 0.38 0.00 1.00 Dummy No, I find that uncomfortable.

No. 181 0.23 0.42 0.00 1.00 Dummy I do not really care.
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No. 182 0.24 0.43 0.00 1.00 There are people who are very

lively in the morning; others

only become really active in the

evening. How is it with you?

Dummy Alive in the morning.

No. 183 0.34 0.47 0.00 1.00 Dummy Rather lively in the evening.

No. 184 0.41 0.49 0.00 1.00 Dummy It makes no difference to me.

No. 185 0.73 0.44 0.00 1.00 (In the next section you will see

pairs of images. Please choose

spontaneously the image you like

most. Our tip: Just follow your

gut feeling.) Which one do you like

more?

Dummy (Image 1)

No. 186 0.27 0.44 0.00 1.00 Dummy (Imag 2)

No. 187 0.65 0.48 0.00 1.00 (In the next section you will see

pairs of images. Please choose

spontaneously the image you like

most. Our tip: Just follow your

gut feeling.) Which arrangement

appeals to you more emotionally?

Dummy (Image 3)

No. 188 0.35 0.48 0.00 1.00 Dummy (Image 4)

No. 189 0.71 0.45 0.00 1.00 (In the next section you will see

pairs of images. Please choose

spontaneously the image you like

most. Our tip: Just follow your

gut feeling.) Which image appeals

to you more?

Dummy (Image 5)

No. 190 0.29 0.45 0.00 1.00 Dummy (Image 6)
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No. 191 0.55 0.50 0.00 1.00 (In the next section you will see

pairs of images. Please choose

spontaneously the image you like

most. Our tip: Just follow your

gut feeling.) Do not think about it

for long, decide for a shape!

Dummy (Image 7)

No. 192 0.45 0.50 0.00 1.00 Dummy (Image 8)

No. 193 0.69 0.46 0.00 1.00 (In the next section you will see

pairs of images. Please choose

spontaneously the image you like

most. Our tip: Just follow your

gut feeling.) Which of these two

arrangements do you prefer more?

Dummy (Image 9)

No. 194 0.31 0.46 0.00 1.00 Dummy (Image 10)

No. 195 0.48 0.50 0.00 1.00 (In the next section you will see

pairs of images. Please choose

spontaneously the image you like

most. Our tip: Just follow your

gut feeling.) Which movement can

you empathize with better?

Dummy (Image 11)

No. 196 0.52 0.50 0.00 1.00 Dummy (Image 12)

No. 197 0.51 0.50 0.00 1.00 (In the next section you will see

pairs of images. Please choose

spontaneously the image you like

most. Our tip: Just follow your

gut feeling.) Which image do you

prefer more?

Dummy (Image 13)

No. 198 0.49 0.50 0.00 1.00 Dummy (Image 14)
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No. 199 0.11 0.31 0.00 1.00 (In the next section you will see

pairs of images. Please choose

spontaneously the image you like

most. Our tip: Just follow your

gut feeling.) Get a feel for the dif-

ferent directions of movement. De-

cide on one.

Dummy (Image 15)

No. 200 0.89 0.31 0.00 1.00 Dummy (Image 16)

No. 201 0.41 0.49 0.00 1.00 (In the next section you will see

pairs of images. Please choose

spontaneously the image you like

most. Our tip: Just follow your

gut feeling.) Which one do you like

more?

Dummy (Image 17)

No. 202 0.59 0.49 0.00 1.00 Dummy (Image 18)

No. 203 0.73 0.44 0.00 1.00 (In the next section you will see

pairs of images. Please choose

spontaneously the image you like

most. Our tip: Just follow your

gut feeling.) Which representation

do you prefer more?

Dummy (Image 19)

No. 204 0.27 0.44 0.00 1.00 Dummy (Image 20)

No. 205 0.54 0.50 0.00 1.00 (In the next section you will see

pairs of images. Please choose

spontaneously the image you like

most. Our tip: Just follow your

gut feeling.) Which image appeals

to you more emotionally?

Dummy (Image 21)
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No. 206 0.46 0.50 0.00 1.00 Dummy (Image 22)

No. 207 0.77 0.42 0.00 1.00 Do you get excited about some-

thing easily?

Dummy No, not necessarily.

No. 208 0.23 0.42 0.00 1.00 Dummy Yes, very much.

No. 209 0.26 0.44 0.00 1.00 If you like a track or song well:

Why is that mostly?

Dummy I like the text.

No. 210 0.60 0.49 0.00 1.00 Dummy I like the rhythm.

No. 211 0.14 0.34 0.00 1.00 Dummy I like the melody.

No. 212 0.26 0.44 0.00 1.00 Which tones appeal to you most? Dummy Saxophone tones.

No. 213 0.16 0.37 0.00 1.00 Dummy Violin sounds.

No. 214 0.58 0.49 0.00 1.00 Dummy Piano playing.

No. 215 0.75 0.43 0.00 1.00 Regardless of what is fashionable

at the moment: You choose your

clothes in terms of style and color

tone. . .

Dummy Covered and discreet.

No. 216 0.25 0.43 0.00 1.00 Dummy Bold and expressive.

No. 217 0.27 0.44 0.00 1.00 What type of house appeals to you

most?

Dummy Image 23 (Country house)

No. 218 0.47 0.50 0.00 1.00 Dummy Image 24 (City villa)

No. 219 0.26 0.44 0.00 1.00 Dummy Image 25 (Architect house)

No. 220 0.25 0.43 0.00 1.00 Which of these three plants do you

prefer to look at most?

Dummy Image 26 (Orchid)

No. 221 0.60 0.49 0.00 1.00 Dummy Image 27 (Strelitzie)

No. 222 0.15 0.36 0.00 1.00 Dummy Image 28 (Rose)

No. 223 0.64 0.48 0.00 1.00 When you get home and are alone,

do you habitually turn on the radio

/ TV / music?

Dummy Yes.

No. 224 0.36 0.48 0.00 1.00 Dummy No.
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No. 225 0.36 0.48 0.00 1.00 How do you prefer to dress most?

A maximum of 2 answers is possi-

ble.

Dummy Casual.

No. 226 0.21 0.41 0.00 1.00 Dummy Practical.

No. 227 0.19 0.39 0.00 1.00 Dummy Elegant.

No. 228 0.29 0.45 0.00 1.00 Dummy Fashionable.

No. 229 0.32 0.47 0.00 1.00 Dummy Correct and adapted to the situa-

tion.

No. 230 0.11 0.31 0.00 1.00 Dummy Very personal and unconventional.

No. 231 0.05 0.22 0.00 1.00 Imagine: You slip on a banana peel

on the sidewalk. You have not hurt

yourself, but people turn and stop.

One want to help you. What could

be your first reaction?

Dummy I am annoyed that there are people

who throw a banana peel on the

sidewalk without thinking about

it.

No. 232 0.21 0.41 0.00 1.00 Dummy I get up and carry the banana peel

to the nearest waste bin so that the

same does not happen to others.

No. 233 0.14 0.34 0.00 1.00 Dummy ≪Ouch! Been lucky again!≫

No. 234 0.19 0.39 0.00 1.00 Dummy I downplay the incident because I

find it unpleasant to draw so much

attention to myself.

No. 235 0.11 0.31 0.00 1.00 Dummy While I am still sitting, I look

at the people from below and say

≪What a show, I could play with

it, right?≫

No. 236 0.30 0.46 0.00 1.00 Dummy I get up and say ≪Nothing hap-

pens!≫ and keep going.
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No. 237 0.15 0.36 0.00 1.00 Imagine yourself: You live in a

larger apartment building. At two

thirty in the morning, your door-

bell rings. Someone answers the

intercom and asks if a Mr. Müller

lives in the house. That is in-

deed the case—and of course your

neighbor also has his own bell.

What could you say?

Dummy ≪Try again with another bell.≫

No. 238 0.02 0.15 0.00 1.00 Dummy ≪For that you woke me from the

deepest sleep!≫ And I end the con-

versation.

No. 239 0.04 0.19 0.00 1.00 Dummy I do not get up at all, but pull the

blanket over my head and try to

continue sleeping.

No. 240 0.05 0.23 0.00 1.00 Dummy I think something could have hap-

pened. When then asked for

Müller, I swear into the appara-

tus: ≪Are you crazy! What do you

think of disturbing strangers in the

middle of the night?≫

No. 241 0.34 0.47 0.00 1.00 Dummy ≪If you like the Müller, let him

sleep.≫

No. 242 0.18 0.39 0.00 1.00 Dummy I think something could have hap-

pened. When then asked for

Müller, I let myself explain what

he / she wants from Mr. Müller at

night.
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No. 243 0.22 0.41 0.00 1.00 Dummy ≪Here is not Müller, but I know

that the name badges are actually

not easily recognizable.≫

No. 244 0.16 0.37 0.00 1.00 Imagine yourself: A friend buys

a new car that is far too expen-

sive—far beyond his / her circum-

stances. It is the car you have al-

ways dreamed of. What could you

say to your friend?

Dummy ≪One should not live above one’s

means. When will you finally grow

up?≫

No. 245 0.19 0.39 0.00 1.00 Dummy ≪Wonder of technology! I am glad

you allowed yourself this. One

could get jealous.≫

No. 246 0.05 0.23 0.00 1.00 Dummy ≪It is so beautiful, I would be

afraid to park it in public and get

a bump or a scratch directly.≫

No. 247 0.06 0.24 0.00 1.00 Dummy ≪Think about it, once you have

driven a meter with it, the car is

only worth half . . .≫

No. 248 0.46 0.50 0.00 1.00 Dummy ≪Oh cool! Let us go for a spin!≫

No. 249 0.08 0.26 0.00 1.00 Dummy ≪I think you need a chauffeur for

that—I will break the car in for

you!≫

No. 250 0.12 0.32 0.00 1.00 Imagine yourself: You and a friend

were very upset about another per-

son. Your friend makes the sug-

gestion to pay it back to the other

person. What could be your first

reaction?

Dummy ≪I would think twice about it.

Anyone digging a pit for others

falls into it herself / himself.≫
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No. 251 0.04 0.20 0.00 1.00 Dummy ≪I do not know. When that comes

out. . . I want to be left alone.≫

No. 252 0.37 0.48 0.00 1.00 Dummy ≪Forget it, we will laugh about it

in a year.≫

No. 253 0.11 0.32 0.00 1.00 Dummy ≪That is nasty, I do not take part

in it.≫

No. 254 0.06 0.24 0.00 1.00 Dummy ≪I think it could be quite funny.≫

No. 255 0.29 0.46 0.00 1.00 Dummy ≪Let it be, otherwise he / she is

quite alright.≫

No. 256 0.40 0.49 0.00 1.00 What is your first impulse when

you get very angry about the be-

havior of a person close to you?

Dummy I clearly say that I am angry.

No. 257 0.27 0.45 0.00 1.00 Dummy I stay calm and try to clarify the

situation.

No. 258 0.11 0.31 0.00 1.00 Dummy I think to myself: It does not hap-

pen that often.

No. 259 0.22 0.41 0.00 1.00 Dummy I swallow the anger and grit my

teeth.

No. 260 0.24 0.42 0.00 1.00 Sometimes it happens that one is

offended by a person. How do you

react to that?

Dummy I think maybe it was not meant

that way.

No. 261 0.19 0.39 0.00 1.00 Dummy I am sure that I will find a way to

deal with it.

No. 262 0.53 0.50 0.00 1.00 Dummy I have been gnawing on it for a

while.

No. 263 0.05 0.21 0.00 1.00 Dummy I would like to pay back something

like this immediately.
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No. 264 0.23 0.42 0.00 1.00 If someone contradicts you even

though you know you are right,

how do you usually react?

Dummy I am annoyed by the bossiness of

the other, but I leave it at that.

No. 265 0.14 0.35 0.00 1.00 Dummy It is not so important to me to be

right.

No. 266 0.50 0.50 0.00 1.00 Dummy I try to convince the other.

No. 267 0.13 0.34 0.00 1.00 Dummy I will clarify who is right.

No. 268 0.36 0.48 0.00 1.00 Imagine you are at a party with

a man / a woman you love. Sud-

denly you see that he / she is flirt-

ing with another person. How do

you react to that?

Dummy I try to disturb the flirt.

No. 269 0.29 0.45 0.00 1.00 Dummy I suffer silently and say nothing.

No. 270 0.18 0.39 0.00 1.00 Dummy I also flirt.

No. 271 0.16 0.37 0.00 1.00 Dummy I do not mind. I allow him / her

the fun.

No. 272 0.16 0.37 0.00 1.00 A scene from a dream. Select the

title of the image that you think

best expresses the content. Image

29.

Dummy Adventure in Scotland.

No. 273 0.59 0.49 0.00 1.00 Dummy Lost passion.

No. 274 0.25 0.43 0.00 1.00 Dummy Power of conscience.

No. 275 0.33 0.47 0.00 1.00 Take a close look at this dream

scene: Which title best reflects the

image content for you? Image 30.

Dummy Dance of the Vampires.

No. 276 0.59 0.49 0.00 1.00 Dummy Voices from the afterlife.

No. 277 0.08 0.28 0.00 1.00 Dummy Fun society.
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No. 278 0.19 0.39 0.00 1.00 What title would you give this

dream scene? Image 31.

Dummy Cool sensuality.

No. 279 0.15 0.36 0.00 1.00 Dummy Goddess of lust.

No. 280 0.66 0.48 0.00 1.00 Dummy End of freedom.

No. 281 0.57 0.50 0.00 1.00 One last dream scene. Which im-

age title best expresses the content

for you? Image 32.

Dummy Opera ball.

No. 282 0.30 0.46 0.00 1.00 Dummy The joy of the game.

No. 283 0.14 0.34 0.00 1.00 Dummy The winner.

No. 284 0.18 0.38 0.00 1.00 Are you satisfied with your exter-

nal appearance?

Dummy Yes.

No. 285 0.51 0.50 0.00 1.00 Dummy Yes, on the whole.

No. 286 0.18 0.39 0.00 1.00 Dummy That fluctuates.

No. 287 0.13 0.34 0.00 1.00 Dummy I am also sometimes dissatisfied.

No. 288 0.27 0.45 0.00 1.00 Do you believe in the good in hu-

mans?

Dummy Yes, always.

No. 289 0.43 0.49 0.00 1.00 Dummy I try it.

No. 290 0.11 0.31 0.00 1.00 Dummy Sometimes I find it hard to believe.

No. 291 0.19 0.39 0.00 1.00 Dummy It depends on the context in which.

No. 292 0.28 0.45 0.00 1.00 How important is sexuality to you? Dummy Very important.

No. 293 0.61 0.49 0.00 1.00 Dummy Important.

No. 294 0.11 0.31 0.00 1.00 Dummy Less important.

No. 295 0.01 0.11 0.00 1.00 Dummy Not so important.

No. 296 0.45 0.50 0.00 1.00 What is your basic view of the in-

stitution of marriage?

Dummy If two really love each other, then

they should marry.

No. 297 0.29 0.46 0.00 1.00 Dummy Whoever wants to found a family

should also marry.
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No. 298 0.26 0.44 0.00 1.00 Dummy Marriage as an institution is com-

pletely unnecessary.

No. 299 0.32 0.47 0.00 1.00 Is it important for you that every-

thing is always in the place where

it actually belongs?

Dummy Yes, absolutely.

No. 300 0.43 0.50 0.00 1.00 Dummy Not necessarily.

No. 301 0.25 0.43 0.00 1.00 Dummy What does right place mean, it can

mean something completely differ-

ent for everyone.

No. 302 0.23 0.42 0.00 1.00 What significance does food have

for you?

Dummy My main priority is to eat well.

No. 303 0.61 0.49 0.00 1.00 Dummy I love to eat comfortably.

No. 304 0.16 0.37 0.00 1.00 Dummy The most important thing for me

is a healthy diet.

No. 305 0.54 0.50 0.00 1.00 Do you attach importance to reg-

ular meals?

Dummy As far as possible for me, I eat reg-

ularly and at fixed times.

No. 306 0.46 0.50 0.00 1.00 Dummy No, not at all. I eat when I am

hungry.

No. 307 0.19 0.40 0.00 1.00 How do you find it when advertise-

ments on television or in newspa-

pers are sexually emphasized?

Dummy Disturbing, sometimes tasteless.

No. 308 0.41 0.49 0.00 1.00 Dummy Quite pleasant indeed.

No. 309 0.40 0.49 0.00 1.00 Dummy Uninteresting.

No. 310 0.43 0.50 0.00 1.00 Which of the following values are

the most important for you in life?

A maximum of 2 answers is possi-

ble.

Dummy True friendship.

No. 311 0.40 0.49 0.00 1.00 Dummy Happiness in love.
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No. 312 0.24 0.43 0.00 1.00 Dummy Letting myself get involved in

something I like.

No. 313 0.08 0.28 0.00 1.00 Dummy Professional success.

No. 314 0.18 0.38 0.00 1.00 Dummy To be valued and respected by the

people in my environment.

No. 315 0.12 0.32 0.00 1.00 Dummy Social security.

No. 316 0.09 0.29 0.00 1.00 Dummy Self-realization.

No. 317 0.44 0.50 0.00 1.00 Dummy A familiar home with a partner.

No. 318 0.17 0.37 0.00 1.00 What maxim do you think is best

to live by?

Dummy Work before pleasure!

No. 319 0.21 0.41 0.00 1.00 Dummy Love thy neighbor as thyself!

No. 320 0.62 0.49 0.00 1.00 Dummy Live and let live!

No. 321 0.15 0.36 0.00 1.00 What is currently your greatest

wish? A maximum of 2 answers

is possible.

Dummy Expand professional opportuni-

ties.

No. 322 0.15 0.36 0.00 1.00 Dummy Get to know nice and interesting

people.

No. 323 0.07 0.26 0.00 1.00 Dummy Make good friends.

No. 324 0.27 0.44 0.00 1.00 Dummy Discover the great love.

No. 325 0.53 0.50 0.00 1.00 Dummy Finding a partner for life.

No. 326 0.14 0.35 0.00 1.00 Dummy Start over again.

No. 327 0.53 0.50 0.00 1.00 Dummy Build a stable relationship that

makes me feel safe.

No. 328 0.33 0.47 0.00 1.00 Does it bother you if people in your

area use their mobile phones with-

out hesitation?

Dummy No, I have got used to it by now.

No. 329 0.48 0.50 0.00 1.00 Dummy Actually yes, but one has to live

with that today.
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No. 330 0.16 0.36 0.00 1.00 Dummy Yes, I think that is terrible.

No. 331 0.03 0.18 0.00 1.00 Dummy I then take the opportunity to have

conversations myself.

No. 332 0.29 0.45 0.00 1.00 There is a lot of discussion

about climate change, environ-

mental protection, energy sources,

etc. Which statement is closest to

your opinion?

Dummy Considering our advanced technol-

ogy, we should be able to come up

with something reasonable.

No. 333 0.61 0.49 0.00 1.00 Dummy We should simply accept that we

have to be more careful with na-

ture.

No. 334 0.11 0.31 0.00 1.00 Dummy I would like not to think at all

about what is still to come.

No. 335 0.04 0.19 0.00 1.00 What would most disturb you in

your partner’s environment during

the introduction phase?

Dummy A dominant father-in-law (in the

making).

No. 336 0.07 0.25 0.00 1.00 Dummy An overprotective mother-in-law

(in the making).

No. 337 0.21 0.41 0.00 1.00 Dummy Too much influence of old friends.

No. 338 0.60 0.49 0.00 1.00 Dummy Bad moods of the partner that pull

me down.

No. 339 0.09 0.28 0.00 1.00 Dummy Too freaky types in the circle of ac-

quaintances.

No. 340 0.10 0.30 0.00 1.00 Regardless of your current place of

residence, where would you most

like to live?

Dummy In a large city with a metropolitan

feeling.

No. 341 0.30 0.46 0.00 1.00 Dummy In the environment of a larger city.

No. 342 0.16 0.37 0.00 1.00 Dummy In a more tranquil small city.
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No. 343 0.18 0.38 0.00 1.00 Dummy A little quieter or completely in the

rural area.

No. 344 0.27 0.44 0.00 1.00 Dummy It does not matter—I can feel com-

fortable at many places. . .

No. 345 3.24 2.27 0.00 12.00 Profile images (count). Ordered

No. 346 0.00 0.06 0.00 1.00 Language(s). Dummy Danish.

No. 347 0.58 0.49 0.00 1.00 Dummy German.

No. 348 0.57 0.50 0.00 1.00 Dummy English.

No. 349 0.06 0.24 0.00 1.00 Dummy Spanish.

No. 350 0.00 0.03 0.00 1.00 Dummy Finnish.

No. 351 0.14 0.34 0.00 1.00 Dummy French.

No. 352 0.03 0.16 0.00 1.00 Dummy Italian.

No. 353 0.01 0.10 0.00 1.00 Dummy Dutch.

No. 354 0.00 0.04 0.00 1.00 Dummy Norwegian.

No. 355 0.01 0.10 0.00 1.00 Dummy Polish.

No. 356 0.01 0.07 0.00 1.00 Dummy Portuguese.

No. 357 0.02 0.15 0.00 1.00 Dummy Russian.

No. 358 0.00 0.07 0.00 1.00 Dummy Swedish.

No. 359 0.00 0.07 0.00 1.00 Dummy Turkish.

No. 360 0.09 0.29 0.00 1.00 Occupation. Unordered Office and Administrative Support

Occupations.

0.06 0.24 0.00 1.00 Unordered Business and Financial Operations

Occupations.

0.04 0.19 0.00 1.00 Unordered Community and Social Service Oc-

cupations.

0.03 0.18 0.00 1.00 Unordered Sales and Related Occupations.

0.03 0.17 0.00 1.00 Unordered Healthcare Support Occupations.

0.05 0.22 0.00 1.00 Unordered Production Occupations.
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0.07 0.26 0.00 1.00 Unordered Healthcare Practitioners and

Technical Occupations.

0.03 0.17 0.00 1.00 Unordered Life, Physical, and Social Science

Occupations.

0.05 0.21 0.00 1.00 Unordered Computer and Mathematical Oc-

cupations.

0.02 0.15 0.00 1.00 Unordered Installation, Maintenance, and Re-

pair Occupations.

0.07 0.25 0.00 1.00 Unordered No Information.

0.01 0.12 0.00 1.00 Unordered Legal Occupations.

0.01 0.10 0.00 1.00 Unordered Protective Service Occupations.

0.09 0.29 0.00 1.00 Unordered Management Occupations.

0.12 0.32 0.00 1.00 Unordered Education, Training, and Library

Occupations.

0.02 0.15 0.00 1.00 Unordered Construction and Extraction Oc-

cupations.

0.05 0.22 0.00 1.00 Unordered Arts, Design, Entertainment, and

Media Occupations.

0.02 0.13 0.00 1.00 Unordered Personal Care and Service Occupa-

tions.

0.01 0.08 0.00 1.00 Unordered Building and Grounds Cleaning

and Maintenance Occupations.

0.03 0.17 0.00 1.00 Unordered Transportation and Material Mov-

ing Occupations.

0.07 0.26 0.00 1.00 Unordered Architecture and Engineering Oc-

cupations.

0.01 0.08 0.00 1.00 Unordered Military Specific Occupations.
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0.01 0.11 0.00 1.00 Unordered Food Preparation and Serving Re-

lated Occupations.

0.00 0.05 0.00 1.00 Unordered Farming, Fishing, and Forestry

Occupations.

No. 361 0.19 0.39 0.00 1.00 Search criteria (partner): Chil-

dren.

Unordered No, please not.

0.06 0.23 0.00 1.00 Unordered No matter if the children do not

live in the household.

0.02 0.12 0.00 1.00 Unordered Yes, in any case.

0.74 0.44 0.00 1.00 Unordered No matter.

No. 362 0.79 0.41 0.00 1.00 Search criteria (partner): Income. Unordered Same.

0.21 0.41 0.00 1.00 Unordered No matter.

0.00 0.04 0.00 1.00 Unordered No information.

No. 363 0.78 0.41 0.00 1.00 Search criteria (partner): Educa-

tion.

Unordered Same.

0.19 0.39 0.00 1.00 Unordered No matter.

0.03 0.17 0.00 1.00 Unordered Just my education level.

0.00 0.04 0.00 1.00 Unordered No information.

No. 364 0.22 0.41 0.00 1.00 Search criteria (partner): Smok-

ing.

Unordered No.

0.22 0.41 0.00 1.00 Unordered Occasionally.

0.01 0.10 0.00 1.00 Unordered Yes.

0.55 0.50 0.00 1.00 Unordered No information.

No. 365 0.98 0.12 0.00 1.00 Search criteria (partner): Mini-

mum Age (in years).

Ordered

No. 366 0.99 0.11 0.00 1.00 Search criteria (partner): Maxi-

mum Age (in years).

Ordered
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No. 367 0.52 0.50 0.00 1.00 Search criteria (partner): Mini-

mum Height (in cm).

Ordered

No. 368 0.39 0.49 0.00 1.00 Search criteria (partner): Maxi-

mum Height (in cm).

Ordered

No. 369 692.37 332.32 20.00 873.00 Search criteria (partner): Maxi-

mum distance (in km).

Ordered

No. 370 0.46 0.50 0.00 1.00
Search criteria (partner):

Distance search.

Unordered No information.

0.35 0.48 0.00 1.00 Unordered Yes.

0.18 0.39 0.00 1.00 Unordered No.

No. 371 0.00 0.02 0.00 1.00 Search criteria (partner): Loca-

tion.

Dummy Country (code): Not defined

No. 372 0.01 0.12 0.00 1.00 Dummy Country (code): AT; Region:

Wien

No. 373 0.01 0.11 0.00 1.00 Dummy Country (code): AT; Region:

RDW

No. 374 0.01 0.11 0.00 1.00 Dummy Country (code): AT; Region:

Niederösterreich

No. 375 0.02 0.13 0.00 1.00 Dummy Country (code): AT; Region: Vo-

rarlberg

No. 376 0.02 0.13 0.00 1.00 Dummy Country (code): AT; Region:

Oberösterreich

No. 377 0.02 0.14 0.00 1.00 Dummy Country (code): AT; Region:

Salzburg

No. 378 0.02 0.14 0.00 1.00 Dummy Country (code): AT; Region: Tirol

No. 379 0.01 0.11 0.00 1.00 Dummy Country (code): AT; Region: Bur-

genland

No. 380 0.01 0.11 0.00 1.00 Dummy Country (code): AT; Region:

Steiermark
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No. 381 0.01 0.11 0.00 1.00 Dummy Country (code): AT; Region:

Kärnten

No. 382 0.00 0.06 0.00 1.00 Dummy Country (code): BE; Region:

Brussels Hoofdstedelijk Gewest

No. 383 0.00 0.05 0.00 1.00 Dummy Country (code): BE; Region:

Flandre occidentale

No. 384 0.00 0.05 0.00 1.00 Dummy Country (code): BE; Region:

Oost-Vlaanderen

No. 385 0.00 0.05 0.00 1.00 Dummy Country (code): BE; Region:

RDW

No. 386 0.00 0.05 0.00 1.00 Dummy Country (code): BE; Region: Bra-

bant wallon

No. 387 0.00 0.05 0.00 1.00 Dummy Country (code): BE; Region: Bra-

bant flamand

No. 388 0.00 0.06 0.00 1.00 Dummy Country (code): BE; Region: An-

vers

No. 389 0.00 0.06 0.00 1.00 Dummy Country (code): BE; Region: Lim-

burg

No. 390 0.00 0.06 0.00 1.00 Dummy Country (code): BE; Region:

Liège

No. 391 0.00 0.05 0.00 1.00 Dummy Country (code): BE; Region: Na-

men

No. 392 0.00 0.05 0.00 1.00 Dummy Country (code): BE; Region:

Hainaut

No. 393 0.00 0.06 0.00 1.00 Dummy Country (code): BE; Region: Lux-

emburg

No. 394 0.02 0.12 0.00 1.00 Dummy Country (code): CH; Region: Aar-

gau
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No. 395 0.01 0.11 0.00 1.00 Dummy Country (code): CH; Region:

Graubünden

No. 396 0.01 0.11 0.00 1.00 Dummy Country (code): CH; Region: Jura

No. 397 0.01 0.12 0.00 1.00 Dummy Country (code): CH; Region:

Luzern

No. 398 0.01 0.11 0.00 1.00 Dummy Country (code): CH; Region:

Neuchâtel

No. 399 0.01 0.11 0.00 1.00 Dummy Country (code): CH; Region: Nid-

walden

No. 400 0.01 0.11 0.00 1.00 Dummy Country (code): CH; Region: Ob-

walden

No. 401 0.02 0.13 0.00 1.00 Dummy Country (code): CH; Region:

St.Gallen

No. 402 0.02 0.13 0.00 1.00 Dummy Country (code): CH; Region:

Schaffhausen

No. 403 0.01 0.11 0.00 1.00 Dummy Country (code): CH; Region:

Solothurn

No. 404 0.01 0.11 0.00 1.00 Dummy Country (code): CH; Region:

Schwyz

No. 405 0.01 0.11 0.00 1.00 Dummy Country (code): CH; Region: Ap-

penzell Innerrhoden

No. 406 0.01 0.12 0.00 1.00 Dummy Country (code): CH; Region:

Thurgau

No. 407 0.01 0.11 0.00 1.00 Dummy Country (code): CH; Region: Ti-

cino

No. 408 0.01 0.11 0.00 1.00 Dummy Country (code): CH; Region: Uri

No. 409 0.01 0.11 0.00 1.00 Dummy Country (code): CH; Region:

Vaud
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No. 410 0.01 0.11 0.00 1.00 Dummy Country (code): CH; Region:

Valais

No. 411 0.01 0.11 0.00 1.00 Dummy Country (code): CH; Region: Zug

No. 412 0.02 0.14 0.00 1.00 Dummy Country (code): CH; Region:

Zürich

No. 413 0.01 0.11 0.00 1.00 Dummy Country (code): CH; Region:

RDW

No. 414 0.01 0.11 0.00 1.00 Dummy Country (code): CH; Region: Ap-

penzell Ausserrhoden

No. 415 0.02 0.13 0.00 1.00 Dummy Country (code): CH; Region:

Basel-Land

No. 416 0.02 0.13 0.00 1.00 Dummy Country (code): CH; Region:

Basel-Stadt

No. 417 0.01 0.12 0.00 1.00 Dummy Country (code): CH; Region:

Bern

No. 418 0.01 0.11 0.00 1.00 Dummy Country (code): CH; Region: Fri-

bourg

No. 419 0.01 0.11 0.00 1.00 Dummy Country (code): CH; Region:

Genève

No. 420 0.01 0.11 0.00 1.00 Dummy Country (code): CH; Region:

Glarus

No. 421 0.25 0.43 0.00 1.00 Dummy Country (code): DE; Region:

Baden-Württemberg

No. 422 0.28 0.45 0.00 1.00 Dummy Country (code): DE; Region:

Nordrhein-Westfalen

No. 423 0.18 0.38 0.00 1.00 Dummy Country (code): DE; Region:

Rheinland-Pfalz
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No. 424 0.09 0.29 0.00 1.00 Dummy Country (code): DE; Region:

Saarland

No. 425 0.12 0.32 0.00 1.00 Dummy Country (code): DE; Region:

Sachsen

No. 426 0.10 0.30 0.00 1.00 Dummy Country (code): DE; Region:

Sachsen-Anhalt

No. 427 0.12 0.33 0.00 1.00 Dummy Country (code): DE; Region:

Schleswig-Holstein

No. 428 0.11 0.31 0.00 1.00 Dummy Country (code): DE; Region:

Thüringen

No. 429 0.07 0.25 0.00 1.00 Dummy Country (code): DE; Region:

RDW

No. 430 0.26 0.44 0.00 1.00 Dummy Country (code): DE; Region: Bay-

ern

No. 431 0.16 0.37 0.00 1.00 Dummy Country (code): DE; Region:

Berlin

No. 432 0.12 0.32 0.00 1.00 Dummy Country (code): DE; Region:

Brandenburg

No. 433 0.11 0.31 0.00 1.00 Dummy Country (code): DE; Region: Bre-

men

No. 434 0.16 0.37 0.00 1.00 Dummy Country (code): DE; Region:

Hamburg

No. 435 0.21 0.41 0.00 1.00 Dummy Country (code): DE; Region: Hes-

sen

No. 436 0.10 0.30 0.00 1.00 Dummy Country (code): DE; Region:

Mecklenburg-Vorpommern

No. 437 0.19 0.39 0.00 1.00 Dummy Country (code): DE; Region:

Niedersachsen
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No. 438 0.00 0.07 0.00 1.00 Dummy Country (code): DK; Region:

Bornholm

No. 439 0.01 0.07 0.00 1.00 Dummy Country (code): DK; Region:

Vestjylland og det sydlige Østjyl-

land

No. 440 0.00 0.07 0.00 1.00 Dummy Country (code): DK; Region:

Vestsjælland, Lolland-Falster og

Møn

No. 441 0.00 0.07 0.00 1.00 Dummy Country (code): DK; Region:

RDW

No. 442 0.00 0.07 0.00 1.00 Dummy Country (code): DK; Region:

Færøerne

No. 443 0.00 0.07 0.00 1.00 Dummy Country (code): DK; Region: Fyn

og øerne

No. 444 0.00 0.07 0.00 1.00 Dummy Country (code): DK; Region:

Grønland

No. 445 0.00 0.07 0.00 1.00 Dummy Country (code): DK; Region:

København, Frederiksberg og

omegn

No. 446 0.00 0.07 0.00 1.00 Dummy Country (code): DK; Region:

Nordjylland

No. 447 0.00 0.07 0.00 1.00 Dummy Country (code): DK; Region:

Nordsjælland

No. 448 0.00 0.07 0.00 1.00 Dummy Country (code): DK; Region:

Østjylland

No. 449 0.01 0.07 0.00 1.00 Dummy Country (code): DK; Region:

Sønderjylland samt dele af Sydjyl-

land og dele af Vestjylland
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No. 450 0.01 0.07 0.00 1.00 Dummy Country (code): ES; Region: An-

dalućıa

No. 451 0.01 0.07 0.00 1.00 Dummy Country (code): ES; Region:

Navarra

No. 452 0.01 0.07 0.00 1.00 Dummy Country (code): ES; Region:

Castilla-La Mancha

No. 453 0.01 0.07 0.00 1.00 Dummy Country (code): ES; Region: Páıs

Vasco

No. 454 0.01 0.07 0.00 1.00 Dummy Country (code): ES; Region:

Cataluña

No. 455 0.01 0.07 0.00 1.00 Dummy Country (code): ES; Region: Va-

lencia

No. 456 0.01 0.07 0.00 1.00 Dummy Country (code): ES; Region: Ex-

tremadura

No. 457 0.01 0.07 0.00 1.00 Dummy Country (code): ES; Region: Ciu-

dad Autónoma de Melilla

No. 458 0.01 0.07 0.00 1.00 Dummy Country (code): ES; Region: Gali-

cia

No. 459 0.01 0.07 0.00 1.00 Dummy Country (code): ES; Region: Ciu-

dad Autónoma de Ceuta

No. 460 0.01 0.08 0.00 1.00 Dummy Country (code): ES; Region: Islas

Baleares

No. 461 0.01 0.08 0.00 1.00 Dummy Country (code): ES; Region: Islas

Canarias

No. 462 0.01 0.07 0.00 1.00 Dummy Country (code): ES; Region:

RDW

No. 463 0.01 0.07 0.00 1.00 Dummy Country (code): ES; Region:

Aragón
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No. 464 0.01 0.07 0.00 1.00 Dummy Country (code): ES; Region: La

Rioja

No. 465 0.01 0.07 0.00 1.00 Dummy Country (code): ES; Region: As-

turias

No. 466 0.01 0.08 0.00 1.00 Dummy Country (code): ES; Region:

Madrid

No. 467 0.01 0.07 0.00 1.00 Dummy Country (code): ES; Region:

Cantabria

No. 468 0.01 0.07 0.00 1.00 Dummy Country (code): ES; Region: Mur-

cia

No. 469 0.01 0.07 0.00 1.00 Dummy Country (code): ES; Region:

Castilla y León

No. 470 0.01 0.09 0.00 1.00 Dummy Country (code): FR; Region: Al-

sace

No. 471 0.00 0.06 0.00 1.00 Dummy Country (code): FR; Region:

DOM-TOM

No. 472 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region:

Franche-Comté

No. 473 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region:

Haute-Normandie

No. 474 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region: Ile-

de-France

No. 475 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region:

Languedoc-Roussillon

No. 476 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region:

Limousin

No. 477 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region: Lor-

raine
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No. 478 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region:

Midi-Pyrénées

No. 479 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region:

Monaco

No. 480 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region:

Nord-Pas-de-Calais

No. 481 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region:

Aquitaine

No. 482 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region:

Pays-de-la-Loire

No. 483 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region: Pi-

cardie

No. 484 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region:

Poitou-Charentes

No. 485 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region:

Provence-Alpes-Côte-d’Azur

No. 486 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region:

Rhône-Alpes

No. 487 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region:

RDW

No. 488 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region: Au-

vergne

No. 489 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region:

Basse-Normandie

No. 490 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region:

Bourgogne

No. 491 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region: Bre-

tagne
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No. 492 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region: Cen-

tre

No. 493 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region:

Champagne-Ardenne

No. 494 0.00 0.07 0.00 1.00 Dummy Country (code): FR; Region:

Corse

No. 495 0.01 0.08 0.00 1.00 Dummy Country (code): GB; Region: East

Midlands

No. 496 0.01 0.08 0.00 1.00 Dummy Country (code): GB; Region:

Wales

No. 497 0.01 0.08 0.00 1.00 Dummy Country (code): GB; Region:

North West

No. 498 0.01 0.08 0.00 1.00 Dummy Country (code): GB; Region:

West Midlands

No. 499 0.01 0.08 0.00 1.00 Dummy Country (code): GB; Region:

RDW

No. 500 0.01 0.08 0.00 1.00 Dummy Country (code): GB; Region:

Northern Ireland

No. 501 0.01 0.08 0.00 1.00 Dummy Country (code): GB; Region: East

Anglia

No. 502 0.01 0.09 0.00 1.00 Dummy Country (code): GB; Region:

Scotland

No. 503 0.01 0.09 0.00 1.00 Dummy Country (code): GB; Region:

Greater London

No. 504 0.01 0.09 0.00 1.00 Dummy Country (code): GB; Region:

South East

No. 505 0.01 0.08 0.00 1.00 Dummy Country (code): GB; Region:

Yorkshire The Humber
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No. 506 0.01 0.09 0.00 1.00 Dummy Country (code): GB; Region:

South West

No. 507 0.01 0.08 0.00 1.00 Dummy Country (code): GB; Region:

North East

No. 508 0.00 0.06 0.00 1.00 Dummy Country (code): IE; Region: Lein-

ster

No. 509 0.00 0.06 0.00 1.00 Dummy Country (code): IE; Region: Mun-

ster

No. 510 0.00 0.06 0.00 1.00 Dummy Country (code): IE; Region: Con-

nacht

No. 511 0.00 0.06 0.00 1.00 Dummy Country (code): IE; Region: Ul-

ster

No. 512 0.00 0.06 0.00 1.00 Dummy Country (code): IE; Region: RDW

No. 513 0.01 0.07 0.00 1.00 Dummy Country (code): IT; Region:

Abruzzo

No. 514 0.01 0.07 0.00 1.00 Dummy Country (code): IT; Region:

Marche

No. 515 0.01 0.07 0.00 1.00 Dummy Country (code): IT; Region:

Molise

No. 516 0.01 0.07 0.00 1.00 Dummy Country (code): IT; Region:

Piemonte

No. 517 0.01 0.07 0.00 1.00 Dummy Country (code): IT; Region:

Puglia

No. 518 0.01 0.07 0.00 1.00 Dummy Country (code): IT; Region:

Sardegna

No. 519 0.01 0.07 0.00 1.00 Dummy Country (code): IT; Region: Si-

cilia
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No. 520 0.01 0.07 0.00 1.00 Dummy Country (code): IT; Region:

Toscana

No. 521 0.01 0.08 0.00 1.00 Dummy Country (code): IT; Region:

Trentino-Alto Adige

No. 522 0.01 0.07 0.00 1.00 Dummy Country (code): IT; Region: Um-

bria

No. 523 0.01 0.07 0.00 1.00 Dummy Country (code): IT; Region: Valle

d’Aosta

No. 524 0.01 0.07 0.00 1.00 Dummy Country (code): IT; Region:

Basilicata

No. 525 0.01 0.07 0.00 1.00 Dummy Country (code): IT; Region:

Veneto

No. 526 0.01 0.07 0.00 1.00 Dummy Country (code): IT; Region:

RDW

No. 527 0.01 0.07 0.00 1.00 Dummy Country (code): IT; Region: Cal-

abria

No. 528 0.01 0.07 0.00 1.00 Dummy Country (code): IT; Region: Cam-

pania

No. 529 0.01 0.07 0.00 1.00 Dummy Country (code): IT; Region:

Emilia-Romagna

No. 530 0.01 0.07 0.00 1.00 Dummy Country (code): IT; Region:

Friuli-Venezia Giulia

No. 531 0.01 0.07 0.00 1.00 Dummy Country (code): IT; Region: Lazio

No. 532 0.01 0.07 0.00 1.00 Dummy Country (code): IT; Region: Lig-

uria

No. 533 0.01 0.07 0.00 1.00 Dummy Country (code): IT; Region: Lom-

bardia
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No. 534 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region:

Aguascalientes

No. 535 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region: Du-

rango

No. 536 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region:

Guanajuato

No. 537 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region:

Guerrero

No. 538 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region: Hi-

dalgo

No. 539 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region:

Jalisco

No. 540 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region:

México

No. 541 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region: Mi-

choacán de Ocampo

No. 542 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region:

Morelos

No. 543 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region: Na-

yarit

No. 544 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region:

Nuevo León

No. 545 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region:

Baja California

No. 546 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region:

Oaxaca

No. 547 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region:

Puebla

continued on next page



210

Code Mean SD Min Max Question Coding Answer

No. 548 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region:

Qerétaro de Arteaga

No. 549 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region:

Quintana Roo

No. 550 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region: San

Lúıs Potośı

No. 551 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region:

Sinaloa

No. 552 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region:

Sonora

No. 553 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region:

Tabasco

No. 554 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region:

Tamaulipas

No. 555 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region:

Tlaxcala

No. 556 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region:

Baja California Sur

No. 557 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region: Ve-

racruz

No. 558 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region: Yu-

catán

No. 559 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region: Za-

catecas

No. 560 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region:

RDW

No. 561 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region:

Campeche
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No. 562 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region:

Coahuila de Zaragoza

No. 563 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region: Col-

ima

No. 564 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region: Chi-

apas

No. 565 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region: Chi-

huahua

No. 566 0.00 0.03 0.00 1.00 Dummy Country (code): MX; Region: Dis-

trito Federal

No. 567 0.01 0.08 0.00 1.00 Dummy Country (code): NL; Region:

Drenthe

No. 568 0.01 0.09 0.00 1.00 Dummy Country (code): NL; Region:

Utrecht

No. 569 0.01 0.08 0.00 1.00 Dummy Country (code): NL; Region: Zee-

land

No. 570 0.01 0.09 0.00 1.00 Dummy Country (code): NL; Region:

Zuid-Holland

No. 571 0.01 0.08 0.00 1.00 Dummy Country (code): NL; Region:

RDW

No. 572 0.01 0.08 0.00 1.00 Dummy Country (code): NL; Region:

Flevoland

No. 573 0.01 0.08 0.00 1.00 Dummy Country (code): NL; Region:

Friesland

No. 574 0.01 0.09 0.00 1.00 Dummy Country (code): NL; Region:

Gelderland

No. 575 0.01 0.08 0.00 1.00 Dummy Country (code): NL; Region:

Groningen
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No. 576 0.01 0.09 0.00 1.00 Dummy Country (code): NL; Region: Lim-

burg

No. 577 0.01 0.08 0.00 1.00 Dummy Country (code): NL; Region:

Overijssel

No. 578 0.01 0.08 0.00 1.00 Dummy Country (code): NL; Region:

Noord-Brabant

No. 579 0.01 0.08 0.00 1.00 Dummy Country (code): NL; Region:

Noord-Holland

No. 580 0.00 0.06 0.00 1.00 Dummy Country (code): NO; Region: Ak-

ershus

No. 581 0.00 0.06 0.00 1.00 Dummy Country (code): NO; Region: Op-

pland

No. 582 0.00 0.06 0.00 1.00 Dummy Country (code): NO; Region: Oslo

No. 583 0.00 0.06 0.00 1.00 Dummy Country (code): NO; Region:

Østfold

No. 584 0.00 0.06 0.00 1.00 Dummy Country (code): NO; Region: Ro-

galand

No. 585 0.00 0.06 0.00 1.00 Dummy Country (code): NO; Region:

Sogn og fjordane

No. 586 0.00 0.06 0.00 1.00 Dummy Country (code): NO; Region: Sør-

Trøndelag

No. 587 0.00 0.06 0.00 1.00 Dummy Country (code): NO; Region:

Svalbard

No. 588 0.00 0.06 0.00 1.00 Dummy Country (code): NO; Region:

Telemark

No. 589 0.00 0.06 0.00 1.00 Dummy Country (code): NO; Region:

Troms
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No. 590 0.00 0.06 0.00 1.00 Dummy Country (code): NO; Region:

Vest-Agder

No. 591 0.00 0.06 0.00 1.00 Dummy Country (code): NO; Region:

Aust-Agder

No. 592 0.00 0.06 0.00 1.00 Dummy Country (code): NO; Region:

Vestfold

No. 593 0.00 0.06 0.00 1.00 Dummy Country (code): NO; Region:

RDW

No. 594 0.00 0.06 0.00 1.00 Dummy Country (code): NO; Region:

Buskerud

No. 595 0.00 0.06 0.00 1.00 Dummy Country (code): NO; Region:

Finnmark

No. 596 0.00 0.06 0.00 1.00 Dummy Country (code): NO; Region:

Hedmark

No. 597 0.00 0.06 0.00 1.00 Dummy Country (code): NO; Region:

Hordaland

No. 598 0.00 0.06 0.00 1.00 Dummy Country (code): NO; Region:

Møre og Romsdal

No. 599 0.00 0.06 0.00 1.00 Dummy Country (code): NO; Region:

Nordland

No. 600 0.00 0.06 0.00 1.00 Dummy Country (code): NO; Region:

Nord-Trøndelag

No. 601 0.01 0.08 0.00 1.00 Dummy Country (code): SE; Region:

Stockholm

No. 602 0.01 0.07 0.00 1.00 Dummy Country (code): SE; Region:

Blekinge

No. 603 0.01 0.07 0.00 1.00 Dummy Country (code): SE; Region:

Sk̊ane
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No. 604 0.01 0.07 0.00 1.00 Dummy Country (code): SE; Region: Hal-

land

No. 605 0.01 0.07 0.00 1.00 Dummy Country (code): SE; Region:

Västra Götaland

No. 606 0.01 0.07 0.00 1.00 Dummy Country (code): SE; Region:

Värmland

No. 607 0.01 0.07 0.00 1.00 Dummy Country (code): SE; Region: Öre-

bro

No. 608 0.01 0.07 0.00 1.00 Dummy Country (code): SE; Region:

Västmanland

No. 609 0.01 0.07 0.00 1.00 Dummy Country (code): SE; Region:

Dalarna

No. 610 0.01 0.07 0.00 1.00 Dummy Country (code): SE; Region:

Gävleborg

No. 611 0.01 0.07 0.00 1.00 Dummy Country (code): SE; Region:

Västernorrland

No. 612 0.01 0.07 0.00 1.00 Dummy Country (code): SE; Region:

Jämtland

No. 613 0.01 0.07 0.00 1.00 Dummy Country (code): SE; Region:

Västerbotten

No. 614 0.01 0.07 0.00 1.00 Dummy Country (code): SE; Region: Nor-

rbotten

No. 615 0.01 0.07 0.00 1.00 Dummy Country (code): SE; Region:

RDW

No. 616 0.01 0.07 0.00 1.00 Dummy Country (code): SE; Region: Up-

psala

No. 617 0.01 0.07 0.00 1.00 Dummy Country (code): SE; Region:

Södermanland
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No. 618 0.01 0.07 0.00 1.00 Dummy Country (code): SE; Region:

Östergötland

No. 619 0.01 0.07 0.00 1.00 Dummy Country (code): SE; Region:

Jönköping

No. 620 0.01 0.07 0.00 1.00 Dummy Country (code): SE; Region: Kro-

noberg

No. 621 0.01 0.07 0.00 1.00 Dummy Country (code): SE; Region:

Kalmar

No. 622 0.01 0.07 0.00 1.00 Dummy Country (code): SE; Region: Got-

land

No. 623 2.11 1.05 0.00 3.00 How often do you practice sport? Ordered Never.

Ordered Rarely.

Ordered Monthly.

Ordered Weekly.

No. 624 0.01 0.11 0.00 1.00 ZIP code area (first two digits of

five-digit German ZIP code; note

that German ZIP code areas do

not necessarily correspond to ad-

ministrative units).

Unordered ZIP: 01

0.00 0.05 0.00 1.00 Unordered ZIP: 02

0.00 0.05 0.00 1.00 Unordered ZIP: 03

0.02 0.12 0.00 1.00 Unordered ZIP: 04

0.01 0.11 0.00 1.00 Unordered ZIP: 06

0.01 0.07 0.00 1.00 Unordered ZIP: 07

0.00 0.07 0.00 1.00 Unordered ZIP: 08

0.01 0.09 0.00 1.00 Unordered ZIP: 09

0.02 0.15 0.00 1.00 Unordered ZIP: 10

0.02 0.14 0.00 1.00 Unordered ZIP: 12
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0.01 0.12 0.00 1.00 Unordered ZIP: 13

0.02 0.12 0.00 1.00 Unordered ZIP: 14

0.01 0.08 0.00 1.00 Unordered ZIP: 15

0.01 0.08 0.00 1.00 Unordered ZIP: 16

0.00 0.07 0.00 1.00 Unordered ZIP: 17

0.01 0.09 0.00 1.00 Unordered ZIP: 18

0.00 0.07 0.00 1.00 Unordered ZIP: 19

0.01 0.08 0.00 1.00 Unordered ZIP: 20

0.01 0.12 0.00 1.00 Unordered ZIP: 21

0.03 0.17 0.00 1.00 Unordered ZIP: 22

0.01 0.10 0.00 1.00 Unordered ZIP: 23

0.01 0.12 0.00 1.00 Unordered ZIP: 24

0.01 0.09 0.00 1.00 Unordered ZIP: 25

0.01 0.10 0.00 1.00 Unordered ZIP: 26

0.01 0.08 0.00 1.00 Unordered ZIP: 27

0.01 0.09 0.00 1.00 Unordered ZIP: 28

0.01 0.07 0.00 1.00 Unordered ZIP: 29

0.01 0.12 0.00 1.00 Unordered ZIP: 30

0.01 0.10 0.00 1.00 Unordered ZIP: 31

0.01 0.09 0.00 1.00 Unordered ZIP: 32

0.01 0.09 0.00 1.00 Unordered ZIP: 33

0.01 0.09 0.00 1.00 Unordered ZIP: 34

0.01 0.10 0.00 1.00 Unordered ZIP: 35

0.01 0.07 0.00 1.00 Unordered ZIP: 36

0.01 0.08 0.00 1.00 Unordered ZIP: 37

0.01 0.12 0.00 1.00 Unordered ZIP: 38

0.01 0.09 0.00 1.00 Unordered ZIP: 39

0.02 0.13 0.00 1.00 Unordered ZIP: 40
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0.01 0.10 0.00 1.00 Unordered ZIP: 41

0.01 0.09 0.00 1.00 Unordered ZIP: 42

0.01 0.11 0.00 1.00 Unordered ZIP: 44

0.01 0.12 0.00 1.00 Unordered ZIP: 45

0.01 0.10 0.00 1.00 Unordered ZIP: 46

0.01 0.12 0.00 1.00 Unordered ZIP: 47

0.01 0.11 0.00 1.00 Unordered ZIP: 48

0.01 0.11 0.00 1.00 Unordered ZIP: 49

0.02 0.14 0.00 1.00 Unordered ZIP: 50

0.01 0.10 0.00 1.00 Unordered ZIP: 51

0.01 0.10 0.00 1.00 Unordered ZIP: 52

0.02 0.13 0.00 1.00 Unordered ZIP: 53

0.01 0.08 0.00 1.00 Unordered ZIP: 54

0.01 0.11 0.00 1.00 Unordered ZIP: 55

0.01 0.09 0.00 1.00 Unordered ZIP: 56

0.01 0.08 0.00 1.00 Unordered ZIP: 57

0.01 0.09 0.00 1.00 Unordered ZIP: 58

0.01 0.10 0.00 1.00 Unordered ZIP: 59

0.01 0.12 0.00 1.00 Unordered ZIP: 60

0.01 0.09 0.00 1.00 Unordered ZIP: 61

0.02 0.12 0.00 1.00 Unordered ZIP: 63

0.01 0.10 0.00 1.00 Unordered ZIP: 64

0.02 0.13 0.00 1.00 Unordered ZIP: 65

0.01 0.12 0.00 1.00 Unordered ZIP: 66

0.01 0.10 0.00 1.00 Unordered ZIP: 67

0.01 0.09 0.00 1.00 Unordered ZIP: 68

0.01 0.09 0.00 1.00 Unordered ZIP: 69

0.01 0.12 0.00 1.00 Unordered ZIP: 70
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0.02 0.12 0.00 1.00 Unordered ZIP: 71

0.01 0.12 0.00 1.00 Unordered ZIP: 72

0.01 0.11 0.00 1.00 Unordered ZIP: 73

0.01 0.11 0.00 1.00 Unordered ZIP: 74

0.01 0.08 0.00 1.00 Unordered ZIP: 75

0.02 0.13 0.00 1.00 Unordered ZIP: 76

0.00 0.07 0.00 1.00 Unordered ZIP: 77

0.01 0.09 0.00 1.00 Unordered ZIP: 78

0.01 0.11 0.00 1.00 Unordered ZIP: 79

0.02 0.13 0.00 1.00 Unordered ZIP: 80

0.01 0.12 0.00 1.00 Unordered ZIP: 81

0.01 0.11 0.00 1.00 Unordered ZIP: 82

0.01 0.10 0.00 1.00 Unordered ZIP: 83

0.01 0.09 0.00 1.00 Unordered ZIP: 84

0.02 0.13 0.00 1.00 Unordered ZIP: 85

0.01 0.12 0.00 1.00 Unordered ZIP: 86

0.01 0.08 0.00 1.00 Unordered ZIP: 87

0.01 0.09 0.00 1.00 Unordered ZIP: 88

0.01 0.09 0.00 1.00 Unordered ZIP: 89

0.01 0.11 0.00 1.00 Unordered ZIP: 90

0.01 0.11 0.00 1.00 Unordered ZIP: 91

0.00 0.06 0.00 1.00 Unordered ZIP: 92

0.01 0.08 0.00 1.00 Unordered ZIP: 93

0.01 0.07 0.00 1.00 Unordered ZIP: 94

0.00 0.06 0.00 1.00 Unordered ZIP: 95

0.00 0.07 0.00 1.00 Unordered ZIP: 96

0.01 0.10 0.00 1.00 Unordered ZIP: 97

0.00 0.06 0.00 1.00 Unordered ZIP: 98
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0.01 0.10 0.00 1.00 Unordered ZIP: 99

Note: First column lists a unique identifier for each variable. Second, third, fourth and fifth column report the corresponding mean, standard deviation, minimum

and maximum values for the variable, respectively. Sixth column contains the specific questions from the registration questionnaire. Seventh column indicates the

variable encoding: dummy stands for a binary variable equal to 1 if the respective answer has been chosen (mutually inclusive); ordered stands for a numeric value

with a clear inherent ordering (both continuous and categorical), directly filled by the user (mutually exclusive); unordered stands for a text value without an ordered

structure (categorical), directly filled by the user (mutually exclusive). Last column lists the corresponding answers available in the registration questionnaire.
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