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Zusammenfassung

Die vorliegende Doktorarbeit gliedert sich in drei Teile, welche als eigenständige For-

schungsarbeiten konzipiert sind. Gemeinsam ist den drei Teilen, dass sie unterschied-

liche Aspekte von Devisenoptionsmärkten beleuchten. Im ersten Teil wird die Genauig-

keit von risiko-neutralen Dichtevorhersagen untersucht. Zur Konstruktion von Dichten

werden eine Reihe von Interpolationstechniken angewendet, darunter eine von den Au-

toren vorgeschlagene dynamische Methode. Wir stellen fest, dass zwischen der risiko-

neutralen und der physischen Dichte eines Währungspaares signifikante Diskrepanzen

bestehen. Diese treten unabhängig von der gewählten Informationsmenge auf. Des

Weiteren weisen wir empirisch einen Zusammenhang zwischen der Genauigkeit von

risiko-neutralen Dichtevorhersagen und geeigneten Massen für Varianz- und Kurs-

sprungrisiko nach.

Der zweite Teil untersucht Varianzrisikoprämien in Devisenmärkten anhand eines

modell-unabhängigen Ansatzes. Zur Berechnung der realisierten Varianz werden Daten

unterschiedlicher Frequenz herangezogen. Bei tiefer Frequenz können signifikant neg-

ative Varianzrisikoprämien nachgewiesen werden. Im Gegensatz dazu gilt dies nicht

für den Gebrauch von Hochfrequenzdaten, was mutmasslich von Marktmikrostruktur-

Effekten herrührt. Weitere Untersuchungen zeigen, dass Varianzrisikoprämien nur bed-

ingt auf klassische Risikofaktoren oder Angst vor Kurssprüngen zurückgeführt werden

können. Hingegen kann ein signifikanter Zusammenhang zwischen dem Erfolg einer

Varianzswapstrategie und dem VIX, dem TED Spread und der impliziten Volatilität im

jeweiligen Devisenpaar nachgewiesen werden. Insgesamt kommen wir zum Schluss, dass

in Devisenmärkten die Varianz einen eigenständigen Risikofaktor mit zeitabhängiger

Prämie darstellt.

Im dritten Teil wird die Struktur von risiko-neutralen Devisenrenditen anhand von

zwei Datensätzen, nämlich den Preisen für Vanilla und One-touch Optionen, unter-

sucht. Verschiedene Modelle werden am Vanilla Markt kalibriert und anschliessend

auf den One-touch Datensatz angewendet. Dieses Vorgehen erlaubt eine Aussage hin-

sichtlich der Kohärenz zwischen den beiden Märkten, ermöglicht aber auch fundierte

Schlussfolgerungen über die Dynamik von Devisenrenditen. Die Untersuchungen zeigen,

dass ein komplexes Modell mit stochastischer Volatilität und Kurssprüngen den Vanilla

Optionsmarkt am besten abzubilden vermag. Im Gegensatz dazu erzielt ein vergleich-

sweise einfaches stochastisches Volatilitätsmodell das beste Ergebnis am Markt für

One-touch Optionen. Mutmasslich lässt sich dieses Resultat darauf zurückführen, dass

sich Optionshändler bei der Preisstellung am Black-Scholes Modell orientieren.
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Summary

This dissertation comprises three parts. Each part has been set up as a self-contained

research project and deals with a specific aspect of foreign exchange option markets.

Part I examines the accuracy of option-implied density forecasts in predicting future

realizations of the spot rate. To produce density forecasts, a range of interpolation

techniques is used, among them a novel method that dynamically updates the infor-

mation content of currency options. We observe that the risk-neutral density generally

provides a biased estimate of the physical return distribution. This finding is robust to

different choices of information sets. In Part I, we further establish empirically a link

between forecasting accuracy and surrogates for variance and jump risk.

Part II examines the variance risk premiums in foreign exchange markets using a

model-free approach. When realized variance is computed from intraday data with

low frequency, variance risk premiums are significantly negative. In contrast, estimates

based on high-frequency data provide a somewhat different picture. This latter finding

is likely owed to microstructure effects. Further investigations suggest that variance

risk premiums are essentially unexplained by classic risk factors or fear of jump risk.

However, we find a significant relationship between the success of a variance swap

strategy and the VIX, the TED spread and the shape of the implied volatility function.

Overall, we conclude that foreign exchange markets feature a separately priced variance

risk factor with time-varying risk premium.

In Part III, the structure of currency returns is examined at the case of two un-

spanned information sets, namely the prices for vanilla and one-touch options. A

variety of models with increasing complexity is calibrated to the vanilla market and

subsequently applied to quotes for one-touch options. This approach allows to draw

conclusions on the coherence between the two markets and ultimately to infer risk-

neutral currency dynamics from a richer data set. Evidence suggests that vanilla op-

tions are most accurately priced using a model that comprises both stochastic volatility

and jumps with time-varying intensity. In contrast, one-touches imply little jump risk.

A comparatively simple stochastic volatility model attains the best performance. This

finding may be a result of market makers’ use of Black-Scholes prices as a reference

point.

vii



Part I

Biases in Foreign Exchange Density

Forecasts

Abstract

In this article, we examine biases in foreign exchange risk-neutral density

forecasts. To determine the biases, we propose a novel method that accounts

for the full information content in the history and cross-section of option prices.

Unlike in previous studies, our approach is consistent with the specific quotation

convention of currency markets. To investigate whether risk aversion may explain

the biases in density forecasts, we relate them to suitable surrogates for variance

and jump risk.

Our results suggest that risk-neutral density forecasts are biased estimates

of the statistical return distribution. This finding is robust to alternative infor-

mation sets comprised of deep OTM options, and holds for a short and longer

forecasting horizon. Moreover, we find that both the variance and jump risk

factors have a significant impact on the forecasting accuracy.
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1 Introduction

Option-implied density forecasts are popular in policy making and risk management be-

cause they provide forward-looking information. However, there is considerable doubt

with regard to their accuracy.1 In this paper, we analyze the biases in density forecasts

implied in currency options. By bias, we refer to the difference between the risk-neutral

and statistical distribution.2 We contribute to the literature in several ways: First, we

measure biases in density forecasts using a novel method that dynamically updates the

information content of currency options. Second, we combine options with different

moneyness to assess whether they alter the biases in the tails of the predicted density.

Third, we examine whether forecasting accuracy is related to commonly priced risk

factors in currency markets.

Several methods to construct option-implied density forecasts have been proposed.

For example, Jackwerth and Rubinstein (1996) use a minimization criterion to adjust a

prior log-normal distribution to account for the information contained in option prices.

Bates (1996) and Melick and Thomas (1997) assume a log-normal mixture density and

then use option prices to estimate the unknown parameters. Ait-Sahalia and Lo (1998)

and Ait-Sahalia and Duarte (2003) propose non-parametric estimation techniques. All

of these methods have their shortcomings when applied to currency markets: First, it

is preferred not to have a prior regarding the currency return distributions. Second,

the methods need to build a distribution function on the basis of a few quotes only.

Third, density forecasting requires extrapolation beyond the available strike domain.

A comprehensive analysis on the accuracy of density forecasts from foreign exchange

options has been conducted by Christoffersen and Mazzotta (2005). They report signif-

icant differences between the statistical and risk-neutral distribution for currencies. To

generate the forecasts, Christoffersen and Mazzotta resort to an interpolation method

proposed by Malz (1997). However, as shown in Reiswich and Wystup (2010), forecasts

from the Malz approach are generally flawed since the method is inconsistent with the

specific quotation convention used in currency markets. Also, to the best of our knowl-

edge, there has been no study to date that empirically investigates the determinants

of the biases in foreign exchange density forecasts.

In this article, we address these issues. To ensure that identified biases are not sub-

ject to a particular choice of methodology, we use three alternative approaches: First,

1See Ait-Sahalia and Lo (2000), Jackwerth (2000) and Christoffersen and Mazzotta (2005) to name

a few.
2As a matter of definition, we may synonymously speak of the quality or accuracy of risk-neutral

density forecasts.
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we propose an adoption of the Malz approach consistent with the quotation conven-

tions. Second, we consider density forecasts from the vanna-volga method, which is

introduced in Castagna and Mercurio (2007). Both the Malz and vanna-volga method

rely on three option quotes only and are thus well-suited to cope with the scarce in-

formation in the strike domain of currency option markets. We apply the approaches

to different combinations of option quotes, including far out-of-the money (OTM) op-

tions. OTM options potentially provide different information on the tails of the distri-

bution, where Christoffersen and Mazzotta (2005) report most of the biases. Finally,

we propose a Kalman filter extension of the vanna-volga method (henceforth KFVV)

that dynamically updates the information content of currency options. Moreover, the

KFVV extends the information set to all options in the strike domain. In all cases, we

aim to examine whether our findings are robust to altering the information set. The

KFVV may be viewed as the foreign exchange equivalent to the technique presented in

Bedendo and Hodges (2009). They use the Kalman filter to produce one-day volatility

forecasts for S&P 500 quarterly future options. Although not the purpose of this paper,

such a task is straightforward to perform using our approach.

Ait-Sahalia and Lo (2000) and Jackwerth (2000) suggest that possible differences

between the risk-neutral and statistical densities arise as a result of market participants’

risk aversion. We take up this hypothesis and investigate whether there is a systematic

relationship between the accuracy of density forecasts and suitable proxies for variance

and jump risk. Our conjecture is the following: If the variance and jump risk factors

are priced, the premiums are observable in option prices and hence in the option-

implied density while the statistical distribution is unaffected. As a result, risk factor

realizations determine at least to some extent the biases in density forecasts. Similar

reasoning has led Bakshi and Kapadia (2003) to examine whether delta-hedged gains

can be attributed to priced risk factors. Effectively, delta-hedged gains arise because

the statistical and risk-neutral density functions differ.

Our results suggest that although the biases are not entirely unrelated to the choice

of methodology, similar and persistent biases are observed for all three interpolation

techniques. The biases tend to aggravate at a longer forecasting horizon, and they

persist no matter what options are chosen as the underlying information set. Hence,

deep OTM options do not seem to provide different information on the tails of the

statistical distribution. Finally, the conjecture that the variance risk factor affects

several aspects of the quality of risk-neutral density forecasts is confirmed. This result

also applies in the presence of jump risk proxies, which themselves have a significant

impact on the accuracy of density forecasts.

3



The remainder of this paper is organized as follows. In section 2, we present the

forecasting methodology used throughout this paper. Furthermore, we briefly present

the Malz and vanna-volga method and introduce the Kalman filter approach. In sec-

tion 3, we present results on the forecasting biases under the various methods. This

section also includes robustness checks that combine various option quotes into differ-

ent information sets. In section 4, we establish a test environment to investigate the

relationship between the biases in density forecasts and commonly priced risk factors.

Section 5 concludes.

2 Forecasting Methodology

Throughout this paper, we follow the common quotation convention and measure the

price of a foreign currency (FOR) in domestic (DOM) units. We investigate the biases

in risk-neutral density forecasts for EURUSD, GBPUSD, USDJPY and EURGBP,

quoted as FORDOM. In foreign exchange, traders quote volatilities in delta space.

From UBS, a major investment bank and market maker in foreign exchange, we obtain

quotes on delta-neutral straddles (DN) and 5-delta, 10-delta and 25-delta call (DC) and

put (DP) options. When these volatility quotes are mapped to their respective delta,

special attention must be paid to the premium convention, since the delta depends on

it. For EURUSD and GBPUSD, the domestic currency, i.e. the USD, is the premium

currency. Therefore, a so-called regular delta convention applies. In contrast, USDJPY

and EURGBP are quoted with a foreign currency premium. This implies that the spot

delta must be adjusted by an amount that reflects the premium paid (premium-adjusted

delta convention). For details, we refer to Reiswich and Wystup (2010).

To construct option-implied density forecasts, we rely on the seminal Breeden and

Litzenberger (1978) result. Given a complete stochastic basis (Ω,F , (Ft)t≥0,Q) with

risk-neutral measure Q, the price c(X, τ) of a call option on the foreign currency is

expressed as

c(X, τ) = EQ[e−rdτc(X, 0) | Ft], (1)

where X, τ = (T − t) and rd denote the exercise price, the time to maturity and

the domestic interest rate, respectively. Twice differentiating (1) with respect to the

exercise price yields an expression for a currency pair’s probability density function

q(X) = erdτ
∂2c(X, τ)

∂X2
. (2)

4



In practice, we choose a small interval h and approximate the probability density

function at X with its central difference estimator,3

q̂(X) = erdτ
[

c(X − h, τ)− 2c(X, τ) + c(X + h, τ)

h2

]

h. (3)

To obtain an estimate of a currency pair’s density function, we require call option

prices c(X, τ) for a wide range of exercise prices. For this reason, we resort to one of

the interpolation methods introduced in what follows.

2.1 The Malz Approach

Malz (1997) proposes an interpolation of implied volatilities in delta space. To fix

matters, define a risk reversal and butterfly for a call and put option with delta x as

σxrr := σxDC − σxDP , σxbf :=
σxDC + σxDP

2
− σDN . (4)

To generate an implied volatility function, Malz specifies a quadratic polynomial of

the form

σ̂∆
t = a0σ

DN
t + a1σ

xrr
t (∆− 0.50) + a2σ

xbf
t (∆− 0.50)2, (5)

where ∆ refers to the delta of the required option and a0, a1 and a2 are a set of

parameters that can be solved for by requiring (5) to hold for σDN , σxrr and σxbf . The

Malz approach refers to a forward delta under the regular quotation convention, since

only then the delta-neutral quote has a delta of 0.50. In all other instances, the Malz

approach produces market inconsistent forecasts. To cope with this problem, we replace

0.50 with the appropriate ∆DN and solve for a different set of parameters b0, b1, b2. To

arrive at the required call prices, we first move from delta-volatility to exercise price-

volatility space. Next, we obtain call prices through the Garman and Kohlhagen (1983)

formula for currency options. Details have been relegated to Appendix A.

2.2 The Vanna-Volga Method

The vanna-volga method presented in Castagna and Mercurio (2007) and Shkolnikov

(2009) interpolates between market prices by representing options as replicating port-

folios. When volatility is stochastic, the Itô expansion of an option price is given by

dc(X, τ, St, σt) =
[

∂c(.)
∂t

+ 1
2
σ2
tS

2
t
∂2c(.)

∂S2
t

]

dt+ ∂c(.)
∂St

dSt+

∂c(.)
∂σt

dσt +
∂2c(.)
∂St∂σt

dStdσt +
1
2
∂2c(.)

∂σ2
t
dσ2

t ,
(6)

3We multiply the difference estimator by h to make q̂(.) an Arrow-Debreu security (See Arrow

(1964) and Debreu (1959)).
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where ∂c(.)/∂σt, ∂
2c(.)/∂St∂σt and ∂

2c(.)/∂σ2
t refer to the vega, vanna and volga of

an option.4 Hedging an option with second-order accuracy requires that the stochastics

in dσt, dStdσt and dσ2
t are taken care of. Since there are three volatility greeks, an

accurate replication is achieved by holding a portfolio of three options, on top of the

spot and money market positions inherited from a Black and Scholes (1973) setting.

To establish a formal relationship, suppose we observe a portfolio of three pivot

options. Presume that the corresponding volatility greeks are concatenated in the

3× 3 matrix A.5 For an arbitrary option with strike price X, stack its volatility greeks

into a 3 × 1 vector y. To offset the risk arising from stochastic volatility, we must

choose portfolio weights x according to

y = Ax, → x = A−1y. (7)

To arrive at the required price c(X, τ, St, σ
X
t ), define a 3 × 1 vector cme of market

excess prices, i.e. a vector that subsumes the market prices of the options in the hedging

portfolio in excess of their Black-Scholes values. By the usual replication arguments, it

must hold that an option price reflects the hedging costs associated with spot diffusion

risk and the extra costs associated with stochastic volatility. Since the former are given

by the Black-Scholes value, we formally obtain the dichotomized relationship

c(X, τ, St, σ
X
t ) = c(X, τ, St, σ

BS
t ) + (cme)′x. (8)

Equation (8) is directly employed in (3). To effectively construct density forecasts,

we follow industry practice and set σBS = σDN .

2.3 The Kalman Filter Extension of the Vanna-Volga Method

Density forecasts from the Malz and vanna-volga method rely on three option quotes

only, whereas the data set comprises 7 quotes in the strike domain. Moreover, the Malz

and vanna-volga method disregard potentially useful historical information. To address

these concerns, we propose a Kalman filter extension of the vanna-volga method.6 To

establish the methodology, we rewrite (8) as

c(X, τ, St, σ
X
t )− c(X, τ, St, σ

BS
t ) = y′

tαt, (9)

4We henceforth refer to their union as the ’volatility greeks’.
5We refer to Appendix B for a more detailed exposition.
6To draw an analogy to the time series estimation of volatility, consider a GARCH model (Boller-

slev, 1986) which relies on historical information to obtain an update of current and future volatility.

Similarly, the KFVV takes the history of option prices into account.
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where αt = (A−1
t )′cme

t is a 3 × 1 vector which can be interpreted as a vector

which entails prices for vega, vanna and volga. The vanna-volga method therefore

maintains that for an option with exercise price X, the market price in excess of the

Black-Scholes value is a result of the option’s vega, vanna and volga multiplied by the

respective hedging costs. Importantly, this interpretation is consistent with the way

currency option traders perceive second-order risk.

Suppose we stack all observed excess prices into a (7 × 1) vector cme,X
t . Since (9)

must hold for any option, we can estimate the loadings from

c
me,X
t = Y′

tαt + εt, (10)

where Yt is a 3×7 matrix of volatility greeks and εt comprises error terms. To allow

for time-varying loadings, we estimate (10) using the Kalman filter. In a state-space

representation, the observation equation is given by

c
me,X
t = Y′

tξt +Y′
tᾱ + εt. (11)

The state equation which governs the time-varying component of the greek loadings

ξt = αt − ᾱ is expressed as

ξt = Fξt−1 + ωt. (12)

F is a 3× 3 transition matrix and ωt entails error terms. The instantaneous error

covariance matrices are defined as

E(εtε
′
t) =: R, E(ωtω

′
t) =: Q, with E(εtω

′
t) = 0. (13)

Applying the Kalman filter allows us to update the greek loadings by using the infor-

mation content of all currency options in the cross section. The construction of density

forecasts then follows along the lines of the regular vanna-volga method but using (9)

instead of (8). This proximity to the vanna-volga method ensures that for typical

market parameters, the option-implied density satisfies no-arbitrage conditions.7

Estimation of the greek loadings boils down to recursively calculate linear least

square forecasts of the state vector

ξ̂t+1|t = Ê(ξt+1 | It), (14)

on the basis of observed data It := (cme,Xt , cme,Xt−1 , ...cme,X1 , Yt, Yt−1, ..., Y1) up to time

t. Associated with these forecasts is a mean square error matrix

Pt+1|t := E[(ξt+1 − ξ̂t+1|t)(ξt+1 − ξ̂t+1|t)
′]. (15)

7See Castagna and Mercurio (2007) for a note on this.

7



Suppose we have a current estimate for the time-varying component of greek load-

ings ξ̂t|t−1. With the arrival of new information {cme,X
t ,Yt}, an update for ξ is obtained

through

ξ̂t|t = ξ̂t|t−1 + {Pt|t−1Yt[Y
′
tPt|t−1Yt +R]−1[cme,X

t −Y′
tξ̂t|t−1 −Y′

tᾱ]}. (16)

Similarly,

Pt|t = Pt|t−1 − {Pt|t−1Yt[Y
′
tPt|t−1Yt +R]−1Y′

tPt|t−1}. (17)

The next step estimates are then given by

ξ̂t+1|t = Fξ̂t|t, (18)

and

Pt+1|t = FPt|tF
′ +Q. (19)

To make the KFVV approach work for our purposes, we establish the following

algorithm.

a) We estimate the parameters {ᾱ,F,Q,R} over an initial one-year period.

b) We propagate the variables ξ and P in the system of equations (16) to (19),

starting with the first observation of the estimation period. We do so until we

reach the end of a one-month out-of-sample period that immediately follows the

estimation window. Risk-neutral density forecasts are produced along the way

for the out-of-sample period only.

c) By the time the end of the one-month out-of-sample period is reached, we go

back to step a) and re-estimate the parameters, adding the latest one-month

set of data to the estimation period. The choice of a one-month out-of-sample

period is one of convenience. Presumably more accurate forecasts result if the

parameters were re-estimated on a daily basis. However, this comes at the cost

of additional computing time.

To facilitate estimation, we impose some structure on the parameters F and R.

Specifically, we assume F to be a diagonal matrix. Spillover effects from one greek

loading to another are therefore precluded. Furthermore, to achieve a better smoothing

effect for our forecasts, the elements in F are restricted between 0 and 1. Concerning

R, we presume that correlations are constant, where the correlations are obtained

from a prior-stage OLS regression. Hence, only the diagonal elements in R need to

be estimated. No assumptions are made about ᾱ and Q. Initial estimates for ᾱ are

also from an OLS regression. The parameters are estimated by maximum likelihood.

A brief description is found in Appendix C.
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3 Testing the Unconditional Forecasting Density

We examine the biases in density forecasts for the 1-month and 3-month horizon using

option quotes with corresponding maturities. Our data set covers a sample period from

January 2003 to August 2009. As a result of the initial estimation stage for the KFVV,

forecasts are effectively produced as of January 2004.

The so-called peso problem is commonly put forward as an argument for the differ-

ence between the risk-neutral and statistical distributions (see e.g. Ait-Sahalia, Wang

and Yared, 2001). Accordingly, option prices account for rare jumps which do not

occur in the sample time series simply because the time frame considered is too short.

To deal with this assertion, we deliberately include in our analysis the full sample until

August 2009. This period covers the collapse of Lehman Brothers and the ensuing

market turbulence in autumn 2008. During this time, all currency pairs have exhibited

jump-like behavior. With high confidence therefore, the peso problem can be ruled out

as an explanation for potential forecasting biases.

Our choice of currency pairs reflects the following considerations: First, we include

only major currencies to prevent any issues with liquidity. Second, the currency pairs

represent the different implied volatility functions commonly observed in foreign ex-

change. For example, USDJPY is highly skewed and thus more equity-like, whereas

EURUSD is fairly symmetric over the sample period. Finally, we include EURGBP to

examine whether our findings apply to so-called cross-biproducts. To enable a com-

parison of our results with those from Christoffersen and Mazzotta (2005), we base

the main analysis on the 25-delta option quotes. Deep OTM options are considered

in a separate section on robustness. To complement the data set, we obtain spot and

interest rates from Bloomberg.

3.1 QQ Plots

To quantify the biases in the density forecasts for the various methods, we define a

probability transform variable

Ut,τ :=

∫ St+τ

−∞
q̂t,τ (u)du = Q̂t,τ (St+τ ), (20)

where q̂t,τ (.) is the probability density function from (2) for options with tenor τ ,

observed on the forecasting date t. St+τ is the observed spot rate at the end of the

forecasting horizon. The random variable Ut,τ expresses the probability that the spot

rate at the end of the forecasting horizon is lower than the realization St+τ . Under the

joint-premise of a correctly specified forecasting methodology and equivalence between

9



the physical and risk-neutral currency return density, the variable Ut,τ is uniformly

distributed on the interval [0, 1].

For the remainder of section 3, we employ the testing framework of Berkowitz

(2001) and Christoffersen and Mazzotta (2005). We apply the standard normal inverse

cumulative density function to transform Ut,τ into a normal transform variable

Zt,τ := Φ−1(Ut,τ ) = Φ−1(Q̂t,τ (St+τ )). (21)

For the same reason Ut,τ is uniform on the interval [0, 1], Zt,τ is standard normally

distributed. In Figure 1, we plot for the 1-month horizon the empirically observed

Zt,τ against the null hypothesis of standard normality. The so-called QQ plots are

particularly useful to identify tail biases. To enhance inference, we augment the plots

with 5% confidence bands from a Kolmogorov-Smirnov test.
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Figure 1: QQ Plots for the 1-month Horizon
The figure reveals QQ plots for the 1-month forecasting horizon for all currency pairs and

methods under consideration. In case of the Malz and vanna-volga method, forecasts have

been produced on the basis of 25-delta options. The horizontal and vertical axes refer to

the realized and forecast quantile respectively. The data covers the period from January

2004 to August 2009.

To enhance interpretation of the QQ plots, consider the GBPUSD forecast from the

Malz approach (second panel from left, top row). Under the null hypothesis that the
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Malz approach produces unbiased forecasts of the statistical density, the very bottom-

left realization St+τ should occur with a likelihood that corresponds to a Z-score of

-4 (vertical axis). Empirically however, such an event turns out to be more common,

attaining a Z-score of -3 (horizontal axis). In general, QQ plots coincide with the 45◦

line when the null hypothesis holds true. If, for a given quantile, the QQ plot lies

below the diagonal, the risk-neutral density underestimates the amount of realizations

in that quantile.

The results for the 1-month forecasting horizon reveal a strikingly uniform bias

pattern across the methods. For EURUSD, all methods provide a fairly accurate fit

of the statistical density. Concerning the GBPUSD forecasts from the Malz approach,

the lower tail is biased, suggesting that more realizations occur in the lower tail than

predicted. This bias, albeit smaller, is still present when forecasts are produced from

the vanna-volga and the KFVV method. For USDJPY, we observe an S-shaped pattern

that looks very similar for all methods. This finding suggests that the option-implied

tail densities are too thick. A similar conclusion applies for EURGBP, except for the

KFVV: In contrast to the simple methods, we find an almost perfect fit in the upper

tail.

We present QQ plots for the 3-month forecasting horizon in Figure 2. Comparing

them with the plots from Figure 1, we immediately find that the difference between

the statistical and the risk-neutral density is more pronounced at the 3-month horizon.

For EURUSD, too many observations populate the lower tail density relative to what

is implied in option prices. In contrast, the upper tail of the risk-neutral density is

too thick. These findings apply irrespective of the chosen forecasting method, though

arguably, the lower tail bias is smaller for the vanna-volga and KFVV methods. For

GBPUSD, we find similar results. In particular, all methods share a significant lower

tail bias. For USDJPY, the S-shaped patterns observed at 1-month horizon prevail.

Considerable biases in the lower tail are also observed for EURGBP. Concerning the

upper tail, the forecasts from the vanna-volga method are fairly accurate, while the

other two methods both fail to predict enough realizations.

Overall, we confirm the results in Christoffersen and Mazzotta (2005) in that we

observe substantial deviations from the 45◦ line. Since similar biases are found for

all methods, we conjecture that the statistical and risk-neutral densities in foreign

exchange markets differ. To confirm this notion, we proceed with a formal test.
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Figure 2: QQ Plots for the 3-month Horizon
The figure reveals QQ plots for the 3-month forecasting horizon for all currency pairs and

methods under consideration. In case of the Malz and vanna-volga method, forecasts have

been produced on the basis of 25-delta options. The horizontal and vertical axis refer to the

realized and forecast quantile respectively. The data covers the period from January 2004

to August 2009.

3.2 A Formal Test of Currency Density Forecasts

We exploit the fact that under the null hypothesis of unbiased density forecasts, the

moments of the normal transform variable Zt,τ are given by

E[Zt,τ ] = 0 E[Z2
t,τ ] = 1 E[Z3

t,τ ] = 0 E[Z4
t,τ ] = 3 .

Since on each day, we produce density forecasts with either a 1- or 3-month horizon,

Zt,τ is serially correlated. To cope with this problem, we make use of the generalized

method of moments (GMM) proposed by Hansen (1982). Specifically, we set up the
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sample moment conditions

ḡ(β) =
1

T

T
∑

t=1















Zt,τ − β1

Z2
t,τ − 1− β2

Z3
t,τ − β3

Z4
t,τ − 3− β4















= 04×1. (22)

Under the null hypothesis of unbiased density forecasts, β0 = (β1...β4)
′ = 0 and

therefore

√
T (β̂ − β0)

d−→ N(0, V ). (23)

We set V equal to the spectral density matrix of Newey and West (1987). To

perform t-tests on βi, we select the diagonal elements in V . To perform a joint-test on

β0, we compute a Wald-statistic, where under the null hypothesis it holds that

ḡ(β)′

(

V̂

T

)−1

ḡ(β)
d−→ χ2

4. (24)

In Table 1, we present the results for the 1-month forecasting horizon. For EURUSD

and GBPUSD, we do not reject the null hypothesis that option-implied density forecasts

provide an unbiased estimate of the statistical return distribution. This finding holds

for all methods, and both when we look at the individual moment parameters and a

joint-test on all of them. The only significant parameter is the mean for the KFVV

methodology, and only on a 10% confidence level. For USDJPY, our findings are

different. The kurtosis parameter is significantly negative on the 5% and 10% level

for the Malz and vanna-volga method, which indicates that risk-neutral densities have

too much probability mass in the tails. Furthermore, the Wald-statistics of 63.32 and

85.54 strongly indicate rejection of the null hypothesis. While the kurtosis parameter

is not rejected for the KFVV, its Wald-statistic of 17.67 still suggests rejection of

the null hypothesis on the 1% confidence level. For EURGBP, we reject the option-

implied density forecasts from the Malz and vanna-volga method both on the basis

of the kurtosis parameter and the Wald-statistic. The Wald-statistic for the KFVV

is significant only on the 10% level. This apparent difference is consistent with our

findings from Figure 1, where the upper tail of the density function exhibits no bias

when the KFVV methodology is used.

Results for the 3-month forecasting horizon are presented in Table 2. Despite the

evidence of more pronounced biases from Figure 2, hardly any of the individual moment

parameters are significantly different from zero. The reason for this finding is that
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EURUSD GBPUSD USDJPY EURGBP
β t-stat β t-stat β t-stat β t-stat

Malz

Mean 0.163 1.584 0.109 1.018 0.107 1.088 0.096 1.091

Variance 0.018 0.151 0.135 0.804 -0.002 -0.025 -0.146 -1.588

Skew 0.298 0.874 0.048 0.085 0.223 0.985 0.197 0.912

Kurtosis 0.017 0.025 1.926 1.197 -0.779 -2.445** -1.036 -2.809***

Wald-test 3.77 5.91 63.32*** 24.01***

VV

Mean 0.162 1.564 0.105 0.991 0.081 0.792 0.096 1.074

Variance 0.023 0.199 0.101 0.704 0.056 0.621 -0.115 -1.226

Skew 0.308 0.977 0.097 0.226 0.076 0.310 0.206 0.929

Kurtosis -0.210 -0.362 0.763 0.777 -0.557 -1.661* -0.951 -2.613***

Wald-test 6.22 3.06 85.54*** 31.36***

KFVV

Mean 0.170 1.659* 0.125 1.186 0.119 1.194 0.104 1.157

Variance 0.013 0.117 0.107 0.722 0.033 0.348 -0.101 -1.001

Skew 0.290 0.919 0.074 0.163 0.125 0.504 0.350 1.354

Kurtosis -0.222 -0.374 0.927 0.872 -0.407 -0.961 -0.618 -1.213

Wald-test 6.40 5.01 17.67*** 10.77*

Table 1: Tests of the Quality of 1-month Density Forecasts
For each method and currency pair, the table presents the estimated moment parameters and their

t-statistics. In case of the Malz and vanna-volga method, forecasts have been produced on the basis of

25-delta options. The rejection of the null hypothesis is indicated with *, ** and *** for the 10%, 5%

and 1% significance level. For each panel, the last row shows the Wald-statistic for a joint-test on all

parameters.

robust inference for the 3-month horizon requires the augmentation of the spectral

density matrix with more lags, which generally reduces the power of the tests. We

therefore focus on the Wald tests. For EURUSD, the Wald-statistic indicates rejection

of the null hypothesis for the vanna-volga and the KFVV method on a 5% and 1%

confidence level. The Malz approach has a Wald-statistic that is significant on the

10% level. For GBPUSD, USDJPY and EURGBP, the 3-month option-implied density

forecasts are all rejected on the 1% confidence level, irrespective of the chosen method.

The rejection of the USDJPY risk-neutral density forecasts appears to be rooted in

a kurtosis mismatch, in particular for the Malz approach. For EURGBP, the skew

parameter is positive on a 10% confidence level for all methods. A positive parameter

suggests that the risk-neutral densities predict too many observations in the lower tail,

which is what we also observe from the QQ plots. In sum, the findings strongly suggest

that the 3-month risk-neutral densities provide a biased estimate of the physical return

distribution.
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EURUSD GBPUSD USDJPY EURGBP
β t-stat β t-stat β t-stat β t-stat

Malz

Mean 0.230 1.241 0.086 0.431 0.154 0.932 0.208 1.277

Variance 0.117 0.443 0.206 0.532 -0.047 -0.393 -0.110 -0.475

Skew -0.230 -0.258 -1.247 -0.896 0.337 0.951 1.093 1.731*

Kurtosis 1.702 0.678 3.969 0.856 -1.032 -1.979** 0.232 0.135

Wald-test 10.95* 17.17*** 48.51*** 161.91***

VV

Mean 0.235 1.278 0.092 0.472 0.113 0.644 0.204 1.250

Variance 0.096 0.410 0.145 0.456 0.037 0.270 -0.117 -0.563

Skew -0.017 -0.023 -0.803 -0.797 0.072 0.175 0.918 1.871*

Kurtosis 0.713 0.452 1.826 0.673 -0.694 -1.225 -0.536 -0.550

Wald-test 11.75** 19.58*** 28.16*** 169.70***

KFVV

Mean 0.240 1.319 0.107 0.549 0.160 0.948 0.236 1.345

Variance 0.086 0.368 0.165 0.497 -0.006 -0.043 0.040 0.134

Skew -0.082 -0.115 -0.868 -0.814 0.224 0.548 1.574 1.820*

Kurtosis 0.651 0.406 2.102 0.720 -0.706 -1.148 1.804 0.733

Wald-test 17.80*** 23.57*** 15.59*** 135.64***

Table 2: Tests of the Quality of 3-month Density Forecasts
For each method and currency pair, the table presents the estimated moment parameters and their

t-statistics. In case of the Malz and vanna-volga method, forecasts have been produced on the basis of

25-delta options. The rejection of the null hypothesis is indicated with *, ** and *** for the 10%, 5%

and 1% significance level. For each panel, the last row shows the wald-statistic for a joint-test on all

parameters.

3.3 Robustness Check Using Deep OTM Options

The Malz and vanna-volga forecasts need not be constructed on the basis of 25-delta

options. Any set of pivot options works, though it is sensible to maintain symmetry,

i.e. to select a call and put option with the same moneyness. Since we have 5-delta and

10-delta options available, we combine them with the delta-neutral quote to produce

alternative density forecasts. Presumably, these forecasts convey different information

on the tails of the physical return density and therefore alter some of the biases observed

in Figure 1 and Figure 2. Figure 3 presents the results for the 1-month horizon. Since

the KFVV method incorporates all option quotes in the first place, we refrain from

displaying its results again.

A comparison of Figure 3 with Figure 1 suggests that there is little difference

between the density forecasts constructed from the 25-delta and the deep OTM options:

Fairly unbiased forecasts are obtained for EURUSD. For GBPUSD, forecasts from the

Malz approach still exhibit a lower tail bias, which is somewhat smaller when the
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Figure 3: Alternative QQ Plots for the 1-month Horizon
The figure reveals QQ plots for the 1-month forecasting horizon for the Malz and

vanna-volga method. Forecasts have been constructed from 10-delta and 5-delta options.

The horizontal and vertical axes refer to the realized and forecast quantile respectively. The

data covers the period from January 2004 to August 2009.

vanna-volga method is used. For USDJPY and EURGBP, the S-shaped patterns, i.e.

the overestimation of tail events, prevail. On the basis of Figure 3, we dismiss the

notion that at the 1-month forecasting horizon, deep OTM options convey different

information on the tails of the physical return distribution.

Figure 4 presents the corresponding results for the 3-month horizon. Again, we

observe that the methods produce similar biases as previously for the 25-delta options.

For example, the EURUSD and GBPUSD lower tail density is still biased for both

methods, although the bias is larger when the Malz approach is used. For USDJPY,

the S-shaped patterns mostly prevail, except for the 5-delta forecast from the Malz ap-

proach, which provides a surprisingly good fit of the upper tail density. For EURGBP,
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Figure 4: Alternative QQ Plots for the 3-month Horizon
The figure reveals QQ plots for the 3-month forecasting horizon for the Malz and

vanna-volga method. Forecasts have been constructed from 10-delta and 5-delta options.

The horizontal and vertical axes refer to the realized and forecast quantile respectively. The

data covers the period from January 2004 to August 2009.

the two methods overestimate the likelihood of a lower tail event, while they reveal

slightly different biases in the upper tail. This holds equivalently for the forecasts

constructed from 10-delta and 5-delta options.

Table 3 presents results from a formal test. For brevity, we report only the results

from a joint-test on all moment parameters. The upper panel refers to the 1-month

forecasting horizon. It confirms our findings from Table 1: The accuracy of density

forecasts is not rejected for EURUSD and GBPUSD, while it is strongly rejected for

USDJPY and EURGBP. For the EURUSD forecasts at the 3-month horizon, the Wald-

statistics consistently indicate rejection of the null hypothesis on the 5% level. For

GBPUSD, USDJPY and EURGBP, the null hypothesis of unbiased forecasts is rejected
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EURUSD GBPUSD USDJPY EURGBP

1-month Forecast

10D Malz 4.26 5.01 113.00*** 38.34***

5D Malz 5.95 4.47 141.25*** 57.04***

10D VV 6.28 3.08 79.87*** 29.24***

5D VV 5.55 3.53 60.55*** 26.57***

3-month Forecast

10D Malz 12.24** 18.66*** 97.04*** 191.01***

5D Malz 13.70** 20.41*** 1.21 223.11***

10D VV 11.76** 19.39*** 25.62*** 169.91***

5D VV 11.35** 19.35*** 19.35*** 176.15***

Table 3: Wald Tests for the Alternative Density Forecasts
For the 1-month and 3-month forecasting horizon, the table presents statistics from a Wald test on the

estimated moment parameters and their t-statistics. The rejection of the null hypothesis is indicated

with *, ** and *** for the 10%, 5% and 1% significance level.

on the 1% level. The one big exception to this finding are the density forecasts that

result when the Malz approach is combined with the 5-delta options. TheWald-statistic

reported in Table 3 is consistent with the accurate upper tail modelling of Figure 4,

though it is not with the overestimation of realizations in the lower tail. Apart from

this outlier, the results confirm the conjecture that the quality of density forecasts does

not depend on the moneyness of the options employed in the forecasting process.

4 Forecasting Performance and Risk Factors

The previous section provides strong evidence that the risk-neutral currency return

density is a biased estimator of the statistical distribution. In this section, we examine

whether there is a systematic link between the biases in density forecasts and risk

factors that in the equities literature have been identified to command a premium.

Two factors are of particular interest: Lamoureux and Lastrapes (1993) conjecture

that variance risk is priced. More recently, Bakshi and Kapadia (2003) and Carr and

Wu (2009) report the presence of variance risk premiums in equity index and individual

stock options. On the other hand, Jackwerth (2000) and Pan (2002), inter alia, find

that for equities, jump risk is priced too.

4.1 Variance Risk Factor

We quantify forecasting biases by means of the normalized moments of the normal

transform variable Zt,τ . Intuitively, the more the normalized moments differ from zero,
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the worse the forecasting accuracy. Concerning variance risk, a good proxy is given by

the prices for variance swap rates, since variance swaps are equivalent to model-free

risk-neutral expectations of future variance.8

In their analysis of the conditional forecasting quality, Christoffersen and Mazzotta

(2005) extend the framework in (22) and add (powers of) Black-Scholes implied volatil-

ities as conditioning variables. Due to the non-stationary nature of variance swap rates,

we fear that this approach leads to spurious results. For this reason, we consider first

differences and interpret the results in terms of the impact a shock to the variance

risk factor has on the various dimensions of forecasting accuracy. Formally, we define

a vector of normalized moments zt = (Zt,τ , Z
2
t,τ − 1, Z3

t,τ , Z
4
t,τ − 3)′. Furthermore,

denote with RNVt,τ the variance swap rate observed at time t with expiry at t + τ ,

and set the regressor ft = RNVt,τ . We estimate the equation

∆zt = β∆ft + ǫt, (25)

by means of GMM. More precisely, we set up moment conditions

gt(β) = E(∆ft ⊗ ǫt) = E(∆ft ⊗ (∆zt − β∆ft)) = 04×1. (26)

As previously for the unconditional setting, individual parameters are tested using

(23), where V is replaced with V ∗

V∗ = (D′
0V

−1
0 D0)

−1, D0 = 1
T

∑T
t=1(∆ft∆f ′t)⊗ I4 . (27)

I4 refers to the 4× 4 identity matrix.

Since quotes on variance swaps are not available to us, we follow Carr and Wu

(2009) and synthesize variance swap rates from a continuum of option prices in the

strike domain. To obtain option prices in the first place, we interpolate the 25-delta

quotes on a ± 6 standard deviations range around the current forward price using the

Malz (1997) approach. In light of the subsequent jump risk analysis, we normalize

variance swap rates to one.

Table 4 presents the results for the 1-month forecasting horizon. For brevity, we

focus on the forecasting biases implied by the KFVV methodology. For EURUSD, a

positive shock to the variance risk factor significantly reduces the variance parameter of

the normalized transform variable. To interpret this causality, suppose the risk-neutral

density forecast is unbiased, i.e. the normalized variance parameter is equal to zero.

After the increase in variance, the variance parameter is negative, meaning that in a

8See Carr and Madan (1998) and Demeterfi, Derman, Kamal and Zou (1999).
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EURUSD GBPUSD USDJPY EURGBP
β t-stat β t-stat β t-stat β t-stat

Variance Factor

Mean 0.036 0.355 0.278 4.723*** 0.253 3.830*** -0.328 -6.176***

Variance -0.342 -2.392*** -0.595 -1.941* -0.161 -2.785*** -0.710 -2.705***

Skew 0.238 0.606 1.612 1.785* 0.420 2.376** -2.058 -2.912***

Kurtosis -2.174 -2.017** -4.657 -1.861* -0.417 -1.801* -5.280 -2.550**

Table 4: Variance Risk Factor and Forecasting Quality at the 1-

month Horizon
For each currency pair, the table shows parameter estimates and t-statistics from a regression of

differences in the normalized moments of the normal transform variable Zt,τ on changes in variance

swap rates. The moments of Zt,τ are obtained from KFVV density forecasts. Variance swap rates are

constructed on the basis of the Malz approach in conjunction with 25-delta options. Significance of

parameters is indicated with *, ** and *** for the 10%, 5% and 1% confidence level.

QQ plot, we observe a transition from the diagonal to a line with slope below 45◦. In

terms of a distribution function, this implies that market participants expect too much

volatility in the statistical return distribution. This form of overshooting is observed

for all currency pairs and is highly significant for USDJPY and EURGBP. A similar

finding applies for the kurtosis parameter: A positive shock to the variance risk factor

decreases the kurtosis parameter, which indicates that option-implied densities predict

too many observations in the tails. Clearly, this behavior is consistent with risk-averse

investors.

The mean parameter is not significant for EURUSD, but is highly significant for

all other currency pairs. For GBPUSD and USDJPY, a positive shock to the variance

factor shifts the diagonal in a QQ plot to the left. The implication is that relative to

the statistical distribution, the risk-neutral density is shifted too much to the left. For

EURGBP, the opposite holds true. The skew parameter is significant for GBPUSD,

USDJPY and EURGBP with increasing confidence. The positive sign for GBPUSD

and USDJPY indicates that after a shock to the variance factor, the risk-neutral den-

sity exhibits skew that is too negative compared to the statistical distribution. In

contrast, it holds for EURGBP that after a variance shock, market participants tend

to expect too many observations in the upper tail. The sign on both the mean and skew

parameter suggest that for EURUSD, GBPUSD and USDJPY, investors perceive the

downside as the bad state of the economy, just as is the case for equities. This interpre-

tation is significant for GBPUSD and highly significant for USDJPY. For EURGBP,

the opposite holds true.

Table 5 presents the corresponding results for the 3-month horizon. For each cur-
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EURUSD GBPUSD USDJPY EURGBP
β t-stat β t-stat β t-stat β t-stat

Variance Factor

Mean 0.024 0.362 0.315 5.127*** 0.303 2.866*** -0.293 -4.404***

Variance -0.062 -0.626 -0.603 -1.543 -0.280 -2.107** -0.749 -2.095**

Skew 0.172 0.720 2.124 2.183** 0.760 2.976*** -2.846 -1.862*

Kurtosis -0.910 -1.005 -5.013 -1.679* -0.874 -1.631 -10.61 -1.692*

Table 5: Variance Risk Factor and Forecasting Quality at the 3-

month Horizon
For each currency pair, the table shows parameter estimates and t-statistics from a regression of

differences in the normalized moments of the normal transform variable Zt,τ on changes in variance

swap rates. The moments of Zt,τ are obtained from KFVV density forecasts. Variance swap rates are

constructed on the basis of the Malz approach in conjunction with 25-delta options. Significance of

parameters is indicated with *, ** and *** for the 10%, 5% and 1% confidence level.

rency pair, none of the parameters has changed sign, so the interpretations for the

1-month horizon still apply. In general, we observe that the parameters are somewhat

less significant than before, which we again attribute to the use of robust standard

errors. Taken together with the results from Table 4, Table 5 suggests that the vari-

ance risk factor strongly impacts the forecasting accuracy. More precisely, the quality

of option-implied density forecasts is affected on several accounts, including the mean,

variance, skew and kurtosis of the hypothesized density.

4.2 Jump Risk Factor

Similarly to variance risk, fear of jumps may too have a distorting effect on forecasting

accuracy. To test this hypothesis, suitable jump surrogates are needed. Bakshi and

Kapadia (2003) propose to use risk-neutral skew and kurtosis. The rational behind

this choice is that skew proxies for the mean jump size, whereas kurtosis is a surrogate

for jump intensity.

In analyzing the impact of jump risk on the quality of density forecasts, we adhere

to the econometric setting proposed in (25) to (27). Specifically, we augment the

regressor ft with a proxy for the risk-neutral skew θt,τ and kurtosis κt,τ , i.e. ft =

(RNVt,τ , θt,τ , κt,τ )
′. As a result, (26) comprises 12 moment conditions.

We construct the model-free jump risk metrics in analogy to the variance risk factor:

First, we interpolate 25-delta option prices using the Malz (1997) approach. Second,

we compute prices for so-called volatility, cubic and quartic contracts. Finally, we

obtain the risk-neutral skew and kurtosis. For details, we refer to Bakshi, Kapadia and

Madan (2003).
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EURUSD GBPUSD USDJPY EURGBP
β t-stat β t-stat β t-stat β t-stat

Variance Factor

Mean 0.070 0.749 0.276 3.829*** 0.308 5.730*** -0.268 -5.000***

Variance -0.289 -1.997** -0.542 -1.796* -0.156 -2.117** -0.670 -2.515**

Skew 0.348 0.859 1.607 1.703* 0.520 3.290*** -1.887 -2.582***

Kurtosis -2.017 -1.862* -4.284 -1.763* -0.372 -1.232 -5.066 -2.434**

Skew Factor

Mean -3.564 -13.85*** -3.345 -6.398*** -2.237 -4.383*** -2.343 -10.07***

Variance -0.730 -0.821 -0.942 -0.929 -1.071 -1.662* -0.492 -0.713

Skew -10.70 -6.291*** -8.689 -3.703*** -5.506 -3.312*** -4.700 -2.546**

Kurtosis 0.686 0.102 -10.48 -1.810* -5.133 -1.793* 0.810 0.167

Kurtosis Factor

Mean -0.649 -3.124*** -1.153 -5.347*** -0.502 -2.517** -0.040 -0.278

Variance 0.351 0.973 0.196 0.436 -0.381 -1.319 0.328 0.941

Skew -1.873 -2.460** -2.991 -3.025*** -1.462 -2.239** 0.555 0.716

Kurtosis 1.824 0.716 0.068 0.030 -1.683 -1.430 2.974 1.703*

Table 6: Jump Risk Factors and Forecasting Quality at the 1-

month Horizon
For each currency pair, the table shows parameter estimates and t-statistics from a regression of

differences in the normalized moments of the normal transform variable Zt,τ on changes in variance

swap rates, risk-neutral skew and risk-neutral kurtosis. The moments of Zt,τ are obtained from KFVV

density forecasts. Variance swap rates and risk-neutral higher-order moments are constructed on the

basis of the Malz approach in conjunction with 25-delta options. Significance of parameters is

indicated with *, ** and *** for the 10%, 5% and 1% confidence level.

Table 6 reveals the results for the 1-month horizon, where again we focus on density

forecasts from the KFVV method. Despite the presence of jump risk factors, the

impact of the variance risk factor is almost unchanged. In particular, the estimates

on the moment parameters have the same sign and a similar magnitude as before.

Concerning the jump size proxy, similar results are obtained for all currency pairs.

The parameters on the first and third moment of the normal transform variable are

significantly negative. In contrast, there is only weak evidence that the jump size factor

impacts the variance and kurtosis of the bias measure. The parameter estimates suggest

that a positive shock to the jump size proxy leads to a right shift of the risk-neutral

density that is not matched by the statistical distribution. As a result, the likelihood

of predicting too few observations up to a given quantile is increased. Similar findings

apply to the skew moment parameter: When the jump size factor increases, there is a

tendency to overestimate the upper tail density. Given that we approximate the mean

jump size by risk-neutral skewness, this result is to be expected.

The jump intensity surrogate has a significant impact on the mean and skew param-

eter for EURUSD, GBPUSD and USDJPY, but otherwise does not affect forecasting
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quality. In particular, we find little evidence that EURGBP density forecasts are af-

fected by jump intensity. From those parameter estimates that are significant, we infer

that the intensity factor works in the opposite direction of the variance risk factor.

An estimated increase in the number of jumps results in a negative mean shift of the

normal transform variable. This implies that in tendency, spot realizations come lower

than predicted. Furthermore, from the estimates on the skew moment parameter, we

conclude that after a shock to the jump intensity risk factor, the upper tail density

tends to be too thick.

EURUSD GBPUSD USDJPY EURGBP
β t-stat β t-stat β t-stat β t-stat

Variance Factor

Mean 0.106 1.712* 0.352 3.937*** 0.401 4.182*** -0.216 -4.361***

Variance 0.006 0.065 -0.556 -1.590 -0.161 -1.116 -0.691 -1.947*

Skew 0.427 1.303 2.117 2.186** 0.989 3.677*** -2.741 -1.762*

Kurtosis -0.865 -0.831 -4.606 -1.814* -0.530 -0.914 -10.71 -1.656*

Skew Factor

Mean -2.248 -5.363*** -2.233 -5.204*** -2.072 -5.102*** -0.942 -2.186**

Variance -1.214 -1.476 -2.846 -2.805*** -2.346 -2.850*** 0.299 0.301

Skew -6.389 -4.768*** -1.018 -0.267 -4.850 -3.142*** 1.728 0.501

Kurtosis 0.804 0.135 -21.87 -1.913* -6.682 -2.118** 11.638 1.048

Kurtosis Factor

Mean -0.365 -3.021*** -0.486 -4.559*** -0.508 -4.769*** 0.003 0.051

Variance -0.083 -0.501 -0.621 -2.708*** -0.547 -2.755*** 0.258 1.474

Skew -0.929 -3.159*** -0.300 -0.363 -1.196 -3.253*** 0.771 1.392

Kurtosis 0.471 0.502 -4.620 -2.061** -1.541 -2.014** 2.645 1.632

Table 7: Jump Risk Factors and Forecasting Quality at the 3-

month Horizon
For each currency pair, the table shows parameter estimates and t-statistics from a regression of

differences in the normalized moments of the normal transform variable Zt,τ on changes in variance

swap rates, risk-neutral skew and risk-neutral kurtosis. The moments of Zt,τ are obtained from KFVV

density forecasts. Variance swap rates and risk-neutral higher-order moments are constructed on the

basis of the Malz approach in conjunction with 25-delta options. Significance of parameters is

indicated with *, ** and *** for the 10%, 5% and 1% confidence level.

In Table 7, we present the results for the 3-month forecasting horizon. In essence,

they confirm what we have observed before. The variance risk factor retains its mostly

significant role in the presence of the jump risk surrogates. For EURUSD and USDJPY,

the jump size factor plays a similar role as for the 1-month horizon. For GBPUSD,

the parameter estimate on the third moment of the normal transform variable is no

longer significant. In contrast, we observe a significant negative relationship for the

variance parameter. Therefore, a positive shock to the jump size factor leads to an

overestimation of the volatility of the statistical return distribution. Concerning the
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jump intensity risk factor, similar results as for the 1-month horizon are obtained

for EURUSD and EURGBP. For GBPUSD and USDJPY, jump intensity has a more

complex impact on forecasting accuracy. In particular, we find a significant negative

relationship for the variance and kurtosis parameter of the normal transform variable.

Therefore, both at the 1-month and 3-month horizon, we conjecture that fear of jump

risk affects the quality of density forecasts.

5 Conclusion

In this paper, we have examined the biases in density forecasts implied in currency

options. To ensure that our evidence is robust, we have constructed density forecasts

from three alternative interpolation methods: Apart from the well-established Malz and

vanna-volga method, we proposed to enhance the latter by applying a Kalman filter.

This approach dynamically updates the information content of all currency options

available in the strike domain. Our results suggest that option-implied densities provide

biased estimates of the statistical return distribution. This finding is persistent for all

methods, and it also holds when we select alternative information sets comprised of

deep OTM options. Furthermore, we observe that the biases become more pronounced

for a longer forecasting horizon.

To further investigate the nature of the biases, we have established a relationship

between our measure of forecasting accuracy and commonly priced risk factors in cur-

rency markets. We have found that for all currency pairs, at least some moments of

the bias measure are significantly affected by surrogates for variance and jump risk.

Furthermore, the variance risk factor retains a dominant role in the presence of jump

risk proxies. Our results support the interpretation that risk aversion determines the

difference between the risk-neutral and statistical return distributions in currency mar-

kets.
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6 Appendix

A Quotation Convention Adapted Version of the Malz Inter-

polation Method

Given a set of of option quotes σDP , σDN and σDC , we retrieve strike prices and

compute spot deltas ∆P , ∆DN and ∆C that are consistent with a currency pair’s

premium convention. For details, see Reiswich and Wystup (2010).

Define the vector B = (σDN , σrr(∆ − ∆DN), σ
bf (∆ − ∆DN)

2)′, where the risk

reversal and butterfly are constructed as in (4). Next, we set up the matrix

A =









σDN 0 0

0 σRR(∆C −∆P ) σBF ((∆C −∆DN )2 − (∆P −∆DN )2)

0 0.5σRR(∆C +∆P − 2∆DN ) 0.5σBF ((∆C −∆DN )2 + (∆P −∆DN )2)









(A.1)

The rows of matrix A reflect the right hand side of (5) for the delta-neutral quote,

the risk reversal and the butterfly. Set σpv = (σDN , σRR, σBF )′ and define a vector of

parameters b = (b0, b1, b2)
′. Since the convention-adapted version of (5) must hold

for any quote in delta space, the parameters follow from

b = A−1σpv. (A.2)

The convention-adapted version of (5) is given by

σ∆ = B′b. (A.3)

To transform an array of volatilities σ∆ into an array of option prices c(X, τ), we

insert the convention-adapted Garman and Kohlhagen (1983) formula for ∆ into (A.3).

Given an array of exercise prices X, we numerically solve for σX. Again applying the

Garman and Kohlhagen formula, we finally obtain c(X, τ).
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B The Vanna-Volga Method

Given a set of of option quotes σxDP , σDN and σxDC , we compute strike prices along

the lines of Reiswich and Wystup (2010). Next, we compute volatility greeks and

assemble the vector y and matrix A,

y =













∂c(X,τ,St,σX
t )

∂σt

∂2c(X,τ,St,σX
t )

∂Stσt

∂2c(X,τ,St,σX
t )

∂σ2
t













, (B.1)

and

A =













∂c(XxDP ,τ,St,σxDP
t )

∂σt

∂c(XDN ,τ,St,σDN
t )

∂σt

∂c(XxDC ,τ,St,σxDC
t )

∂σt

∂2c(XxDP ,τ,St,σxDP
t )

∂Stσt

∂2c(XDN ,τ,St,σDN
t )

∂Stσt

∂2c(XxDC ,τ,St,σxDC
t )

∂Stσt

∂2c(XxDP ,τ,St,σxDP
t )

∂σ2
t

∂2c(XDN ,τ,St,σDN
t )

∂σ2
t

∂2c(XxDC ,τ,St,σxDC
t )

∂σ2
t













. (B.2)

The vega and volga of an option are given by

∂c(.)

∂σt
= e−rf τSt

e−d
2
1
/2

√
2π

√
τ

∂2c(.)

∂σ2
t

=
∂c(.)

∂σt
d1
d2
σt
, (B.3)

where d1 =
log(St/X)+(rd−rf+σ2

t /2)τ

σt
√
τ

and d2 = d1 − σt
√
τ .

The vanna depends on the premium convention. The regular (reg.) and premium-

adjusted (p.a.) vanna are given by

∂2c(.)

∂σt∂St

(reg.)

= −e−rf τN ′(d1)
d2
σt

∂2c(.)

∂σt∂St

(p.a.)

=
∂2c(.)

∂σt∂St

(reg.)
K

Ft
, (B.4)

where N ′(x) = 1√
2π
e−x

2/2 and Ft = Ste
(rd−rf )τ .

The market excess prices used in (8) are given by

cme =













c(XxDP , τ, St, σ
xDP
t )− c(XxDP , τ, St, σ

BS
t )

c(XDN , τ, St, σ
DN
t )− c(XDN , τ, St, σ

BS
t )

c(XxDC , τ, St, σ
xDC
t )− c(XxDC , τ, St, σ

BS
t ),













. (B.5)

Inserting (B.1), (B.2) and (B.5) into (7) and (8), we numerically solve for σX given

an array of exercise prices X. A numerical procedure is required since y and hence the

weights x depend on σX. To map σX to c(X, τ), we apply the Garman and Kohlhagen

(1983) function.
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C Maximum Likelihood Estimation of the Kalman Filter

We refer to Hamilton (1994) for a detailed exposition of the Kalman filter. Under the

assumption that ξ1 and {εt, ωt}Tt=1 are multivariate Gaussian, the conditional distri-

bution of cme
t is given by

c
me,X
t | Yt, It−1 ∼ N(Y′

tξ̂t|t−1 +Y′
tᾱ,Y

′
tPt|t−1Yt +R), (C.1)

i.e.

fcme,X
t |Yt,It−1

(cme,Xt | Yt, It−1) = (2π)−
T
2 | Y ′

t Pt|t−1Yt +R |− 1

2

e{−
1

2
(cme,X

t −Y ′
t ξ̂t|t−1−Y ′

t ᾱ)
′(Y ′

t Pt|t−1Yt+R)−1(cme,X
t −Y ′

t ξ̂t|t−1−Y ′
t ᾱ)}.

(C.2)

The sample log likelihood function is therefore

∑T
t=1 logf(c

me,X
t | Yt, It−1) = −(T

2
)log(2π)−

1
2

∑T
t=1 log | Y ′

t Pt|t−1Yt +R | −1
2

∑T
t=1(c

me,X
t − Y ′

t ξ̂t|t−1 − Y ′
t ᾱ)

′

(Y ′
t Pt|t−1Yt +R)−1(cme,Xt − Y ′

t ξ̂t|t−1 − Y ′
t ᾱ)

′.

(C.3)

The parameters are found by maximizing (C.3).
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Part II

Variance Risk Premiums in Foreign

Exchange Markets

Abstract

Based on the theory of static replication of variance swaps we assess the

sign and magnitude of variance risk premiums in foreign exchange markets. We

find significantly negative risk premiums when realized variance is computed

from intraday data with low frequency. As a likely consequence of microstruc-

ture effects however, the evidence is ambiguous when realized variance is based

on high-frequency data. Common to all estimates, variance risk premiums are

highly time-varying and inversely related to the risk-neutral expectation of future

variance.

When we test whether variance risk premiums can be attributed to classic

risk factors or fear of jump risk, we find that conditional premiums remain signif-

icantly negative. However, we observe a strong relationship between the size of

log variance risk premiums and the VIX, the TED spread and the general shape

of the implied volatility function of the corresponding currency pair. Overall, we

conclude that there is a separately priced variance risk factor which commands

a highly time-varying premium.
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1 Introduction

The increase of traded volumes in foreign exchange derivative markets over the past

decades suggests that it becomes ever more important to understand risk factors and

their potential premiums in currency markets. The aim of this paper is a careful

examination of the variance risk premiums in foreign exchange markets. Specifically,

we investigate the sign, size and evolution of variance risk premiums by means of the

model-free approach of Carr and Wu (2009). Based on the theoretical work from Carr

and Madan (1998), Demeterfi, Derman, Kamal and Zou (1999) and Britten-Jones

and Neuberger (2000), we synthesize zero cost variance swaps, which is equivalent

to constructing risk-neutral forecasts of future variance. Using a model-free variance

estimator has the advantage that we can be agnostic about the volatility process of

the underlying exchange rate. More precisely, our estimator produces robust forecasts

under an arbitrary volatility process and thus avoids an important source of potential

error. When variance swaps are compared with a measure of ex-post realized variance,

the sign and magnitude of the average variance risk premiums can be directly inferred.

To the best of our knowledge, we are the first to apply the model-free methodology

proposed by Carr and Wu (2009) to study variance risk premiums in foreign exchange

markets. Our analysis is based on OTC options, for which only a handful of standard

quotes in the strike domain are available. For this reason, we compute variance risk

premiums for different interpolation methods and settings. We also propose a novel

interpolation technique that extends the information set to all option quotes in the

strike domain. Finally, we contribute to the literature by carefully examining the

relationship between variance risk premiums and the sampling frequency of the spot

rate on which realized variance estimates are based.

A number of studies on currency markets document biases for option-implied volatil-

ity in predicting future realized volatility. Early work on the subject includes Scott

(1992), who introduces the notion of a volatility risk premium, Jorion (1995) and Bates

(1996a). Covrig and Low (2003), Christoffersen and Mazzotta (2005) and Charoen-

wong, Jenwittayaroje and Low (2009) use OTC options to study the accuracy of im-

plied volatility forecasts. While their evidence is ambiguous as to whether or not

implied volatility is a biased predictor of future realized volatility, they agree that

implied volatility subsumes the information contained in competing time-series mod-

els. Martens and Zein (2004) and Pong, Shackleton, Taylor and Xu (2004) compare

implied volatility with forecasts from high-frequency historical data. They conclude

that the latter provide accurate forecasts of future realized volatility. Contrary to this

32



body of research, we do not benchmark implied against historical volatility forecasts.

Instead, our attention is devoted to a thorough analysis of the variance risk premiums

in currency markets.

Variance risk premiums in equity markets are relatively well studied. For example,

Coval and Shumway (2001) and Bakshi and Kapadia (2003) conduct analyses with a

focus on the performance of hedged option positions. The former construct so-called

zero-beta index straddles, while the latter examine returns to delta-neutral call option

strategies. Both report significant negative returns and attribute these to negatively

priced variance risk. Carr and Wu (2009) quantify variance risk premiums for both

index options and individual stocks. Although they report some cross-sectional differ-

ences for the latter, the overall evidence is strongly indicative of negative variance risk

premiums. Currency markets in contrast have so far received little attention, in spite

of their very distinct nature compared to equities. Guo (1998) investigates variance

risk premiums in the context of the Heston (1993) stochastic volatility model, whereas

we assess them in a model-free manner. Low and Zhang (2005) adapt the approach of

Bakshi and Kapadia (2003). Compared to their analysis, our approach has two distinct

advantages: First, we can directly quantify the magnitude of variance risk premiums.

Second, we account for the information in the cross-section of option prices, whereas

their evidence rests entirely on the at-the-money quotes.

Currency markets are fundamentally different from equities in that one of the key

explanations for negative variance risk premiums does not necessarily apply. The

classical argument goes as follows: Since equity investors are primarily concerned with a

decrease in share prices, and since negative returns tend to coincide with an increase in

volatility, instruments with a positive exposure to volatility pay out in bad states of the

economy. As such, risk-averse investors should be willing to pay a premium for holding

such instruments. In foreign exchange, the relationship between the level of volatility

and the direction of the underlying currency pair is not as clear-cut. Evidently, the

so-called leverage effect first pointed out by Black (1976) is absent. More importantly,

there are likewise domestic and foreign investors and firms with opposite interest in

the valuation of one currency against another. As a result, a currency depreciation

need not be a bad thing. Thinking in the context of the mean-variance framework,

an increase in volatility is however likely to adversely affect the opportunity set of an

international investor. Furthermore, it impedes the budgeting and planning process of

an internationally operating firm. Provided market participants are risk-averse, this

reasoning suggests that potentially negative variance risk premiums can be attributed

to a separately priced variance risk factor.
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In line with the economic argument, we find significantly negative variance risk

premiums when realized variance is computed from intraday data with low frequencies.

However, we report a considerable difference in average variance risk premiums when

spot data with daily sampling frequency as opposed to high-frequency data is used.

Our results suggest that the observed discrepancies are owed to microstructure effects

that come into play as the sampling frequency is increased. We can further assert that

variance risk premiums are highly time-varying and inversely related to the risk-neutral

expectation of future variance. Finally, our results are robust to whether or not we

include data covering the financial crisis of 2008.

In an attempt to better comprehend the nature of variance risk premiums, we

interpret our results in the context of classic risk factors. Specifically, we regress log

variance risk premiums on excess returns in the S&P 500, returns on the VIX and first

differences in the TED spread. While the latter two share a significant relationship

with the magnitude of log variance risk premiums, the conditional premiums remain

significantly negative. We also examine whether variance risk premiums subsume fear

of jump risk. Assuming that jump risk is well proxied by the prices for risk reversal

and butterfly strategies, we can conclude that jump risk aversion cannot account for

the observed variance risk premiums in currency markets. Overall, our results point

towards an independent variance risk factor which commands a time-varying premium.

The remainder of the paper is organized as follows. Section 2 provides an outline of

the general estimation methodology applied in this paper. In section 3, we present the

data set and elaborate on the details of replicating variance swaps in foreign exchange

markets. Section 4 provides evidence on average variance risk premiums as well as

their time series characteristics. Section 5 investigates variance risk premiums during

the financial crisis of 2008. In section 6, we assess the variance risk premiums within

the framework of classical factor models. Section 7 concludes.

2 Static Hedging and Model-Free Variance Fore-

casting

Throughout this paper, we work with the risk-neutral variance forecast developed in

Carr and Madan (1998), Demeterfi et al. (1999) and Britten-Jones and Neuberger

(2000). We follow the common foreign exchange quotation convention and assume

that the evolution of a currency pair under the risk-neutral measure Q is governed by
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a stochastic differential equation (SDE) of the form

dS(t) = (rd − rf )S(t)dt+ σ(t)S(t)dB(t), (1)

where S(t) is the price of a foreign currency measured in domestic units. As is

readily seen from (1), the domestic and foreign interest rates rd and rf are assumed

to be constant. In contrast, no assumption is made with regard to the stochastic

dynamics of the volatility σ(t). In fact, σ(t) represents an arbitrary stochastic process

that we leave unspecified throughout the paper. Given the SDE in (1), it follows that

the risk-neutral expectation of future variance is given by1

RNV[t,T ] =
1

T−tE
Q
t

(

∫ T

t
σ2
sds
)

= 2
T−te

rd(T−t)
[

∫ Ft

0
1
K2p(K,T )dK +

∫∞
Ft

1
K2 c(K,T )dK

]

.
(2)

Equation (2) is also known as synthetic variance swap rate. Specifically, it is the

rate that makes a variance swap which pays the difference between the future realized

variance and the swap rate zero cost. The estimator in (2) has the advantage that it

does not hinge on a particular option pricing model. Under the premise of absence

of risk-aversion, the risk-neutral expectation is the best estimator of future realized

variance. When risk aversion is present, RNV[t,T ] encompasses both the expectation

of realized variance under the physical measure and a risk premium. As proposed by

Carr and Wu (2009), a simple means to quantify the variance risk premium is thus to

compare the ex post realized variance with its risk-neutral forecast. In particular, the

variance risk premium over the period from t to T is given by

RP[t,T ] = RV[t,T ] −RNV[t,T ], (3)

where RV[t,T ] is the realized variance of the underlying spot rate. We use equation

(3) to investigate the evolution of variance risk premiums in foreign exchange mar-

kets. To do so, both a sample estimator of the actual realized variance and a suitable

discretization of the static replication of a variance swap are needed. Regarding real-

ized variance, we consider two distinct estimators. In their seminal work on variance

risk premiums in equity markets, both Bakshi and Kapadia (2003) and Carr and Wu

(2009) employ daily data. Similarly, Low and Zhang (2005) employ daily spot data in

the analysis of foreign exchange markets. This choice is reasonable also in the current

context, since the majority of variance swaps settle against a daily fixing schedule. On

the other hand, when spot prices exhibit a lot of intraday variation but tend to close

1We refer to Appendix A for a derivation.
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around the opening price, daily estimates of realized variance will be rather imprecise

(Andersen and Bollerslev, 1998). Also, option traders can rehedge several times a day,

which potentially materializes in higher implied volatilities and hence variance swap

rates. Arguably, this intraday hedging opportunity should be accounted for when esti-

mating realized variance. More appropriate estimates are then obtained from intraday

data. Since foreign exchange markets are characterized by round-the-clock trading, a

simple estimator based on 5-minute intraday mid-quotes is given by

R̂V [t,T ] =
260

D

N
∑

i=1

log

(

Si+1

Si

)2

, (4)

where N is the total number of observations over the interval from t to T and

D = N/288 is the number of active trading days. We scale by 260 business days to

obtain an annualized measure of realized variance.2

The use of 5-minute intraday data appears to have established as a standard for

the analysis of currency markets.3 In fact, Pong et al. (2004) and Charoenwong et al.

(2009) employ an identical estimator as in (4). As proposed in Andersen and Bollerslev

(1997), we use log returns, and we dismiss any data between Friday and Sunday 2100

GMT. Moreover, we compute realized variance over a window from 2pm Eastern Time

(ET) on trade date to 10am ET on expiry date. The first instance corresponds to

the time stamp on the option quotes, whereas the latter is identical to New York cut,

i.e. the time when the options expire.

Regarding a suitable estimator for the risk-neutral variance, we choose

ˆRNV [t,T ] =
2

(T − t)
erd(T−t)

m
∑

i=1

∆K

K2
i

(p(Ki, T )IKi≤F0
+ c(Ki, T )IKi>F0

) , (5)

where I denotes an indicator function and m is the number of option quotes in the

cross-section of strike prices. Specifically, we define a ± 6 standard deviation interval

around the current forward price F (t, T ), where the standard deviation is based on the

implied volatility of the delta-neutral strike quote. Furthermore, we set m = 80 with

equally-sized subintervals.4

2The same formula is used to compute realized variance for daily spot data.
3See Andersen and Bollerslev (1997), Andersen and Bollerslev (1998), Pong, Shackleton, Taylor

and Xu (2004) and Charoenwong, Jenwittayaroje and Low (2009) to name a few.
4The results are virtually indifferent to alternative choices of 4 respectively 8 standard deviations.

Jiang and Tian (2005) provide an excellent account on truncation and other approximation errors in

the context of model-free forecasting. We also tried out a number of different partitions. As it turns

out, 80 subintervals is sufficient to obtain a fine enough grid. Note that since this equals a step size

of 0.15 standard deviations, our findings are consistent with figure 2 from Jiang and Tian (2005).
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The literature on foreign exchange markets provides some evidence that risk-neutral

price processes exhibit jumps.5 Ultimately, this renders the SDE in (1) an inadequate

description of the true return generating process. However, Jiang and Tian (2005)

show that (2) still provides an unbiased estimator in a jump-diffusion setting where

the jumps and the diffusion part are assumed to be orthogonal. In the most general

case, Carr and Wu (2009) explicitly derive the approximation error due to jumps. Their

numerical analysis suggests that the error is small. Finally, Todorov (2010) relies on

the estimator in (2) even though he explicitly assumes a role for jumps.

3 Data and Methodology

We investigate the variance risk premiums for EURUSD (U.S. dollar per 1 euro), GB-

PUSD (U.S. dollar per 1 British pound), USDJPY (Japanese yen per 1 U.S. dollar)

and EURGBP (British pound per 1 euro). Since the currencies involved form part of

the group of majors, undesirable liquidity effects can largely be ruled out. Still, the

different nature of the currency pairs and the fact that we include a so-called cross

biproduct suggest that we deal with a fairly representative set of volatility shapes com-

monly observed in foreign exchange markets.6 We consider variance risk premiums

over the 1-month and 3-month horizon. Our data set covers the period from January

2003 to August 2009. To avoid that any evidence is confound by the extreme market

conditions of the financial crisis in autumn 2008, we first look at a pre-crisis subperiod

from January 2003 to August 2008. The cut-off in August 2008 pre-dates the collapse

of Lehman Brothers and the ensuing market turbulence by 2 weeks.

We obtain intraday spot data from Olsen & Associates, a currency trader and

provider of high-frequency data. Interest rates are from Bloomberg. Volatility quotes

on delta-neutral straddles (DN) and 5-delta, 10-delta and 25-delta call (DC) and put

(DP) options have been provided by UBS, a major investment bank and market maker

in foreign exchange. Care must be taken when these quotes are mapped to their

respective delta. For EURUSD and GBPUSD, the domestic currency, i.e. USD, is

the premium currency. As a result, a 25-delta quote refers to a regular spot delta

of (-)0.25. In contrast, USDJPY and EURGBP are quoted with a foreign currency

premium. Accordingly, a so-called premium-adjusted delta convention applies. For a

detailed discussion, we refer to Reiswich and Wystup (2010).

The difficulty with the estimator in (5) is that we only have a handful of delta quotes

5See for example Bates (1996), Daal and Madan (2005), Carr and Wu (2007) and references therein.
6We use the term biproduct synonym for currency pair.
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available, which essentially precludes the use of a non-parametric interpolation method.

We therefore apply two different techniques that are tailored to the specifics of foreign

exchange markets. Malz (1997) proposes a parabolic interpolation method that rests

on so-called risk reversal and butterfly strategies. Unfortunately, his approach relates

to a forward delta and is valid only under a regular delta convention. In appendix

B, we propose a generalized version that produces market consistent implied volatility

functions under any convention. For brief, set B = (σDN , σxrr(∆−∆DN), σ
xbf (∆−

∆DN)
2)′, where σxrr and σxbf refer to a risk reversal and butterfly constructed from

our volatility quotes,

σxrr := σxDC − σxDP , σxbf :=
σxDC + σxDP

2
− σDN . (6)

x denotes a particular choice of pivot options, e.g. the 25-delta calls and puts. The

volatility of an arbitrary option with delta ∆ follows from

σ̂∆ = B′a, (7)

where a is a 3 × 1 vector of parameters that depends on the pivot choice and

the delta convention. From σ̂∆, call and put prices to be used in (5) are obtained

through the Garman and Kohlhagen (1983) function for currency options. Again, the

mapping from the delta to the strike space requires that attention is paid to the quoting

convention.

As an alternative to the Malz approach, we employ the vanna-volga method pre-

sented by Castagna and Mercurio (2007). The vanna-volga method maintains that

any option in the strike domain can be replicated by a delta-hedge, a money market

position and a suitable portfolio of three options. As such, the vanna-volga method

rests on the same volatility quotes as the Malz approach. The reason for holding a

portfolio of options is that under the premise of stochastic volatility, hedging an option

with second-order accuracy requires offsetting the greeks ∂c(.)/∂σ, ∂2c(.)/∂S∂σ and

∂2c(.)/∂σ2, which are commonly referred to as the vega, the vanna and the volga of an

option.

For an arbitrary option with strike price K, suppose these so-called volatility greeks

are stacked into a 3 × 1 vector y. Furthermore, presume that the 3 × 3 matrix A

concatenates the volatility greeks for the 3 pivot options. Finally, define a 3× 1 vector

cme of market excess prices. More precisely, cme subsumes the differences between the

observable market prices and the theoretical Black-Scholes prices of the options in the

hedging portfolio. Then, by the usual replication arguments, it follows that the price

of the option with exercise price K is given by

c(K,T, σK) = c(K,T, σBS) + (cme)′x, (8)
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where x = A−1y is the 3× 1 vector of portfolio weights. An array of option prices

generated by the vanna-volga method can directly be employed in (5).7

The Malz and the vanna-volga method essentially differ in how they extrapolate

the implied volatility function beyond the out-of-the-money (OTM) quotes. When the

Malz approach is used, the volatility smile flattens out, whereas this is not the case for

the vanna-volga method. Potentially, this has a non-trivial impact on the magnitude

of the risk-neutral variance forecast, with the more aggressive estimates coming from

the vanna-volga method. To deal with this problem, we consider a number of different

estimates. Specifically, we produce four base estimates combining both methods with

either a 10DP-DN-10DC or 25DP-DN-25DC pivot set. We leave out the 5-delta quotes

to dispel any doubts regarding liquidity. Next, we employ a mixed estimation scheme

where on each day, the approach is chosen which best fits the option quotes not used for

interpolation. The 5-delta quotes thus serve as a benchmark in assessing tail-modelling

accuracy. Figure 1 illustrates this principle.
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Figure 1: Implied Volatility Functions
Implied volatility functions from the Malz (light grey) and the vanna-volga method (dark

grey) generated alternatively from 25-delta (solid line) and 10-delta (dashed line) option

quotes. The black crosses mark the observed 1-month option quotes for EURUSD on 2nd

January 2003. The EURUSD spot rate on 2nd January 2003 was 1.0351.

The dark grey solid line marks the implied volatility function obtained when the

vanna-volga method is fitted to the 25-delta option quotes. In contrast, the dashed dark

line is obtained when the method is applied to the 10-delta options. The light grey lines

mark the corresponding curves from the Malz approach. While the methods more or

7Note that the vanna of an option is again dependent on the delta convention.
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less agree on the strike domain inside the pivot options used, they substantially differ in

their prediction of deep OTM quotes. The black crosses represent the market quotes for

1-month EURUSD options on 2nd January 2003. In this instance, our mixed approach

would have chosen to synthesize variance swaps from the 10-delta Malz approach.

To complement the methodological toolbox, we consider a sixth alternative that

takes the information content of all quotes into account. In equation (8), substitute

x = A−1y and rearrange to obtain

c(K,T, σK)− c(K,T, σBS) = y′α, (9)

where α = (A−1)′cme is a 3 × 1 price vector associated with the volatility greeks.

Seen from this perspective, the vanna-volga method purports that an option with exer-

cise price K has a market price in excess of the Black-Scholes value that is determined

by the option’s vega, vanna and volga times the respective hedging costs. Using (9),

we can estimate α from all quotes in the strike domain. Specifically, stack all observed

excess prices into a (7× 1) vector cme,∀ to obtain a system of equations

cme,∀ = Y′α + ε, (10)

where Y is a 3 × 7 matrix of volatility greeks with each column corresponding to

one of the option quotes observed in the market. We dub the estimates resulting from

(10) as least-square vanna-volga (LSVV) estimates.

4 Time Series Dynamics of Variance Risk Premi-

ums

4.1 Evidence on the Sign and Size of Variance Risk Premiums

We conjectured that on average, variance risk premiums in foreign exchange markets

ought to be negative. To evaluate this conjecture, consider an investor that maintains a

variance swap investment with daily spot rate fixing. We ask for the annualized average

amount earned over the period from January 2003 to August 2008, for a 1-month and

3-month investment horizon. This procedure is equivalent to investigating the sign

and size of the average variance risk premium. Table 1 presents the results, along with

t-statistics from a test on the null hypothesis that variance risk premiums are zero.

Since the overlapping estimation procedure introduces serial correlation, Newey and

West (1987) standard errors are employed. To address the possibility that variance
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EURUSD GBPUSD USDJPY EURGBP
1m 3m 1m 3m 1m 3m 1m 3m

Malz

25D R̄P -0.0008 -0.0009 -0.0004 -0.0004 -0.0008 0.0000 -0.0007 -0.0006

tstat -2.882*** -2.109** -1.261 -1.103 -1.790* 0.055 -4.757*** -2.270**

10D R̄P -0.0010 -0.0011 -0.0006 -0.0006 -0.0011 -0.0004 -0.0008 -0.0007

tstat -3.612*** -2.689*** -1.722* -1.537 -2.423** -0.520 -5.179*** -2.678***

Vanna-Volga

25D R̄P -0.0013 -0.0015 -0.0009 -0.0010 -0.0023 -0.0017 -0.0010 -0.0010

tstat -4.917*** -3.953*** -2.469** -2.300** -4.192*** -2.685*** -5.776*** -3.673***

10D R̄P -0.0014 -0.0015 -0.0009 -0.0010 -0.0019 -0.0013 -0.0010 -0.0010

tstat -4.875*** -3.901*** -2.518** -2.318** -3.647*** -1.809* -5.809*** -3.474***

Mixed

R̄P -0.0013 -0.0015 -0.0009 -0.0009 -0.0013 -0.0006 -0.0010 -0.0009

tstat -4.788*** -3.776*** -2.512** -2.269** -3.166*** -0.948 -5.755*** -3.216***

LSVV

R̄P -0.0013 -0.0015 -0.0009 -0.0010 -0.0018 -0.0011 -0.0010 -0.0009

tstat -4.710*** -3.697*** -2.426** -2.220** -3.549*** -1.603 -5.722*** -3.344***

Table 1: Average Variance Risk Premiums from Daily Data
Annualized average variance risk premiums at the 1-month and 3-month horizon. Synthetic variance

swaps are alternatively constructed using the Malz and vanna-volga method with 25-delta and 10-delta

options. The mixed approach refers to the optimal choice from these base interpolation methods, while

the LSVV method comprises the full information content of option quotes in the strike domain. The

t-statistics are based on Newey and West (1987) standard errors with lags up to one year. *, ** and

*** indicate significance at the 10%, 5% and 1% confidence level.

risk premiums are autocorrelated even for non-overlapping windows, we include lags

up to one year.

In line with our expectations, variance risk premiums are uniformly negative. For

example, an investment of USD 100 in a 1-month EURUSD variance swap would

return an average annualized loss of about 13 cents.8 As hypothesized in the previous

section, evidence of negative variance risk premiums is strongest for the vanna-volga

method: With the exception of GBPUSD and 3-month USDJPY, the t-statistics are

always significant on the 1% level. The mixed and LSVV methods, which arguably

provide the most balanced assessment, suggest that except for the 3-month USDJPY

estimates, variance risk premiums are significantly negative at least on the 5% level.

Concerning USDJPY, we observe a material difference between the 1-month and 3-

month estimates, irrespective of the chosen method. This finding is in line with a

decreasing term structure of volatility risk premiums as reported in Low and Zhang

(2005).

8This number is based on the estimates from the mixed or LSVV approach.
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The continuously compounded returns to an investor going long the variance swap

at rate RNV[t,T ] are given by log(RV[t,T ]/RNV[t,T ]). Following Carr and Wu (2009), we

define this ratio as the log variance risk premium. A significantly negative log variance

risk premium suggests that investors are willing to loose money on average to protect

against a rise in variance. We test this hypothesis over the period from January 2003

to August 2008, again for all biproducts.

EURUSD GBPUSD USDJPY EURGBP
1m 3m 1m 3m 1m 3m 1m 3m

Malz

25D ¯LRP -15.7% -14.2% -12.5% -9.7% -17.4% -5.1% -24.2% -20.4%

tstat -3.839*** -2.386*** -3.335*** -2.339** -3.490*** -0.664 -7.492*** -2.908***

10D ¯LRP -18.1% -16.8% -14.8% -12.2% -20.4% -9.0% -26.9% -23.2%

tstat -4.397*** -2.873*** -3.850*** -2.885*** -3.893*** -1.179 -8.318*** -3.293***

Vanna-Volga

25D ¯LRP -22.2% -21.6% -19.3% -17.2% -30.3% -20.8% -32.1% -28.8%

tstat -5.401*** -3.858*** -4.511*** -3.728*** -5.604*** -2.967*** -10.09*** -4.242***

10D ¯LRP -22.3% -21.7% -19.3% -17.2% -27.4% -17.3% -32.0% -28.7%

tstat -5.390*** -3.853*** -4.610*** -3.766** -4.874*** -2.260*** -9.944*** -4.085***

Mixed

¯LRP -22.0% -21.3% -18.7% -16.3% -22.3% -11.6% -31.3% -27.9%

tstat -5.318*** -3.745*** -4.695*** -3.790*** -4.838*** -1.649* -9.654*** -3.852***

LSVV

¯LRP -21.7% -20.9% -18.6% -16.5% -26.1% -15.8% -31.2% -27.8%

tstat -5.260*** -3.692*** -4.541*** -3.669** -4.862*** -2.113** -9.688*** -3.951***

Table 2: Average Log Variance Risk Premiums from Daily Data
Annualized average log variance risk premiums at the 1-month and 3-month horizon. Synthetic

variance swaps are alternatively constructed using the Malz and vanna-volga method with 25-delta and

10-delta options. The mixed approach refers to the optimal choice from these base interpolation

methods, while the LSVV method comprises the full information content of option quotes in the strike

domain. The t-statistics are based on Newey and West (1987) standard errors with lags up to one year.

*, ** and *** indicate significance at the 10%, 5% and 1% confidence level.

Table 2 shows annualized average log variance risk premiums. The numbers are

considerably larger than in Table 1, which is a result of using the variance swap rate

as the investment basis, rather than a fixed USD amount. The absolute magnitudes of

the premiums are comparable to those reported in Carr and Wu (2009) for individual

stocks, but with -10% to -30% generally smaller than for stock indices. The results

in Table 2 broadly confirm our findings from Table 1. Except for the 3-month USD-

JPY estimates, the t-statistics suggest that the negative log variance risk premiums

are highly significant across different methods. To account for potentially long-lasting
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autocorrelations, the t-statistics are again based on Newey and West (1987) robust

standard errors with a one-year lag. For USDJPY, 3-month estimates are highly sig-

nificant when the vanna-volga method is employed, and still moderately significant

when either the LSVV or the mixed approach is used. The difference of about 10%

between 1-month and 3-month risk premiums is striking however. In contrast, this

difference amounts to just 1% to 3% for EURUSD, GBPUSD and EURGBP.

4.2 Variance Risk Premiums from Intraday Data

Alternative estimates of variance risk premiums are obtained by computing realized

variance from 5-minute intraday data. When currency pairs exhibit a lot of intraday

variation, we can expect variance risk premiums to become more positive. Thus, some

of the previously reported negative risk premiums may become insignificant. Regarding

the computation of variance swap rates, we stick to the common set of methodologies

outlined in section 3. Table 3 shows the results.

EURUSD GBPUSD USDJPY EURGBP
1m 3m 1m 3m 1m 3m 1m 3m

Malz

25D R̄P 0.0001 -0.0001 0.0002 0.0001 0.0006 0.0013 0.0017 0.0017

tstat 0.293 -0.404 0.949 0.182 1.840* 2.329** 4.176*** 4.384***

10D R̄P -0.0001 -0.0004 0.0000 -0.0001 0.0002 0.0009 0.0016 0.0016

tstat -0.460 -1.064 0.208 -0.400 0.696 1.647* 3.928*** 4.121***

Vanna-Volga

25D R̄P -0.0005 -0.0008 -0.0003 -0.0005 -0.0009 -0.0004 0.0013 0.0013

tstat -1.702* -2.372** -1.135 -1.506 -1.750* -0.905 3.218*** 3.461***

10D R̄P -0.0005 -0.0008 -0.0003 -0.0005 -0.0005 0.0000 0.0014 0.0013

tstat -1.708* -2.336** -1.126 -1.500 -1.183 -0.045 3.348*** 3.523***

Mixed

R̄P -0.0005 -0.0007 -0.0002 -0.0004 0.0000 0.0006 0.0014 0.0014

tstat -1.622 -2.221** -0.977 -1.323 0.143 1.218 3.522*** 3.675***

LSVV

R̄P -0.0004 -0.0007 -0.0002 -0.0004 -0.0004 0.0001 0.0014 0.0014

tstat -1.555 -2.142** -0.957 -1.347 -0.901 0.280 3.445*** 3.626***

Table 3: Average Variance Risk Premiums from Intraday Data
Annualized average variance risk premiums at the 1-month and 3-month horizon. Synthetic variance

swaps are alternatively constructed using the Malz and vanna-volga method with 25-delta and 10-delta

options. The mixed approach refers to the optimal choice from these base interpolation methods, while

the LSVV method comprises the full information content of option quotes in the strike domain. The

t-statistics are based on Newey and West (1987) standard errors with lags up to one year. *, ** and

*** indicate significance at the 10%, 5% and 1% confidence level.

The variance risk premiums computed from intraday data are considerably higher
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than those reported for daily data. For EURUSD and GBPUSD, variance risk premi-

ums have increased by about 9 and 6 cents per 100 USD. For USDJPY and EURGBP,

the increase is even more pronounced with 14 and 24 cents respectively. For all cur-

rency pairs, both the 1-month and 3-month premiums have increased by roughly the

same amount. Variance risk premiums are still negative for EURUSD and GBPUSD.

They are positive for EURGBP and 3-month USDJPY and either positive or negative,

depending on the chosen interpolation method, for 1-month USDJPY. The previously

strong evidence for negative risk premiums in foreign exchange markets has mostly

evaporated. 3-month EURUSD estimates are significantly negative on a 5% level for

all except the Malz approach. Apart from this outlier, the 5-minute data provides

evidence against the presence of a variance risk premium. In fact, we now report

significantly positive risk premiums for EURGBP, both at the 1-month and 3-month

horizon.

EURUSD GBPUSD USDJPY EURGBP
1m 3m 1m 3m 1m 3m 1m 3m

Malz

25D ¯LRP 1.2% -1.1% 2.7% 1.0% 5.9% 12.9% 37.8% 36.5%

tstat 0.417 -0.284 0.978 0.237 1.906* 2.471** 5.629*** 5.944***

10D ¯LRP -1.1% -3.7% 0.4% -1.6% 2.9% 9.0% 35.1% 33.6%

tstat -0.375 -0.961 0.142 -0.393 0.859 1.717* 5.283*** 5.445***

Vanna-Volga

25D ¯LRP -5.2% -8.5% -4.1% -6.6% -7.1% -2.8% 29.9% 28.1%

tstat -1.746* -2.376** -1.375 -1.625 -1.842* -0.617 4.424*** 4.543***

10D ¯LRP -5.4% -8.6% -4.1% -6.6% -4.1% 0.6% 30.0% 28.2%

tstat -1.768* -2.388** -1.384 -1.629 -1.094 0.121 4.544*** 4.522***

Mixed

¯LRP -5.1% -8.2% -3.4% -5.7% 0.9% 6.4% 30.7% 29.0%

tstat -1.668* -2.242** -1.233 -1.423 0.315 1.322 4.750*** 4.673***

LSVV

¯LRP -4.8% -7.8% -3.4% -5.9% -2.8% 2.2% 30.8% 29.0%

tstat -1.588 -2.150** -1.186 -1.450 -0.784 0.426 4.660*** 4.664***

Table 4: Average Log Variance Risk Premiums from Intraday

Data
Annualized average log variance risk premiums at the 1-month and 3-month horizon. Synthetic

variance swaps are alternatively constructed using the Malz and vanna-volga method with 25-delta and

10-delta options. The mixed approach refers to the optimal choice from these base interpolation

methods, while the LSVV method comprises the full information content of option quotes in the strike

domain. The t-statistics are based on Newey and West (1987) standard errors with lags up to one year.

*, ** and *** indicate significance at the 10%, 5% and 1% confidence level.

Similar conclusions can be drawn from the results shown in Table 4. For EURUSD
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and GBPUSD, log variance risk premiums are roughly 11% to 17% higher compared to

the estimates based on daily data. For USDJPY, the increase is more pronounced with

approximately 23% at the 1-month and 18% at the 3-month horizon. The discrepancy,

which is of the order of 60%, is again most dramatic for EURGBP. For all except the

Malz approach, EURUSD 1-month and 3-month estimates are significantly negative

on the 10% or 5% level. EURGBP premiums are positive and highly significant across

all methods. The evidence on GBPUSD and USDJPY is mixed. The former estimates

are mostly negative but insignificant, while USDJPY results tend to be positive, in

particular at the 3-month horizon.

4.3 Realized Variance at Alternative Frequencies

The theoretical arguments developed in Andersen, Bollerslev, Diebold and Labys (2001,

2003) suggest that the precision of realized variance estimates increases with the fre-

quency of the underlying data. With an ever increasing frequency however, market

microstructure effects such as bid-ask bounce, price discreteness, spread positioning or

strategic order flow come into play, which effectively results in a bias-efficiency trade

off (Andersen and Benzoni, 2008). The optimal sampling frequency is unknown and

depends on the asset under scrutiny. Andersen and Benzoni (2008) suggest that for

liquid stocks, realized volatility estimates stabilize at frequencies between 5 and 40

minutes. Given the high activity in currency markets, one is tempted to conclude that

estimates based on 5-minute intervals should be unbiased. To shed light on this issue,

Table 5 shows realized volatilities at 6 different sampling frequencies between 5 minutes

and 1 day. The numbers in Table 5 represent averages of annualized estimates that are

taken over intervals corresponding to the variance swap maturities.

Two key findings emerge. First, realized volatilities computed from 5-minute in-

traday data are materially higher than the corresponding estimates from daily spot

data. For example, the average EURUSD realized volatility at the 1-month horizon

is 9.1% for 5-minute intraday data and gradually decreases to 8.5% for daily data.

For EURUSD and GBPUSD, the difference between 5-minute and 1-day estimates is

between 0.3% and 0.6%. For USDJPY, it amounts to 0.8% to 0.9%. Not surprisingly,

the largest differences are observed for EURGBP. Second, realized volatilities appear

to stabilize at 30-minute or 1-hour frequencies for EURUSD, GBPUSD and USDJPY,

which is in line with the findings in Andersen et al. (2003). In contrast, EURGBP

estimates continue to fall as the frequency is decreased.

To gain additional insight on the discrepancy between the various estimates, we
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EURUSD GBPUSD USDJPY EURGBP
1m 3m 1m 3m 1m 3m 1m 3m

5min 9.1% 9.1% 8.4% 8.4% 10.0% 10.1% 7.6% 7.6%

10min 8.8% 8.9% 8.2% 8.3% 9.7% 9.8% 7.0% 7.1%

30min 8.6% 8.6% 8.1% 8.1% 9.4% 9.5% 6.5% 6.6%

1hour 8.6% 8.6% 8.1% 8.1% 9.2% 9.4% 6.3% 6.4%

2hours 8.6% 8.6% 8.0% 8.1% 9.1% 9.3% 6.2% 6.2%

1day 8.5% 8.6% 7.9% 8.1% 9.1% 9.3% 5.7% 5.9%

Table 5: Average Realized Volatility at Different Sampling Fre-

quencies
Average realized volatility for sampling frequencies between 5 minutes and 1 day. The numbers

represent averages of annualized volatilities that are computed over the tenor of the corresponding

1-month and 3-month variance swaps. The horizon under consideration ranges from January 2003 to

August 2008.

compute autocorrelation functions.9 The first lag autocorrelation for EURUSD and

GBPUSD 5-minute data is of the order of -0.03 and highly significant. For USDJPY and

EURGBP, we obtain -0.06 and -0.11. These numbers gradually decrease and become

insignificant at the 30-minute interval, except for EURGBP. Although serial correlation

is somewhat closer to zero if we only consider day time trading between 8am and 5pm

GMT, the general findings still apply. For EURGBP, our analysis suggests that a

2-hour frequency is an appropriate choice. Interestingly, the first lag autocorrelation

spikes to 0.09 for daily data, which explains why the realized volatility estimates from

Table 5 continue to fall as the sampling frequency decreases.

Figure 2 shows the evolution of variance risk premiums as the sampling frequency

decreases. Variance swap rates have been constructed from the mixed approach. The

upper-left panel reveals 1-month risk premiums for EURUSD (black solid line), GB-

PUSD (grey solid), USDJPY (black dashed) and EURGBP (grey dashed). For sam-

pling frequencies lower than or equal to 30 minutes, all currency pairs exhibit a negative

risk premium. The same finding applies for the 3-month horizon (upper-right panel).

In general, the most negative premiums are obtained for EURUSD, followed by USD-

JPY for the 1-month and GBPUSD for the 3-month horizon. In accordance with Table

5, variance risk premiums tend to stabilize for sampling frequencies of 30 minutes or

lower. The lower panels plot the corresponding t-statistics. 1-month EURUSD risk

premiums become highly significant for any sampling frequency larger than 5 minutes.

Except for EURGBP, highly negative risk premiums are obtained for frequencies equal

9To conserve space, we refrain from revealing the full-blown analysis. However, autocorrelation

plots and result-tables are available upon request.
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Figure 2: Variance Risk Premiums at Alternative Frequen-

cies
Variance risk premiums (VRPs) with realized variance computed at alternative sampling

frequencies. EURUSD (black solid), GBPUSD (grey solid), USDJPY (black dashed) and

EURGBP (grey dashed) premiums are computed using the mixed approach. The lower

panels show the t-statistics as the sampling frequency decreases.

to or lower than 30 minutes. EURGBP estimates are significantly negative on the

5% level for the 2-hour interval data. For the 3-month horizon (lower-right panel),

we report highly significant premiums for EURUSD and GBPUSD. The estimates for

USDJPY are significant on a 10% level for a 30-minute frequency, 5% for the 1-hour

and 2-hour frequency and insignificant when daily data is used. The latter finding can

be attributed to a negative, albeit insignificant autocorrelation of -0.03. For EURGBP,

a moderately significant risk-premium is obtained for the 2-hour interval data.

In sum, we conclude that the intraday estimates reported in Table 3 and Table 4

may be confounded by microstructure effects. The results in this section suggest that

variance risk premiums in foreign exchange markets are significantly negative, provided

realized variance is computed using data with an appropriate sampling frequency. One
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upshot is that some evidence from the previous literature against the presence of a

volatility risk premium needs to be revisited, since the use of 5-minute intraday data has

been widespread. For the remainder of this paper, we work with variance risk premiums

computed from 30-minute intraday data for EURUSD, GBPUSD and USDJPY, and

2-hour data for EURGBP.

4.4 Are Variance Risk Premiums Time-varying?

In this section, we examine whether variance risk premiums in currency markets are

time-varying. First, we plot variance risk premiums over the time horizon from January

2003 to August 2008. Second and in analogy to Carr and Wu (2009), we run so-called

expectation hypothesis regressions. These regressions not only reveal whether variance

risk premiums are time-varying, but also whether they are systematically linked to the

risk-neutral expectation of future variance.

Figure 3 shows the variance risk premiums at the 1-month (dark grey crosses) and

3-month horizon (light grey crosses). Variance swaps have been synthesized using

the mixed approach. The realized variance is based on 30-minute data for EURUSD,

GBPUSD and USDJPY and 2-hour data for EURGBP. To facilitate interpretation, we

have superimposed two-sided Gaussian kernel estimates with a standard deviation of

1/4 year. The solid and dashed line correspond to smoothed estimates of the 1-month

and 3-month variance risk premiums. For all currency pairs, variance risk premiums

are highly time-varying and oscillate around or just below the zero line. Despite the

negative average premiums reported in the previous sections, a considerable amount of

the realizations lie in the positive domain, as is seen from the scattering of the crosses.

The largest swings in variance risk premiums are observed for USDJPY (note that

it plots on a different scale). The smoothed estimates are negative throughout the

entire period for both EURUSD and GBPUSD. They reveal a pronounced slump in

the second half of 2004 which is not shared by USDJPY and EURGBP. The 3-month

smoothed curves tend to lie below the 1-month estimates, although this relationship is

inverted as the financial crisis is approached. In general, the outset of the crisis marks

a shift in investor sentiment which is reflected in increasingly negative variance risk

premiums across the different biproducts.

To formally confirm the notion of time-varying variance risk premiums, we run the

following expectation hypothesis regression

RVt = α + βRNVt + εt. (11)

The time-varying component of the variance risk premium, if present, is captured by
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Figure 3: Time-Variation in Variance Risk Premiums
Variance risk premiums generated from the mixed approach and realized variances that are

based on sampling frequencies of 30 minutes for EURUSD, GBPUSD, USDJPY and 2

hours for EURGBP. The dark (light) grey crosses show the premiums at the 1-month

(3-month) horizon. The solid (dashed) black line depicts a Gaussian kernel estimate with

standard deviation of 1/4 year.

the error term ε. Under the null hypothesis of a zero variance risk premium, α = 0 and

β = 1. If a variance risk premium is present but constant, we can expect α 6= 0 but β

still equal to 1. Finally, if the variance risk-premium is time-varying and systematically

linked to the variance swap rate RNVt, it generally holds that β 6= 1.

We run (11) for both the 1-month and 3-month horizons. The left-hand side is

computed using a 2-hour sampling frequency for EURGBP and a 30-minute frequency

for the remainder. Variance swaps have been synthesized from the mixed approach.

Estimates are obtained using Hansen’s (1982) GMM. To account for serial dependence,

we use Newey-West standard errors with a lag of one year. The results are shown in

Table 6.

The slope parameters in Table 6 are considerably smaller than one, irrespective of

the currency pair and time horizon under examination. In all instances, the reported
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EURUSD GBPUSD USDJPY EURGBP
1m 3m 1m 3m 1m 3m 1m 3m

α 0.0003 0.0004 0.0011 0.0020 0.0031 0.0040 0.0005 0.0004

tstat 0.683 0.529 1.625 2.255** 4.494*** 4.807*** 1.478 1.010

β 0.820 0.793 0.755 0.613 0.594 0.536 0.801 0.801

tstat -2.495** -2.269** -2.411** -2.981*** -7.449*** -6.869*** -2.269** -2.102**

Table 6: Expectation Hypothesis Regression
Expectation hypothesis regressions, where risk-neutral variance is computed from the mixed approach.

Realized variances are based on sampling frequencies of 30 minutes for EURUSD, GBPUSD, USDJPY

and 2 hours for EURGBP. The t-statistics are based on Newey and West (1987) standard errors with

lags up to one year. *, ** and *** indicate significance at the 10%, 5% and 1% confidence level.

t-statistics indicate significance at least on the 5% level, which suggests a strong rela-

tionship between the premiums charged for loading variance risk and the risk-neutral

expectation of future variance. Specifically, market participants are willing to pay a

larger premium when they expect a higher variance for the nearby future. On the

other hand, the larger the negative correlation between the time-varying component of

the variance risk premium and the future expected variance, the larger the constant

part of the risk premium. This finding is deduced from the significantly positive αs for

USDJPY and 3-month GBPUSD and the simultaneously small slope parameters.

5 How Does the Financial Crisis of 2008 Affect the

Results?

So far we have disregarded data after August 2008. Common sense suggests that

with the rise of the financial crisis, the average market participant became more risk

averse and hence put a larger premium on accepting variance risk. To see whether

this conjecture holds true, we consider variance risk premiums for a subperiod from

January 2008 to August 2009. Since this period is relatively short, we confine ourselves

to a graphical analysis. Figure 4 reveals analogous plots to Figure 3, with the light

and dark grey marks corresponding to realizations of variance risk premiums for the

1-month and 3-month horizon. The solid and dashed black lines depict Gaussian kernel

estimates with a 1-month standard deviation.

The absolute magnitude of variance risk premiums during the financial crisis has

substantially increased. Measured on the larger scale of Figure 4, the previously re-

ported dips into negative territory in Summer 2008 are hardly visible. At the onset
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Figure 4: Variance Risk Premiums During the Financial

Crisis
Variance risk premiums generated from the mixed approach and realized variances that are

based on sampling frequencies of 30 minutes for EURUSD, GBPUSD, USDJPY and 2

hours for EURGBP. The dark (light) grey crosses show the premiums at the 1-month

(3-month) horizon. The solid (dashed) black line depicts a Gaussian kernel estimate with

standard deviation of 1 month.

of the crisis, realized variances have exceeded the swap rates by far, resulting in large

positive premiums from about August 2008 to November 2008 for the 1-month and

February 2009 for the 3-month horizon. This observation can likely be attributed to

an option market which did not fully anticipate the increase in variance that followed

the bankruptcy of Lehman Brothers. Since the computation of variance risk premiums

is based on swap rates that are fixed for the tenor of the option contracts, the 1-month

risk premiums turn negative considerably before the 3-month premiums. Eventually,

both premiums reside in the negative domain, which suggests that the market reacted

strongly to the crisis by demanding a large premium for compensating variance risk.

To assess the robustness of the result from Section 4 in light of the financial crisis,

we compute variance risk premiums over the full sample period from January 2003 to
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August 2009. To conserve space, we report variance and log variance risk premiums

only for the mixed approach. Realized variance is based on data from 3 alternative

sampling frequencies. Table 7 presents the results.

EURUSD GBPUSD USDJPY EURGBP
1m 3m 1m 3m 1m 3m 1m 3m

VRP

1day R̄P -0.0023 -0.0019 -0.0009 -0.0001 -0.0035 -0.0020 -0.0018 -0.0015

tstat -2.468** -1.924* -1.852* -0.104 -1.806* -1.208 -2.257** -1.699*

2h/30min R̄P -0.0020 -0.0018 -0.0004 0.0001 -0.0025 -0.0012 -0.0013 -0.0011

tstat -2.526** -1.880* -0.672 0.093 -1.759* -0.932 -1.530 -1.176

5min R̄P -0.0013 -0.0011 0.0002 0.0007 -0.0010 0.0003 0.0009 0.0011

tstat -1.492 -1.158 0.404 0.577 -0.838 0.214 1.196 1.260

LRP

1day ¯LRP -23.1% -19.0% -16.5% -10.4% -26.0% -13.3% -31.2% -25.9%

tstat -5.518*** -2.977*** -4.495*** -1.746* -4.682*** -1.816* -9.767*** -3.465***

2h/30min ¯LRP -16.5% -17.0% -9.3% -7.7% -15.0% -7.2% -13.4% -12.6%

tstat -6.930*** -3.631*** -3.115*** -1.314 -3.853*** -1.318 -4.190*** -1.890*

5min ¯LRP -6.5% -7.3% -1.4% -0.2% -2.1% 5.1% 25.8% 25.9%

tstat -2.057** -1.711* -0.536 -0.036 -0.492 0.916 3.531*** 3.881***

Table 7: Variance Risk Premiums for the Full Sample
Annualized average variance and log variance risk premiums for the period from January 2003 to

August 2009. Synthetic variance swaps are constructed using the mixed approach. The sampling

frequency for realized variance is indicated in the very left column. The t-statistics are based on Newey

and West (1987) standard errors with lags up to one year. *, ** and *** indicate significance at the

10%, 5% and 1% confidence level.

In general, variance risk premiums are more negative than the previously reported

premiums for the truncated period, in particular for USDJPY. The exception to this

finding are the premiums for GBPUSD. Figure 4 suggests that in 2009, variance risk

premiums for GBPUSD did not drop as much as for the other pairs. The results in

Table 7 tend to be less significant than before, owing to a material increase in the

variation of variance risk premiums since 2008. For the daily sampling frequency,

evidence of negative risk premiums is still strong, with 6 out of 8 reported premiums

being significant at least on the 10% confidence level. For the 30-minute data, the

EURUSD and 1-month USDJPY premiums remain significantly negative. None of the

premiums are significant when realized variance is computed using 5-minute interval

data. The log variance risk premiums reported in the lower half of Table 7 are of

the same order as previously for the truncated sample. On the basis of 30-minute (2-

hour for EURGBP) sampled data, log variance risk premiums are significantly negative

except for 3-month GBPUSD and USDJPY. In sum, extending the data set to include

the financial crisis does not fundamentally alter the results. To avoid any issues with
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possibly non-stationary time series, we continue to work with the truncated sample.

6 What Drives Variance Risk Premiums in Foreign

Exchange Markets?

6.1 S&P 500, the VIX and the TED Spread

Variance risk premiums in currency markets can result from co-movement between ex-

change rate variance and classic risk factors. As such, they might simply be a reflection

of other well-documented risk premiums. Alternatively, they may be attributable to an

independent variance risk factor which commands a premium. In the introduction, we

emphasized that the first explanation for variance risk premiums in currency markets

is less compelling. In here, we test the two competing arguments by hypothesizing

a relationship between log variance risk premiums and classic risk factors. If the risk

factors can account for the returns on the variance swaps, the notion of an independent

variance risk factor can be rejected.

We start by looking at the excess return on the stock market, proxied by the S&P

500, over the T-bill rate. We augment this CAPM-like regression with the return on

the VIX and the first difference of the 3-month TED spread series. The VIX reveals

whether variance risk premiums in currency markets are attributable to the overall level

of market volatility. On the other hand, the TED spread, i.e. the difference between

the U.S. Libor and the T-Bill rate, provides information with regard to the extent to

which credit risk is reflected in variance risk premiums. Also, the TED spread is a

robust measure of overall risk sentiment in financial markets.

We estimate the regression

LRPj,t = αj + β1
jRE

SPX
t + β2

jR
V IX
t + β3

j∆
TED
t + εj,t. (12)

by means of GMM. The log variance risk premiums are derived using the mixed

approach. Realized variance is computed on the basis of 30-minute interval data for

EURUSD, GBPUSD and USDJPY and 2-hour data for EURGBP. T-statistics for the

coefficients are based on Newey and West (1987) robust standard errors with a one-year

lag. Table 8 reveals the results.

The first row in Table 8 shows the unconditional log variance risk premiums. The

second row provides the risk-adjusted premiums. The two are approximately of the

same magnitude. Table 8 provides little evidence that the S&P 500 excess returns are

linked to variance risk premiums in currency markets. β1 is modestly significant only
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EURUSD GBPUSD USDJPY EURGBP
1m 3m 1m 3m 1m 3m 1m 3m

¯LRP -0.165 -0.194 -0.122 -0.141 -0.127 -0.065 -0.123 -0.131

α -0.171 -0.197 -0.129 -0.150 -0.134 -0.064 -0.127 -0.137

tstat -8.177*** -6.128*** -5.184*** -4.218*** -5.079*** -2.307** -4.455*** -1.992**

β1 1.474 -0.350 1.799 0.411 0.837 -1.457 1.649 -0.423

tstat 1.800* -0.414 1.698* 0.379 0.537 -1.266 1.191 -0.278

β2 0.475 0.007 0.470 0.182 0.742 0.156 0.380 -0.156

tstat 3.366*** 0.040 2.911*** 0.751 3.493*** 0.793 1.775* -0.625

β3 0.154 0.173 0.158 0.167 0.340 0.441 0.000 0.204

tstat 7.817*** 3.975*** 2.597*** 2.10** 3.658*** 3.697*** -0.007 1.675*

R2 12.9% 6.9% 9.0% 6.9% 21.4% 24.5% 2.1% 3.0%

Table 8: Classic Risk Factor Regression
Risk-adjusted average log variance risk premiums (α) and factor loadings for S&P 500 returns, returns

on the VIX and changes in the TED spread. The t-statistics are based on Newey and West (1987)

standard errors with lags up to one year. *, ** and *** indicate significance at the 10%, 5% and 1%

confidence level.

for 1-month EURUSD and GBPUSD. In contrast, the results suggest that the VIX

returns are strongly related to all of the 1-month risk premiums. An increase in the

VIX tends to be accompanied by an increase in realized variance. Since variance swap

rates are fixed on the trade date of the underlying option contracts, the sign on the

VIX is positive, except for 3-month EURGBP. The TED spread is also correlated with

the returns on the variance swaps. An increase in the spread is generally associated

with higher realized variance, leading to smaller variance risk premiums. Significant

coefficients on the TED spread are obtained in all cases except for 1-month EURGBP.

With an R2 above 20%, the strongest relationship between variance risk premiums and

the risk factors is observed for USDJPY. In general however, the results suggest that

variance risk premiums cannot be accounted for by classic risk factors. In particular,

the conditional variance risk premiums remain significantly negative across all currency

pairs and tenors. Table 8 thus provides evidence in favor of an independent variance

risk factor for currency markets.

6.2 Do Variance Risk Premiums Subsume Fear of Jump Risk?

In the literature on option markets, it has been widely documented that apart from vari-

ance risk, jump risk commands a premium too (see e.g. Jackwerth, 2000 or Pan, 2002).

Bakshi and Kapadia (2003) conjecture that variance risk premiums may subsume the

fear of jump risk. To test this hypothesis, they regress gains from delta-hedged option

positions on the model-free metrics of Bakshi et al. (2003). Implicitly, they assume that
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jump risk can be surrogated by the skew and kurtosis of the risk-neutral distribution.

In our case, constructing implied skew and kurtosis along their lines might result in

noisy regressors, since the volatility data is delimited by an approximate strike range of

± 1.65 standard deviations.10 For this reason, we proxy the mean jump size and jump

intensity directly by the observed mid-quotes for 25-delta risk reversal and butterfly

strategies. Specifically, we set up the regression equation

LRPj,t = αj + β1
j∆

25RR
t + β2

j∆
25BF
t + εj,t. (13)

Although risk reversals and butterflies are bounded economically, they are non-

stationary in a statistical sense. We thus consider differences over the tenor of the vari-

ance swaps rather than levels. As before, log variance risk premiums are constructed

from the mixed approach. Realized variance estimates are based on a 30-minute sam-

pling frequency for EURUSD, GBPUSD and USDJPY and a 2-hour frequency for

EURGBP. T-statistics are computed from Newey and West (1987) robust standard

errors with a one-year lag. Table 9 shows the results.11

EURUSD GBPUSD USDJPY EURGBP
1m 3m 1m 3m 1m 3m 1m 3m

¯LRP -0.165 -0.194 -0.122 -0.141 -0.127 -0.065 -0.123 -0.131

α -0.162 -0.198 -0.124 -0.148 -0.131 -0.081 -0.125 -0.144

tstat -7.021*** -5.914*** -4.313*** -4.093*** -4.675*** -1.898* -4.147*** -3.056***

β1 -0.030 -0.072 -0.081 -0.045 -0.158 -0.133 0.134 0.037

tstat -0.789 -1.110 -1.150 -0.449 -5.907*** -2.538** 1.354 0.239

β2 2.833 1.294 3.587 2.519 1.314 0.905 7.268 5.036

tstat 3.552*** 2.794*** 2.390** 5.192*** 2.898*** 1.915* 5.476*** 4.510***

R2 7.3% 7.6% 10.6% 18.2% 40.1% 33.3% 12.7% 21.0%

Table 9: Jump Risk Factor Regression
Risk-adjusted average log variance risk premiums (α) and factor loadings for changes in 25-delta risk

reversals and butterflies. The t-statistics are based on Newey and West (1987) standard errors with

lags up to one year. *, ** and *** indicate significance at the 10%, 5% and 1% confidence level.

The conditional variance risk premiums from Table 9 are of the same size as the

unconditional premiums, and with the exception of 3-month USDJPY, they are highly

significant despite the inclusion of the jump fear proxies. Provided fear of jump risk is

well reflected in risk reversal and butterfly strategies, we can conclude that variance risk

premiums do not subsume jump risk aversion, which is consistent with the findings in

10We thank an anonymous referee for pointing this out.
11Alternatively, we have estimated (13) using 10-delta and 5-delta option quotes. The results are

literally the same and therefore omitted.
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Low and Zhang (2005). As in the previous section, the results thus provide evidence in

favor of an independent, possibly currency-specific variance risk factor which commands

a premium. However, variance risk premiums are not independent of the jump risk

factors. For USDJPY, the size of the log variance risk premium is significantly related

to changes in prices for risk reversals. Specifically, owing to the fact that for the period

under consideration, the average USDJPY implied volatility function has been skewed

to the downside, a normalization of the skew tends to coincide with lower returns for

a variance swap strategy. We thus observe what we would expect to hold in equity

markets. Increases in prices for butterfly strategies have a significantly positive impact

on log variance risk premiums for all currency pairs. Intuitively, an increase in the

curvature of the implied volatility function reflects heightened fear of jump risk, which

in turn is positively correlated with the realized variance over a given period. With an

R2 of 40.1% and 33.3%, the relationship in (13) is material for USDJPY. In conclusion

however, the results from Table 9 suggest that fear of jump risk cannot account for the

variance risk premiums observed in currency markets.

7 Conclusion

Based on the theory of static replication of variance swaps, we have constructed risk-

neutral estimates of future variance and assessed the sign and magnitude of variance

risk premiums in foreign exchange markets. When realized variance is computed from

data with a low sampling frequency, there is robust evidence of negative average vari-

ance risk premiums for both a pre-crisis sample and the full sample from January

2003 to August 2009. Evidence is ambiguous when realized variance is obtained from

5-minute interval data, which can likely be attributed to microstructure effects. Com-

mon to all estimates and currency pairs examined, variance risk premiums are highly

time-varying and inversely linked to the risk-neutral expectation of future variance.

Thus, whenever market participants are concerned about a rise in variance, they are

willing to pay an extra premium to hedge away the corresponding risk.

In an effort to enhance our understanding of variance risk premiums in currency

markets, we have assessed the roles of commonly priced risk factors and fear of jump

risk. We report a robust link between variance risk premiums and the VIX, the TED

spread and the general shape of the implied volatility function of the corresponding

currency pair. For some biproducts, the latter explains a considerable fraction of the

time variation in variance risk premiums. However, the conditional premiums remain

significantly negative. Therefore, premiums associated with variance swaps are likely to
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be the result of a distinct variance risk factor. This conjecture stands in contrast with

the evidence from equity markets, where the fear of downside risk plays a significant

role.
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8 Appendix

A Derivation of Risk-Neutral Variance Forecasts

For the reader not familiar with the topic, we derive the variance estimates used

throughout the paper. The exposition largely follows Carr and Madan (1998, 1999).

Consider a two-period setting where investments are made at time t and payoffs are

received at a future time T. No intermediary trading takes place. Assume that there

is a forward market on currency pairs for delivery at time T.12 Furthermore, presume

the existence of a market for European options on currency forwards for a continuum

of strike prices.13 Under these assumptions, any smooth, twice differentiable payoff

function h(F (T, T )), where F (T, T ) denotes the terminal forward price for delivery in

future time T, can be replicated by an appropriate static position in option contracts

traded at initial time t. Carr and Madan (1998) establish the following formal result.14

h(FT ) = h(x) + h′(x)[(FT − x)+ − (x− FT )
+]

+
∫ x

0
h′′(K)(K − FT )

+dK +
∫∞
x
h′′(K)(FT −K)+dK

, (A.1)

where, for notational convenience, we write FT instead of F (T, T ). If arbitrage is

to be ruled out, the relation in the previous equation has to hold at the outset, i.e.

Vt = EQ
t (h(FT )) = e−rdTh(x) + h′(x)[c(x, T )− p(x, T )]

+
∫ x

0
h′′(K)p(K,T )dK +

∫∞
x
h′′(K)c(K,T )dK

, (A.2)

where EQ
t () denotes the expectation operator at time t under the risk-neutral mea-

sure Q and c(.) and p(.) are the time t call and put prices. Given the stochastic

differential equation for currency pairs under measure Q,

dS(s) = (rd − rf )S(s)ds+ σ(s)S(s)dB(s), (A.3)

it follows from Itô’s Lemma that the forward price evolution is given by

dF (s, T ) = σ(s)F (s, T )dB(s). (A.4)

12Currency options usually trade on the spot rather than the forward rate. Note though that as

long as the forward and the option expiry coincide, the spot and the forward price eventually converge.

Hence, options written on either underlying must have the same price.
13Clearly, this is a very idealistic assumption. However, since FX options are traded over-the-

counter, a very narrow partition of the strike domain is imaginable.
14For a derivation, see Appendix A of their online version, available on

http://www.math.nyu.edu/research/carrp/research.html. Last verified in December 2011.

58



Taking expectations, we deduce that the forward price is a martingale under mea-

sure Q.

Reconsider the payoff function h(FT ). Again using Itô’s Lemma, we have

h(FT ) = h(Ft) +

∫ T

t

h′(Fs)dFs +
1

2

∫ T

t

h′′(Fs)σ
2
sF

2
s ds, (A.5)

where Fs=F (s, T ). Consider now the twice-differentiable function

g(Fs) = 2

[

Fs − Ft
Ft

− log

(

Fs
Ft

)]

. (A.6)

It is straightforward to verify that g(Ft) = g′(Ft) = 0 and g′′(Fs) = 2/F 2
s . Replacing

h(.) with g(.) in (A.5) and taking expectations under measure Q yields

EQ
t (g(FT )) = EQ

t

(∫ T

t

σ2
sds

)

, (A.7)

where the second term in (A.5) vanishes as a result of the martingale property of

the forward rate. (A.7) is the risk-neutral expectation of future realized variance over

the interval from t to T. Similarly, if we substitute for the function g(.) in (A.2), set

x = Ft, and compute the future value of the expectation taken at time t, we obtain

VT = erd(T−t)EQ
t (g(FT ))

=
∫ Ft

0
erd(T−t) 2

K2p(K,T )dK +
∫∞
Ft
erd(T−t) 2

K2 c(K,T )dK.
(A.8)

Equating (A.7) and (A.8), the risk-neutral expectation of future variance is given

by

RNV[t,T ] =
1

T−tE
Q
t

(

∫ T

t
σ2
sds
)

= 2
T−te

rd(T−t)
[

∫ Ft

0
1
K2p(K,T )dK +

∫∞
Ft

1
K2 c(K,T )dK

]

,
(A.9)

where the division by (T − t) is for annualization.
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B Generalization of the Malz Interpolation Method

We propose a general version of the Malz interpolation method that is consistent with

the regular and premium-adjusted delta convention. Given a set of of option quotes

σDP , σDN , σDC , we back out strike prices and compute spot deltas ∆P , ∆DN , ∆C

along the lines of Reiswich and Wystup (2010). Next, we set up the matrix

C =









σDN 0 0

0 σRR(∆C −∆P ) σBF ((∆C −∆DN )2 − (∆P −∆DN )2)

0 0.5σRR(∆C +∆P − 2∆DN ) 0.5σBF ((∆C −∆DN )2 + (∆P −∆DN )2)









(B.1)

Define a vector of parameters a = (a0, a1, a2)
′. Furthermore, assemble a vector

σ = (σDN , σRR, σBF )′, where σRR and σBF follow from (6). The matrix C is simply

an assemblage of the basic Malz equation (7) for the delta-neutral quote, the risk

reversal and the butterfly. Since (7) has to hold for any quote in the delta space, it

follows that the parameters are given by

a = C−1σ. (B.2)

An implied volatility function is obtained from (7).
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Part III

The Pricing of Foreign Exchange

One-Touch Options

Abstract

This article examines the structure of risk-neutral currency returns as implied

in one-touch options. For this purpose, I specify models comprising pure or time-

changed diffusion risk, pure or time-changed jumps, or both. The models are

calibrated to vanilla options and subsequently applied to the one-touch market.

Since one-touches are unspanned by a complete set of vanilla options, they lend

themselves to a rigorous out-of-sample test.

The results suggest that vanilla and one-touch option markets do not gen-

erally agree on the risk-neutral dynamics of currency returns: Evidence from

the vanilla market favors a complex model with stochastic volatility and jumps,

whereas one-touch options imply purely diffusive currency dynamics. This latter

finding gives rise to two interpretations. Either, the high activity in currency

markets is best reflected by the infinite variation of a diffusive risk factor. Alter-

natively, the result is an artefact of market makers who anchor their quotes to

what the pure diffusion Black-Scholes model implies.
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1 Introduction

In this article, I examine the pricing of foreign exchange one-touch options. Foreign

exchange one-touches pay out a fixed amount of cash at expiry if at any time during

the term of the contract, the spot rate trades at or beyond a predefined barrier level.

One-touch options are among the most liquid exotic contracts and serve as building

blocks for more complex derivative securities. Hence, gaining a solid understanding of

the currency dynamics implied by the one-touch market is important. In comparing

different building blocks for a prospective model, one-touches have the advantage that

they put stronger restrictions on the admissible pricing kernel. Specifically, one-touches

depend on the whole trajectory of spot and hence its transition probabilities. In con-

trast, knowledge of the spot distribution at maturity is sufficient for the valuation of

vanilla options. Therefore, one-touches provide valuable information on risk-neutral

currency dynamics that are not revealed by the vanilla market.

Since the emergence of Black and Scholes (1973), or more precisely, the currency

equivalent of Garman and Kohlhagen (1983), numerous models have been proposed

to better capture the stylized facts of currency option markets. For example, Heston

(1993) suggests a model that accounts for the stochastic volatility implied in option

prices. Bates (1996) applies a combination of the Heston (1993) and the Merton (1976)

jump-diffusion model to Deutsche mark options. The finite activity jump structure

in Bates maintains that on a given time interval, currency pair dynamics exhibit a

countable number of (large) jumps. More recently, Madan, Carr and Chang (1998)

device an option pricing model where an infinity of jumps is generated. To account

for the high activity in currency markets, the assumption of finitely many jumps often

necessitates the inclusion of a diffusion part which governs the resolution of the more

subtle pieces of information. In contrast, the so-called variance gamma (VG) process

of Madan et al. subsumes high-frequent small jumps and the rare occasions of large

jumps in a single risk factor. In an empirical investigation, Daal and Madan (2005) find

the model to cope well with the intricacies of currency markets. Finally, Carr and Wu

(2007) propose a stochastic skew model where tail-specific risk factors are evaluated

on a separate stochastic clock. Among other things, they report superior performance

versus the Bates model.

To assess the goodness-of-fit of a particular model, all of these studies have in

common that they exclusively focus on the market for vanilla options. Given the size

of the market for exotic currency derivatives, this perspective is possibly too narrow.

The contribution of this article is to study the risk-neutral currency dynamics using two
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different information sets, namely the prices of vanilla and one-touch options. With

this approach, a potential complication arises in the form of an identification problem,

since any specification analysis on the basis of two unspanned information sets is a

joint test of a certain model structure and a particular equivalent martingale measure.

For example, a particular model that accommodates the stylized facts of the vanilla

market may provide a poor fit to the one-touch data either because its structure is

inappropriate or because the wrong martingale measure has been selected.

To resolve this issue, it is important to recognize the practical link between the

two markets. Vanilla options are often used to hedge specific risks associated with

one-touches. In fact, large banks risk-manage the two contracts in the same books. A

demand for consistency therefore requires that vanilla and one-touch options are priced

using the same model structure and equivalent martingale measure. This requirement

allows for the subsequent analysis to be designed as an out-of-sample test. First and in

accordance with previous studies, the models are calibrated to prices for vanilla options.

While the resulting in-sample evidence is interesting in itself, the calibration primarily

serves the purpose of selecting the equivalent martingale measure. Second, the models

are applied to quoted prices for one-touch options. This approach allows for a number

of interesting questions to be addressed. First, the structure of currency returns is

inferred from a richer and more restrictive information set. Second, it is examined

whether the vanilla and one-touch markets agree on the key ingredients of risk-neutral

currency dynamics. Third and most relevant for practitioners, it is assessed whether

a martingale measure identified in the vanilla market is accurate for the out-of-sample

valuation of one-touch options.

The specification of currency returns follows a bottom-up approach. Specifically, I

start from the basic pure diffusion model (Garman and Kohlhagen, 1983) and progres-

sively enhance it by considering additional, possibly time-changed risk sources. This

approach allows me to gauge the incremental benefit from hypothesizing more com-

plex currency dynamics. Since countless option pricing models can be constructed by

considering different constituent risk factors, I am guided by both practical and theo-

retical considerations to limit the scope of this article. First, option pricing models are

selected that can be cast into the general framework of Carr and Wu (2004). Second,

the focus lies on models that allow for an unbiased valuation of continuously monitored

barrier contracts. This restriction precludes models where the joint extrema of two or

more risk factors are unknown. Third, the modelling of the activity rate in currency

markets is limited to the popular square root diffusion process of Cox, Ingersoll and

Ross (1985). Finally, when modelling the distribution of jumps, I consider special cases
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of the Lévy density proposed in Carr, Geman, Madan and Yor (2002) and Wu (2006).

This jump structure is nested for example in the stochastic skew model of Carr and

Wu (2007).

The results of this article suggest that the markets for vanilla and one-touch options

convey different information on the dynamics of currency returns. For vanilla options,

the goodness-of-fit is most accurate for a model comprising a time-changed diffusion

and jumps with stochastic intensity. In contrast, one-touch option prices appear to

reflect little jump risk: The best performance is achieved by the ordinary Heston

(1993) model. Also, while the ranking of model performance implied by vanilla options

is the same for both currency pairs examined, this is not the case for the one-touch

market. Overall, the parsimony and yet strong performance of the Heston model make

it an attractive choice. Two explanations for its supremacy are plausible: Either, the

high activity in currency markets is best captured by diffusive price risk. Alternatively,

the results are due to market makers’ quoting behavior. As the one-touch option data

suggests, they tend to anchor their quotes to what the Black-Scholes model, itself a

pure diffusion model, implies.

The remainder of this paper is organized as follows. Section 2 develops the various

currency rate dynamics examined in this study. Section 3 presents the vanilla market

data, elaborates on the calibration approach and presents in-sample evidence on model

performance. Section 4 deals with the market for one-touch options. It provides

detailed summary statistics of the data set, explains the valuation of one-touch options

and shows the out-of-sample results. Section 5 concludes.

2 The Risk-Neutral Dynamics of Currency Pairs

2.1 Pure Diffusion Model

Let (Ω,F , (Ft)t≥0,Q) denote a filtered probability space with risk-neutral measure Q.

Under measure Q, the Black and Scholes (1973) evolution of a currency pair, quoted as

units of domestic currency (DOM) per one unit of foreign currency (FOR), is specified

as

St = S0 e
(rd−rf )t+(σWt−ηt), (1)

where rf and rd denote the foreign and domestic interest rates, Wt is a Brownian

motion, σ a volatility parameter and η the corresponding convexity adjustment.
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To compute prices for vanilla options, I make use of the Fourier cosine expansion

method (COS) of Fang and Oosterlee (2008). This approach requires that the risk-

neutral currency price dynamics are expressed in terms of the Fourier transform of the

log returns s = log(St/S0),

φs(u) = EQ[eiust ] = eiu(rd−rf )tEQ[eiu(σWt−ηt)]. (2)

By the Lévy-Khintchine Theorem,1 the Fourier transform of a generic Lévy process

Yt with characteristic triplet (µ, σ2, ν) is given by

φY (u) = EQ[eiuYt ] = e−ψY (u)t, (3)

where ψY (u) is the characteristic exponent

ψY (u) = −iuµ+
1

2
u2σ2 +

∫

R0

(1− eiux + iux1|x|<1)ν(x)dx. (4)

For the Black and Scholes (1973) model with triplet (η, σ2, 0), it follows that

φDs (u) = eiu(rd−rf )te−ψD(u)t, (5)

where2

ψD(u) =
1

2
σ2(u2 + iu). (6)

2.2 Pure Jump and Jump-Diffusion Model

For the purpose of modelling a pure jump model, the risk-neutral currency dynamics

are specified as

St = S0 e
(rd−rf )t+(Xt−ζt), (7)

where Xt is a Lévy process with characteristic triplet (0, 0, ν) and ζ denotes the

corresponding convexity adjustment. In this article, I consider jump structures that

are encompassed by the process proposed in Carr, Geman, Madan and Yor (2002).

The CGMY process has a Lévy density of the form

ν(x) =







C e−Mx

x1+Y , x > 0

C e−G|x|

|x|1+Y , x < 0
, (8)

1See e.g. Bertoin (1996).
2Note that for currency pairs to obey the martingale property, it must hold that η = 1

2
σ2. In

general, the convexity-adjustment is obtained by evaluating the characteristic exponent of the Lévy

process without drift at the negative imaginary unit −i. For details, see e.g. Wu (2008).
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with C,M,G > 0 and Y ∈ [−1, 2]. C determines the level of jump intensity, while

M and G are tail-specific dampening factors. The parameter Y classifies the jump

structure into finite activity (Y < 0), infinite activity/finite variation and infinite vari-

ation (Y >= 1).3 Two popular special cases are the finite activity model of Kou (2002)

and the infinite activity variance gamma (VG) model of Madan and Seneta (1990) and

Madan, Carr and Chang (1998). These models are characterized by restricting the

activity parameter Y to -1 and 0 respectively. By the Lévy-Khintchine Theorem, the

characteristic function of the log return s is

φJs (u) = EQ[eiust ] = eiu(rd−rf )te−ψJ (u)t, (9)

with characteristic exponents

ψKouJ (u) = iuC[(M − 1)−1 −M−1 + (G+ 1)−1 −G−1]−

C[(M − iu)−1 −M−1 + (G+ iu)−1 −G−1]
(10)

for the Kou and

ψV GJ (u) = −iuC[log(M − 1)− logM + log(G+ 1)− logG]+

C[log(M − iu)− logM + log(G+ iu)− logG]
(11)

for the VG model.

Daal and Madan (2005) provide strong evidence that currency returns exhibit in-

finite activity. Therefore, I only consider the VG model as a representative for the

pure jump models. In contrast, when jumps are nested in a more complex setting, I

choose the finite activity model of Kou (2002). As will be explained in Section 4, this

restriction is made in lieu of valuing the continuously monitored one-touch options.

Given the two building blocks for the pure diffusion and jump models, it is straight-

forward to device a jump-diffusion model with currency pair dynamics

St = S0 e
(rd−rf )t+(σWt−ηt)+(Xt−ζt). (12)

This model is analogous to Merton (1976) but with the distinct jump structure of

Kou (2002). The characteristic function of the log return follows from combining the

characteristic functions of the diffusion and jump components, i.e.

φJDs (u) = eiu(rd−rf )te−ψJD(u)t, (13)

where

ψJD(u) = ψD(u) + ψKouJ (u). (14)

3Technically speaking, a finite activity model is defined by
∫

R0

v(x)dx < ∞, while finite variation

refers to the condition
∫

R0

(1 ∧ |x|)v(x)dx < ∞.
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2.3 Stochastic Volatility

Stochastic volatility can stem from either time variation in the activity rate of the

diffusion process, time variation in the jump intensity, or both. Following Carr and

Wu (2004), I define a stochastic clock

Tt =
∫ t

0

vsds, (15)

where vt denotes the activity rate in currency markets. Throughout this article, I

make the popular assumption that the activity rate follows a Cox et al. (1985) square-

root diffusion process

dvt = κ(1− vt)dt+ σv
√
vdW v

t . (16)

κ specifies the mean reversion speed and σv governs the volatility of the activity

rate. The long-run activity parameter is normalized to one since the long-run variation

of the underlying is identified through the volatility or jump intensity parameter in

case of a diffusion or jump model.

First, I introduce stochastic volatility by running a pure diffusion component on

the stochastic clock Tt. The currency dynamics are specified as

St = S0 e
(rd−rf )t+(σWTt−ηTt), (17)

with E(dWtdW
v
t ) = ρdt. Equations (16) and (17) constitute the renowned Heston

(1993) stochastic volatility model. The Fourier transform of the log return s is given

by

φSV (D)
s (u) = EQ[eiust ] = eiu(rd−rf )tEQ[eiu(σWTt−ηTt)]. (18)

Carr and Wu (2004) show that under a suitable complex measure change, the

problem of obtaining the Fourier transform of a time-changed Lévy process becomes

one of solving the Laplace transform of the stochastic time Tt. Formally,

φSV (D)
s (u) = eiu(rd−rf )tLM

Tt(ψD(u)), (19)

where LM
Tt refers to the Laplace transform of the stochastic time Tt, M is a new

complex measure and ψD(u) is the characteristic exponent in (6).4

Alternatively, stochastic volatility is obtained by subordinating a VG process to the

random clock in (15). This model, with currency dynamics

St = S0 e
(rd−rf )t+(XTt−ζTt), (20)

4See Appendix A for some details.
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has been proposed by Carr, Geman, Madan and Yor (2003). Following Carr and

Wu (2004), the Fourier transform of the log return s is expressed as

φSV (J)
s (u) = eiu(rd−rf )tLM

Tt(ψ
V G
J (u)). (21)

I consider two further models that combine the diffusion and jump components.

The first may be viewed as an equivalent to Bates (1996). Its currency dynamics are

given by,

St = S0 e
(rd−rf )t+(σWTt−ηTt)+(Xt−ζt). (22)

The Fourier transform of the log return follows from combining the characteristic

functions of the stochastic volatility and jump components, i.e.

φSV (D)J
s (u) = eiu(rd−rf )tLM

Tt(ψD(u))e
−ψKou

J (u)t. (23)

For the second model, the time change applies to both the diffusion and jump

component, i.e.

St = S0 e
(rd−rf )t+(σWTt−ηTt)+(XTt−ζTt ). (24)

Bates (2000) suggests a related model but with Gaussian jump structure. To ob-

tain the characteristic function, the Laplace transform is applied to the characteristic

exponent in (14),

φSV (JD)
s (u) = eiu(rd−rf )tLM

Tt(ψJD(u)). (25)

Under the acronyms SV1 and SV3, Huang and Wu (2004) consider variations of

(22) and (24) for equity index options.

Figure 1 provides an overview of the models examined in this study. They are

classified by whether they include a (time-changed) diffusion, (time-changed) jumps,

or both. In general, the models increase in complexity as we move from the lower-left to

the upper-right corner. The number of parameters including the initial state variable

is indicated in brackets. In total, 7 different models are considered.
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No Diffusion Pure Diffusion Time-Changed

Diffusion

No Jump

Pure Jump

Time-Changed

Jump

Black-Scholes (1)
SV(D) (5)

(Heston)

VG (3) JD (4) SV(D)J (8)

SV(J) (6) SV(JD) (8)

Figure 1: Model Overview
The figure shows the models examined in this study. The models are classified by whether

they comprise a (time-changed) diffusion, (time-changed) jumps, or both. In brackets is the

number of parameters including, if applicable, the initial state variable.

3 Calibrating the Models to the Vanilla Market

3.1 Data

Daily option quotes for EURUSD and USDJPY, quoted as FORDOM, are obtained

from UBS, a major investment bank and market-maker in foreign exchange. The data

comprises 7 quotes in the cross section for each the 1-month, 3-month, 6-month and 12-

month maturity. This yields a total of 28 option quotes per currency pair and day. In

the cross-section, the data set comprises quotes on delta-neutral straddles and 5-delta,

10-delta and 25-delta out-of-the-money (OTM) put and call options. The fact that 5-

delta quotes are available should enhance our ability to identify the market-consistent

martingale measure. Intuitively, 5-delta options reveal more refined information on the

tail behavior than the more at-the-money (ATM) options. For example, Carr and Wu

(2007) report difficulties in classifying the jump structure on the basis of a strike range

delimited by 10-delta options. Because one-touch options are essentially contracts on

threshold probabilities, the inclusion of 5-delta options is potentially important.

Since the data entails two currency pairs and 4 different maturities, the models can

be challenged with regard to different implied volatility functions and term structures.

For example, risk-neutral returns for USDJPY are highly skewed and do not to de-

generate to normality with an increasing time horizon (see Figure 2). The stochastic

volatility models of section 2.3 are well equipped to capture this slow decay. In con-

trast, models comprising jumps are at a comparable advantage in replicating the skew

and kurtosis at the short horizon.
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Figure 2: Exemplary Implied Volatility Functions
Exemplary implied volatility functions for 1-month and 12-month EURUSD and USDJPY,

as recorded on January 2nd, 2008. The crosses mark the volatility quotes against their

moneyness. The quotes have been connected by cubic spline interpolation.

The data set covers the period from January 2007 to August 2008. I have selected

this period because liquidity has dried-up in the wake of the market turbulence in

autumn 2008 and in particular the collapse of Lehman Brothers in mid-September.

Currency spot rates for the same period are from Bloomberg. Since foreign exchange

options are traded over the counter, daily interbank rates as published by the British

Banker’s Association (BBA) are used. These rates are obtained from Datastream.

3.2 Calibration

The vector of parameters Θt is estimated by means of a search algorithm that minimizes

the weighted sum of squared pricing errors

Θt ≡ argmin
Θt

N
∑

i=1

wi(Oi,t − Ôi,t(Θt))
2. (26)

N is the total number of quotes across the maturity and strike domain and Oi,t

and Ôi,t(Θt) denote the market and model option prices normalized by the spot rate
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at time t. I follow here the standard set by Carr and Wu (2003) and Huang and Wu

(2004) and apply the minimization criterion to normalized option prices rather than

implied volatilities. To avoid that the calibration is biased towards long-dated ATM

options, Huang and Wu (2004) suggest a weighting matrix where the elements wi are

set equal to the reciprocal of the variance of the corresponding option prices over the

sample period.5

Concerning the market option prices for each moneyness level and maturity, I first

apply the Garman and Kohlhagen (1983) formula for currency options to map volatil-

ity quotes from delta to strike space. An important subtlety is the fact that option

premiums for USDJPY are quoted in USD terms. For this reason, a so-called premium-

adjusted delta convention applies (see Reiswich and Wystup, 2010). To obtain option

prices, implied volatilities are transformed again by use of the Garman and Kohlhagen

formula.

Model prices are obtained by means of the Fourier-cosine expansion method (COS)

of Fang and Oosterlee (2008). Under this method, the price of a call option is expressed

as

c(s, t) = e−rd(T−t)
N−1
∑

k=0

′Re

[

φ

(

kπ

b− a

)

eikπ
s−a
b−a

]

Vk, (27)

where N is the number of expansion terms, φ any of the characteristic functions

from the previous section and Vk a series of payoff-dependent coefficients. a and b

denote truncation parameters, while
∑′ indicates that the first summation term only

counts half. Details have been relegated to Appendix B. I choose the COS method

over the more common Fast Fourier transform (FFT) approach of Carr and Madan

(1999) for two reasons. First, the COS method is more efficient, i.e. it achieves the

same pricing accuracy with considerably fewer summation terms (Fang and Oosterlee,

2008). Second, rather than interpolating from a discrete log-strike grid as is the case

for the FFT method, option prices for arbitrary strikes can immediately be computed.

When a model features at least two state variables, it can be cast into a dynamic es-

timation framework which enforces model consistency through time.6 However, in the

current context, this approach has a number of drawbacks: First, not all models from

the previous section satisfy the two-state-variable condition. Second, the approach nat-

urally favours models with a larger number of state variables. Third, frequent parame-

ter re-estimation appears to have established as today’s industry standard. Therefore,

5See Huang and Wu (2004) for more details on this weighting scheme and the conditions under

which it is optimal.
6See e.g. the estimation approach in Carr and Wu (2007).
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results from dynamic estimation may be of limited interest to practitioners. In line

with the estimation procedure in Carr and Wu (2003) and Huang and Wu (2004),7

I calibrate the models on a daily basis. Implicitly, a model is asked to consistently

price the volatility surface on any given date, but not necessarily to be parameter-

stable through time. With this approach, the initial state variable v0 can be used as

an additional free parameter. At the initial estimation stage on January 2nd 2007, I

support the calibration by manually fine-tuning the parameters based on a graphical

inspection of the market and model implied volatility surfaces. On subsequent days,

the previous-day parameter estimates are selected as an initial guess for the search.

3.3 In-Sample Evidence on the Structure of Currency Returns

Table 1 presents the EURUSD parameter estimates for the different models under con-

sideration. The parameters reported are averages computed from the daily estimates

for the period from January 2007 to August 2008. With regard to model performance,

two statistics are considered. The mean absolute price error (MAPE) is computed as

MAPE =
1

T

1

N

T
∑

t=1

N
∑

i=1

|Oi,t − Ôi,t|
Oi,t

, (28)

where the first summation indicates that an average is taken over all daily ob-

servations. I further report a statistic that is based on a comparison of the model

implied volatility surface and the volatility quotes observed in the market. Specifically,

I transform the model prices Ôi,t into σ̂i,t and compute

MAV PD =
1

T

1

N

T
∑

t=1

N
∑

i=1

|σi,t − σ̂i,t|, (29)

where MAVPD denotes ’mean absolute vol point deviation’.

Among the different specifications, the pure jump VG model attains the worst

performance. The model has an average MAPE and MAVPD of 17.2% and 0.52.8

Contrary to the findings of Daal and Madan (2005), the jump-diffusion model with

finite jump activity considerably improves upon this performance. Both the MAPE

and MAVPD drop by about 60%. A still better fit is obtained for the pure diffusion

stochastic volatility model SV(D). Its MAPE and MAVPD are 3.5% and 0.09. The

initial activity rate v0 is below 1, which implies that the average volatility term structure

7See also the seminal paper of Bakshi, Cao and Chen (1997).
8In line with the common volatility quoting convention, I omit the percentage sign for the MAVPD

statistic.
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V G JD SV (D) SV (J) SV (D)J SV (JD)

σ - 7.3% 9.1% - 4.4% 6.3%

κ - - 2.50 1.67 0.78 1.57

σv - - 3.24 2.52 8.47 2.54

ρ - - -0.04 - -0.02 -0.09

v0 - - 0.83 0.87 34.4 0.83

C 230.0 2.3 - 101.4 291.4 3170.4

G 243.5 10.6 - 132.8 101.8 318.2

M 264.4 12.6 - 177.5 79.3 147.9

MAPE 17.2% 6.7% 3.5% 4.7% 2.9% 2.0%

MAVPD 0.52 0.22 0.09 0.13 0.09 0.06

Table 1: EURUSD Parameter Estimates and Model Performance
EURUSD parameter estimates and summary statistics for the different models. The parameter

estimates refer to averages over the sample period from January 2007 to August 2008. MAPE and

MAVPD denote the ’mean absolute price error’ and ’mean absolute vol point deviation’.

is upward sloping. The correlation parameter of -0.04 suggests that the EURUSD

implied volatility function tends to exhibit little skew. When stochastic volatility is

introduced via jumps, the MAPE and MAVPD are 4.7% and 0.13. In line with the

findings of Huang and Wu (2004), the pricing errors for the SV(J) are larger than for the

SV(D) model. A comparatively strong performance is achieved when the pure diffusion

stochastic volatility model is combined with Kou jumps. However, the SV(D)J model

exhibits a disturbingly large initial activity rate. With a MAPE and MAVPD of only

2.0% and 0.06, the best performance is achieved by the SV(JD) model. This finding

should not surprise, since it offers the most flexible specification. In accordance with

the presumably high activity in currency markets, its jump intensity parameter C is

far larger compared to the JD or SV(D)J model.

Table 2 presents the results for USDJPY. In general, the average pricing errors

suggest that it is much harder to capture the volatility surface of a skewed currency

pair. As for EURUSD, the VG model performs worst, with a MAPE and MAVPD of

23.1% and 1.06. Undoubtedly, the results of this section recommend against the use

of the VG model as a self-contained pricing paradigm. Contrary to the findings for

EURUSD, the performance is not materially different for the JD model. On the other

hand, the SV(D) model is again very successful in reducing average pricing errors. Its

MAPE and MAVPD are 6.5% and 0.24 or about 75% lower compared to the VG model.

The parameter estimates suggest that the USDJPY implied volatility surface is highly

skewed to the downside (ρ = −0.57) and negatively sloped in the time-dimension

(v0 = 1.37). The SV(J) model fails to adequately reflect these stylized facts. The

initial activity rate seems unnaturally high while the jump intensity C is very low.
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V G JD SV (D) SV (J) SV (D)J SV (JD)

σ - 5.9% 10.0% - 9.8% 8.7%

κ - - 2.36 0.65 1.56 1.42

σv - - 4.20 9.33 4.26 3.23

ρ - - -0.57 - -0.66 -0.73

v0 - - 1.37 2970.1 1.41 1.23

C 13.1 4.7 - 0.6 525.2 578.1

G 20.2 7.0 - 21.8 250.0 186.6

M 41.0 37.5 - 45.2 651.2 133.4

MAPE 23.1% 21.8% 6.5% 19.6% 5.9% 5.8%

MAVPD 1.06 1.03 0.24 0.85 0.23 0.23

Table 2: USDJPY Parameter Estimates and Model Performance
USDJPY parameter estimates and summary statistics for the different models. The parameter

estimates refer to averages over the sample period from January 2007 to August 2008. MAPE and

MAVPD denote the ’mean absolute price error’ and ’mean absolute vol point deviation’.

Of course, the former makes up for the latter, but apparently without success. Both

the SV(D)J and SV(JD) models perform well, this time with little difference between

the two. Two major findings emerge: First, when the implied volatility skew is large,

allowing for correlation between the spot and variance risk factor is important. For

the JD or SV(J) model where this feature is ruled out, a large discrepancy between the

EURUSD and USDJPY pricing performance is observed. As a consequence, diffusive

price risk is a key component of risk-neutral currency dynamics. Second, while offering

a strong performance, the SV(D) model is still enhanced when jumps are included.

The impact of a time-varying jump intensity is thereby larger for a moderately skewed

currency pair.

4 Evidence from One-Touch Options

In this section, the out-of-sample tests on the one-touch option market are presented.

To fix matters, let H(Su, B, T ) denote the event of a barrier crossing,

H(Su, B, T ) := 1τB<T , τB := inf{u ≥ 0 : φSu ≤ φB, 0 < u < T} (30)

where B denotes the barrier level and φ ∈ {−1, 1} is an indicator variable corre-

sponding to an upper and lower barrier. Measured in domestic currency, the value of

a one-touch option paying at expiry one unit of domestic currency is given by

G(Su, B, T ) = e−rdT EQ[H(Su, B, T ), 0 < u < T ]. (31)

One-touch options in foreign exchange are quoted in terms of (31), i.e. as a per-

centage discounted hit probability. For EURUSD and USDJPY, the convention is to
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quote one-touches in foreign units, i.e. EUR in the first and USD in the second case.

This requires the modification

G(Su, B, T ) = e−rfT EQ[H(Su, B, T )] B EQ[e(rd−rf )(T−τB)]/S, (32)

since the value of one unit of foreign currency at the barrier level is different from

today’s spot price. The second expectation in (32) is the forward value of the for-

eign currency unit contingent upon a barrier event. Under the Black-Scholes model

assumptions, (31) and (32) can be solved analytically.9 I refer to the corresponding

values as the unskewed theoretical value (TV). In case of the more complex models,

the expectations need to be evaluated using numerical techniques.

The interbank market for one-touch options is organized as a broker market. A bank

with an open interest asks a broker to obtain quotes from other market makers. For this

purpose, the bank and the broker, and subsequently any of the market makers willing to

show a quote, seek mutual agreement on the interest rates, the reference spot price and

the reference volatility, and thus the unskewed TV. This mutual agreement ensures that

the parties involved talk about the same contract. When a quote is shown, it remains

binding unless spot and volatility change considerably.10 The parties involved are kept

updated about the most recent bid-offer spread, and they may choose to improve their

quote. They remain anonymous throughout the process, and only those parties whose

bid and offer finally match get informed about the counterparty they are dealing with.

4.1 Data and Biases

Quotes on EURUSD and USDJPY one-touches are received from the same source as

the vanilla data. The period under consideration ranges from January 2007 to August

2008. The quotes have been observed in the interbank market, where access is granted

only to sophisticated market makers, primarily the major investment banks. The

interbank market for one-touch options is highly liquid. To further enhance the quality

of the data, several filters are applied: First, to match the maturities of the vanilla

options, one-touches with a tenor shorter than three weeks and longer than one year

are dismissed. Second, obviously erroneous records, e.g. those where the bid is above

the ask price, are excluded. Third, while the reference spot price and volatility are

given, the mutually-agreed interest rates are not observed. In general, these rates will

be somewhat different from the BBA interbank rates used for this study. To avoid

9A brief exposition along with the explicit pricing formulae is given in Appendix C.
10One-touch options are traded simultaneously with a delta and vega hedge. Therefore, large

deviations from the reference spot price and volatility must occur to warrant a cancellation of a quote.
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that the results are affected by this subtlety, I compare the unskewed TV based on the

BBA interest rates with the reference TV recorded in the data set. One-touches where

this difference is larger than 1% are dismissed. After applying all filters, 587 quotes for

EURUSD and 519 quotes for USDJPY remain.
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Figure 3: One-Touch Option Data
Summary statistics for the one-touch option data. For both currency pairs, the figure

reveals the distribution of the one-touch option quotes in the time and moneyness

dimension, where moneyness is proxied by the unskewed theoretical value.

Figure 3 reveals summary statistics for the one-touch data under examination. The

upper panels show the distribution of contract terms over the admitted range from

three weeks to one year. For both EURUSD and USDJPY, there are peaks at the

1-month, 3-month, 6-month and 12-month tenor. Although one-touches trade over-

the-counter, these maturities are standard. The lower panels show the distribution

of one-touch quotes in terms of unskewed TV: At the center of each plot is the spot

rate. Upside and downside one-touches are distributed to the right and left, where

upside (downside) refers to the case when the barrier lies above (below) the spot rate

at trade date. Since the unskewed TV roughly corresponds to the hit probability, it

may be interpreted as a measure of moneyness. For EURUSD, 65.4% (34.6%) of the

quotes correspond to upside (downside) one-touches. Figure 3 shows that most of them
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concentrate in the tails: Roughly 53% have a TV below 20%. Out of the 587 quotes,

169 or about 29% are traded prices. For the remainder, the average (maximum) bid-

ask spread is 1.00% (4.00%). For USDJPY, the distribution between upside (45.5%)

and downside (54.5%) is more even. 62% of the quotes have a TV below 20%. About

21% or 109 quotes are traded prices. For the others, the average (maximum) bid-ask

spread is 1.59% (5.25%).
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Figure 4: Black-Scholes Model Biases in One-Touch Op-

tions
EURUSD and USDJPY valuation biases for the Black-Scholes model across maturities and

in the moneyness dimension. Biases are computed as market minus model-implied prices.

The horizontal axis corresponds to the unskewed (Black-Scholes) TV.

Figure 4 provides an overview of the relation between market and Black-Scholes

model prices, where the latter are computed using the reference volatility from the

data set. For each panel, the vertical axis shows the valuation bias, measured as the

mid-market quote minus the unskewed TV. Each cross corresponds to a single one-

touch option. The upper panels show the biases across maturities, while the lower

panels plot them against the unskewed TV.

The lower-left panel shows that for EURUSD, low TV one-touches, whether upside

or downside, trade considerably above the unskewed TV. This finding suggests that for
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barriers far away from spot, traders assign a higher hit probability than is implied by

the Black-Scholes model. In contrast, one-touches with an unskewed TV above 20%

tend to trade at a ”discount”. For USDJPY, the lower-right panel shows that low TV

downside one-touches trade up to 8% above the unskewed TV. On the other hand, the

Black-Scholes model overestimates the market price of upside one-touches. These facts

imply an above normal concentration of risk-neutral probability mass in the lower tail.

For both currency pairs, the bias pattern observed in the moneyness dimension has been

remarkably stable for the period from January 2007 to August 2008. One reason for

this finding may be that traders anchor their quotes to the Black-Scholes TV: To obtain

market prices, they seemingly adjust the unskewed TV by a TV-dependent mark-up.

Contrary to the moneyness dimension, the valuation biases are mostly unrelated to the

maturity of the one-touches (upper panels).

4.2 Calibration, Pricing and Numerical Issues

The various models are applied to the one-touch data set in a manner that is consistent

with industry practice. On each date where one or more one-touch quotes are avail-

able, the parameter estimates from calibrating the models to the vanilla surface are

recalled. One problem is that while the vanilla data is recorded at the end of a trading

day, i.e. 2pm eastern time, the one-touch quotes may be from any time during the

day. To account for this intra-day mismatch, I linearly interpolate the delta-neutral

vanilla quotes and select the quote that corresponds to the tenor of the one-touch

option. Next, a parallel-shift to the implied volatility surface is applied such that the

interpolated vanilla quote coincides with the one-touch reference volatility. The models

are recalibrated to this adjusted curve, using the same-day vanilla parameters as the

starting values for the search algorithm.

With the exception of the VG model, all the models feature multiple sources of

randomness. Given the resultant complexity, Monte Carlo simulation is particularly

suitable to evaluate the expectation in (32). Trajectories of spot prices are directly

obtained from (7) for the VG, (12) for the jump-diffusion, (17) for the Heston, (20) for

the stochastic jump intensity, (22) for the jump-enhanced stochastic volatility and (24)

for the stochastic jump-diffusion model. I discretize the time line using an equidistant

calendar-time grid with one spot realization per day. To price a single one-touch option,

I simulate 150k sample paths. This number ensures that the sample standard deviation

for a one-touch price is in the vicinity of 0.10% or slightly below.

To simulate trajectories for the activity rate, I discretize the square-root diffusion

process in (16) using the Euler scheme. This choice is justified by Higham and Mao
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(2005), who show that the scheme converges strongly as the time step goes to zero.

One problem though with the Euler discretization is the chance of negative activity

rates, which would imply that business time moves backwards. To circumvent this

problem, Lord, Koekkoek and van Dijk (2010) suggest a full truncation scheme which

they show to be superior relative to other commonly used discretization approaches.

While I have alternatively considered the unbiased algorithm of Broadie and Kaya

(2006) and the quadratic-exponential scheme of Andersen (2008), it turns out that for

the step size used in this study, the full truncation scheme of Lord et al. offers the best

accuracy-speed trade-off.

When simulating spot trajectories, the chosen grid step size is too coarse to pro-

vide accurate prices for the continuously monitored one-touch options. For example,

comparing simulated and analytical Black-Scholes TVs, the average simulation bias

over all EURUSD one-touches is approximately -1.9% (the average analytical TV is

22.3%). The reason for this bias is that the true extrema almost surely lie between

the grid points and are thus ignored. For a Brownian motion, Beaglehole, Dybvig and

Zhou (1997) propose to simulate a Brownian bridge from the known distribution of

extrema to connect adjacent grid points. Ribeiro and Webber (2006) extend this result

to the class of models which can be represented as time-changed Brownian motion.

This includes the VG jump model, which may be expressed as a Brownian motion

subordinated to a gamma clock. To the best of my knowledge, no comparable result is

available for the joint maximum or minimum distribution of two or more general Lévy

processes. This fact precludes, for example, the simulation of unbiased prices for the

stochastic skew model of Carr and Wu (2007). Furthermore, it restricts jumps to the

finite activity class when they are combined with a diffusion term.11 Since the models

from Section 2 have been selected on these grounds, the results of Ribeiro and Web-

ber apply for all models. Safe for the approximation error mentioned in their paper,

simulated one-touch prices are unbiased.

Simulation of the Brownian risk factors is straightforward. I refer to Glasserman

(2004) for a general reference. In case of the pure jump VG model, I simulate Xt using

the well-known subordinator representation. The simulation of Kou jumps is cast into

a compound Poisson framework. Some details are revealed in Appendix D.

11When jumps exhibit finite activity, the equidistant grid can be augmented by simulated jump

times. Brownian bridge sampling can then be applied to this extended grid.
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4.3 Results

Analogous to Figure 4, Figure 5 shows the EURUSD valuation biases for the various

models under examination. Since the pricing errors for the Black-Scholes model were

unrelated to maturity, the focus lies on the moneyness dimension. As before, biases are

calculated as the mid-market minus the model-implied prices. The horizontal axis refers

to the unskewed (Black-Scholes) TV. To facilitate interpretation, I have augmented the

charts with a Gaussian kernel estimate of the pricing bias using a bandwidth of 10%

(black line).
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Figure 5: EURUSD Pricing Errors
EURUSD pricing performance for the various models. The pricing bias (vertical axis) is

depicted against the unskewed TV (horizontal axis), with downside and upside one-touch

options (crosses) being plotted left and right of the center. A kernel estimate of the pricing

biases is given by the black line.

The VG model (upper-left panel) provides fairly accurate prices for low TV upside

and downside one-touches. However, when the unskewed TV is above 10%, the model

severely overestimates the market prices. Moreover, the dispersion of pricing errors is

large. For example, for upside one-touch options with a TV of approximately 30%,

pricing errors range between plus and minus 10%, meaning that the model-implied

TV is anywhere between 20% and 40%. For practitioners, this degree of precision is

not acceptable. The jump-diffusion model (upper-middle panel) improves on both ac-

counts: The valuation bias (black line) is closer to zero and the dispersion of pricing

errors is smaller. However, the model tends to underestimate market prices in the

extreme tails. This bias is corrected by the Heston model (upper-right panel). No
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evident biases are observed for downside and low TV upside one-touch options. A sim-

ilarly good performance is observed for the stochastic jump intensity model (lower-left

panel). When the Heston model is augmented with Kou jumps (lower-middle panel),

it tends to underestimate market prices for moderate and high TV one-touches. This

pattern is aggravated when the jumps are sampled from a model with stochastic jump

intensity (lower-right panel). Therefore, the sophisticated models perform considerably

worse out-of-sample than their more parsimonious counterparts.
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Figure 6: USDJPY Pricing Errors
USDJPY pricing performance for the various models. The pricing bias (vertical axis) is

depicted against the unskewed TV (horizontal axis), with downside and upside one-touch

options (crosses) being plotted left and right of the center. A kernel estimate of the pricing

biases is given by the black line.

Figure 6 shows the valuation biases for USDJPY. The VG model (upper-left panel)

exhibits large biases for downside one-touch options and large pricing error dispersion

for contracts where the barrier lies above the spot rate.12 Compared to EURUSD, the

average bias has a positive sign, i.e. the model underestimates the probability of a

barrier event. The jump-diffusion model (upper-middle panel) somewhat reduces the

pricing error dispersion for upside one-touches. However, the downside biases are as

pronounced as for the VG model. The Heston model (upper-right panel) removes most

of these biases and is very accurate in general. Contrary to the findings for EURUSD,

the performance of the stochastic jump intensity model (lower-left panel) closely re-

sembles the VG model performance. In particular, the model shares a large bias for

12Note that the scale is different compared to Figure 4 and Figure 5.
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moderate and high TV one-touch options in the lower tail. The sophisticated SV (D)J

and SV (JD) models (lower-middle and lower-right panels) reveal a bias pattern that is

similar to the Heston model. They provide approximately unbiased prices for downside

one-touches but tend to underestimate market prices for moderate TV upside barrier

contracts.

To allow for a more precise assessment of model performance, Table 3 sorts one-

touch options into different moneyness buckets. Specifically, it is distinguished between

upside and downside one-touches with an unskewed TV below 10%, between 10% and

20% and above 20%. The very-left column reveals the number of quotes n in each

bucket. The remaining columns show the ’mean absolute price error’ (MAPE) in

percentage terms, now defined as

MAPE =
1

n

n
∑

i=1

|Oi,t − Ôi,t|. (33)

For EURUSD, the Heston model has the lowest overall MAPE (0.87%). This per-

formance is closely matched by the stochastic jump intensity model (0.94%), while

the next best model (SV (D)J) performs considerably worse. Compared to Black-

Scholes, the SV (D) and SV (J) models reduce the MAPE by about 54% and 50%. If

the various moneyness buckets are viewed in isolation, it holds that in all except one

instance, the Heston model comes first, followed by the SV (J) model. The overall

improvement of the valuation performance relative to Black-Scholes is very modest for

the jump-diffusion (0.5%) and the jump-augmented stochastic volatility models (3%).

Most surprisingly, the sophisticated SV (JD) model exhibits an average absolute pric-

ing error in excess of Black-Scholes. The overall performance of the SV (JD) model

may be driven by its inability to mirror prices for upside one-touches with a TV be-

tween 20% and 100%. In contrast, all models perform superior versus Black-Scholes

for one-touch options in the 10% upside and downside tail buckets.

For USDJPY, the best valuation performance is again achieved by the Heston

model. It has a MAPE of 1.63%, which amounts to an error reduction of approximately

61% relative to Black-Scholes. Contrary to the findings for EURUSD, the SV (JD)

model provides a good fit. In particular, the model exhibits the smallest MAPE for

downside one-touches with a TV below 20%. Thus, the model is well suited to capture

a fat-tailed left distribution that is usually characteristic of equity markets. The SV(J)

model is accurate for pricing low TV upside one-touches, but fails to properly reflect

the remainder. Both the VG and the jump-diffusion models attain an MAPE that

is larger compared to Black-Scholes, although they provide fairly accurate prices for

upside one-touches with a TV below 20%.
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BS V G JD SV (D) SV (J) SV (D)J SV (JD)

EURUSD

10%D (n=82) 2.25 1.29 2.04 0.46 0.70 0.94 0.72

10%U (n=104) 2.18 1.25 2.06 0.42 0.44 0.74 0.79

20%D (n=56) 0.76 3.43 1.40 0.48 0.62 0.96 0.94

20%U (n=67) 0.83 3.91 1.50 0.68 0.50 1.08 1.31

100%D (n=65) 1.80 5.32 1.95 0.81 0.92 1.91 1.86

100%U (n=213) 2.25 5.74 1.93 1.42 1.50 3.11 4.51

Overall 1.88 3.85 1.87 0.87 0.94 1.82 2.32

USDJPY

10%D (n=119) 5.13 3.57 7.02 0.85 2.80 0.94 0.79

10%U (n=56) 1.83 0.64 1.27 0.76 0.53 1.03 0.94

20%D (n=84) 3.67 6.52 11.2 1.28 4.90 1.57 1.14

20%U (n=63) 5.12 1.53 1.58 1.37 1.03 1.93 1.83

100%D (n=80) 2.37 14.3 16.7 1.42 9.51 1.81 1.77

100%U (n=117) 5.20 5.80 3.71 3.37 3.72 4.64 4.33

Overall 4.13 5.64 7.16 1.63 3.92 2.14 1.94

Table 3: Pricing Errors by Moneyness Bucket
Pricing errors for the different models grouped by moneyness buckets. n in the far-left column reveals

the number of quotes per bucket. The letters U and D refer to upside and downside option quotes. The

pricing errors are computed as the percentage absolute pricing bias.

To draw robust conclusions on the fine structure of currency returns, the models

are formally compared on the basis of the ’mean absolute price error’ difference. For

models j and k, t-statistics on the MAPE are computed as

tstat =
MAPEj −MAPEk
σ̂(APEj,i−APEk,i)

. (34)

A non-significant t-statistic suggests that model j and k provide a similar fit to

the market for one-touch options. Since the series (APEj,i − APEk,i) is likely to be

autocorrelated, σ̂(APEj,i−APEk,i) is computed using the Bartlett estimate as propose by

Newey and West (1987). To determine the number of lags, I plot autocorrelation

functions and set the number of lags equal to the first non-significant autocorrelation

number. Table 4 reads as follows: The entry in row j and column k show the difference

in MAPE for a performance comparison of model j and k. A positive number suggests

that model k, i.e. the column model, is superior. Asterisks indicate significance. The

lower triangular matrix is empty because it simply mirrors the statistics shown in the

upper triangle.

The first row of Table 4 shows that for EURUSD, the Black-Scholes model out-

performs the VG and SV(JD) model on a 1% and 5% confidence level, respectively.

In contrast, the model’s performance is indistinguishable from the JD and SV (D)J ,
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BS V G JD SV (D) SV (J) SV (D)J SV (JD)

EURUSD
BS - -1.96%*** 0.01% 1.02%*** 0.95%*** 0.07% -0.44%**

V G - - 1.97%*** 2.98%*** 2.91%*** 2.03%*** 1.53%***

JD - - - 1.00%*** 0.93%*** 0.06% -0.45%**

SV (D) - - - - -0.07%* -0.95%*** -1.45%***

SV (J) - - - - - -0.88%*** -1.38%***

SV (D)J - - - - - - -0.50%***

USDJPY
BS - -1.51%*** -3.03%*** 2.50%*** 0.21% 1.99%*** 2.19%***

V G - - -1.52%*** 4.01%*** 1.72%*** 3.50%*** 3.70%***

JD - - - 5.53%*** 3.23%*** 5.01%*** 5.22%***

SV (D) - - - - -2.29%*** -0.51%*** -0.31%***

SV (J) - - - - - 1.78%*** 1.98%***

SV (D)J - - - - - - 0.20%***

Table 4: Performance Comparison
Performance comparison of the various models based on the mean absolute price error (MAPE). The

reported MAPE differences for row j and column k reveal whether model j is superior to model k.

T-statistics are computed using Newey-West (1987) robust standard errors. *, **, and *** indicate

significance at the 10%, 5% and 1% confidence level.

and is significantly worse than the performance of the SV (J) and SV (D) models. The

jump-diffusion model is on par with the more sophisticated SV (D)J , but significantly

worse than the stochastic volatility and jump intensity models. The supremacy of He-

ston is significant on a 10% level versus the stochastic jump intensity model and highly

significant versus the remainder. For USDJPY, the Black-Scholes model outperforms

the VG and the jump diffusion models on a 1% confidence level, but is outperformed

by all models comprising a time-changed diffusion. The USDJPY one-touch market is

the only place where I find similar evidence as Daal and Madan (2005), who report

superior performance for the VG versus the jump-diffusion model. One reason for this

seemingly contradictory finding may be that I employ a Kou rather than a Gaussian

jump structure. For USDJPY, the superior performance of the Heston model is signifi-

cant on a 1% level against all models. In contrast, the SV (J) model is just on par with

Black-Scholes and significantly worse than the jump models comprising a time-changed

diffusion.

Several key findings emerge. First, the unique characteristics of currency pairs may

require a distinct modelling of risk-neutral currency dynamics. For USDJPY, both the

in- and out-of-sample results emphasize the importance of including a time-changed dif-

fusion: By allowing currency returns and variance to be negatively correlated, the US-

DJPY skew is captured well. For EURUSD, where strong performance is also reported

for the stochastic jump intensity model, this feature seems less important. Second and
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irrespective of the SV (J)’s performance, I conclude that a time-changed diffusion is

an indispensable ingredient of risk-neutral currency dynamics, while models without a

time-changed risk factor should be discouraged. Most notably, the SV (D) model pro-

vides the best fit for both EURUSD and USDJPY one-touches, even though it came

only third in replicating the vanilla surface. Third, while the same ranking of model

performance was obtained in-sample for EURUSD and USDJPY, this is no longer true

for the one-touch option market. For example, the SV (JD) model does well in cap-

turing the stylized facts of USDJPY, but provides a relatively poor fit for EURUSD.

One problem in this context is certainly the danger of overfitting. Still, I conjecture

that the vanilla and one-touch market need not necessarily agree on the structure of

currency returns. In particular, the prices for one-touch options appear to reflect little

jump risk, while the same can not be said for the vanilla market. For practitioners, this

finding has potentially far-reaching implications. Either they include exotic derivatives

when calibrating a model so as to enforce consistency or they keep currency dynamics

simple. Given the solid performance of the Heston model also for the vanilla market,

modelling risk-neutral currency dynamics as a time-changed diffusion is a reasonable

choice.

The source of the strong relative performance of the SV (D) model remains subject

to speculation, but two hypotheses can be put forward. Either it may be that risk-

neutral currency dynamics, as implied by the one-touch option data, exhibit infinite

variation. While a Brownian motion is characterized by infinite variation, the jump

processes considered in this study are not. If we imagine an overall risk budget that

is allocated, through the process of calibration, to the various risk factors, then the

models comprising jumps will partially fail to reproduce the stylized facts. This inter-

pretation is supported by the average volatility parameter estimates from Table 1 and

Table 2. Since the parameters tend to be smaller for the models comprising jumps,

the contribution of the diffusive factor to overall model-implied risk is diminished. Al-

ternatively, the superior performance of the Heston (1993) model is the result of the

aforementioned use of the Black-Scholes value as a reference price. Such behavior by

traders is likely to favor a diffusive risk specification, since the Black-Scholes model

itself is a diffusion model.

5 Conclusion

Within the framework of Carr and Wu (2004), I have specified a range of option pricing

models to determine the key ingredients of risk-neutral currency dynamics. Currency
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dynamics are specified as pure or time-changed diffusion, pure or time-changed jumps,

or both. The models have been calibrated to a set of vanilla option quotes and subse-

quently applied to obtain prices for one-touch options.

In-sample evidence from calibrating the models to vanilla options favors complex

specifications including a time-changed diffusion and jumps. This finding is consistent

with the previous literature. In contrast, the comparably simple Heston (1993) model

provides the best fit for the one-touch options. Both markets agree on the minimum

requirement that risk-neutral currency dynamics should comprise a time-changed dif-

fusive risk factor. However, they do not agree on whether jumps should be included.

More generally, a ranking of model performance yields different results for the two mar-

kets. Therefore, caution is warranted when drawing inference from the vanilla market

and transferring it to the valuation of one-touch options.

Augmenting risk-neutral currency dynamics with jumps may still be sensible if the

focus lies on pricing very short-dated options. The shortest maturity examined in

this study is one month for vanilla and three weeks for one-touch options. Hence,

no conclusions can be drawn for the very front-end of the volatility term structure.

However, given the robust performance of the parsimonious Heston model in both

markets, the practitioner has good reasons to prefer it over more complex specifications.
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6 Appendix

A Measure Change and Laplace Transform

This Appendix draws on Carr and Wu (2004). Consider, by example, the Fourier

transform in (18). Define the Radon-Nikodym derivative for a measure change from Q

to M as

dM

dQ
= eiuσWTt−iuηTt+ψD(u)Tt . (A.1)

From EQ[x] = EM[x dQ/dM] it follows that

EQ[eiu(σWTt−ηTt)] = EM[eiu(σWTt−ηTt) dQ
dM

] = EM[e−ψD(u)Tt ]

= LM
Tt(ψD(u)).

(A.2)

The same argumentation applies for the models in (20), (22) and (24). Except for

the stochastic jump intensity model, the measure change has implications for the drift

of the activity rate process in (16). Wu (2008) shows that under M, the activity rate

process becomes

dvt = (κ− κMvt)dt+ σv
√
vtdW

v
t , (A.3)

with κM = κ− iuσσvρ.

To solve the Laplace transform in (A.2), Carr and Wu (2004) substitute for the

stochastic clock, i.e.

LM
Tt(ψD(u)) = EM[e−ψD(u)

∫ t

0
v(s)ds]. (A.4)

What is inside the expectation operator bears much resemblance with the pricing

formula for a zero coupon bond. Since the activity rate is modeled as a square-root

diffusion process, the solution approach from Cox et al. (1985) applies.13 Formally,

LM
Tt(ψD(u)) = e−a(t)−b(t)v0 , (A.5)

where

b(t) =
2ψD(u)(1− e−γt)

2γ − (γ − κM)(1− e−γt)
, (A.6)

a(t) =
κ

σ2
v

[

2log

(

1− γ − κM

2γ
(1− e−γt)

)

+ (γ − κM)t

]

, (A.7)

and

γ =
√

(κM)2 + 2σ2
vψD(u). (A.8)

13See also Ingersoll (1987).
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B Option Pricing via Fourier-cosine Expansion

This appendix follows Fang and Oosterlee (2008). On a finite interval [a, b], the cosine

expansion of the density function of the log return s reads as

f(s) =
∞
∑

k=0

′Akcos

(

kπ
s− a

b− a

)

, (B.1)

where the coefficients Ak are given by

Ak =
2

b− a

∫ b

a

f(s)cos

(

kπ
s− a

b− a

)

ds. (B.2)

From the Fourier transform φ(u) =
∫

R
eiusf(s)ds ≈

∫ b

a
eiusf(s)ds and the fact that

Re
[

eiθ
]

= cos(θ), it follows that

Ak ≈
2

b− a
Re

[

φ

(

kπ

b− a
, s

)

e−i
kπa
b−a

]

. (B.3)

The risk-neutral price of a call option may be represented in terms of the density

function, i.e.

c(s, t) = e−rd(T−t)
∫

R

c(y, T )f(y | s)dy ≈ e−rd(T−t)
∫ b

a

c(y, T )f(y | s)dy, (B.4)

where c(.) is the option payoff function, y is the log return at expiry and f(y | s)
is the conditional density of y given s. Substituting for the density, interchanging

summation and integration, and truncating the summation at N yields

c(s, t) = e−rd(T−t)
N−1
∑

k=0

′Re

[

φ

(

kπ

b− a

)

eikπ
s−a
b−a

]

Vk, (B.5)

where Vk = 2
b−a
∫ b

a
c(y, T )cos

(

kπ y−a
b−a
)

dy are the cosine series coefficients of the

terminal payoff c(y, T ). For a call option with payoff c(y, T ) = [K(ey − 1)]+, they are

given by

Vk =
2

b− a
K[χk(0, b)− ψk(0, b)], (B.6)

where

χk(c, d) =
1

1+( kπ
b−a)

2

[

cos
(

kπ d−a
b−a
)

ed − cos
(

kπ c−a
b−a
)

ec+

kπ
b−asin

(

kπ d−a
b−a
)

ed − kπ
b−asin

(

kπ c−a
b−a
)

ec
]

(B.7)

ψk(c, d) =







b−a
kπ

[

sin
(

kπ d−a
b−a
)

− sin
(

kπ c−a
b−a
)]

k 6= 0

d− c k = 0
(B.8)
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C One-Touch Option Prices when Currency Pairs Follow a

Geometric Brownian Motion

Consider the model in (1) with convexity adjustment η = ψBSx (−i) = −1
2
σ2, i.e.

St = S0e
(rd−rf− 1

2
σ2)t+σWt . (C.1)

Define a drift variable θ = 1
σ
(rd − rf − 1

2
σ2) and set

St = S0e
σŴt , (C.2)

where Ŵt = θt +Wt is a Brownian motion with drift. Consider a one-touch with

upper barrier level B. The first passage time to B is defined as

τB = inf{u ≥ 0 : Su = B} = inf{t ≥ 0 : Wt + θt =
1

σ
log(

B

S0

)}. (C.3)

The first passage time τB has a density (see Wystup, 2010 and the reference therein)

P [τB ∈ dt] =
1
σ
log( B

S0
)

t
√
2πt

exp

(

−
( 1
σ
log( B

S0
)− θt)2

2t

)

dt. (C.4)

From (31), the domestic price of a one-touch is given by

G(Su, B, T ) = e−rdT
∫ T

0

1
σ
log( B

S0
)

t
√
2πt

exp

(

−
( 1
σ
log( B

S0
)− θt)2

2t

)

dt. (C.5)

Weber and Wystup (2010) evaluate this integral and derive a general formula,

G(S,B, T ) = e−rdT
(

(B/S)
θ+|θ|

σ N (−φd+) + (B/S)
θ−|θ|

σ N (φd−)
)

, (C.6)

where d± = 1
σ
√
t
(±log(S/B) − σ|θ|t). For quotes under the foreign risk-neutral

measure, C.6. is applied with reciprocal values for B and S, interest rates exchanged

and φ replaced by −φ (See Weber and Wystup (2010) and Wystup (2010)).
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D Simulating Jumps

A general reference for simulating jump trajectories is Cont and Tankov (2004).

Variance Gamma Model

Set σ =
√

2C/(MG), θ = C(1/M − 1/G) and ν = 1/C. For an arbitrary time interval

∆t, simulate a gamma (Z1) and a normal (Z2) random variable

Z1 ∼ Γ(∆t/ν, ν)

Z2 ∼ N(0, 1)

An increment of the variance gamma process is obtained from

∆X = θZ1 + σ
√

Z1Z2. (D.1)

Kou Model

Define Υ ∈ {M,G}. For an arbitrary time interval ∆t, the intensity parameter λ is

given by

λ = (I+ + I−)∆t, (D.2)

where I± = C/Υ follows from evaluating the integral
∫

v(x)dx over the positive

and negative half-line of the Kou Lévy density in (8).

Given an interval ∆t, generate N ∼ Poi(λ) jump interval times. Next, set the

dampening factor Υ = M and the jump sign η = 1. Simulate a uniform variable U1

and reset Υ = G, η = −1 if U1 < I−/(I+ + I−).

The probability that a jump with sign η has size |x| ≥ ε is

V (ε) = C

∫ 0∨ηε

ηε∧0
e−Υ|x|/Iη = 1− e−ηΥε, (D.3)

By inversion of (D.3), the jump magnitude is

ε = −log(U2)/(ηΥ), (D.4)

where U2 is another uniform random variable. An increment on the time-grid is

given as the sum of the jumps on the interval ∆t,

∆Xt =
N
∑

i=1

εi. (D.5)
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Mathematical Finance 13, 333-352.

Weber, Andreas and Wystup, Uwe, 2010. ”Pricing formulae for foreign exchange op-

tions.” In: Encyclopedia of Quantitative Finance, John Wiley & Sons Ltd. Chich-

ester, UK, 1408-1418.

Wu, Liuren, 2006. ”Dampened power law: reconciling the tail behavior of financial

security returns.” Journal of Business 79, 1445-1473.

Wu, Liuren, 2008. ”Modeling financial security returns using Lévy processes.” In:
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