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Preface

My dissertation is motivated by the limited number of multivariate macro–finance asset

pricing models which allow for (multiple threshold) regime shifts. Indeed, after more than

40 years of research on asset pricing, one of the central unresolved problems in the financial

literature is the relation between the state of the economy and the prices of financial assets.

The literature exhibits numerous attempts to model and explain the nature of fluctua-

tions in the term structure of interest rates. In light of comprehensive academic work on

identifying the sources driving the yield curve, the notion of nonlinear, regime-switching

relation appears to be a natural, yet non-trivial, extension. It implies that the impact of

different fundamentals on bond dynamics changes over time and goes beyond the simple

inflation fluctuations and business cycle variation.

The areas so far unexplored in the literature, pertain to our understanding of the sources

of those regime switches, the application of appropriate multivariate stochastic processes,

and the pricing of bonds and options, to mention a few. Answering these questions is impor-

tant for solving practical issues faced by the financial industry, monetary policy regulation

and as a contribution to the academic literature.

My contribution to the asset pricing literature evolve around two main themes: (i)

estimating and forecasting term structure models of interest rates with regime shifts; and

(ii) modeling and explaining the relationships between interest rates and various macroe-

conomic and financial fundamentals.

The dissertation consists of three essays. The goal of the first chapter is to contribute

new empirical evidence to the various economic sources driving the US yield curve. To this

end, Francesco Audrino and I present a methodology to build and estimate a discrete-time

regime–switching model for the term structure dynamics over time. We allow the condi-

tional dynamics of the yield at different maturities to change in reaction to past information

coming from several relevant predictor variables. We consider both endogenous, yield curve

factors and exogenous, macroeconomic factors as predictors in our model, letting the data

themselves choose the most important variables. We find clear, different economic patterns

in the local dynamics and regime specification of the yields depending on the maturity.

Moreover, we present strong empirical evidence for the accuracy of the model in repro-
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ducing various stylized facts and predicting out-of-sample the yield curve in comparison to

several alternative approaches.

The choice of the suboptimal (linear) term structure modeling framework might be just

one of the aspects why a direct link between government bonds (or bond risk premia) and

macroeconomic fundamentals is hard to detect. Indeed, there are many other possible ex-

planations for this phenomena. Most of them are related to macroeconomic data. First,

nowadays econometricians observe hundreds or even thousands of different macroeconomic

measures of inflation, consumption, labor markets, housing, etc. Those variables are typ-

ically highly correlated within each individual group and they are usually driven by just

a small number of latent common factors, impossible to summarize with a few observable

series. A second possible explanation is that macroeconomic variables are usually very

noisy and imperfectly measured, especially in comparison to the financial fundamentals.

Therefore, it is not a surprise that most of the term structure and risk premia variation is

captured by financial factors. Last but not least, models themselves are just an imprecise

description of the reality. For example, most of the models found in the economic literature,

do not take into account the heteroskedastic nature of the macroeconomic fundamentals.

In the second chapter, Francesco Audrino, Fulvio Corsi and I address all of the above

mentioned issues by proposing a simple but effective estimation procedure to extract the

level and the volatility dynamics of a latent macroeconomic factor from a panel of ob-

servable indicators. Our approach is based on a multivariate conditionally heteroskedastic

exact factor model that can take into account the heteroskedasticity feature shown by most

macroeconomic variables and relies on an iterated Kalman filter procedure. In simulations

we show the unbiasedness of the proposed estimator and its superiority to different ap-

proaches introduced in the literature. Simulation results are confirmed in applications to

real inflation data with the goal of forecasting long-term bond risk premia. Moreover, we

find that the extracted level and conditional variance of the latent factor for inflation are

strongly related to NBER business cycles.

Guided by the empirical findings presented in the previous two chapters, in the third

chapter I develop a new discrete time multivariate regime–switching asset pricing frame-

work, which takes into account the time–varying relation between the short rate and the

state of the economy. My approach combines the no–arbitrage restrictions on the cross–

section of bonds together with macroeconomic factors that drive bond yields. In contrast to

the classical term structure literature, where nonlinearities in the short rate are captured by

increasing the number of latent state variables, or by latent regime shifts, in my framework

the regimes are governed by thresholds and they are directly linked to different economic

fundamentals. Specifically, starting from a simple monetary policy model for the short rate,

I introduce a model for the yield curve, which takes into account not only the possibility of
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regime switches in the behavior of the Federal Reserve, but also agents’ beliefs around these

changes. In the empirical part, I show the merit of our approach along four dimensions:

(i) interpretable bond dynamics; (ii) superior out-of-sample performance; (iii) design of

no-arbitrage dynamic term structure model; and (iv) accurate short end yield curve pricing.

In this way, without resorting to purely latent factors, I am able to capture into a coherent

framework the short–term risk that drive bond dynamics. Finally, I take the approach a

step further and discuss how it can be successfully applied in modeling stock and bond

return comovements.
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Chapter 1

Yield Curve Predictability, Regimes,

and Macroeconomic Information: A

Data-Driven Approach

1.1 Introduction

Beginning with Ang and Piazzesi (2003) the idea of incorporating macroeconomic variables

on the top of yield curve factors for modeling bond yields plays a major role in today’s term

structure literature, giving raise to a new so called macro-finance modeling framework.1

Despite the various macro-finance modeling strategies proposed in the last years for the

U.S. term structure of interest rates dynamics, several questions and controversies are still

open. Most of the open issues in the recent macro-finance literature evolve around the

central theme of how yields are associated with macro variables. In this chapter we propose

an empirical approach to determine the various economic sources driving the U.S. yield

curve. We consider both endogenous, yield curve factors and exogenous, macroeconomic

factors as predictors in our model, letting the data themselves choose the most important

variables.

A common approach in the macro-finance field is to model the short rate dynamics

as a function of latent and macroeconomic factors. Yields of other maturities are then

derived as risk-adjusted averages of expected future short rates. Thus, the factors driv-

ing the short rate contain all the relevant information needed for building and estimating

term structure models.2 Factor analysis of the unconditional variance-covariance matrix of

1The macro-finance literature is vast. Important contributions in that area include for example

Dewachter, Lyrio, and Maes (2006), Dewachter and Lyrio (2006), Hoerdahl, Tristani, and Vestin (2006),

Moench (2008), Joslin, Priebsch, and Singleton (2009), De Pooter, Ravazzolo, and Van Dijk (2007) and

Rudebusch and Wu (2008).
2This statement is only true under the convention that the market price of risk is also a function of the

same state and/or macroeconomic variables driving the short rate dynamics.
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yields commonly suggests the number of latent factors needed to explain the cross-sectional

dynamics. In addition, standard macroeconomic intuition, a Taylor-style policy rule, is typ-

ically used to determine the macro factors entering the short rate equation. Consequently,

based on this modeling framework, the same latent and macro variables should help explain

not only the short rate but also the entire yield curve dynamics.

However, empirical observations cast some doubt on this view. Short and long maturities

are known to react quite differently in shocks hitting the economy. Whereas the central

bank (U.S. Federal Reserve) is actively targeting the short rate in order to achieve economic

stability (to promote their national economic goals), the long rates tend to be based mainly

on real activity, forecasts of inflation and judgements regarding the gap between long-term

interest rates and inflation. Many forces are at work in driving the term structure dynamics,

and identifying these forces and understanding their impact is of crucial importance.

Almost all the above-mentioned models treat the whole post-war period as a homo-

geneous sample and do not take into account the possibility of structural breaks in the

economy documented in the macroeconomic literature. An exception to this practice is the

regime-switching models of interest rates introduced by Hamilton (1988) and - followed for

example by Sola and Driffill (1994), Evans and Lewis (1995), Garcia and Perron (1996), and

Gray (1996). These papers attempt to build a model that captures the stochastic behav-

ior of the interest rate within a stationary model. Extensive empirical literature (see, for

example, Äıt-Sahalia (1996b), Stanton (1997), and Ang and Bekaert (2002)) reveals that

the regime-switching models better describe the nonlinearities in the yields’ drift and the

volatility found in the historical interest rate data. More recent works, for example Ang

and Bekaert (2002), Bansal and Zhou (2002), Dai, Singleton, and Yang (2007), Bansal,

Tauchen, and Zhou (2004), and Audrino and De Giorgi (2007), have managed informally

to link the succession of alternating regimes to business cycles and interest rate policies.

Rudebusch and Wu (2007) suggest a link between the shift in the interest rate behavior and

the dynamics of the central bank’s inflation target. Ang, Bekaert, and Wei (2008) develop a

regime-switching model to study real interest rates and inflation risk premia by combining

latent and macroeconomic factors.

In this chapter we build a regime-switching multifactor model for the term structure

dynamics over time in which for every maturity we are able to identify or infer the most

important macroeconomic and latent variables driving both the local dynamics and the

regime shifts. Our basic framework for the yield curve is a macro-factor model, yet not

the usual no-arbitrage factor representation typically used in the macro-finance literature.

The methodology adopted in this chapter is mainly motivated by Audrino’s (2006) tree-

structured model for the short rate. Similarly to Audrino (2006) we employ a multiple

threshold model that is able to take into account regime-shifts in the yield curve’s dynamics

12



and to exploit both macroeconomic and term structure information. However, in this

chapter we do not restrict the local dynamics to follow Cox, Ingersoll, and Ross (1985)

process, as in Audrino (2006), but allow for a more flexible data-driven structure selected

by a given decision rule. Moreover, we extended the data-sample and the macroeconomic

factors used in Audrino (2006).

The technique we propose, have several advantages over the existing modeling strate-

gies. First, it allows us to select the most relevant macroeconomic and latent predictors

driving the yields dynamics for each maturity entirely based on the data. This is a huge

advantage in comparison to the other techniques, where the number of latent and macroe-

conomic factors has to be determined a-priori and has to be the same for every maturity.

Second, our tree-structured threshold model enables us to identify the possible structural

breaks in the yields dynamics in a purely data-driven way. In our estimation technique the

regimes are linked to particular macroeconomic and/or monetary policy variables, allowing

clear interpretation and separability between monetary policy and macroeconomic changes.

Moreover, in contrast to the other term structure models with regime shifts, we do not rely

on the assumption that structural changes in the short rate cause also structural changes

in the whole yield curve. Instead, we let the data themselves choose the optimal regime

structure for each maturity. Third, our approach remains highly competitive in terms of

in- and out-of-sample forecasting performance.

We apply our modeling framework to U.S. data. Based on the observed patterns the

results can be summarized by three groups: short-, mid- and long-term maturities. Like the

monetary policy rules found in the macroeconomic literature,3 the short rate local dynamics

is mainly driven by inflation, real activity, and an autoregressive component. The regimes

for the short rate are linked to the level of inflation. The mid-term maturities follow an

autoregressive process (AR(1)-GARCH(1,1)), whose behavior is determined by the term

structure slope and the level of real activity. In addition, we also find some correspondence

between NBER business cycles and our limiting regimes. The long rates capture strong

macroeconomic effects. Here the volatility of inflation plays a major role in the threshold

structure as well as in the piecewise linear dynamics.

In order to improve the prediction accuracy of our model, we use bagging (short for

bootstrap aggregating). In essence, bagging is a variance reduction technique aimed at

improving the predictive performance of unstable estimators, especially trees. We compare

the out-of-sample forecasting ability of our model to that of several strong competitor

models. Using the superior predictive ability (SPA) test of Hansen (2005), we find that

such improvements are in most cases statistically significant.

3See for example Clarida, Gali, and Gertler (2000) or Taylor (1993), among others.
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The remainder of this chapter is organized as follows: Section 1.2.1 and Section 1.2.2

present the modeling framework we use for fitting and forecasting the term structure.

Section 1.2.3 describes the techniques we employ for model estimation. The role of bagging

is discussed in Section 1.2.4. In Section 1.3 we present the empirical application to U.S.

yield data, test our model’s ability to reproduce the most important stylized facts, and

discuss the results of the out-of-sample forecast. Section 1.4 concludes.

1.2 The Model

This section introduces the modeling framework we use for fitting and forecasting the yield

dynamics. To infer the yield curve behavior, we use a model with four distinctive features.

First, to capture the cross-sectional dynamics of the yield curve, we employ two latent term

structure factors often used in the finance literature, interpreted as level and slope. The two

factors usually account for about 95% of the cross-sectional variation of yields.4 Second,

we allow heteroscedasticity in the error term. Since our goal is to build a realistic model

for the term structure dynamics over time, this feature is crucial. Third, motivated by the

interpretability and the improved forecasting performance of the macro-finance literature

in comparison to the pure finance approach, we incorporate macroeconomic variables (such

as macroeconomic indicators for real activity and inflation). Fourth, our model accommo-

dates regime-switching behavior but still allows interpretation and clear endogenous regime

specification.

1.2.1 The yield-macro model: specification

Let Yt = (y(t, n1), . . . , y(t, nT ))′ be a T -dimensional vector of yields with maturities n1, . . . , nT

observed at time t and let Δy(t, nτ) ≡ y(t, nτ ) − y(t − 1, nτ ) denote the first difference of

yields at time t with maturity nτ . Further, let us assume the following model for the term

structure dynamics

Δy(t, nτ) = μt,nτ
+ εt,nτ

, τ = 1, . . . , T, (1.1)

where μt,nτ
≡ μ(Φt−1,nτ

;ψnτ
) is a parametric function representing the conditional mean

and εt,nτ
is the error term of the yields’ returns with maturity nτ .

5 More formally, εt,nτ

4For an extensive survey see for example Litterman and Scheinkman (1991) and Dai and Singleton

(2000).
5Here, similar to the CIR process for the short rate, we model yields first differences. This choice is

mainly motivated by the non-stationarity of the yield process. However, without loss of generality, our

model could be easily rewritten and interpreted in terms of yields levels, allowing comparisons with other

studies in the literature like, for example, Nelson-Siegel term structure models.

14



can be decomposed as εt,nτ
=
√
h(Φt−1,nτ

;ψnτ
)zt, where (zt)t∈Z is a sequence of indepen-

dent identically distributed random variables with zero mean and unit variance, and where

h(Φt−1,nτ
;ψnτ

) is the time-varying conditional variance. Above we denoted by Φt,nτ
all the

relevant conditional information up to time t for maturity nτ . In our application (see Section

3), Φt,nτ
corresponds to a large number of term structure and macroeconomic variables.

1.2.2 The yield-macro model with regime shifts: specification

In practice, changes in business cycle conditions or monetary policy may affect real rates,

expected inflation, as well as other macroeconomic indices and cause interest rates with

different maturities to behave quite differently in different time periods, in terms of both

level and volatility. An adequate characterization of this stylized fact requires building a

term structure model with regime shifts (see for example Ang and Bekaert (2002), Bansal

and Zhou (2002), Dai, Singleton, and Yang (2007), Rudebusch and Wu (2007), Bansal,

Tauchen, and Zhou (2004), Audrino (2006), and Audrino and De Giorgi (2007)). Rather

than following the common Markovian regime-switching approach of specifying the distri-

bution of the regime-switching variable conditionally on the future regime, here, following

Audrino (2006) and Audrino and Trojani (2006), the regimes are determined endogenously

and represent thresholds partitioning6 the predictor space into a set of disjoint regions.

This approach enables us to determine the current regime based solely on the realization

of the state variables, macroeconomic variables, and the threshold structure. This is a

major advantage in comparison with the other regime-switching models proposed in the

literature, where information about the whole yield curve is needed. In particular, the

regime-switching dynamics for the conditional mean and the conditional variance can be

written as:

μt,nτ
=

Knτ∑
j=1

(αj
0,nτ

+ αj
1,nτ

Δy(t− 1, nτ) + (βj
nτ

)′xt−1 + (γj
nτ

)′xex

t−1)I[Φt−1,nτ ∈R
j
nτ ],

ht,nτ
=

Knτ∑
j=1

(ωj
nτ

+ aj
nτ
ε2

t−1,nτ
+ bjnτ

ht−1,nτ
)I[Φt−1,nτ ∈R

j
nτ ],

where ψnτ
= (αj

0,nτ
, αj

1,nτ
, (βj

nτ
)′, (γj

nτ
)′, ωj

nτ
, aj

nτ
, bjnτ

, j = 1, . . . , Knτ
) is a ((m + 4) ×Knτ

)-

dimensional vector of the unknown (true) parameters τ = 1, . . . , T . I(·) is the indicator

function and Rj
nτ

represents a region of the partition Pnτ
= {R1

nτ
, . . . ,R

Knτ
nτ } of the state

6Here we restrict attention to recursive binary partitions. The problem with the multiple splits is that

it usually fragments the data too quickly, leaving an insufficient number of observations at the next level

down. Moreover, this assumption is not a drawback since multiple splits can easily be achieved by a series

of binary splits.
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space Gnτ
of Φt,nτ

= {(Δy(t, nτ),x
′
t,x

ex′
t )′ ∈ R1 × Rm1 × Rm2} such that

Pnτ
= {R1

nτ
, . . . ,RKnτ

nτ
}, Gnτ

= ∪
Knτ

j=1 R
j
nτ
, Ri

nτ
∩

(i�=j)
Rj

nτ
= ∅ τ = 1, . . . , T.

Above we denoted by (Δy(t, nτ ),x
′
t) and by xex′

t all the endogenous and all the exogenous

(macroeconomic) information, respectively, available at time t.

1.2.3 Model estimation

A common approach in the term structure literature to estimating a macro-finance model

is to assume that the term structure factors are latent and then to use one-step maximum

likelihood estimation. However, this procedure typically requires some additional restric-

tions due to the multiple likelihood maxima with close-to-identical likelihood values but

very different yield decompositions.7 Consequently, this approach leads to severe estima-

tion difficulties in implementation. Instead, in order to obtain an estimate for the unknown

(true) parameters ψ we employ a two-step procedure. As in Ang, Piazzesi, and Wei (2006),

the key assumption here is that all factors are observable.

Step 1: Best subset selection

One of the main questions in the term structure literature is how many yield curve factors

and/or macro variables should be included in the model. Studies such as Litterman and

Scheinkman (1991) and Dai and Singleton (2000) find that, at monthly frequency, the first

three principal components account for more than 99% of the cross sectional variation of

yields. Applying principal component analysis to our data, we find that the first princi-

pal component explains 96.7% of the yield curve variation. Adding the second principal

component brings the percentage of yield curve variation to 99.8%.

While just a small number of factors (two or three) are sufficient to model the cross

sectional variation of yields, a few questions still remains open. How many factors are

needed to build a good model for the time series dynamics? Is there any predictability

of macro variables on top of latent factors? If so, how many and which macroeconomic

variables should be included in the model? Do these variables always have the same impact

on the yields with different maturities? A simple way to answer these questions is to

perform best subset selection. Although this statistical dimensionality reduction technique

does not impose any economic structure, it helps us identify the most relevant predictors

for each maturity.

The main idea behind best subset selection is to retain only a subset of the most in-

formative variables and to eliminate the noise variables from the model. This is achieved

7See for example Kim and Orphanides (2005) and Duffee (2002) for discussion of this.
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by finding for each number of variables p ∈ {0, 1, 2, . . . , m} the subset of size p that gives

the smallest residual sum of squares. The optimal number of predictors p is usually chosen

according to some information criteria. In this chapter we use the Bayesian Schwarz Infor-

mation Criterion (BIC) since it does not suffer from convergence problems and it is known

to provide accurate results in a time series framework.8

There are at least four reasons why we favor employing a dimensionality reduction tech-

nique rather than including all the possible predictors in the yield curve’s local dynamics.

(i) The first reason is interpretability. With a large number of predictors we would like

to identify a smaller subset that contains the most relevant information. (ii) The second

reason is prediction accuracy. In general, including all possible prediction variables often

leads to poor forecasts, due to the increased variance of the estimates in an overly complex

model. Therefore, it is crucial to identify the most informative (relevant) predictors and to

separate them from the noise variables. By doing so, we reduce the variance of the predicted

values: the result is a parsimonious model with better prediction accuracy. (iii) Besides the

improved forecasting ability, a parsimonious model often helps avoid data-mining problems.

(iv) Since only a few sources of systematic risk drive the yield curve dynamics, nearly all

bond information can be summarized with just a few variables. Therefore, just a small set

of variables is needed in order to obtain a close fit to the entire yield curve at any point in

time.

Step 2: Regime specification

The second step of our estimation procedure involves regime specification. As stated earlier,

the regimes are built as multiple tree-structured thresholds partitioning the predictor space

G into relevant disjoint regions. In particular, the partition Pnτ
for maturity nτ , τ =

1, . . . , T , is constructed on a binary tree, where every terminal node represents a partition

region Rj
nτ

whose edges are determined by thresholds. In the general case, the regime

classification at time t is based on all the endogenous information (Δy(t− 1, nτ ),x
′
t−1) and

the exogenous macroeconomic variables xex

t−1 up to time t− 1. As noted above, in contrast

to the Hamilton-Markovian framework, here the number of regimes as well as the threshold

structure are derived purely from the data.

In this chapter we will mention only the main steps of the binary tree construction

and estimation. However, an exact description, illustrative examples, further applications

of the algorithm, and discussions about the consistency and reliability of the parameter

estimation can be found for example in Audrino and Bühlmann (2001), Audrino (2006),

and Audrino and Trojani (2006).

8Other possibilities include other information criteria AIC or Cp as well as cross validation.
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In short, the estimation procedure involves the following three steps:

(i) Growing a large tree (a tree with a large number of nodes). The threshold selection

is based on minimizing the conditional negative pseudo log-likelihood.

The maximal binary tree constructed in (i) can be too large and easily lead to overfitting.

In order to overcome this problem we proceed by

(ii) Combining some of the branches of this large tree to generate a series of sub-trees of

different sizes (varying numbers of nodes);

(iii) Selecting an optimal tree via the application of measures of accuracy of the tree.

Analogously to the best subset selection, we chose BIC.

1.2.4 Improving the forecasting ability: Bagging

Bagging, introduced by Breiman (1996), is a variance reduction technique aimed at im-

proving the predictive performance of various estimators as for example classification and

regression trees. In general, bagging involves the following steps: (i) generate a large

number of bootstrap resamples from the data; (ii) apply the decision rule to each of the

resamples; (iii) and average the forecasts from the models selected by the decision rule for

each bootstrap sample. Initially bagging was developed for i.i.d. data (see for example

Breiman (1996)) and later extended to the time series framework (see, for example, Inoue

and Kilian (2004), Audrino and Medeiros (2011)).

The dramatic reduction of the prediction error for a wide range of models with a similar

structure has motivated us to use bagging to improve the forecasting performance of our

model. In particular, for every maturity, we use the following three-step procedure:

(i) Build a (n− 1)× (m+ 1) matrix, where the first column corresponds to our response

variable Δyt and the next m columns include all the potential predictors.

{Δy(t, nτ ),Δy(t− 1, nτ ),x
′
t−1,nτ

,xex′
t−1,nτ

}, t = 2, . . . , n.

Construct B bootstrap samples denoted by

{Δy∗(i)(j + 1, nτ),Δy
∗
(i)(j, nτ ),x

∗′
(i),j,nτ

,xex∗′
(i),j,nτ

}, j = 1, . . . , n− 1,

where i = 1, . . . , B by randomly drawing with replacement blocks of rows of length

q from the matrix constructed above, where the block size q is chosen in such a way

that it captures the dependence in the error term.
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(ii) For each bootstrap sample apply the two-step procedure proposed in Section 2.3.1 and

Section 2.3.2. Since our two-step approach is purely data-driven, each bootstrap tree

will typically involve features different from the original. Note that for every bootstrap

sample, the number of predictors, the optimal selection for the local dynamics, the

number of terminal nodes, as well as the splitting points may be different. Using

the optimal parameters estimated from the i-th bootstrap sample, for t = 1, . . . , Tout

compute the conditional mean of the yield process denoted by μ∗
(i)t,nτ

.

(iii) For t = 1, . . . , Tout average the forecasts of the conditional mean

μ̂t,nτ
=

1

B

B∑
i=1

μ∗
(i)t,nτ

.

1.3 Empirical Results

We start this section with a brief description of the data we use for the empirical part of

the chapter. Afterwards, we give an interpretation of the estimated results and test the

flexibility of the resulting model. Finally, we compare the forecasting performance of our

model to that of several strong competitors.

1.3.1 Data

The term structure data consist of monthly data of U.S. Treasury bills with eight different

maturities: 3 and 6 months and 1, 2, 3, 5, 7 and 10 years taken from the Fama-Bliss files in

the CRSP database. The data cover the time period from January 1960 until June 2005.

This is quite a standard data set, a part of which has already been used for example by

Audrino (2006), Audrino and De Giorgi (2007), Bansal and Zhou (2002) and Dai, Singleton,

and Yang (2007). Table 1.1 provides a fairly detailed description of the data.

Since almost all the cross-sectional term structure information can be summarized in

just a few variables associated with the empirical proxies of level, slope, and curvature, we

build the endogenous predictors in the following way: we define the level as the 10-year

yield and the slope as the difference between the longest (10-year) and the shortest (3-

month) maturity in our data set. There are two reasons why we do not build an empirical

proxy for the curvature component. First, studies like Litterman and Scheinkman (1991)

find that the third principal component accounts for about 2% of the yield curve variation,

whereas in our data set it explains less than 0.2% of the variation. Second, in the term

structure models the third factor is usually related to heteroskedasticity. Since we model

the heteroskedasticity of the error term explicitly, adding a third factor may easily lead to

overparametrization. The curvature component also seems unimportant in a broad range
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Summary Statistics of Data

Central moments Autocorrelations

Mean Stdev Skew Kurt Lag 1 Lag 2 Lag 3

Δ Yield 3M -0.0020 0.5230 -2.1023 18.0171 0.1517 -0.0661 -0.0291
Δ Yield 6M -0.0029 0.5156 -1.6226 17.4492 0.1661 -0.0622 -0.0712
Δ Yield 1Y -0.0028 0.5038 -1.0525 16.0674 0.1630 -0.0986 -0.0863
Δ Yield 2Y -0.0024 0.4587 -0.6168 10.9402 0.1395 -0.0970 -0.0740
Δ Yield 3Y -0.0022 0.4199 -0.4246 7.5918 0.1305 0.0884 -0.0748
Δ Yield 5Y -0.0019 0.3709 -0.2641 4.8015 0.1068 -0.0863 -0.0676
Δ Yield 7Y -0.0018 0.3426 -0.1923 3.5260 0.0856 -0.0852 -0.0596
Δ Yield 10Y -0.0014 0.3177 -0.1267 2.7397 0.0642 -0.0771 -0.0533
CPI 4.1503 2.7383 1.4282 1.6165 0.9914 0.9784 0.9639
PPI 3.5834 4.4352 1.0159 1.5395 0.9759 0.9451 0.9153
HELP 82.4983 25.8153 -0.1730 -1.1146 0.9892 0.9787 0.9658
IP 3.1122 4.3763 -0.8378 1.0030 0.9642 0.9093 0.8426
UE 1.2577 15.6301 1.1064 1.2066 0.9560 0.9132 0.8564
CPI.sq 24.7100 34.7598 2.4530 5.8395 0.9930 0.9811 0.9644
PPI.sq 32.4777 60.4715 3.2759 12.5513 0.9614 0.9265 0.8893
HELP.sq 7471.2510 4189.7830 0.2397 -1.0312 0.9886 0.9787 0.9660
IP.sq 28.8038 31.1617 1.6884 3.2806 0.9316 0.8390 0.7311
UE.sq 245.4443 463.4325 3.8516 18.7554 0.9265 0.8375 0.7377
vol.CPI 0.8168 0.5930 1.3497 1.1439 0.9937 0.9774 0.9527
vol.PPI 1.9207 1.3050 1.1334 0.4714 0.9900 0.9656 0.9295
vol.HELP 7.2742 4.3801 0.6408 -0.7335 0.9902 0.9639 0.9228
vol.IP 2.7813 1.8615 1.2099 0.8497 0.9890 0.9657 0.9321
vol.UE 9.9326 6.0700 0.9794 0.0586 0.9889 0.9670 0.9357
slope 1.3401 1.3334 -0.3714 0.1274 0.9438 0.8799 0.8264
Yield 10Y (level) 7.0158 2.4334 0.8696 0.3816 0.9891 0.9770 0.9662

Table 1.1: Descriptive statistics for monthly yields at eight different maturities, and for
the yield curve level and slope, where we define the level as the 10-year yield and the
slope as the difference between the 10-year and 3-month yields. The inflation measures
CPI and PPI refer to CPI inflation and PPI (finished goods) inflation, respectively. We
calculate the inflation measure at time t using log(Pt/Pt−12) where Pt is the (seasonally
adjusted) inflation index. The real activity measures HELP, IP, and UE refer to the index
of help wanted advertising in newspapers, the (seasonally adjusted) growth rate in indus-
trial production, and the unemployment rate, respectively. The growth rate in industrial
production is calculated using log(It/It−12) where It is the (seasonally adjusted) industrial
production index. The conditional volatility measures vol.CPI, vol.PPI, vol.HELP, vol.IP,
vol.UE are constructed by using a simple 24-month rolling window approach. By CPI.sq,
PPI.sq, HELP.sq, IP.sq, UE.sq we denote the square of the macroeconomic indices CPI,
PPI, HELP, IP, UE, respectively. The last three columns contain sample autocorrelations
at displacements of 1, 2, and 3 months. The sample period is January 1960 to June 2005.
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of macro-finance papers including for example the macro Nelson-Siegel framework studied

by Diebold, Rudebusch, and Aruoba (2006).

Macroeconomic data (from January 1960 onward) including some of the leading U.S.

indicators of inflation (consumer price index of finished goods (CPI), producer price in-

dex of finished goods (PPI)), and real activity (the index of Help Wanted Advertising in

Newspapers (HELP), unemployment (UE), the growth rate of industrial production (IP))

are available from the Datastream International. In order to ensure stationarity, we trans-

form the monthly macro time series by using annual log differences. We follow Ang and

Piazzesi (2003), Audrino (2006) and Diebold, Rudebusch, and Aruoba (2006) in computing

the annual growth rates. The caption for Table 1 lists the applied transformations.

An important stylized fact is that shocks in the economy have a significant impact on

the dynamics of the yield curve. Therefore, it is intuitive that the term structure dynamics

may not only be linked to the level but also to the volatility of the different macroeconomic

indicators. In order to exploit this additional macroeconomic information, we construct our

measures of conditional volatility of the macro indices by using a simple 24-month rolling

window approach. The size of the rolling window is mainly motivated by the degree of

smoothness as well as the magnitude of correlation between the yields of different maturities

and the conditional volatility of the macroeconomic data. Finally, we also include in our

pool of predictors the empirical proxies of the variance of the macroeconomic data just by

squaring the different indices. Cross–correlations reveal that there is only a weak correlation

among the different macroeconomic variables.

We divide our data set into two parts. We use the data between January 1961 and

December 2001 as the in-sample period, whereas the remaining data from January 2002 to

June 2005 are left to evaluate the out-of-sample forecasts of the different models.

1.3.2 What is driving the Yield Curve Predictability?

Level dynamics

As discussed in the previous section, using best subset selection we are able to infer the

most important variables determining the level dynamics of the yields for every maturity.

Although the methodology itself has no economic structure, the consistency between the

selected variables via best subset selection and the economic literature is striking. The

results are presented in Table 1.2.

Judging from the results presented in Table 1.2 Panel A, we can draw a number of

conclusions. Based on the clear pattern the results can be summarized by 3 groups: short,

mid-term, and long maturities. Whereas the behavior of the short- and long-term maturities

is linked to both endogenous and exogenous variables, the mid-term maturities exploit only
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Panel A: Best Subset Selection

Maturity (nτ ) Δynτ slope level PPI HELP HELP.sq vol.PPI vol.CPI

3M � � � � � �
6M � � � � � �
1Y �
2Y �
3Y �
5Y � � � �
7Y � � � �
10Y � � � �

Panel B: Optimal Regime Structure

Maturity Optimal Regime Structure # Regimes

3M
CPIt−1 ≤ 3.5316

2
CPIt−1 > 3.5316

6M
CPIt−1 ≤ 3.5316

2
CPIt−1 > 3.5316

1Y
HELPt−1 ≤ 61.82

3HELPt−1 > 61.82 and slopet−1 ≤ −0.0662
HELPt−1 > 61.82 and slopet−1 > −0.0662

2Y
HELPt−1 ≤ 61.82

3HELPt−1 > 61.82 and slopet−1 ≤ −0.0662
HELPt−1 > 61.82 and slopet−1 > −0.0662

3Y
HELPt−1 ≤ 61.82

3HELPt−1 > 61.82 and slopet−1 ≤ −0.0662
HELPt−1 > 61.82 and slopet−1 > −0.0662

5Y
volatilityPPIt−1 ≤ 0.5935

2
volatilityPPIt−1 > 0.5935

7Y no regimes 1

10Y
volatilityPPIt−1 ≤ 0.5935

2
volatilityPPIt−1 > 0.5935

Table 1.2: Best subset selection results (Panel A) and optimal regime structure (Panel
B) found for every maturity. The variables we take into consideration are the following:
the yield’s first difference for maturity nτ , τ = 1, . . . , 8 denoted by Δynτ

, yield curve’s
level, defined as the yield with the longest maturity in our sample (10 years), the yield
curve’s slope (the longest (10 years) minus the shortest maturity (3 months) in our sample)
the macroeconomic indices CPI, PPI, HELP, IP, UE, the square of the macroeconomic
indices CPI.sq, PPI.sq, HELP.sq, IP.sq, UE.sq, and the conditional volatility of the above-
mentioned macroeconomic indices vol.CPI, vol.PPI, vol.HELP, vol.IP, vol.UE. See text for
more details about the model setup and the estimation procedure.
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endogenous information.

The linear dynamics for the three- and six-month yields’ returns found in our model is

very similar to those implied by the standard macroeconomic models. In particular, similar

to the Clarida, Gali and Gertler’s (2000) framework, which encompasses Taylor’s (1993)

rule as a special case, the central bank determines the short nominal interest rate (rt+1)

depending on the difference between the expected inflation (Et[πt+1]) and the inflation

target (π�
t ) set by the central bank (which is allowed to be time-varying), on the output

gap Et(zt+1) as well as on the lagged short-term interest rate rt−1. Precisely,

rt = β(Et[πt+1] − π�
t ) + γEt(zt+1) + ρrt−1. (1.2)

For the linear dynamics of our resulting model, the combination of the yield curve’s level

and the inflation variables (level and conditional volatility of inflation (vol.PPI)) might be

seen as a measure for the difference between the expected and the target inflation. However,

the exact behavior of the two variables, expected inflation and inflation target, is rather

difficult to disentangle. The reason is that both are in general unobservable. In addition,

the linear combination of the square of the real activity component (HELP), and the slope

of the yield curve may be considered as a measure for the expected output gap. The

above-mentioned conclusions about the level and the slope of the yield curve are fully in

line with the existing macro-finance literature. Examining the correlations between Nelson-

Siegel yield factors and a large set of macroeconomic variables, Diebold, Rudebusch, and

Aruoba (2006) find that the level factor is highly correlated with inflation, and the slope

factor is highly correlated with real activity. Rudebusch and Wu (2008) provide a similar

interpretation. They find that the level factor reflects market participants views about the

underlying or medium term inflation target of the central bank, whereas the slope factor

captures the cyclical response of the central bank aimed at stabilizing the real economy

and keeping inflation close to target. Finally, the autoregressive term in our resulting

model corresponds to the last term in (1.2), reflecting the Federal Reserve policy to smooth

changes in interest rates.

For the mid-term maturities (one-, two- and three-year yields’ returns), we find that the

linear dynamics is driven only by endogenous information. More precisely, the mid-term

yield returns follow an AR(1)-GARCH(1,1) process.

Perfectly in line with the empirical observations, the long-term maturities (five-, seven-

and ten-year yields) capture a strong macroeconomic effect. They are linked to the level of

the yield curve, the level of real activity (HELP), and the conditional volatility of the two

inflation indices CPI and PPI.
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Regimes

Similar to the previous subsection, based on the threshold structure, the results could be

split into three parts: short-, middle- and long-term maturities. As mentioned above, the

regimes for every maturity are determined endogenously, based on our in-sample period

between January 1961 and December 2001.

Short-term maturities

For the short-term maturities we find two limiting regimes, characterized by the level

of inflation or more precisely, CPI. The results are given in Table 1.3.9

Short-term Maturities’ Parameter Estimates

3 Months 6 Months

Optimal Regime Structure Variable Coefficient t-statistic Coefficient t-statistic

CPIt−1 ≤ 3.5316

const 0.1729 29.5631 0.2101 31.1557
Δy 0.1826 33.6940 0.2463 29.4939
slope 0.0406 18.9258 0.1205 6.8212
level 0.0262 15.8349 -0.0557 -14.2697
PPI 0.0084 19.0392 0.0092 27.4288
HELP.sq 8e-06 2.2432 0.0000 0.0000
vol.PPI -0.0580 -31.1357 -0.0909 -69.8259
ωnτ 0.0385 27.0689 0.0462 27.0864
ε2
t−1,nτ

0.1347 4.2985 0.1068 3.5909

ht−1,nτ 0.0000 0.0046 0.0006 0.8040

CPIt−1 > 3.5316

const 0.2131 9.5540 0.2541 46.8190
Δy 0.1202 10.4486 0.1010 19.8693
slope 0.1064 40.2900 0.0849 7.2371
level -0.0458 -11.6777 -0.0361 -7.3638
PPI -0.0012 -0.3901 0.0059 0.1370
HELP.sq 4e-06 0.3462 0.0000 0.0000
vol.PPI -0.0152 -5.8731 -0.0519 -3.3263
ωnτ 0.1800 22.7663 0.1598 10.3497
ε2
t−1,nτ

0.8275 51.1376 0.5685 44.9099

ht−1,nτ 0.0077 0.2294 0.2093 11.5955

LB2
5 7.2069 (0.2057) 6.1919 (0.2880)

LB2
10 15.033 (0.1309) 14.0398 (0.1712)

LB2
15 16.6322 (0.3413) 15.9012 (0.3886)

Table 1.3: Local parameter estimates, optimal threshold structure and related statistics for
3- and 6-month yields from the macro-tree regime-switching model. The sample period is
January 1961 - December 2001, for a total of 492 monthly observations. t-statistics are
based on heteroskedastic-consistent standard errors. LB2

i denotes the Ljung-Box statistic
for serial correlation of the squared residuals out to i lags. p-values are in parentheses.

9Note that the coefficients reported in Table 1.3, Table 1.4, and Table 1.5 are for the yields first differ-

ences.

24



The threshold structure is fully in line with the Federal Reserve’s monetary policy, where

the short rate is used as an instrument to promote national economic goals. A well-known

fact (general monetary policy rule) is that in times of high inflation, the Federal Reserve

tends to raise the short end of the yield curve in order to provide economic stability. There-

fore, it is not a surprise that the regimes are linked to the level of the leading inflation index

CPI. Though our in-sample period encompasses several Fed monetary policy changes with

substantial differences in the short rate response to the expected inflation,10 our resulting

model is still valid. The reason for this is that in our model the inflation threshold has

an impact mainly on the level of the short rate, whereas the conditional piecewise linear

dynamics - especially the linear combination of the yield curve’s level, slope, the macroe-

conomic level of inflation PPI, and the conditional volatility of inflation vol.PPI - captures

the fluctuations in the short-term maturities. In other words, the main difference between

the conditional means for the two limiting regimes lies in the magnitude of the resulting

yield values. This finding is perfectly in line with the existing macro-finance literature. For

example, examining the structural impulse responses of their macro-factor model for joint

dynamics of the yields, Ang and Piazzesi (2003) document that inflation surprises have

large effects on the level of the entire yield curve.

Another interesting finding is that in both regimes, shocks in the economy have an

immediate impact on the short-term yields’ returns. In periods of moderate to low in-

flation (CPI ≤ 3.5316), shocks in the economy have a small but significant impact on

the yield dynamics. In the second limiting regime, characterized by moderate to high in-

flation (CPI > 3.5316), the impact of individual shocks is much higher than in the first

regime. Note also that in the second regime, the individual impact of shocks in the economy

decreases (from 0.8275 for 3-month to 0.5685 for 6-month yield returns), whereas the per-

sistence of the shocks increases significantly (from 0.0077 for 3-month to 0.2093 for 6-month

yield returns) with time to maturity.

Based on our in-sample data, we find that the short maturities exploit two regimes.

At first glance, this finding seems a little bit intact with the study of Audrino (2006) and

Audrino and Medeiros (2011), where using almost the same in-sample period the authors

found that the short rate is subject to four and three limiting regimes, respectively. There

are at least two possible reasons why we find only two limiting regimes in our study. One

reason could be that both studies focus on one-month U.S. Treasury bill rates, whereas

the shortest maturity in our data set is three months. A stylized fact is that the yield

persistence increases with maturity. Therefore it seems quite natural that the short end

10For a discussion of the Federal Reserve policy rules in the different subperiods, see Clarida, Gali, and

Gertler (2000). Although the results are not reported here, we have also tested for structural breaks in the

economy.
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Mid-term Maturity Regimes and NBER Business Cycles

Time

Y
ie

ld
 (P

er
ce

nt
)

1960 1970 1980 1990 2000

2
4

6
8

12
16

Time

Y
ie

ld
 (P

er
ce

nt
)

1960 1970 1980 1990 2000

2
4

6
8

12
16

Figure 1.1: The top and the bottom panels plot the one-year yield time series for the period
January 1961-December 2001. The gray bars in the top panel overlay periods with low real
activity HELP ≤ 61.82 as found in Regime 1. The gray bars in the bottom panel overlay
periods with medium and high real activity HELP > 61.82 and yield curve slope ≤ -0.0662
as found in Regime 2. NBER recessions are indicated by shaded bars. See text for more
details.

of the yield curve is subject to more regimes that the long end. A second reason could be

that in both Audrino (2006) and Audrino and Medeiros (2011) the local dynamics of the

short rate is fixed and follows the classical CIR process. In this chapter, however, we allow

for more flexible linear structure using best subset selection on first place and afterwards

determining the regimes. This essentially implies that some of the hierarchial structure

found in Audrino (2006) and Audrino and Medeiros (2011) enters in a linear way in our

modeling framework. In the next section we show that this feature is not a drawback since

our model outperforms significantly the model of Audrino (2006).

Mid-term maturities

The threshold structure with three limiting regimes found for the mid-term maturities

mainly reflects the yield curve behavior across business cycles. The dependence of the

regimes on the real activity index HELP confirms Ang and Piazzesi’s (2003) finding that

output shocks have a significant impact on intermediate yields. The regime structure and

the estimated coefficients are presented in Table 1.4.
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The first regime (HELP ≤ 61.82) essentially encompasses short periods towards or

right after the end of recessions with particularly low mid-term yields. The upper panel of

Figure 1.1 illustrates this finding.

The second limiting regime is characterized by both a negative slope of the yield curve

(slope ≤ −0.0662) and moderate to high real activity (HELP > 61.82). The dependence

on the slope is not a surprise, since in general the slope of the yield curve is considered

one of the most important forecasters of the short- and mid-term economic growth.11 This

regime structure mainly describes the mid-term yield behavior right before or in the very

beginning of recession periods. The bottom panel of Figure 1.1 confirms this finding. The

resulting GARCH dynamics for this limiting regime clearly shows that individual shocks

have no immediate impact. The estimated coefficient for the autoregressive term in the

GARCH dynamics for each of the mid-term maturities in this regime (Regime 2) exceeds

one. This non-stationarity in the GARCH model indicates not only high persistence of the

individual shocks but also reflects the uncertainty in the economy.

The third regime with moderate to high real activity (HELP > 61.82) and in general

positive yield curve slope (slope > −0.0662) spans more than 70 percent of the in-sample

period and reflects the standard mid-term yield curve behavior. In this regime individual

shocks in the economy have a small but significant impact. They are also strongly persistent,

although less so than those found in the second regime. Here, it is also important to note

that the shock persistence in this regime decreases with time to maturity (from 0.9161 for

the one-year yield to 0.7852 for the three-year yield).

Long-term maturities

Finally, for the long maturities we find that the regimes are characterized by the condi-

tional volatility of inflation (vol.PPI). Results are reported in Table 1.5.

This threshold structure is fully in line with the macro-finance literature, where the

behavior of the long-end of the yield curve is strongly related to inflation (inflation level,

volatility of inflation, expected inflation, inflation target, inflation gap, inflation risk pre-

mium, etc.). For the first regime we find that it is characterized by low conditional volatility

of inflation (vol.PPI ≤ 0.5935). In this regime the resulting yields are low, reflecting the

stability in the economy. Individual shocks have moderate (for the five-year yield) to

negligible (for the ten-year yield) impact on the yields’ returns, whereas their persistence

increases with maturity. The other limiting regime is characterized by moderate to high

conditional volatility of inflation (vol.PPI > 0.5935). Here the levels of the long-term yields

are significantly higher than those found in the other limiting regime. The persistence of

11The rule of thumb is that an inverted yield curve (short rates above long rates) indicates a recession

in about a year.
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Long-term Maturities’ Parameter Estimates

5 Years 10 Years

Optimal Regime Structure Variable Coefficient t-statistic Coefficient t-statistic

volPPIt−1 ≤ 0.5935

const -0.1540 -0.8477 0.2117 1.1637
level 0.0654 1.0950 -0.0374 -0.7929
HELP -0.0017 -0.7444 -0.0004 -0.2575
vol.CPI -0.0643 -0.4163 0.1795 1.1959
vol.PPI 0.0024 0.0131 -0.1450 -0.9841
ωnτ 0.0005 0.2769 0.0003 1.9806
ε2
t−1,nτ

0.6736 2.4245 0.0001 0.0011

ht−1,nτ 0.3216 1.7743 0.7778 16.6318

volPPIt−1 > 0.5935

const 0.1331 1.4707 0.1131 1.3419
level -0.0527 -3.9959 -0.0445 -4.0519
HELP 0.0024 2.3462 0.0020 2.0917
vol.CPI 0.1886 3.2182 0.1551 3.6091
vol.PPI -0.0678 -2.9253 -0.0520 -3.1801
ωnτ 0.0094 1.1868 0.0056 1.6716
ε2
t−1,nτ

0.1036 2.9457 0.0930 2.3062

ht−1,nτ 0.8334 11.0224 0.8543 13.8319

LB2
5 4.6216 (0.4638) 4.8898 (0.4295)

LB2
10 9.7054 (0.4667) 10.4846 (0.3991)

LB2
15 10.8031 (0.7664) 13.5046 (0.5634)

7 Years

Optimal Regime Structure Variable Coefficient t-statistic

no regimes

const 0.0474 1.0659
level -0.0462 -2.6178
HELP 0.0029 2.5623
vol.CPI 0.1869 2.7582
vol.PPI -0.0641 -2.6711
ωnτ 0.0002 0.0602
ε2
t−1,nτ

0.1856 2.5730

ht−1,nτ 0.8496 13.5133

LB2
5 21.4143 (0.0007)

LB2
10 39.9147 (0.0000)

LB2
15 57.6575 (0.0000)

Table 1.5: Local parameter estimates, optimal threshold structure and related statistics
for 5-, 7- and 10-year yields (in the upper table) from the macro-tree regime-switching
model. The optimal resulting structure for the 7-year yield is the global model (without
regime shifts). The sample period is January 1961 - December 2001, for a total of 492
monthly observations. t-statistics are based on heteroskedastic-consistent standard errors.
LB2

i denotes the Ljung-Box statistic for serial correlation of the squared residuals out to i
lags. p-values are in parentheses.
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individual shocks is very high, whereas their immediate impact is comparatively small. For

the seven-year yield we were not able to find any optimal threshold structure.

Based on the threshold structure found for each maturity, one may easily conclude that

overall the entire yield curve is potentially subject to twelve (two for the short-term, three

for the mid-term, and up to two for the long-term maturities) regime shifts. However, due

to the mutual dependence among the different thresholds, in reality, the number of regimes

is much smaller, since the resulting thresholds (level of CPI, volatility of PPI, slope of the

yield curve, and level of HELP) are correlated.

Finally, analogously to Audrino (2006), we analyze the correspondence between NBER

business cycles and the regime structure found for each maturity. In particular, we compute

the frequency of the regimes in the recessions versus expansions. The results are reported

in Table 1.6.

In addition, as in Bansal, Tauchen, and Zhou (2004) and Audrino (2006), we compute

correlations between the yield curve’s slope, HELP, CPI and NBER business cycles. The

absolute correlations between yield curve slope, HELP, CPI, and the NBER indicator are

0.1248, 0.1654, and 0.4452, respectively. Thus, we can once again conclude that the optimal

threshold structure we find for each maturity is quite natural.

Stylized Facts

Since we focus explicitly on modeling the yield curve dynamics over time, an important

model diagnostics would be to see how well our resulting model is able to fit also the

cross-section of yields. In this section we test our model’s ability to replicate the most

important stylized facts found in the the term structure literature. Here we focus on the

following stylized facts, summarized by Diebold and Li (2006): (i) the average yield curve

is upward-sloping and concave; (ii) the fitted model is able to reproduce the variety of

yield curve shapes observed through time: upward-sloping, downward-sloping, humped,

and inverted-humped; (iii) short rates are more volatile than long rates; (iv) long rates are

more persistent than short rates.

Figure 1.2 and Figure 1.3 provide a graphical representation of the above-mentioned

facts.

The upper panel of Figure 1.2 shows the average (median) fitted yield curve together

with its interquartile ranges. The average upward-sloping form, the concavity, as well as

the fact that short rates are more volatile than long rates are apparent. The short end

of the yield curve is obviously steeper and flattens with maturity. Based on Figure 1.2,

we can easily draw one more conclusion - the distribution of yields around their median is

asymmetric with a longer right tail.

Next, Figure 1.3 presents four fitted yield curves for some selected dates. Apparently,
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Panel A: Median Yield Curve
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Panel B: Boxplots Yield Curve

3M 6M 12M 24M 36M 60M 84M 120M

2
4

6
8

10
12

14
16

Y
ie

ld
 (P

er
ce

nt
)

Figure 1.2: Panel A shows the median fitted (data-based) yield curve with interquartile
range (25th and 75th percentiles). Panel B presents Boxplots for the fitted (model-based)
yields for every maturity. The data span the time period January 1961-December 2001, for
a total of 492 observations.
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Selected Fitted Yield Curves
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Figure 1.3: Fitted (model-based) yield curves for selected dates (dotted lines), together
with actual yields (stars). See text for details.

our model is able to capture the broad variety of shapes the actual yield curve assumes

through time: upward-sloping, downward-sloping, humped, and inverted-humped. The

model does not provide a perfect fit at any point in time, but its overall match is quite

good.

The boxplots presented in the bottom panel of Figure 1.2 show that our model is per-

fectly in line with the stylized fact that short rates are more volatile than long rates.

The clear linear pattern presented in Table 1.2 Panel A as well as the threshold structure

given in Table 1.2 Panel B reflect one additional stylized fact: yields of near maturities are

highly correlated, and therefore it is quite natural that the forces moving the short, middle,

and long part of the yield curve are one and the same within the three groups, but quite

different among them.

1.3.3 Out-of-Sample Forecasting

Apart from the economic linkage and the ability to replicate at least the most important

stylized facts, a good term structure model should also be able to provide a good out-of-

sample fit. In this section we compare the out-of-sample performance of our model to those

of several strong competitors for maturities of 3 and 6 months and 1, 2, 3, 5, 7 and 10

years. In particular, we focus on the following 6 models: (i) Random walk; (ii) VAR(1) on
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yields levels; (iii) two dynamic specifications of Nelson-Siegel for the yields levels proposed

by Diebold and Li (2006); (iv) Markovian regime switching model of Gray (1996); (v) tree

structured regime switching model of Audrino (2006); and (vi) the one regime version of

our model.

In this chapter, we assess the prediction accuracy of the different models by means of

two different measures. In particular, we focus on the mean squared errors (MSE). The

measure is given by:

MSE-mean =
1

n

n∑
t=1

(Δy(t, nτ ) − μ̂t,nτ
)2 .

To improve the prediction accuracy of our model, we use bagging. As stated above, bagging

is a machine learning technique aimed at reducing the variance and thus improving the

forecasting performance of various estimators such as trees. Applied to our data set, for

building the bootstrap samples we use block bootstrapping of Künsch (1989), where we set

the block size value q to be equal to 20 and the number of iterations B to be equal to 50.

For completeness, we also apply bagging to all the competitors’ models. Apart from

Audrino’s (2006) model we do not find any significant improvement in the out-of-sample

performance of the other models. The reason for this lies in the structure of the modeling

framework.12 The results are presented in Table 1.7.

Comparing the one-month-ahead out-of-sample results of the different models (see Table

1.7), without considering bagging, we find that our model has overall good performance

at all eight maturities. Matters improve dramatically, once we apply bagging. The SPA

p-values, based on all fifteen model specifications, presented in Table 1.8 reveal that the

forecasts yield from the bagged versions of our model are significantly better than almost all

of the alternative approaches. Based on the multiple comparison test, we cannot conclude

that our model significantly outperforms the random walk.13 However, a direct comparison

between the bagged version of our model and those of the random walk via Diebold and

Mariano (1995) test indicates that we are able to beat the random walk at least for the

short- and the long-term maturities. For completeness, in the Appendix we provide in–

sample results for our models.

1.4 Conclusion

In this chapter we present a methodology to build and estimate a discrete-time regime-

switching model of interest rates that incorporates latent and macroeconomic factors and

12Bühlmann and Yu (2002) have conducted extensive research on this topic.
13Several studies (see, for example, Duffee (2002) and Ang and Piazzesi (2003)) have documented that

beating the random walk is indeed a challenging task, especially over short horizons.
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takes into account the heteroskedastic nature of the interest rates.

In contrast to the existing models, the proposed model is purely data-driven and is

able to identify, for every maturity, the most relevant latent and macroeconomic factors

both for the local dynamics as well as for the regime structure. As such, it offers a clear

interpretation and regime specification while remaining highly competitive in terms of out-

of-sample forecasting.

Applying our model to US interest rate data we draw a number of conclusions. First,

we find one and the same clear pattern both for the resulting local dynamics and for the

regime structure. Based on the pattern, we split the results into three groups: short-, mid-

and long-term maturities. For the short maturities we find correspondence between the

resulting local structure and the monetary policy models described in the macroeconomic

literature. More precisely, the local dynamics of the short end of the yield curve is driven by

macroeconomic (inflation, real activity) and term structure (level, slope, and autoregressive

term) information. Not surprisingly, we find two limiting regimes linked to the level of

inflation (CPI). The optimal threshold structure for the mid-term maturities is determined

by the sign of the term structure slope coefficient and the leading real activity indicator

HELP. Here, the local dynamics follows a pure AR(1)+GARCH(1,1) process. For the long-

term maturities we find that they are subject to up to two regime shifts determined by the

conditional volatility of inflation. The local structure of the long end of the yield curve

captures the strong macroeconomic impact related to the level of the real activity (HELP)

and the inflation’s conditional volatility (CPI and PPI).

Second, we conclude that our framework is consistent with the key stylized facts of the

yield curve behavior. Finally, we compare the out-of-sample accuracy of our model to those

of several strong competitors and find that the bagged version of our model significantly

outperforms the other approaches most of the time.
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Chapter 2

Bond Risk Premia Forecasting: A

Simple Approach for Extracting

Macroeconomic Information from a

Panel of Indicators

2.1 Introduction

In their highly influential paper, using a reduced form no–arbitrage framework with time–

varying risk premia, Ang and Piazzesi (2003) conclude that macroeconomic variables have

an important explanatory power for yields and that the inclusion of such variables in term

structure models can improve their forecasting performances significantly. More recently,

many other studies (see, among others, Ludvigson and Ng (2009b), Joslin, Priebsch, and

Singleton (2009), Duffee (2011) for the U.S. or Wright (2009) in an international context)

have documented that macroeconomic variables capture significant predictive power for

bond excess returns over and above the standard financial factors. In order to avoid relying

on specific macro series, Ang and Piazzesi (2003) and Ludvigson and Ng (2009a), measure

different macroeconomic fundamentals as the first principal components of blocks of large

numbers of macroeconomic series.

In this chapter we propose considering macroeconomic variables as possible relevant

factors for modeling the dynamics of the bond risk premia process (and therefore the whole

term–structure). We take into account not only the level of a macroeconomic variable, but

also its volatility. Moreover, we also propose a different method for reconstructing the level

and volatility dynamics of the latent macro–factor from a bunch of observable indicators.

Our approach is considerably simpler from a computational perspective than the classical

ones introduced in the literature and at the same time performs better in simulations as

well as in a real data applications.

In macroeconomics, it is common to have a large set of indexes that measure or are

highly dependent on a latent macroeconomic variable. Given the pervasiveness of het-
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eroskedasticity in macroeconomic variables, we model the observable set of proxies using

a multivariate conditionally heteroskedastic exact factor model, i.e. a linear factor model

where the heteroskedastic conditional variance is a function of the past values of the la-

tent factor (see for instance, Diebold and Nerlove (1989)). In such a type of model, the

conditional density, depending on unobservable variables, is generally unknown. As a con-

sequence, the log-likelihood function cannot be obtained explicitly and hence standard

maximum likelihood estimators cannot be employed (Harvey, Ruiz, and Sentana (1992) ).

To overcome this problem, alternative estimation procedures have been proposed in the

literature: the Bayesian Markov chain Monte Carlo (MCMC) estimation methods intro-

duced by Fiorentini, Sentana, and Shephard (2004) and the indirect inference estimators

introduced by Sentana, Calzolari, and Fiorentini (2008).

However, following the direction proposed by Diebold and Nerlove (1989) and Sen-

tana (2004), in this study we introduce a (computationally) simple estimation approach

that relies on filtering the latent factor from a panel of data via an iterated Kalman fil-

ter procedure. This approach hinges on recent results about efficient estimation of the

macro-parameters in dynamic panel data models with a common factor. In particular,

Gagliardini and Gourieroux (2009) showed that substituting the true factor values by their

cross-sectional approximations does not lead to any asymptotic efficiency loss. For the

cross–sectional reconstruction of the latent factor we propose an iterated process in which

we estimate the volatility dynamics of the factor from the time series of a first (time–

invariant) Kalman filter approximation of the factor and use it in a new cross–sectional

conditional (time–varying) Kalman filter estimation. New volatility dynamics can be esti-

mated from the dynamics of the new estimated factor and the procedure can be iterated

until convergence.

Simulation results based on different data–generating processes and the same amount of

data that are available in the empirical application show the unbiasedness of the proposed

estimator for the conditional variance parameters and its superiority to other simple alter-

native methods, in particular, to the principal component approach used by Ludvigson and

Ng (2009a).

The superiority of our approach is also confirmed by a real data application. Using a

panel of 21 monthly inflation time series, we filter the level and the volatility of inflation via

several different techniques. We test the ability of the estimated factors in forecasting long–

term bond risk premia and find that both the level and the volatility of inflation obtained

via an iterated Kalman filter significantly outperform the other competitors. Moreover,

by analyzing the correspondence between the different factors and National Bureau of

Economic Research (NBER) business cycles, we show that our inflation estimates are not

only statistically but also economically significant.

The reminder of the chapter is organized as follows. Section 2.2.1 describes in detail
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the procedure of reconstructing the level and volatility dynamics of a latent factor. Section

2.2.2 shows the performance of the latent macroeconomic variable and its volatility in a

simulation study. In Section 2.3 we apply our estimation technique on real macroeconomic

data. Section 2.4 concludes.

2.2 Reconstructing the dynamics and volatility of the

latent factor

Our purpose in this section is to reconstruct the underlying time series dynamics of a latent

macroeconomic variable and its volatility process from the observations of a certain number

of proxies. We propose a simple estimation approach that exploits the possibility of filtering

the latent factor from cross-sectional information via an iterated Kalman filter procedure.

2.2.1 Model and estimation procedure

We model the latent factor dynamics at time t through a factor model for theN -dimensional

vector of the observables rt = (rt,i)
N
i=1

rt = Bft + et, for t = 1...T (2.1)

with B the N × k matrix of factor loadings, et the N × 1 vector of idiosyncratic noises,

and the latent factor ft being the variable of interest. In our empirical study of Section

3 we consider a univariate factor representing the latent inflation (i.e., using the standard

notation, ft = πt) and, as observables, a number of index proxies for inflation such as

different types of Producer and Consumer price indices.

The main assumptions of the model can be expressed in the following form:(
ft

ut

)
|It−1 ∼ N

[(
0

0

)
,

(
Δt 0

0 Φ

)]
. (2.2)

The latent factor ft is assumed to follow a general GARCH type dynamic with (for simplic-

ity) mean zero and (for identifiability) unconditional unit variance i.e. ft|It−1 ∼ N(0,Δt)

with E[Δt] = Δ = Ik the identity matrix of order k.1 The information set It contains

current and past values of r and f , i.e. It = {rt, ft, rt−1, ft−1, · · · , }. As in standard factor

models, the vector of idiosyncratic noises et is conditionally orthogonal to ft and has a

positive semidefinite diagonal variance matrix Φ, then the conditional distribution of rt is

rt|It−1 ∼ N(0,Σt) where Σt = BΔtB
′ + Φ has the usual exact factor structure.

1 Although possible in principle to extend the model to include dynamics in the conditional mean of the

factor, this would certainly complicate both the reconstruction of the latent factor and the estimation of

the dynamics of Δt. Since our purpose in this chapter is to propose an unbiased estimation method which

is as simple as possible, we leave this extension of the model for future research.
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In the literature this type of model is called a multivariate conditionally heteroskedastic

exact factor model and nests several models widely used in empirical finance (for instance,

Diebold and Nerlove (1989)). When the variance of the factor is a function of lagged values

of ft, as in the GARCH case, the exact form of the conditional density of rt given its past

is generally unknown and, hence, the log-likelihood function cannot be explicitly obtained

(Harvey, Ruiz, and Sentana (1992)). To overcome this problem, Bayesian Markov chain

Monte Carlo (MCMC) estimation methods, simulated EM algorithm Fiorentini, Sentana,

and Shephard (2004) and indirect inference estimators Sentana, Calzolari, and Fiorentini

(2008) have been proposed in the literature.

Here, instead, we propose a simpler approach in which we iterate between filtering the

factor with a Kalman filter in the cross–sectional dimension and estimating its variance

dynamics in the time series dimension. This approach hinges on the idea contained in the

recent literature on estimators of the macro-parameters in dynamic panel data models with

a common factor where the macro-parameter is estimated by means of cross-sectional ap-

proximations (Forni and Reichlin (1998), Forni, Hallin, Lippi, and Reichlin (2004), Gagliar-

dini and Gourieroux (2009) ). These studies show that, under certain speed of convergence

assumptions,2 estimating the macro-parameter on the cross-sectional approximations of the

factors is root–T consistent, asymptotically normal and achieves the same asymptotic ef-

ficiency bound as the one obtained with an observable factor (i.e. the Cramer-Rao bound

in linear Gaussian models). Therefore, the estimators built on the approximated factor

are asymptotically equivalent to the unfeasible estimator that uses the true factor values.

These efficiency results are obtained under certain asymptotic schemes which are not ex-

pected to necessary hold in our setting. Therefore, whenever these asymptotic conditions

are not satisfied, estimators based on more complex simulated estimation methods (as the

ones in Fiorentini, Sentana, and Shephard (2004) and Sentana, Calzolari, and Fiorentini

(2008)) are expected to be asymptotically more efficient. However, the big advantage of the

proposed estimator is to be computationally much simpler. This advantage is due to the

way the proposed estimator effectively exploit the cross–sectional dimension (to reconstruct

the factor) in combination with the time–series information (used to filter the variance of

the factor).

Different approaches can be used to approximate ft: simple cross sectional averaging,

principal component analysis (PCA) or factor analysis (FA). In this study we propose a

reconstruction of the ft factor by an iterative procedure in which the factor is first estimated

with a Kalman filter using the cross-section of the observable indicators at our disposal.

From the time series of this first approximation of the factor, the variance dynamics are

estimated in a classical GARCH framework. The estimated GARCH dynamics of the factor

2When N, T → ∞ and T/N → c > 0 the fixed effects estimator is consistent, while if N, T → ∞ such

that T b/N = O(1), b > 1 the estimator is efficient.
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conditional variance are then used in a conditional Kalman filter estimation to obtain new

factor estimates. This iterative procedure is run until convergence. Although we apply

this approach to a case where a one factor model arises naturally, this procedure could be

directly extended to the case of multiple factors provided that one is not interested in the

exact identification of the different factors (because of the indeterminacy induced by factor

rotation).

Before starting the procedure, we need an estimate of the factor loading matrixB. Given

that in these types of models the factor loadings are assumed to be constant over time,

they can be conveniently estimated from unconditional quantities. Moreover, conditionally

heteroskedastic factor models also imply unconditional covariance matrices that have an

exact k factor structure as in the traditional factor models. Hence, recalling that Δ = Ik,

the unconditional covariance matrix Σ can be written as

Σ = BB′ + Φ. (2.3)

Given the different scale of the indices (which have different units of measures), it is desirable

to standardize the variable to avoid the problem of having one variable with a large variance

unduly influencing the determination of the factor loadings. Standardizing by the individual

volatility and working with the correlation matrix is then a customary choice. Clearly, the

correlation matrixR = D−1ΣD′−1 withD = diag(Σ) will also have the same factor structure

R = B∗B∗′ + Φ∗ (2.4)

with B∗ = D−1B and Φ∗ = D−1ΦD′−1.

Since in our case all the observed indexes are mainly driven by a single latent macroe-

conomic variable they are supposed to measure, we assume a factor structure with only

one common factor (i.e. k = 1). Then, the correlation matrix takes the following simple

structure.

R =

⎡⎢⎢⎢⎢⎢⎣
1 b∗1b

∗
2 . . . b∗1b

∗
N

b∗2b
∗
1 1 . . . b∗2b

∗
N

...
. . .

...

b∗Nb
∗
1 b∗Nb

∗
2 . . . 1

⎤⎥⎥⎥⎥⎥⎦
where [B∗]i = b∗i is the generic element of the N × 1 vector B∗. This structure, together

with the fact that the factor loadings of the proxy are assumed to be all positive, suggests

the possibility to estimate the vector of standardized factor loadings B∗ by simply mini-

mizing the difference between any generic off diagonal element of the matrix B∗B∗′ with

the corresponding element of the sample unconditional correlation matrix [S∗]ij = s∗ij , that

is

b̂∗ = argmin
b∗

N∑
i=1

∑
j �=i

(b∗i b
∗
j − s∗i,j)

2. s.t. 0 < b∗i < 1 ∀i (2.5)
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The minimization algorithm in (2.5) projects the sample correlation matrix into the space

spanned by single factor models.

Having the estimated standardized factor loadings B̂∗’s, we can estimate the elements

of the diagonal matrix Φ∗ as [Φ̂∗]ii = 1 − (b̂∗i )
2. Then the original idiosyncratic variance

matrix and factor loadings are simply obtained as Φ̂ = D̂Φ̂∗D̂′ and B̂ = D̂B̂∗ respectively.

With B̂ and Φ̂ at hand, we can now start the Kalman filter iteration. If the joint

conditional distribution of rt and ft given It−1 is normal, the model (2.1) has a natural

time–series state–space representation. In fact, considering the common factor ft as state

variable, equation (2.1) could be seen as a standard measurement equation. When Δt is

considered as a given observable, the Kalman filter would coincide with the conditional

expectation of ft given rt and Δt, i.e. E[ft|rt,Δt], which is optimal in the conditional mean

squared error sense.3 Thus, the conditional Kalman filter estimate of the common factor

would be given by the (unfeasible) updating equation of the filter

fCK
t = ΔtB

′Σ−1
t rt = ΔtB

′(BΔtB
′ + Φ)−1rt. (2.6)

This estimator can be seen as a Bayesian approach for the cross–sectional estimation of

the factor. More precisely, the unfeasible estimator in (2.6) corresponds to the mean of the

posterior distribution of ft given the data rt in a Bayesian approach that considers ft as a

random variable with prior distribution ft ∼ N(0,Δt).

In order to have a feasible conditional Kalman filter, we propose to start the iterative

procedure from the following filter with time–invariant weights

f̂
(0)
t = B̂′Σ̂−1rt = B̂′(B̂B̂′ + Φ̂)−1rt (2.7)

using the estimates B̂ and Φ̂ obtained from the unconditional information.

Having this first reconstruction of the dynamics of the latent macro–variable, we then

get an estimate of the dynamics of its volatility by estimating a GARCH model on f̂t. In

this way we obtain a first estimate of the dynamics of the conditional variance of the factor

i.e. Δ̂
(0)
t which is then used in the conditional Kalman filter estimation of the factor

f̂
(1)
t = Δ̂

(0)
t B̂′Σ̂−1

t rt = Δ̂
(0)
t B̂′

(
B̂Δ̂

(0)
t B̂′ + Φ̂

)−1

rt (2.8)

from which a new reconstruction of the latent factor can be computed and a new conditional

variance dynamics Δ̂
(1)
t estimated. Iterating this procedure provides our proposed estimator

for the dynamics of the latent factor and its conditional variance. Note that in practice,

only a small number of iterations is necessary to reach converge and the algorithm is very

fast.

3Actually, the optimality of the Kalman filter extraction of the factor holds under the more general

assumption that ft and rt follow a conditional joint distribution that is elliptically symmetric (Sentana

(1991)).
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2.2.2 Simulations

We first judge the performance of the proposed approach on the accuracy in the reconstruc-

tion of the time series of the latent factor ft. The first employed data generating process

(DGP) is a one factor model with the latent factor following a GARCH type dynamics with

zero mean and unconditional unit variance. We simulate 1000 paths and for each path we

assume 49 years of monthly observations (T = 588). Similarly to our real data application,

we assume to have 20 observable indicators for the latent macroeconomic variable (N = 20).

The true βs in the DGP are randomly chosen within a range of values analogous to that

estimated on the empirical data.

For comparison purposes we also include the result obtained with a simple cross–

sectional average of the indexes, the factor score obtained with cross-sectional OLS re-

gression, the PCA and the FA with one factor. When N is large enough (so that id-

iosyncratic errors are diversified away) we have that the simple cross-sectional average is

r̄t �
(

1
N

∑N

i=1 bi

)
ft; thus the factor values are recovered up to a scaling constant. We ac-

count for this scaling constant by simply dividing the series of the cross-sectional averages

r̄t by 1
N

∑N

i=1 b̂i. The cross–sectional OLS regression is another common method to gener-

ate factor scores. Contrary to our Kalman filter approach which consider ft as a random

variable, this approach assume the factor to be an unknown parameter and estimate it by

the cross–sectional regression fOLS
t = (B̂′B̂)−1B̂′rt. The FA is performed using the Matlab

command “factoran” which performs maximum likelihood estimate of the factor loadings

and computes factor scores using the weighted least–square (or Barlett) method (which also

treats the factor scores as fix parameters).

Given that the OLS regression approach completely discards the information contained

in Δt and Φ, while FA neglects the information contained in the dynamics of Δt, we expect

them to be less efficient than the Iterated Kalman filter method who optimally exploits the

information in both Φ and Δt.

To judge the accuracy in reconstructing the ft series with the various approaches, we

compute the Root Mean Square Error (RMSE) for each simulated path between the true

path of the latent factor and the estimated one. For each simulation path we also compute

the correlation coefficient between the two series. Results are reported in the first two rows

of Table 2.1 Panel A.

According to both metrics, our proposed procedure for the latent ft process turns out

to be the most precise; it is the one with, on average, the smallest RMSE and the highest

correlation coefficient.

We then evaluate the ability of the different approaches to reconstruct the volatility

dynamics of the true factor by computing the RMSE and correlation coefficient between

the true series of simulated volatilities and the reconstructed ones obtained by fitting a
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Performance Comparison - Simulations

Simple cross-section Factor Principal Iterated
Average OLS Analysis Component Kalman

Panel A

Avg corr on ft 0.9640 0.9526 0.9898 0.9433 0.9899

Avg RMSE on ft 0.2742 0.3161 0.1467 0.3337 0.1391

Avg corr on σt 0.9477 0.9379 0.9677 0.9289 0.9691

Avg RMSE on σt 0.1404 0.1456 0.1293 0.1460 0.0548

Panel B

Avg corr on ft 0.9636 0.9517 0.9900 0.9416 0.9902

Avg RMSE on ft 0.2756 0.3193 0.1455 0.3382 0.1381

Avg corr on σt 0.9454 0.9340 0.9670 0.9244 0.9684

Avg RMSE on σt 0.1397 0.1449 0.1285 0.1451 0.0549

Panel C

Avg corr on ft 0.9635 0.9521 0.9895 0.9426 0.9899

Avg RMSE on ft 0.2757 0.3181 0.1468 0.3361 0.1396

Avg corr on σt 0.6176 0.6077 0.6397 0.5993 0.6444

Avg RMSE on σt 0.2260 0.2291 0.2195 0.2271 0.2032

Table 2.1: Performance comparison of different filtering methods for the factor dynamics
and its conditional volatility over 1000 simulation paths. The methods are: simple cross–
sectional averages, cross–sectional OLS regression, Factor Analysis, Principal Component,
and Iterated Kalman filter. The performance measures are the average correlation and the
average Root Mean Square Error (RMSE). The different DGP in the three panels are given
by the one factor model with: GARCH dynamics in Δt (Panel A), GARCH dynamics in
Δt and Φt (Panel B), GARCH dynamics with two regimes in Δt (Panel C).
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GARCH(1,1) process to the estimated ft series. Again, the Iterated Kalman filter provides

the reconstruction of the latent factor volatility with, on average, the lowest RMSE and

the highest correlation coefficient, as shown in the last two rows of Table 2.1 Panel A.

Finally, in Figure 2.1, Panel A, we plot the distributions of the estimated parameters of

the GARCH process for the volatility.

The figure clearly shows that the estimates of the true parameters α and β of the

GARCH process in the factor DGP are both unbiased and reasonably accurate.

We also test the procedure on two more challenging volatility DGP processes (i.e. with

a purposely misspecified DGP). In the first one the diagonal variance matrix of the id-

iosyncratic noise Φ, which was kept constant over time in the previous set up, is now

also time–varying, with each idiosyncratic component following a different GARCH pro-

cess. The objective of this simulation exercise is to test the robustness of our procedure

in a misspecified set up featuring GARCH dynamics in both the factor and idiosyncratic

conditional variances, i.e. with time–varying Δt and Φt.

The second one consists of a two-regime process with lagged return as the threshold

variable where the local conditional variance evolves according to a FIGARCH(1,d,1) model

(see Baillie, Bollerslev, and Mikkelsen (1996)) in one regime and a model that is not of a

GARCH type in the second regime.

The results are similar to those previously obtained in the correctly specified set up,

confirming in both cases the more accurate reconstruction of the latent process by the

proposed iterated Kalman filter method.

Finally, as in Figure 2.1, Panel A, in Panel B we plot the distribution of the α and

β parameter estimates in the case of DGP process with time varying (GARCH type) id-

iosyncratic noise Φt. GARCH parameter estimates seem to remain unbiased even in this

misspecified context.

[Figure 2.1 about here.]

2.3 Real data application: bond risk premia forecast-

ing

Economic theory suggests that (a great portion of) bond term premia variation is driven

by macroeconomic fundamentals. Yet, the link between macroeconomic activity and risk

premia might be hard to detect. Using different modeling setups, many recent studies (see,

among others, Ludvigson and Ng (2009b), Joslin, Priebsch, and Singleton (2009), or Duffee

(2011)) document that macroeconomic variables capture significant predictive power for

excess returns over and above the standard financial factors. In this section we assess the

performance of our iterated Kalman filter technique in forecasting long–term bond excess
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Panel A:

Estimates Pdf of α = 0.08 Estimates Pdf of β = 0.90
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Panel B:

Estimates Pdf of α = 0.08 Estimates Pdf of β = 0.90
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Figure 2.1: Probability distribution function of the estimation error over 1000 simulation
paths of the parameters of the GARCH(1,1) process for the factor conditional variance
σ2

t = c+αf 2
t−1 +βσ2

t−1 in a DGP with constant (Panel A) and time varying (GARCH type,
Panel B) idiosyncratic noise Φt.
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returns in comparison with principal components analysis and factor analysis.4 Results

obtained applying a principal components analysis are not reported in Section 3.3 given

that they are qualitatively the same, but slightly worse, than those obtained using factor

analysis.

2.3.1 Data and estimated inflation levels and variances

In our empirical study two different datasets are used.

Bond Data

We use monthly data (June 1961 onward) from the Federal Reserve Board constructed as in

Gürkaynak, Sack, and Wright (2006).5 Following Cochrane and Piazzesi’s (2005) procedure,

bond excess returns are calculated in the classical way as 1-year holding period returns in

excess of the one–year risk–free rate. Furthermore, we construct our tent–shape bond–

return forecasting factor described in Cochrane and Piazzesi (2005) (hereafter CP factor)

as a linear combination of forward rates. The inclusion of the CP factor is motivated simply

by the fact that it has high explanatory power for bond excess returns.

Macroeconomic Data

The second dataset consists of monthly observations for 21 U.S. inflation time series. Exact

description of the data is given in Appendix 2.5. The panel spans the period January 1959

– December 2007 and has already been used as a part of other studies: see, among others,

Stock and Watson (2005), Ludvigson and Ng (2009b) and Ludvigson and Ng (2009a). We

build two alternative pairs of estimates for inflation levels and variances. First, similar

to Ludvigson and Ng (2009a), we extract both the first principal component (PC) and

the first factor (FA) as measures for inflation’s level. PC and FA volatility are computed

from fitting a GARCH(1,1) to the estimated principal component and the estimated factor,

respectively. Our second approach for reconstructing the level and the variance of inflation

is based on the iterated Kalman filter procedure described in Section 2.2.1.

For our analysis we take the largest common period of the two datasets and split it

into two parts. We consider June 1961 to December 2003 as in-sample period. The rest

of the data (January 2004 - December 2008) has been left to evaluate the out-of-sample

forecasting performance of the different predictors. Summary statistics of the data are

reported in Table 2.2.

4Another possible alternative procedure is the one proposed by Harvey, Ruiz, and Sentana (1992).

Given the dimensionality of the problem, however, that approach is too computational expensive and is

not implemented.
5The data are available under http://www.federalreserve.gov/econresdata/researchdata.htm.

48



S
u
m
m
a
r
y

S
t
a
t
i
s
t
i
c
s

o
f

D
a
t
a

rx
(5

)
rx

(1
0
)

rx
(2

0
)

rx
(3

0
)

C
P

π
I
K

v
o
l
π

I
K

π
P

C
v
o
l
π

P
C

π
F

A
v
o
l
π

F
A

P
a
n
el

A
:

M
ea

n
0
.0

1
1

0
.0

1
3

0
.0

1
1

0
.0

0
9

0
.0

0
6

0
.8

3
8

1
.0

3
4

0
.0

3
4

0
.8

7
6

0
.4

9
7

0
.4

9
9

S
td

0
.0

5
6

0
.1

0
4

0
.1

9
8

0
.3

2
5

0
.0

1
9

0
.5

7
9

2
.1

0
9

1
.0

1
4

0
.6

9
4

0
.4

0
1

0
.3

7
0

A
C

1
0
.9

3
1

0
.9

2
1

0
.8

8
0

0
.7

9
8

0
.9

1
6

0
.9

8
9

0
.9

9
3

0
.9

7
3

0
.9

5
3

0
.9

9
1

0
.9

9
0

P
a
n
el

B
:

rx
(5

)
1
.0

0

rx
(1

0
)

0
.9

6
1
.0

0

rx
(2

0
)

0
.8

2
0
.9

2
1
.0

0
rx

(3
0
)

0
.6

2
0
.7

2
0
.9

0
1
.0

0
C

P
0
.4

3
0
.4

8
0
.4

9
0
.4

4
1
.0

0
π

I
K

-0
.2

2
-0

.2
5

-0
.2

6
-0

.2
6

-0
.0

6
1
.0

0
v
o
l
π

I
K

-0
.3

1
-0

.3
6

-0
.3

1
-0

.2
9

-0
.1

5
0
.8

9
1
.0

0
π

P
C

-0
.3

0
-0

.2
9

-0
.3

0
-0

.2
9

-0
.4

1
0
.5

5
0
.4

2
1
.0

0
v
o
l
π

P
C

-0
.2

3
-0

.2
4

-0
.2

6
-0

.2
6

-0
.3

8
0
.4

9
0
.4

9
0
.6

9
1
.0

0
π

F
A

-0
.2

7
-0

.2
9

-0
.3

0
-0

.3
0

-0
.1

3
0
.9

7
0
.8

5
0
.6

8
0
.6

1
1
.0

0
v
o
l
π

F
A

-0
.2

6
-0

.3
0

-0
.3

0
-0

.3
0

-0
.1

1
0
.9

7
0
.8

9
0
.5

3
0
.5

5
0
.9

8
1
.0

0
N

B
E

R
0
.0

4
0
.4

6
0
.4

5
0
.1

7
0
.2

4
0
.4

3
0
.4

1

T
ab

le
2.

2:
P
an

el
A

re
p
or

ts
su

m
m

ar
y

st
at

is
ti

cs
fo

r
th

e
fo

ll
ow

in
g

va
ri

ab
le

s:
5,

10
,
20

,
30

ye
ar

b
on

d
ex

ce
ss

re
tu

rn
s

(d
en

ot
ed

b
y
rx

(5
) ,
rx

(1
0
) ,

rx
(2

0
) ,
rx

(3
0
) ,

re
sp

ec
ti

ve
ly

),
C

o
ch

ra
n
e

an
d

P
ia

zz
es

i
(2

00
5)

fa
ct

or
(d

en
ot

ed
b
y

C
P

),
in

fl
at

io
n

le
ve

l
an

d
in

fl
at

io
n

vo
la

ti
li
ty

fa
ct

or
s

es
ti

m
at

ed
b
y

it
er

at
ed

K
al

m
an

fi
lt

er
(d

en
ot

ed
b
y
π

I
K

t
an

d
v
o
l
π

I
K

t
),

b
y

fa
ct

or
an

al
y
si

s
(d

en
ot

ed
b
y
π

F
A

t
an

d
v
o
l
π

F
A

t
),

an
d

b
y

p
ri

n
ci

p
al

co
m

p
on

en
ts

an
al

y
si

s
(d

en
ot

ed
b
y
π

P
C

t
an

d
v
o
l
π

P
C

t
).

N
B

E
R

is
a

b
in

ar
y

va
ri

ab
le

,
w

h
er

e
on

e
in

d
ic

at
es

m
on

th
d
es

ig
n
at

ed
as

re
ce

ss
io

n
s

b
y

th
e

N
at

io
n
al

B
u
re

au
of

E
co

n
om

ic
R

es
ea

rc
h
.

A
C

1
d
en

ot
es

th
e

fi
rs

t
au

to
co

rr
el

at
io

n
co

effi
ci

en
t.

P
an

el
B

re
p
or

ts
cr

os
s–

co
rr

el
at

io
n
s.

49



The adequacy of the one factor structure may be questionable. In fact, the assumption

of the one factor structure is primarily given by the economic consideration that all the

variable in the data set are all proxy of the same underlying macroeconomic variable i.e.

inflation. From a statistical point of view we can observe that the first principal component

explain about 53% of the total variance of the dataset while all the other components

are below 10%. The presence of a highly persistent heteroscedasticity in the series, which

justifies the use of a GARCH(1,1) model, is given by the highly significant results of the

Engle ARCH test with a large number of lags of 50.

Figure 2.2 illustrates the difference between the inflation’s level and the inflation’s

volatility factors obtained using the three different techniques.

As Figure 2.2 clearly shows, the estimated inflation’s level and volatility factors obtained

from the three competing approaches are significantly different.

2.3.2 Financial variables, inflation measures, and business cycles

To begin with, we analyze the correspondence between the NBER business cycles and the

different financial and inflation measures. The last row of Table 2.2 reports the results.

The weak correlation (around 0.04) between the NBER recession and CP factor confirms

Ludvigson and Ng (2009b) finding that, without macro factors, bond risk premia appear

virtually acyclical. Yet, theory says that risk premia have a marked counter–cyclical be-

havior, compensating the investors for macroeconomic risks. The almost two times higher

correlation between the NBER business cycles indicator and the iterated Kalman filter in-

flation variables as well as the ones obtained from FA in comparison to those estimated

with the PC approach assures more pronounced cyclical fluctuations in bond risk premia.

By its iterated nature, our measures for inflation seem to better capture perceptions of risks

looming on the investors horizon. Thus, they convey valid and timely information over and

above that contained in other financial and PC inflation fundamentals. These findings make

the inflation factors obtained by the iterated Kalman filter approach highly economically

significant. No particularly significant difference in the correlations with NBER business

cycles can be seen between our procedure and a classical FA.

2.3.3 Long–term bond risk premia forecasting results

First of all, following the term structure literature to assess the in-sample performance of

our procedure in comparison with the alternative approaches we investigate the impact of

the different pairs of inflation factors (i.e. level and volatility) as predictors for bond excess

returns at different maturities. To this goal we run the following regressions:
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Figure 2.2: The upper panel plots the three estimates of inflation level: iterated Kalman
filter (solid line), factor analysis (dotted line), and principal components (dashed line) based
on a panel of 21 inflation time series, as described in the text. The lower panel plots the
inflation volatility filtered by the three techniques. Once again the solid line indicates the
iterated Kalman filter estimate, the dotted line the estimate got applying factor analysis,
whereas the dashed line represents the dynamics of the principal components volatility.
The shaded bars denote months designated as recessions by NBER.
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t+12 = γ0 + γ1CPt + γ2π

PC
t + γ3volπ

FA
t + ε

(n)
t+12,

Model M8 : rx
(n)
t+12 = γ0 + γ1CPt + γ2π

IK
t + γ3π

FA
t + ε

(n)
t+12

Model M9 : rx
(n)
t+12 = γ0 + γ1CPt + γ2volπ

IK
t + γ3volπ

FA
t + ε

(n)
t+12,

where rx
(n)
t+12 are the excess returns on an n year nominal bond (n = 5, 10, 20, 30) at time

t+ 12. CPt represents the CP factor, πt and volπt denote the inflation level and inflation

volatility factors, estimated by the two different approaches: iterated Kalman filter (denoted

by πIK
t and volπIK

t ) and factor analysis (denoted by πFA
t and volπFA

t ), respectively. To

this end, we estimate nine different models. First, we regress the excess returns only on CP

factor (Model M1). This regression should serve as a benchmark model. Then, in Model

M2 and Model M3 we add one more predictor, the level and the volatility of inflation, each

estimated by the iterative Kalman filter approach. We repeat the same procedure for the

next two models (Model M4 and Model M5), where we add once again the level and the

volatility of inflation, this time estimated by the FA technique. In Model M6 and Model M7

we take into consideration all three predictors: CP factor, level and volatility of inflation.

The only difference between Model M6 and Model M7 is in the way the inflation variables

are measured. In particular, in Model M6 the inflation variables are derived by the iterated

Kalman filter procedure, whereas in M7 FA has been used. In contrast to the previous

models, where the main idea is to assess performance, the individual filtering techniques,

the last two models (Model M8 and Model M9) provide a direct comparison between

the two level (Model M8) and the two volatility (Model M9) factors. All coefficients are

estimated with ordinary least squares, and standard errors are corrected for autocorrelation

and heteroskedasticity. 6 Table 2.3, Table 2.4, Table 2.5, and Table 2.6 present the results.

The estimated coefficients for the CP factor are positive and highly significant for pre-

dicting bond risk premia at all maturities. Fully in line with the literature, the CP factor

accounts for around 28% of the excess returns variation. The strength of the predictive

power of the inflation factors changes with time to maturity of a bond, explaining up to

6% of the variation in addition to the CP factor. The estimated coefficients for level and

volatility of inflation are negative, and they are significant most of the time. The negative

6 In particular, we follow Ludvigson and Ng (2009a) and Cochrane and Piazzesi (2005) and compute

t-statics using the Newey-West adjustment with 18 lags.
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correlation between the different inflation measures and excess returns is quite intuitive, as

higher inflation decreases the value of the nominal bond. Including both level and volatility

of the inflation factor (see Models M6 and M7) in the regression does not seem to improve

the accuracy, and both predictors become statistically not significant.7

Although, at first glance, both filtering techniques seem to perform equally well in this

in-sample investigation, the ability of our approach to reconstruct in a more accurate way

both the level and the volatility of inflation has empirical merits out-of-sample. To support

this, we run a genuine out-of-sample experiment for the remaining period in our sample.

Forecasting results covering the period January 2004 to December 2008 are shown in Table

2.7.

The superior predictive ability test of Hansen (2005) (see Table 2.7) reveals that our

inflation’s level and volatility measures on top of the CP factor matter for forecasting bond

risk premia, significantly outperforming other alternatives. Importantly, however, their

impact can differ, depending on the time to maturity of a bond.

We also test the performance of the two filtering techniques in a more challenging

framework. Without making any additional assumptions, we create a pool of predictors,

including the two different pairs of inflation measures and the CP factor, and let the data

themselves choose the most informative variables. This is achieved by finding for each

possible number of predictors the subset of the corresponding size that gives the smallest

residual sum of squares.8 Then, we use the Bayesian Schwarz Information Criterion (BIC)

to select the best model. We find that regressing the excess returns on the CP factor and

the volatility of inflation obtained by the iterated Kalman filter i.e. Model M3 leads to

optimal results.

Finally, we discuss the overall impact of the individual inflation factors in forecasting

bond risk premia. Based on the in–sample fit, out–of–sample forecasting, and economic

significance, we document that the most important macroeconomic variable for bond ex-

cess returns represents the volatility of inflation estimated via the iterated Kalman filter

technique. Yet, our inflation volatility measure is no longer a statistically significant pre-

dictor of long–term bond risk premia once the level of inflation is in the same regression.

The reason for this is the high correlation between the two iterated Kalman filter factors.

However, their impact varies with the time to maturity of a bond. In general, we may

conclude that the iterated Kalman filter technique allows us to extract in a more accurate

way the investors’ perceptions of inflation risk in comparison with alternative approaches.

7This result is a consequence of the high correlation between the two variables (and both series are very

persistent) together with the necessary Newey-West correction that substantially lowers the t-statistics.
8This procedure is known in the literature as best subset selection. See Hastie, Tibshirani, and Friedman

(2001) for more details.
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Panel A: Out-of-Sample Mean Squared Errors

5Y Bond Exret 10Y Bond Exret 20Y Bond Exret 30Y Bond Exret

M1 0.0033 (0.0679) 0.0091 (0.0163) 0.0320 (0.0000) 0.0873 (0.0000)

M2 0.0029 (0.3114) 0.0074 (0.1292) 0.0256 (0.0818) 0.0706 (0.0860)

M3 0.0028 (0.7174) 0.0070 (0.4381) 0.0241 (0.4289) 0.0674 (0.3816)

M4 0.0029 (0.1424) 0.0076 (0.0060) 0.0265 (0.0007) 0.0731 (0.0000)

M5 0.0029 (0.3086) 0.0075 (0.0067) 0.0259 (0.0006) 0.0709 (0.0090)

M6 0.0028 (0.5228) 0.0070 (0.6444) 0.0242 (0.5927) 0.0683 (0.6727)

M7 0.0030 (0.3163) 0.0076 (0.0265) 0.0260 (0.0007) 0.0707 (0.0186)

Panel B: Out–of–Sample Mean Absolute Errors

5Y Bond Exret 10Y Bond Exret 20Y Bond Exret 30Y Bond Exret

M1 0.0418 (0.0954) 0.0786 (0.0000) 0.1576 (0.0000) 0.2473 (0.0000)

M2 0.0400 (0.4728) 0.0697 (0.1435) 0.1381 (0.0681) 0.2146 (0.1380)

M3 0.0391 (0.7175) 0.0676 (0.3838) 0.1349 (0.4187) 0.2120 (0.4242)

M4 0.0439 (0.1362) 0.0709 (0.015) 0.1412 (0.0006) 0.2200 (0.0000)

M5 0.0422 (0.2092) 0.0704 (0.0257) 0.1396 (0.0010) 0.2169 (0.0018)

M6 0.0390 (0.5643) 0.0676 (0.6722) 0.1348 (0.6992) 0.2118 (0.7385)

M7 0.0440 (0.4819) 0.0709 (0.0066) 0.1398 (0.0030) 0.2165 (0.0016)

Table 2.7: Results (mean squared errors (Panel A) and mean absolute errors (Panel B)) of
out–of–sample forecasting performance of seven different models for 5-, 10-, 20- and 30-year
Treasury Bond excess returns, as described in detail in the text. p-values of the superior
predictive ability (SPA) test of Hansen (2005) are reported in parenthesis. The results are
based on the out-of-sample period, January 2004 - December 2008.
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2.4 Conclusions

In this chapter we propose a new, computationally simple approach for reconstructing

the level and volatility dynamics of a latent macroeconomic factor from a large panel of

macroeconomic indices. Our estimation procedure is based on the iterated Kalman filter

technique in which we iterate between filtering the unobservable factor with a Kalman

filter in the cross–sectional dimension and estimating its variance dynamics in the time

series dimension.

We assess the performance of our iterated Kalman filter approach on a set of empirical

studies. Extensive simulation results reveal the accuracy of our latent factor volatility

estimates and its superiority in comparison with other alternative approaches. Encouraged

by those results, we test the ability of our approach to reconstruct in a more accurate

way the unobservable macroeconomic driver and its volatility on a real data application

– bond risk premia forecasting. Using a panel of a large number of inflation time series,

we filter the level and the volatility of inflation via different techniques. We find that in

predicting long–term bond risk premia, our inflation estimates significantly outperform the

other competitors. In addition, looking at the correspondence between NBER business

cycles and inflation fundamentals, we conclude that our estimates are not only statistically

but also economically significant.

Our analysis could be taken a step further by studying the performance of bond risk

premia in a term structure modeling framework. The iterated Kalman technique could also

be to used obtain more accurate estimates for other important macroeconomic predictors

such as real activity. However, those extensions are left for future research.

2.5 Data Appendix

This appendix presents U.S. inflation data used in our real data analysis. The first column

lists the short name of the inflation variable, followed by its mnemonic in column 2, and a

brief data description in column 4. All data series are from Global Insights Basic Economic

Database. The third column shows the transformations used to assure stationarity of the

individual time series. In particular, Δ ln and lv denote the first difference of the logarithm

and the level of the series, respectively. These data span the period January 1959 - December

2007 for a total of 588 monthly observations.
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Chapter 3

Monetary Policy Regime Shifts and

Asset Prices

3.1 Introduction

Over the last 40 years researchers have actively studied the dynamics of the term structure of

interest rates and its relation with the states of the economy. Most of the recent attention

has been devoted to jointly modeling yield and macroeconomic variables within a no–

arbitrage framework. Motivated by the fact that the unconditional cross-sectional variation

of yields can be almost perfectly summarized by just a small number of latent factors, the

so called “macro–finance” models provide a parsimonious and tractable way to capture

the yield curve dynamics. The link between nominal interest rates and macroeconomy is

then typically made by augmenting the latent factors with relevant (for the term structure)

macroeconomic variables.

One often mentioned but seldom taken into account fact in the macro-finance literature

is the time–varying relation between the short rate and the state of the economy. Indeed,

the literature so far has focused mainly on studying the long end of the yield curve (and the

risk premia associated with it), ignoring the nonlinear behavior of short term maturities.

In general, those nonlinearities can be easily captured by increasing the number of latent

state variables, but this leaves the link between the state of the economy and interest rates

a puzzle.

Taking into account the time–varying relation between the short rate and the state of

the economy is crucial for at least two reasons. First, ignoring nonlinearities in the short

rate dynamics may give misleading results about the impact of the different macroeconomic

fundamentals on the term structure. To gain some insight into this problem, let us consider

a simple Taylor rule monetary policy model for the short rate over two different twenty-year

periods: 1965 - 1984 and 1985 - 2004. Table 3.1 juxtaposes the parameter estimates over

the two subsamples.

Relying only on parameter estimates from the second subsample, one can easily conclude
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Taylor Rule Monetary Policy Model

Global Taylor Rule

rt+1 = γ0 + ρrt + γππt + γggt + εt+1

Coefficient 1965:01–1984:12 1985:01–2004:12 1965:01–2004:12

γ0 0.003∗ 0.001 0.001

(2.576) (1.497) (2.130)

ρ 0.908∗∗∗ 0.974∗∗∗ 0.930∗∗∗

(2.946) (109.230) (55.536)

γπ 0.072∗∗ 0.011 0.065∗∗∗

(2.857) (0.597) (3.568)

γg −0.007∗∗ −0.008∗∗∗ −0.008∗∗∗

(-3.267) (-5.068) (-5.172)

Table 3.1: The table reports parameter estimates for the Taylor rule for three different
sample periods. The short rate (rt) is represented by the three month zero coupon T-
Bills. Inflation (πt) is computed as year-on-year log differences of CPI all items. gt denotes
unemployment growth rate. The first sample (1964:01–1984:12) includes the OPEC crisis
in 1973–1975 and the Fed experiment in 1979–1982, a period typically referred to as the
“Great Inflation”. From the mid-80s until the recent financial crisis the economy has been
characterized by remarkable economic stability. This period is often called the “Great
Moderation”. The last column presents the parameter estimates over the whole sample.
All t-statistics (in parentheses) are obtained using Newey-West adjustment with 18 lags.
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that inflation plays almost no role for the short rate dynamics. Looking at the first period,

however, we can see that inflation is one of the main monetary policy drivers. This simple

illustration indicates the importance of including regime shifts in the Taylor rule monetary

policy model.

Second, macroeconomic variables such as real activity, unemployment and inflation are

known to contain predictive power for future yields beyond the one that is captured by

the latent cross–sectional yield curve factors. Thus, relying entirely on latent factors and

ignoring the nonlinear response of yields to changing economic fundamentals blurs our

understanding of the bond risk premia. Furthermore, it also biases our forecasts of future

economic conditions based on interest rates.

In this chapter we propose a new approach to model and analyze yields and their

relation to the economy. We argue that the linkage between the term structure of interest

rates and the state of the economy is indeed quite complex and goes beyond the simple

inflation fluctuations and business cycle variation. A simple but crucial assumption is that

the short end of the yield curve is subject to regime shifts. More specifically, starting

from a common Taylor rule type short rate representation, we introduce a model for the

yield curve, which takes into account not only the possibility of regime switches in the

behavior of the Federal Reserve, but also agents’ beliefs around these changes. We study

the merit of our approach along three dimensions: (i) interpretable short rate dynamics,

(ii) out-of-sample performance, and (iii) design and implications of no-arbitrage dynamic

term structure models.

We start our empirical analysis with a simple Taylor rule policy model for the short

rate. In the first step, we document the impact of non-linearities in the policy function

itself. Depending on the underlying model dynamics, we find two/three limiting regimes

for the short rate linked to inflation and unemployment. We document that the estimated

transition probabilities show asymmetric responses to good and bad news on the short rate

in different states.

Two interesting consequences emerging of our model are worth emphasizing. First, due

to the flexible econometric technique for selecting the optimal number of regimes and the

corresponding threshold structure, we contribute new evidence to the debate about the

changes in the U.S. monetary policy over the last 50 years. In fact, we show that the idea

that U.S. monetary policy can be described in terms of pre– and post–Volcker “era” (as in

Table 3.1) proves to be misleading. The behavior of the Fed is instead closely related to

those of the level of inflation and unemployment. Second, we demonstrate the ability of

our modeling framework to forecast future economic conditions. More precisely, the regime

shifts uncover three clear business cycle patterns (counter cyclical, cyclical and acyclical).

Motivated by the results for the short rate, we take our analysis a step further and

design a modeling framework suitable for pricing bonds and other financial derivatives.
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Our approach combines the no–arbitrage restrictions on the cross–section of bonds together

with macroeconomic factors that drive bond yields. Additionally, it accommodates non-

linearities (regime shifts) in the conditional mean of the short rate and bond risk premia

and therefore carries over to the entire term structure. Moreover, we are able to obtain

iterative closed-form solutions for the yield. In this way, without relying on purely latent

factors, the model establishes a tight link between the term structure of interest rates and

directly interpretable macroeconomic quantities. To estimate the model we use a nonlinear

filtering technique, unscented Kalman filter, proposed by Julier and Uhlmann (1997), and

recently used in finance by Campbell, Sunderam, and Viceira (2010).

We assess the goodness of fit of our regime–switching modeling framework studying a

series of model implications. We show that our model leads to reduced pricing errors in

the cross-section of yields for maturities below one year. In addition, in a slightly different

setting, our model is also able to reproduce the Cochrane and Piazzesi’s (2005) tent–shape

bond risk premia factor. Finally, we show our model’s ability to accommodate unspanning

and to generate the various yield curve shapes.

The content of this chapter can be summarized as follows. Section 3.2 gives a brief

summary of the related literature. A description of the model for the short rate is given in

Section 3.3. Section 3.4 discusses the design of a pricing framework and study its implica-

tions. Section 3.5 describes the estimation strategy and the empirical results for the short

rate. Finally, Section 3.6 studies several generalizations and possible applications.

3.2 Related Literature

This chapter is closely related to two strands of the term structure literature: macro–finance

models and models with regime shifts.

Macro–finance models: An important part of the term structure literature has focused on

studying the relation between the term structure of interest rates and the economy. Ang

and Piazzesi (2003) have drawn attention to this question by showing that the inclusion of

macroeconomic factors on the top of latent components improves the predictability and shed

some light into the economic nature of the underlying forces that drive changes in interest

rates. Other closely related studies, which focus on the linkage between macro variables

and the yield curve using little or no macroeconomic structure are, for example, Kozicki

and Tinsley (2005), Ang, Piazzesi, and Wei (2006), Dewachter and Lyrio (2006), Joslin,

Priebsch, and Singleton (2009). Alternative studies such as Hoerdahl, Tristani, and Vestin

(2006), and Rudebusch and Wu (2008), embed the yield factors within a macroeconomic

structure. This additional structure eases the interpretation of a bidirectional relation be-

tween the term structure factors and macro variables. To uncover the relationship between

the yield curve and macro factors Moench (2008) uses a large panel of macro and financial
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variables. Diebold, Rudebusch, and Aruoba (2006) provide a macroeconomic interpretation

of the dynamic Nelson-Siegel representation by combining it with a vector autoregression

(VAR) representation for the macroeconomy.

Models with regime shifts. A well–known stylized fact in the term structure literature is

that the yields are subject to regime shifts. Indeed, extensive empirical literature (see,

for example Äıt-Sahalia (1996a), Stanton (1997)) reveals that the regime switching models

better describe the nonlinearities in the yields’ drift (particularly in the short rate) and the

volatility found in the historical interest rate data. More recent works, for example Ang and

Bekaert (2002), Bansal and Zhou (2002), Dai, Singleton, and Yang (2007), Bansal, Tauchen,

and Zhou (2004), and Audrino and De Giorgi (2007), have managed to link informally the

succession of alternating regimes to business cycles and interest rate policies. Rudebusch

and Wu (2007) suggest a link between the shift in the interest rate behavior and the

dynamics of the central bank’s inflation target. Ang, Bekaert, and Wei (2008) develop a

regime-switching model to study real interest rates and inflation risk premia by combining

latent and macroeconomic factors.

Evidences of non-linearities have been discussed in the Taylor-rule literature (see, e.g.,

Clarida, Gali, and Gertler (2000)) and in the structural VAR literature (see, e.g., Sims and

Zha (2006), Cogley and Sargent (2005)). These studies typically focus on the structural

monetary policy’s response to inflation dynamics in the transition between Feds Chairman

Burn, Volcker and Greenspan. In a no–arbitrage setting Ang, Boivin, Dong, and Loo-

Kung (2010) and Bibikov and Chernov (2008) study the effects of monetary policy shifts

on interest rates. Although these papers allow for state–dependence, the regimes remain

latent and hard to interpret.

This chapter is also connected to threshold type models introduced by Tong (1978) and

Tong and Lim (1980). The different smooth version of these threshold models, known in

the econometrics literature also as smooth transition models, has been extensively reviewed

by van Dijk, Tersvirta, and Franses (2002). Recently, da Rosa, Veiga, and Medeiros (2008)

and Audrino and Medeiros (2011) combine smooth transition regressions with regression

trees.

From a methodological perspective, our study can be seen as a multivariate extension

of Audrino and De Giorgi’s (2007) model for the yield curve. Similar smooth transition

tree technique has been used by Audrino and Medeiros (2011). However, their study uses

a CIR process and focuses only on the short rate. To the best of our knowledge, we are the

first who develop multivariate (smooth) threshold model for the term structure of interest

rates and study its implications.
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3.3 Model Development: Short Rate Dynamics

Our main goal is to introduce a discrete–time model for the term structure of interest rates

which incorporates both macroeconomic factors and regime shifts. To this end, we first

introduce a simple model for the monetary policy. Then, we focus on a regime-switching

specification, where the conditional mean of the short rate dynamics is subject to regime

shifts.

3.3.1 Basic Model for the Monetary Policy

In most country economies the nominal short rate is the main instrument available to

central banks for conducting monetary policy. One of the simplest representations of the

monetary policy is by means of the Taylor rule. According to that rule the central bank

sets the nominal short term interest rate, (rt)t∈Z, based on the following equation:

rt+1 = γ0 + ρrt + γππt + γggt + εr
t+1. (3.1)

In our notation πt denotes inflation, gt is output gap and εr
t is a sequence of independent

and normally distributed innovations with mean zero and variance σ2
r . As usual, we assume

that εr
t is independent from rs, πs and gs for s < t.

The lagged short-term interest rate on the right-hand side of Equation (3.1) can be seen

as either a smoother for the future short rate dynamics or as a proxy for additional macroe-

conomic, monetary policy or even financial variables. It is important to point out that in

this reduced–form specification of the Taylor rule, to determine rt+1, we rely only on lagged

information, available at time t + 1. This makes our analysis suitable for forecasting and

avoids issues that may arise from relying on particular parametric model for the economic

fundamental and simultaneously solving equation systems.

3.3.2 Taylor Rule and Monetary Policy Regimes

Monetary policy has changed substantially over the last five decades. The very high and

volatile U.S. nominal interest rates in the mid 70s and early 80s, followed by 20 years of

remarkably stable bond dynamics is one of the most popular illustrations of Fed’s changing

respond to macroeconomic fundamentals. Taking into account this stylized fact, the aim of

this subsection is to generalize the Taylor rule by allowing for shifting response of monetary

policy to macroeconomic fundamentals.

One constructive way of thinking when modeling the regime shifts is to ask what kind

of economic mechanism drives the changes in the monetary policy. For example, how does

Fed response to inflation and unemployment changes under different economic conditions?

To shed some light,borrowing the idea from the threshold models, we conjecture that the
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regimes are governed by thresholds partitioning the predictor space into disjoint regions.

The fact that regimes are directly linked to some relevant macroeconomic and/or monetary

policy variables such as inflation, unemployment growth rate or business cycles makes our

model easy to interpret. Each of those regions is then characterized by a Taylor rule model

with different policy response parameters. The agents observe the state of the economy

today and based only on the current relevant macroeconomic information and the optimal

threshold structure, they infer the future state. The transition between the individual states

changes over time and is directly related to economic fundamentals.

additional term in higher order moments, as for example variance, skewness, kurtosis.

Intuitively, the possibility of switch to a new regime introduces an additional source of

risk. Moreover, differences in means help us generate persistence in levels as well as in the

volatility of the short rate. This feature is especially important for modeling adequately

the realized nominal interest rates.

Employing the idea of the tree structured smooth autoregressive threshold models, simi-

lar to da Rosa, Veiga, and Medeiros (2008) and Audrino and Medeiros (2011), we construct

the regime shifts using a (smooth threshold type) binary tree structure. More formally,

collecting all predictor variables into vector xt = (πt, gt, rt)
′, we can design the short rate

regime-switching dynamics as follows:

rt+1 =
∑
i∈T

(γ0,i + γπ,iπt + γg,igt + ρirt)BJi (xt; θi) + εr
t+1. (3.2)

The functions BJi, 0 < BJi < 1, are known as membership functions and express the

tree–structured transition probabilities. In the representation below, we follow the notation

of Audrino and Medeiros (2011). The structure of every binary tree is characterized by the

set of pairs (J, T ), where J is the set of indexes of the parent (nonterminal) nodes and T the

set of terminal nodes. The root of the tree, i.e. the node of the tree that is not a successor

to any other node, is indexed by 0. Every parent node has two successors - a left and a

right child. All left nodes carry even numbers and all right nodes are associated with odd

numbers. More precisely, a parent node at position j generates left- and right-child nodes

at positions 2j + 1 and 2j + 2, respectively. In addition, every non terminal node has an

associated split variable xsj ,t ∈ xt, where sj ∈ S = {1, 2, 3}. In Equation (3.2)

BJi (xt; θi) =
∏
j∈J

G(xsj ,t;αj , cj)
ni,j (1+ni,j )

2

[
1 −G(xsj ,t;αj, cj)

](1−ni,j)(1+ni,j )
, (3.3)
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and

ni,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if the path to leaf i does not include the parent node j;

0 if the path to leaf i includes the right-child node of the parent node j;

1 if the path to leaf i includes the left-child node of the parent node j,

(3.4)

where Ji denotes the subset of J containing the indexes of the parent nodes that form the

path to leaf i. Then, θi is the vector containing all corresponding tree structured transition

probability parameters. Two examples of a binary tree are given in Figure 3.1, Panel A

and Panel B.

To complete the model, the only remaining structure needed to be specified is the form

of the transition function G(xsj ,t;αj , cj). We focus on one of simplest, yet flexible enough

choices for the transition probability G, the linear logistic function:

G(xsj ,t;αj, cj) =
1

1 + e−αj(xsj,t−cj)
, αj ≥ 0. (3.5)

The transition function is a bounded function of xsj ,t, taking values between zero and

one. In the equation above, the parameter cj is the threshold value between two regimes,

associated with xsj ,t ≤ cj and xsj ,t > cj , and smooth transitions between them.1 In other

words the regime decision boundary for the short rate at time t + 1 is given by the set of

points for which {xsj ,t|xsj ,t − cj = 0}, j ∈ Ji, i ∈ T. When the relevant variable is close to

its threshold value, the probability of staying in the same regime is close to 0.5, and thus

giving considerable weight to the other states. On the contrary, if the variable is far away

above (below) the threshold, the probability of staying in the same regime is close to one

(zero), putting almost zero (100 percent) probability to the alternative state.

The second parameter of the logistic function G is the smoother αj. As the name

suggests, αj determines the amount of smoothing across regimes. In particular, when αj

approaches infinity, the logistic function turns into an indicator function, equal one, if the

relevant threshold variable is above its threshold value and zero otherwise. A smoothing

variable close to zero implies equal probabilities. In addition, for identification reasons, we

require the parameter αj to be greater or equal zero. In the empirical part of this chapter

we show some logistic function’s examples (see Figure 2) .

Although the logistic function is symmetric around the threshold value, note that it is

particularly useful for modeling asymmetric behavior. As an example, assume that the xsj ,t

represents unemployment growth, i.e., j = 2 (or xs2,t = gt). Then the resulting regime-

switching model can be used to describe different monetary policy processes during periods

1An alternative is to think of the model as a constantly changing monetary policy, where the regimes

are associated with each individual value of the transition function. In this chapter we focus on the first

interpretation.
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of positive and negative unemployment growth with a smooth transition between the two

limiting regimes.

Note that in the representation above, all potential transition variables are also present

in the local monetary policy Taylor rule dynamics. In fact, the vector of explanatory

variables xt, can be easily extended by including other relevant observable (e.g., macroeco-

nomic) and/or latent (e.g., monetary policy, yield curve variables). In more general case,

the transition variable can also be a (linear) combination of several variables.

3.4 Bond Pricing

A large number of both macroeconomic and finance studies uses the short rate as a building

block for modeling the whole yield curve. Motivated by the more flexible, yet interpretable

smooth threshold regime–switching short rate dynamics, in this section we take our analysis

a step further and introduce a no-arbitrage term structure framework suitable for pricing

interest rates and other derivatives.

Our study shows how to incorporate successfully short rate nonlinearities into the term

structure. By imposing no–arbitrage conditions, we are able to derive iterative closed–form

solutions for bond prices.

3.4.1 Model Specification

In the previous section we obtained results for the short rate without relying on any par-

ticular parametric assumptions about the distribution of the macroeconomic fundamentals.

Here, we extend our approach and specify stochastic processes also for inflation and unem-

ployment. This allows us to take our analysis a step further and design a quadratic bond

pricing framework.

Short Rate Dynamics Revised

Consider again the regime-switching Taylor rule models given in Equation (3.2). We look

at two economically meaningful models with different degrees of complexity (see, e.g., Ang,

Boivin, Dong, and Loo-Kung (2010)). In particular, we focus on a Taylor rule specifica-

tion, where the Fed’s response to macroeconomic environment is changing over time. The

reaction to the lagged short rate remains unaltered. We refer to this model as restricted

regime-switching short rate model:

rt+1 =
∑
i∈T

(γ0,i + γπ,iπt + γg,igt + ρrt)BJi (xt; θi) + εr
t+1. (3.6)
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In the second specification, we relax the assumption of constant lagged short rate re-

sponse. This feature makes all conditional mean coefficients regime dependent. We refer

to this model as unrestricted regime-switching short rate model:

rt+1 =
∑
i∈T

(γ0,i + γπ,iπt + γg,igt + ρirt)BJi (xt; θi) + εr
t+1. (3.7)

Both representations of the regime–switching short rate considered above are quite gen-

eral and cannot be used directly for bond pricing. The reason for that is the complex form

of the transition probability function. To overcome this issue we use a first order approx-

imation for the transition probabilities. This approximation leads to iterative closed-form

bond pricing solutions whether restricted or unrestricted short rate specification is used.

Below we formalize the procedure.2

Let G denotes the logistic function of Equation (3.5). Using first order Taylor expansion

around the corresponding threshold, we obtain the following approximation T1 for G:

T1(xsj ,t;αj , cj) = G(cj;αj , cj) +
∂G(xsj ,t;αj, cj)

∂xsj ,t

∣∣∣∣∣
xt=c

(xsj ,t − cj)

=
1

2
+ αj

1

4
(xsj ,t − cj).

The result gives rise to the following auxiliary model for the short rate:3

rt+1 =
∑
i∈T

(γ0,i + γπ,iπt + γg,igt + ρirt)bJi (xt; θi) + εr
t+1, (3.8)

2For simplicity, until the end of this section we focus on the unrestricted model representation. The

results for the restricted Taylor rule specification are straightforward. When deriving the closed-form

solutions for bond prices, we will discuss the theoretical differences between the two specifications.
3An interesting parallel can be made between the logistic function and the uniform distribution. In

fact, the same regime–switching representation as in Equation (3.8) can be obtained directly, without

relying on any approximation. The idea is to replace the transition logistic function(s) assumption with

a (multivariate) uniform distribution, u. Below, we discuss briefly this approach. First, since the uniform

distribution of any fixed size is independent of the location itself (but it dependents on the interval size,

area, volume, etc.), to pin the location down, analogously to the logistic case, we adapt the convention

that the transition function is symmetrically distributed around the threshold value. Thus, the threshold

plays the role of a separating hyperplane between the two individual regimes. The resulting transition

probabilities are of the form Fu =
(xsj,t−cj+lj/2)

lj
, where Fu(·) denotes the cumulative uniform distribution

function and lj is the length of the range. The link between the length of the interval and the volatility is

given by
√

1
12 lj . In practice, due to the less flexible constant increment assumption implied by the uniform

distribution, this approach leads to slightly worse empirical fit. The optimal threshold structure, however,

found in both cases is quite similar.
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bJi (xt; θi) =
∏
j∈J

T1(xsj ,t;αj, cj)
ni,j(1+ni,j )

2

[
1 − T1(xsj ,t;αj , cj)

](1−ni,j)(1+ni,j )

=
∏
j∈J

(bjxsj ,t + aj)
ni,j (1+ni,j )

2

[
1 − (bjxsj ,t + aj)

](1−ni,j)(1+ni,j )
, (3.9)

where ni,j is given in Equation 3.4 and

aj =
1

2
−

1

4
αjcj , bj =

1

4
αj .

To provide some intuition, suppose that the relevant threshold variable is inflation. In

case of just two regimes, equation (3.8) can be conveniently rewritten as quadratic short

rate model of the form:

rt+1 = (γ0,1 + γπ,1πt + γg,1gt + ρ1rt)(1 − a1 − b1πt)

+ (γ0,2 + γπ,2πt + γg,2gt + ρ2rt)(a1 + b1πt) + εr
t+1

(3.10)

If we interpret the model as a linear model with time varying coefficients, Equation

(3.10) can be conveniently rewritten in a more general form as

rt+1 = β0 + βππt + βggt + βrrt + βπππ
2
t + βggg

2
t

+ βrrr
2
t + βπgπtgt + βπrπtrt + βgrgtrt + εr

t+1, (3.11)

where the parameters β = (β0, βπ, βg, βr, βππ, βgg, βrr, βπg, βπr, βgr)
′ are functions of the

short rate regression parameters, the threshold value(s) and the smoothing logistic param-

eter(s). The explicit representation of β is straightforward and is skipped here for brevity.

In Section 5 we provide explicit solutions for β for our two optimal specifications.

Note that even though we write Equation (3.8) as a quadratic model for the short

rate, in presence of more than two regimes, higher order terms could still be present.

We ignore third and higher order terms (if present) for several reasons. First, from an

econometrics point of view, in the context of the U.S. economy, in the last 60 years the

short rate dynamics is comparatively smooth. Indeed, in our empirical study we find that

the quadratic approximation is much more closer (in a mean squared sense) to the true short

rate dynamics than its higher order model counterpart.4This feature makes the empirical

impact of any higher order terms on the short rate negligible (see Table 3.2 for summary

4The mean squared error between our 3 regime restricted short rate model Equation (3.8) and the true

short rate dynamics is 4.11e-05, whereas the mean squared distance between Equation (3.11) and the short

rate is 5.40e-06.
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statistics). Second, while first and second order terms are typically associated with level

and volatility (correlation), the economic interpretation of higher order cross products is not

very clear. Since one of the final goals is interpretable term structure dynamics, we resign

of including those additional terms. Third, various empirical studies for the U.S. nominal

bonds (see, e.g., Sims and Zha (2006), Cogley and Sargent (2005)) indicate the presence of

just a small number (typically two or three) of regime shifts. In fact, consistent with the

macroeconomics literature, the maximum number of regimes found in our empirical study

is three.

3.4.2 Term Structure of Interest Rates

The previous section establishes a tight link between the nominal short rate and macroe-

conomic fundamentals. While the results were limited to the short rate, they serve as a

fundament for the dynamics of the whole yield curve. We now embed the results for the

regime–switching (quadratic) short rate into a no-arbitrage framework. In particular, a

discrete–time dynamic term structure model incorporating nonlinearities in the short rate

is developed. An important feature of our modeling framework is that shifts in regimes im-

pact not only the short end of the yield curve, but also allow for possible significant impact

on the entire term structure. No–arbitrage restrictions are imposed in order to ensure the

consistent pricing of the cross–section of bonds with different maturities.

Following the recent literature on bond pricing (see, e.g., Dai and Singleton (2000), Dai

and Singleton (2002), Ang and Piazzesi (2003)), below we specify the main assumptions

characterizing the dynamic term structure model.

Short rate:

The form of the regime–switching short rate is given in Equation (3.11). The repre-

sentation is general and encompasses both the restricted and unrestricted versions of the

nonlinear short rate specification.

State dynamics:

Borrowing the intuition from general equilibrium models, we assume that under the

physical measure, P, in our reduced–form representation the joint behavior of the short

rate, inflation and unemployment is of the form:

πt+1 = μP
π + φP

πππt + φP
πggt + επ

t+1, (3.12)

gt+1 = μP
g + φP

gππt + φP
gggt + εg

t+1. (3.13)

Again, the dynamics of our third state variable, the short rate, is given in Equation

(3.11). Collecting all innovations in a vector εt+1 = (επ
t+1, ε

g
t+1, ε

r
t+1)

′ ∼ N(0,ΣΣ′), we
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adopt the simplest form of the variance-covariance matrix ΣΣ′

Σ =

⎛⎜⎜⎝
σπ 0 0

0 σg 0

0 0 σr

.

⎞⎟⎟⎠
The generalization to a more complex volatility matrix representation is straightforward

(see, e.g., Dai and Singleton (2002), Ang, Boivin, Dong, and Loo-Kung (2010)).

While it might be economically meaningful to include the short rate as an additional

predictor for inflation and unemployment dynamics (Equation (3.12) and Equation (3.13),

respectively), empirically we find almost no difference in the resulting macro and yield dy-

namics. Once included in the macro dynamics, however, the short rate parameter estimates

are only marginally significant. In addition, this specification complicates considerably the

recursive solution for bond pricing and leads to a worse out-of-sample performance. The

latter result is probably due to overparametrization.

Stochastic discount factor:

Our representation of the economy is complete by formulating the stochastic discount

factor Mt,t+1 (SDF) between the date t and t+1. We assume that the SDF has the standard

exponential affine form

Mt,t+1 = exp

(
−rt −

1

2
λ′tλt − λ′tεt+1

)
.

Following the contemporaneous term structure literature (see, e.g., Duffee (2002)) we con-

jecture an essentially affine structure for λt = (λπ,t, λg,t, λr,t)
′ with the following represen-

tation:

λπ,t+1 = σ−1
π (λ0π + λπππt + λπggt)

λg,t+1 = σ−1
g (λ0g + λgππt + λgggt)

λr,t+1 = σ−1
r

∑
i∈T

(λ0ri + λrπiπt + λrgigt + λrrirt)bJi (xt; θi)

Note that similar to Bansal and Zhou (2002) and Audrino and De Giorgi (2007), we

use the same regime structure for the market price in our state dynamics. Apart from the

improved empirical fit (additional flexibility), the assumption of regime–switching market

price of risk for the short rate has a direct economic motivation: In the classical general

equilibrium context, the stochastic discount factor (or intertemporal marginal rate of substi-

tution) depends on consumption and inflation processes. While risk is typically attributed

either to variation of consumption (in the real economy context) or inflation (in nomi-

nal economy context), recent studies (see, e.g., Campbell, Sunderam, and Viceira (2010),

Hasseltoft (2008), David and Veronesi (2009)) show the importance of time variation in

consumption - inflation correlation dynamics.
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The economic intuition of the consumption–inflation relation is straightforward: In

periods when inflation and consumption are negatively correlated (and the level of inflation

is low or moderate), nominal bonds do well in bad times and hedge against consumption

risk. But, bonds are risky investments in times when inflation is high, especially in times

when the correlation between inflation and consumption becomes positive. In the former

case, the agents are willing to accept low rates of returns, whereas in the latter case bonds

are avoided unless the term premium is high. It is important to note that in contrast to the

other models introduced in the term structure literature, in our approach the consumption

(unemployment)–inflation interaction term is not modeled explicitly (determined a-priori),

but it is a by–product of the presence of regime shifts.

Bond Pricing

Having specified all three necessary ingredients, we now derive the bond pricing equa-

tion. Let P (t, n) be the price at date t of a nominal bond with n periods to maturity. Bond

prices satisfy the law of one price:

P (t, n) = EP
t (Mt,t+1P (t+ 1, n− 1)) (3.14)

Assuming Mt,t+1P (t+ 1, n− 1) are jointly lognormally distributed under P, the price of

a single period bond at time t can be written as:

P (t, 1) = EP
t

(
exp

(
−rt+1 −

1

2
λ′tλt + λtεt+1

))
= exp(−rt −

1

2
λ′tλt +

1

2
λ′tλt)

= exp(−rt).

Equivalently, under the risk neutral measure, Q, the price of a bond with n periods to

maturity can be solved as:

P (t, n) = E
Q
t

(
exp

(
−

n−1∑
i=0

rt+i

))
. (3.15)

The dynamics of xt under the risk neutral distribution follows from the standard drift

adjustment. Details are provided in Appendix .1 and Appendix .2.

The regime–switching short rate dynamics, or more precisely its quadratic representa-

tion, motivates the following exponential quadratic bond price for maturity n ≥ 2:5

P (t, n) = exp (A(n) +B(n)′xt + x′tC(n)xt) . (3.16)

5Quadratic term structured models has been studied by Ahn, Dittmar, and Gallant (2002) and Leippold

and Wu (2003) and are related to a bigger class of models, whose domain is not an intersection of half-

plans. Wishart term structure models, for example, use a process of stochastic positive definite matrices

Gourieroux and Sufana (2003) apply Wishart autoregressive process to the term structure of interest rates.
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Since the price of a bond at time t with n periods to maturity is modeled as a quadratic

function of the underlying latent factors, the model-implied yield y(t, n), on an n-period

zero coupon bond is given by

y(t, n) = −
logP (t, n)

n
= −

A(n)

n
−
B(n)′

n
xt − x′t

C(n)

n
xt. (3.17)

The coefficients A(n), B(n) = (Bπ(n), Bg(n), Br(n))′ and

C(n) =

⎛⎜⎜⎝
Cππ(n) Cπg(n)

2
Cπr(n)

2
Cπg(n)

2
Cgg(n) Cgr(n)

2
Cπr(n)

2
Cgr(n)

2
Crr(n)

⎞⎟⎟⎠
are determined recursively by the risk neutral parameters (including the threshold values

and their corresponding smoothing parameters), and the variance–covariance matrix Σ of

the innovations ε = (επ
t , ε

g
t , ε

r
t )

′. For consistency, we impose the initial conditions A(0) = 0,

B(0) = (0, 0, 0)′ and C(0) = 03×3. In addition, we require that A(1) = 0, B(1) = (0, 0,−1)′

and C(1) = 03×3, so that rt = y(t, 1). The explicit derivation for both the restricted and

the unrestricted models is provided in Appendix .1 and Appendix .2, respectively. The two

specifications lead to different yield curve pricing formulas.

In general, to assure positivity of yields, we can impose the following sufficient condi-

tions: C(n) is a negative semidefinite matrix and A(n) ≤ 1
4
B(n)′C(n)−1B(n). However,

since the quadratic specification arises as a direct consequence of the regime–switching short

rate dynamics, we leave these restrictions as an empirical issue.

There are two key differences between our bond pricing framework and the classical

quadratic term structure models. First, rather than taking a stance and modeling the

quadratic terms apriori, the quadratic structure is determined endogenously and is due

to the regime–switching Taylor rule dynamics. Thus, we are able to add more flexibility

without specifying a full model, which typically leads to overparametrization. Second, our

quadratic term structure model is asymmetric around zero and nests the linear single regime

specification.6 If there are no regimes, all quadratic terms in Equation (3.17) will be equal

zero, yielding a linear relationship between yields and the economy. This property reveals

an important economic interpretation of our quadratic model representation: While the

volatility of the state variables is the key determinant of both global and regime–switching

models, there is an additional mechanism that drives the yield dynamics, reflected by the

regime shifts. This mechanism is related to the agents’ valuation of the various economic

states, and is determined (expressed) by (i) the threshold structure; (ii) the empirical

distribution of the corresponding threshold variables within each individual regime; (iii)

the smoothing parameter.

6Note that this is not possible neither in the classical latent quadratic nor in the Wishart term structure

framework, where due to identification restrictions linear terms are not present in the term structure

dynamics.
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Intuitively, the possibility of changing to a new regime with different mean introduces

an additional source of risk. Suppose, for example, that at time t there are only two

regimes for which the transition probability function G is close to zero (or one). In that

case, the agents are sure that in the next period the economy will stay in same regime

and therefore the variation in bond prices is almost entirely due to the volatility of the

state variables. In contrast, if G is close to 0.5 even a milder uncertainty in the macro

fundamentals may generate a high uncertainty in the model (the latter is due to the fact

that the difference between both local means enter the higher moments such as variance,

skewness, kurtosis).7 This increase in uncertainty can be attributed to the agents’ valuation

of the economy. In fact, if the agents expect a possible change in the economic policy soon

(i.e. the relevant threshold variable is close to its threshold value), the variance of the bond

prices is high, even though the volatility of macroeconomic variables is low. In a nutshell,

using macroeconomic volatility and regime shifts, we open up two distinct channels through

which uncertainty is reflected in bond prices. In that way, our framework allows us a clear

differentiation between objective macroeconomic risk (risk coming from the volatility of the

macroeconomic variables) and its perception by the agents (regime shifts).

3.5 Estimation Procedure and Empirical Results

We start this section with a description of the data used in our empirical analysis. Then,

we discuss briefly the estimation procedure, and finally we focus on the empirical results

for the short rate.

3.5.1 Data

Yield data

We use monthly U.S. zero-coupon bonds with time to maturity 3, 6, 12, 24 and 60 months.

The data are obtained from the Federal Reserve Board and are constructed as in Gürkaynak,

Sack, and Wright (2006). We consider the sample period January 1964 – November 2011

for a total of 575 observations. All yields are at monthly frequency.

Macroeconomic Data

The two macroeconomic variables used in our empirical study are taken from the Bureau of

Labour Statistics database. We use monthly seasonally adjusted Consumer Price Index for

All Urban Consumers (CPI) and Unemployment Rate (UNEMPL) as proxies for inflation

and unemployment rate, respectively. We compute year-on-year log differences in CPI

7Let us denote by μ1 and μ2 the two short rate’s local mean dynamics. The variance of short rate is

then equal to G(1 − G)(μ1 − μ2)
2 + σ2

r .

76



to construct our measure for inflation. We define unemployment as the year-on-year log

growth in the unemployment rate. Similar to the yield data, the sample period is we take

into consideration is 1964:01 – 2011:11.

We chose to use unemployment growth instead of the classical output gap for several

reasons. First, next to inflation, unemployment regulation is one of the main monetary

policy goals. Therefore, its dynamics plays an important role in short rate variation. Sec-

ond, output gap is typically hard to measure in real time. Since one of our final goals is

forecasting, we resign relying on any future information and use only data available in real

time.

Table 3.2 provides summary statistics of the data. As well documented in the literature,

all yields and macro variables are very persistent, positively skewed and leptokurtic. Not

surprisingly, the correlation between the yields and inflation is high, decreasing with time

to maturity of the yields. Unemployment and yields as well unemployment and inflation

are unconditionally weakly negatively (positively) correlated.

3.5.2 Finding the Optimal Short Rate Structure

We find and estimate the optimal threshold structure and, thus, the optimal number of

limiting regimes using a binary tree. The main difference between the regime specification

used here and the one introduced Audrino (2006) lies in the way we construct the splits.

Specifically, here the splits are smooth probabilistic functions of the predictor variables.

In contrast, in Audrino (2006) they are hard splits, assigning values either zero or one,

depending on whether the relevant variable was below or above the corresponding threshold

value.

The procedure we use here to find the optimal tree is the same as the one introduced

in Audrino and Medeiros (2011). Specifically, first we grow a large tree. The most relevant

variable, optimal threshold value, transition probability and local regression parameters

found at each step are chosen in such a way that the conditional negative quasi log-likelihood

−�(ψ; {xt}
n
t=2) = −

n∑
t=2

log

(
1√
h(ψ)

pZ

(
(rt − μt(ψ))√

h(ψ)

))
(3.18)

is minimized. In Equation (3.18) pZ is the standardized gaussian density, μ and h are

the time-varying conditional mean and variance of the short rate and ψ is a parameter

vector, consisting of all relevant short rate’s transition probability, local mean and variance

parameters.

To overcome the problem with overparametrization present in large tree structures, we

prune the tree model. We use the Bayesian information criteria (BIC) to select the optimal

tree specification. Specifically, as described by Audrino (2006), we search for a best subtree
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of P
(M)
opt , so that

BIC(Pi) = −2 · �
(
ψ̂Pi ; {xt}

n
t=2

)
+ dim(ψ̂Pi) · log(n− 1) (3.19)

is minimized. Above ψ̂Pi denotes the quasi maximum likelihood estimate for the subtree Pi

implied by our model. Note that by using BIC, the best subtree is chosen in a purely data–

driven way. In this way we overcome two of the major regime–switching issues present

in the literature, namely, selecting the optimal number of regimes and determining the

particular regime–switching structure. For detail treatment and asymptotic results, we

refer to Audrino (2006) and Audrino and Medeiros (2011).

3.5.3 Empirical Results for the Short Rate

Depending on the underlying model specification restricted or unrestricted regime-switching

Taylor rule we find that the optimal model has three or two limiting regimes, respectively.

Table 3.3 and Table 3.4 present the parameter estimates of the two different specifications.

The endogenous way in which we determine the number of regimes, the best–fitting

threshold structure for the short rate dynamics and the resulting local structure deserves a

more detailed attention. In the remainder of this subsection we study the implications of the

regime–switching Taylor rule along the following two dimensions: (i) realistic description

of the monetary policy changes in U.S. economy in the last 50 years, (ii) empirical fit.

Before turning to our discussion about the regime–switching Taylor rule and the mon-

etary policy, we make several remarks. First, we model the short–term interest rate as

a reduced–form time series and not in a structural model context. Therefore, the results

uncover only the unidirectional, purely data–driven relation between the short rate and

macroeconomic variables. The advantage of this technique is that we do not have to rely

on any parametric assumptions about the dynamics of the economic fundamentals. Second,

this is a backward–looking model, which is build and estimated using information available

at real time (i.e., relying only on past information). An alternative approach is to use, for

example, a New Keynesian framework. However, to estimate the latter model, information

about the future state of the economy is needed. Without taking a stance about the dy-

namics of the macroeconomic fundamentals, the forward–looking models are not suitable

for forecasting purposes.

Taylor Rule - 2 Regime Specification

Based on BIC, the unrestricted short rate model has two limiting regimes characterized by

the level of inflation. Figure 3.1, Panel A plots the resulting structure.

At first glance, the comparatively low value of the inflation threshold (0.0335) found here

might seems at odds with the typical high inflation regime separation found in the literature.
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Panel A: Restricted Taylor Rule Monetary Policy Model - 3 Regimes

Taylor Rule - 3 Regimes

rt+1 = γ0i + γπiπt + γgigt + ρrt + εt+1, i = 1, 2, 3

Regime 1 Regime 2 Regime 3

Coefficient CPIt ≤ 0.033 CPIt > 0.033 and CPIt > 0.033 and

UNEMPLt ≤ 0.089 UNEMPLt > 0.089

γ0 0.001∗∗ −3.02e − 5∗∗∗ 0.003∗∗∗

( 2.321) (3.693) (2.499)

ρ 0.960∗∗∗ 0.960∗∗∗ 0.960∗∗∗

(34.384) (34.384) (34.384)

γπ −0.086∗∗ 0.061 0.140∗∗

(-2.552) (0.981) (5.404)

γg −0.002∗∗∗ −0.039∗∗∗ −0.017∗∗∗

(-3.422) (-2.532) (-3.797)

Log Likelihood −2235.491

BIC −4382.021

AIC −4442.982

Panel B: Transition Probability Parameters

Transition probability parameters

α1 α2

4.44∗∗∗ 6.21∗∗∗

(13.125) (14.472)

Table 3.3: The table reports parameter estimates for the restricted regime–switching Tay-
lor rule for the sample period 1964:01 – 2011:11. The short rate (rt) is represented by
the three month zero coupon T-Bills. Inflation (πt) is computed as year-on-year log dif-
ferences of CPI all items. gt denotes unemployment growth rate. α denotes the transition
probability parameter as described in the text. t -statistics (in parenthesis) are based on
heteroscedastic-consistent standard errors. Asterisks ∗ ,∗∗ ,∗∗∗ denote significance at the
10%, 5% and 1% level, respectively.
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Unrestricted Taylor Rule Monetary Policy Model - 2 Regimes

Taylor Rule - 2 Regimes

rt+1 = γ0i + γπiπt + γgigt + ρirt + εt+1 i = 1, 2

Regime 1 Regime 2

Coefficient CPIt ≤ 0.033 CPIt > 0.033

γ0 0.001 0.002

(0.418) (6.286)

ρ 0.913∗∗∗ 0.996∗∗∗

(85.872) (36.544)

γπ −0.017 0.093∗∗∗

(-1.142) (10.242)

γg −0.002∗∗∗ −0.001

(-4.199) (-0.955)

α 4.52

Log Likelihood −2226.082

BIC −4432.164

AIC −4432.164

Table 3.4: The table reports parameter estimates for the unrestricted regime–switching
Taylor rule for the sample period 1964:01 – 2011:11. The short rate (rt) is represented
by the three month zero coupon T-Bills. Inflation (πt) is computed as year-on-year log
differences of CPI all items. gt denotes unemployment growth rate. α denotes the transition
probability parameter as described in the text. t -statistics (in parenthesis) are based on
heteroscedastic-consistent standard errors. Asterisks ∗ ,∗∗ ,∗∗∗ denote significance at the
10%, 5%, 1% level, respectively.
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Best–Fitting Tree Threshold Structure

Panel A: Panel B:

CPI ≤ 0.033

Regime 1 Regime 2
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Figure 3.1: Panel A and Panel B provide graphical representation of the best–fitting unre-
stricted and restricted models’ regime structure, respectively. Panel C shows boxplots for
the short rate under the unrestricted two regime specification. Panel D presents boxplots
for the short rate under the restricted three regime specification. The results are based on
the sample period 1964:01 – 2011:11.
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A more detailed inspection of our modeling approach, however, reveals the accuracy of our

result. At the threshold value the probability of the short rate to be in one of the two

regimes is one half. Therefore, the natural state of the short rate is modeled as a convex

combination of the two regimes with probabilities hovering around 0.5. The more unusual

(extreme) states are still described by linear combinations of the two local dynamics, but

one of the microfounded models dominates significantly. In fact, the threshold value of

0.0335 almost coincide with the median of the empirical inflation distribution. Figure 3.1,

Panel C presents boxplots for the empirical short rate dynamics under both regimes. Not

surprisingly, the low inflation regime is associated with low short rates. High inflation

periods, on the other hand, cause high short rate level.

Concerning the parameters of the Taylor rule, presented in Table 3.4, a direct comparison

between the two local dynamics is not possible, since the data has different distribution in

the two regions. The relation between both macro variables in the two subspaces changes

as well. The correlation between CPI and UNEMPL under the first regime is negative

(−0.102), whereas in the second regime it becomes comparatively high and positive (0.390).

At this point, we want to emphasize that despite the fact that the dynamics of the short

rate under the second regime is (close to) non-stationary, the global model is still stationary,

since it is always a mixture of the two local dynamics.

Taylor Rule - 3 Regime Specification

The BIC chooses a 3–regime model specification as optimal description for the restricted

short rate dynamics. The best–fitting tree structure is presented in Figure 3.1, Panel B.

The regimes here are linked to the level of inflation and unemployment rate. Similar to the

two regime case the first regime is characterized by low inflation. Once inflation is above

its mode value, unemployment rate starts to play major role in the regime structure. The

parameter estimates for the local Taylor rule dynamics are given in Table 3.3. However, the

interpretation in this case becomes quite complex. To gain some intuition, Figure 3.1, Panel

D superimposes boxplots, describing the empirical distribution of the short rate conditional

on each one of the three regimes. Regime 1 describes periods of low interest rate level and

volatility. Regimes two and three are both associated with high level of the short rate, but

differ in terms of volatility.

Figure 3.2 displays the resulting transition probabilities for the best–fitting restricted

and unrestricted regime specifications.

Note that the figure in the upper panel (the transition probability function in the un-

restricted specification) almost coincides with the transition probability in the first regime

of the restricted regime–switching model. The bottom left plot displays the probability

function for the second regime. Here the transition to the other two regimes is smooth,

asymmetric, more sensitive to changes of unemployment rate. Finally, the bottom right
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Transition Probabilities

Panel A: Unrestricted Model
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Panel B: Restricted Model
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Figure 3.2: The figure shows the estimated transition probabilities associated with the best–
fitting limiting regimes. Panel A displays the transition probability of the unrestricted short
rate model. Panel B presents the transition probabilities of the restricted short rate repre-
sentation. The upper plot of Panel B presents the transition probability model associated
with regime one, the bottom left figure presents the transition probability function asso-
ciated with regime two. Finally, the bottom right figure shows the results for the third
regime. The probabilities are estimated over the sample period 1964:01–2011:11.
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Transition Probability Dynamics over Time

Panel A: Unrestricted Model
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Figure 3.3: The two graphs report the estimated transition probabilities from the optimal
unrestricted (Panel A) and restricted (Panel B) three–regime Taylor rule specification.

panel presents the transition probability function for the third regime. Due to the unem-

ployment rate the shape of the probability surface is much more rougher compared to the

second regime. The reaction to unemployment rate in this case is close to those of the clas-

sical tree structure with hard splits. Figure 3.3 shows the estimated transition probability

dynamics over time.

To assess the ability of our model–implied regimes to describe different economic condi-

tions, we relate the regimes with NBER business cycles. Looking at the correlation between

the individual regimes and the NBER expansion/recession indicator function, we find 3

clear business cycle patterns. The first regime (CPI ≤ 0.0335) carries clear counter cycli-

cal component (the correlation with NBER indicator equals to -0.28). It captures mainly

contraction periods, characterized by decrease in inflation. With correlation value exceeding

0.53, the third regime (CPI > 0.0335 and UNEMP > 0.089) uncovers most of the cyclical
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variation. This regime describes periods of expansion, typically right after recessions. The

correlation between the second regime (CPI > 0.0335 and UNEMP ≤ 0.089) is relative

weak (equal to -0.12), showing acyclical pattern. At this point we want to emphasize that

with typical correlation values of 0.3 found in the literature (see, for example, Audrino and

De Giorgi (2007), Bansal, Tauchen, and Zhou (2004), Ang, Bekaert, and Wei (2008)), the

results here deserve special attention.

It is important to stress that in contrast to the mid/high inflation state (CPI > 0.0335),

where the response of unemployment growth rate is nonlinear, under the low inflation regime

(CPI ≤ 0.0335), an additional low/high unemployment growth rate split is not needed.

In fact, both states - deep recession (characterized by low (negative) inflation and high

unemployment growth rate) and post recession expansion (characterized by low inflation

and low (negative) unemployment growth rate) can be adequately captured by a simple

linear Taylor rule type dynamics.

In addition, we assess the out-of-sample forecasting performance of our two- and three–

regime smooth threshold Taylor rule models. To this end, we compare the mean squared

errors (MSE) of our models with those of other strong competitors. In particular, the

concurrent models taken into consideration are (i) global Taylor rule model; (ii) a Taylor

rule model with one estimated structural break over time; (iii) random walk; (iv) two-regime

markovian Taylor rule model estimated as in Gray (1996), where we allow the regimes to

depend also on inflation and unemployment rate; and (v) optimal tree threshold model

estimated as in Audrino (2006), where the local dynamics follows a Taylor rule instead of

CIR dynamics.

The in-sample period 1964:01 - 2004:12 is used to estimate the optimal parameters for

each individual model. Given the estimated parameters, we compute the one-month ahead

forecast for the out-of-sample period 2005:01 - 2011:11. The superior predictive ability tests

of Hansen (2005) show that our smooth threshold Taylor rule models are able to produce

accurate forecasts. The unrestricted version of the model yields the best performance

overall.

The reasons why our smooth threshold model’s forecast is better than forecasts based

on the other models may be the following. First, from econometric perspective, our model

can be seen as a time-varying weighted average of different autoregressive processes (con-

ditional mixture model) The merit of model averaging has been shown in the term premia

context in Jardet, Monfort, and Pegoraro (2011). Second, the randomness coming from

the volatilities of the macroeconomic variables in not the only source through which un-

certainty comes into my model. Using time–varying regime shifts, we effectively open up a

second channel of uncertainty, so that macroeconomic information impacts monetary policy

also in a nonlinear way. We allow this uncertainty to be associated with both level and

the volatility of the macroeconomic and monetary policy variables. Thus, our model can
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Out–of–Sample Results: Short Rate

Model MSE MAE

Global Taylor rule 0.0095 (0.0080) 0.2215 (0.0075)

Structural Break Taylor rule 0.0119 (0.0001) 0.2521 (0.0232)

Random Walk 0.0062 (0.4742) 0.1488 (0.5097)

Markovian Two Regime Taylor rule 0.0165 (0.1052) 0.3039 (0.1264)

Smooth Threshold Two Regime Taylor rule 0.0065 (0.5126) 0.1688 (0.3432)

Smooth Threshold Three Regime Taylor rule 0.0097 (0.0266) 0.2271 (0.0102)

Table 3.5: Mean squared errors (MSE) presented in column 2 and mean absolute errors
(MAE) shown in column 4 of out–of–sample forecasting performance of seven different
models for the short rate, as described in detail in the text. p-values of the superior
predictive ability (SPA) tests of Hansen (2005) are reported in parenthesis. The results are
based on out-of-sample period, January 2005 - November 2011, for a total of 83 observations.

generate high uncertainty even if the macroeconomic volatility is low. By contrast, in the

single regime VAR models used in the macroeconomic literature, the variation in yields is

entirely expressed by the volatility of relevant economic fundamentals.

It is not a surprise that our smooth threshold tree structure model performs better

than the classical tree model. From purely statistical point of view, when the smoothing

parameter approaches infinity, the soft split becomes a hard one. Therefore, our model

nests the tree model as a special case.8 But it offers more. From economic perspective the

time–varying transition probabilities reflect the agents’ perception of the future economic

conditions. Therefore, just the notion of possible unusual (extreme) events may have an

impact on the agents’ behavior. In fact, those (extreme) regimes might never occur in

reality (in our sample) or be visited just very few times but they still could have important

effects on the low of motion of the short rate through the agents’ beliefs. In this way, under

some regularity conditions, our modeling framework can capture rare events. Note that

this is not possible in the classical threshold tree structure, where all thresholds should be

realized values, present in the sample.

Finally, it is important to point out that our framework is very general and is also for

applicable for latent factor models as well as models with economic factors only. Of course

in the latent approach, in order to be able to identify the number regimes and the optimal

threshold structure, we should first take a stance on the dynamics of those factors. This

goes beyond the scope of the chapter and is considered as future research.

8Note, however that the optimal classical tree structure found above is different from the smooth one.
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3.5.4 Estimation Procedure for the Whole Term Structure

Following Audrino and De Giorgi (2007) to estimate the model for the whole term structure,

we employ a two–step procedure. On the first step, we focus on the short rate, compute the

optimal number of limiting regimes, identify the relevant regime–switching variables and

the corresponding threshold values. This has already been done in section 3.5.3. Given the

optimal structure we found on step one, in step two we estimate the term structure model

via maximum likelihood combined with unscented Kalman filter.

We choose to use a filtering approach for two reasons. First, macroeconomic information

is in general not precisely measured. One possibility to uncover the true, unobservable

economic quantities is to employ a filtering procedure. Using a version of Kalman filter

enables us to estimate the dynamics of the corresponding macroeconomic fundamentals i.e.

inflation and unemployment in a more accurate way. Second, without loss of generality,

our modeling framework is also applicable in the presence of latent factors (e.g. stochastic

volatility, long-run inflation expectation). The unscented Kalman filter procedure presented

below, makes the estimation procedure for these type of models straightforward.

Unscented Kalman Filter

Nonlinearities in the transition and measurement equation makes the filtering approach

introduced by Kalman (1960) not directly applicable in our setting. One way to overcome

this problem is to use a particle filter. This kind of filtering, however, increases considerably

the computational burden. Here instead, we use a version of a Kalman filter, known as

unscented Kalman filter (UKF). It has been introduced in the literature by Julier and

Uhlmann (1997) and recently applied in finance by Carr and Wu (2007) and Campbell,

Sunderam, and Viceira (2010), among others. Instead of drawing a large number of point,

as it will be the case if we use a particle filter, the UKF works through deterministic

sampling of points in the distribution of the innovations. Those “sigma” points are chosen

in such a way that they can capture at least the conditional mean and variance-covariance

matrix of the state variables accurately.9

As mentioned earlier, the second step of the estimation procedure is based on a UKF

estimation for the data of the whole term structure. In this second step we keep the structure

of the regimes (i.e. the best–fitting thresholds linked to the corresponding variables and

9Another popular choice in the literature to cope with this kind of nonlinearities is the Extended Kalman

Filter (EKF). The EKF approach employs the idea of approximating the nonlinearities analytically through

first-order linearization. Moreover, the EKF requires explicit computation of Jacobians and Hessians,

making the procedure difficult to tune. UKF is conceptually different. As pointed by Julier and Uhlmann

(1997) it is easier to approximate a probability distribution than it is to approximate an arbitrary nonlinear

function or transformation. Indeed, in their work Wan and van der Merwe (2001) show the superiority of

the UKF in a series of experiments.
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the smoothing values) estimated in Section 3.5.3 fixed. For completeness, we consider both

unrestricted and restricted model specification from the previous section. We estimate

the model over the sample period 1964:01-2011:11, using monthly zero coupon yields with

maturities 3, 6, 12, 24 and 60 months.

3.5.5 State Space Dynamic

This subsection gives a brief description of the UKF procedure. All details can be found in

the Appendix .3.

Transition Equations

To estimate the model parameters on the observed yields, inflation and unemployment,

we cast the model into a state-space form and infer the three unobserved state variables.

The transition equations are given by:

πt+1 = μP
π + φP

πππt + φP
πggt + επ

t+1, (3.20)

gt+1 = μP
g + φP

gππt + φP
gggt + εg

t+1, (3.21)

rt+1 =
∑
i∈T

(γ0,i + γπ,iπt + γg,igt + ρirt)bJi (xt; θi) + εg
t+1. (3.22)

The system can be written in a more parsimonious form as follows:

xt+1 = F (xt, u) + εt+1, (3.23)

where the state variable xt = (πt, gt, rt)
′ represents the unobserved inflation, unemployment

and short rate dynamics.

The covariance matrix of the transition equation is diagonal and εt+1 = (επ
t+1, ε

g
t+1, ε

r
t+1)

′ ∼

N(0,ΣΣ′), where

Σ =

⎛⎜⎜⎝
σπ 0 0

0 σg 0

0 0 σr

⎞⎟⎟⎠
Measurement equations

We introduce two types of measure equations based on macroeconomic variables and

yields. The measurement equations are of the form:
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π̃t = πt + η1,t,

g̃t = gt + η2,t.

ỹ(t, n) = −
A(n)

n
−
B(n)′

n
xt − x′t

C(n)

n
xt + ξt,

or in a matrix notation

mt = H(xt, u) + ϑt, (3.24)

where mt = (π̃t, g̃t, ỹ(t, 3), ỹ(t, 6), ỹ(t, 12), ỹ(t, 24), ỹ(t, 60))′ is the collection of observed

inflation, observed unemployment, and five observed yields with time to maturity 3, 6,

12, 24 and 60 months, respectively. Similar to the transition equation, the measurement

shocks ϑt = (η1,t, η2,t, ξ
′
t)

′ are normally distributed and are uncorrelated with each other.

The variance–covariance matrix of the measurement equation is of the form

Cov(ϑ) =

⎛⎜⎜⎝
σ̃2

π 0 05×5

0 σ̃2
g 05×5

0 0 σ̃2
yI5×5

⎞⎟⎟⎠ .

Furthermore, we assume that the shocks of the measurement equation are uncorrelated

with the transition equation’s innovations.

Quasi-maximum likelihood estimation

Let m̂−
t+1 and P̂−

t+1 be one period ahead predictions of mt and of their conditional

volatility matrix P̂t+1, respectively, as estimated by the filter. Assuming normality of

measurement errors, we can compute the quasi–log–likelihood value for each time point in

our sample as follows:

�t+1(Θ) = −
1

2
ln |P̂−

t+1| −
1

2
(m̂−

t+1 −mt+1)
′(P̂−

t+1)
−1(m̂−

t+1 −mt+1)− (3.25)

We obtain the parameter estimates by solving

Θ̂ = argmax
Θ

T−1∑
t=0

�t+1(Θ), (3.26)

where T is the length of the in–sample period expressed in months. The starting values

of the log-likelihood correspond to the the unconditional moments of the state vector. De-

tailed description of the algorithm is provided in Appendix .3.

To ease the computational burden and prevent invariance, we adopt several conventions.

In particular, in a preliminary step we estimate the optimal parameters for inflation and
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unemployment in the transition equation by maximum likelihood. Given also the optimal

estimates for the regime–switching process for the short rate, obtained in Section 3.5.3, we

keep all the parameters in the transition equation fixed. Then, in a first step we filter the

parameters for the market price of risk. Given the dynamics of the market price of risk,

in a second step we estimate the optimal parameters for inflation, unemployment and the

short rate. We iterate the procedure several times until convergence.

3.5.6 Model Implications

Parameter Estimates

Table 3.6 and Table 3.7 present parameter estimates for the best–fitting 3–regime restricted

and 2–regime unrestricted Taylor rule models, respectively.

The estimated inflation and unemployment dynamics across both specifications is almost

identical, matching closely their realized dynamics. Consistent with the macro–finance

literature (see, e.g., Ang and Piazzesi (2003), Bibikov and Chernov (2010)) inflation is

highly persistent with an autoregressive coefficient close to unity. Unemployment growth

rate is persistent, shows however somewhat faster decay with an autoregressive parameter

of 0.96. The estimated VAR representation also suggests that increase in unemployment

rate leads to decrease in future inflation. This finding reflects the inverse Phillips curve

type relationship between inflation and unemployment.

The second panel of Table 3.6 and 3.7 show parameter estimates for the short rate

for the optimal restricted and unrestricted monetary policy models. The model estimates

found here match closely the one obtained in our short rate analysis (see Section 3.5.3).

In practice, however, it is not possible to identify uniquely all the short rate parameters

only from the second step. This is due to the fact that the quadratic short rate model

representation used for pricing, has several parameters less than the affine regime–switching

counterpart.10 To recover the local linear dynamics under each regime, we exploit, where

necessary, the ratio(s) between the individual variable estimates among the regimes found

in Section 3.5.3.

The above–mentioned identification issue persist in the context of the market price of

risk parameters. While the quadratic specification is uniquely determined, some of the

market price of risk parameters under the local regimes cannot be recovered. Therefore,

we prefer to report the parameter estimates from the quadratic representation instead of

making additional assumptions about the market price of risk. Keeping that in mind, we

10In the two–regime unrestricted specification, for example, the number of parameters is equal nine,

whereas the quadratic short rate model has one parameter less. We face the same issue in the three regime

restricted representation, where the number of parameters is 11. Our quadratic short rate representation

has on the other hand only 8 parameters.
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Parameter Estimates: Restricted Model

Macroeconomic Fundamentals (πt, gt):

μ π g π g

π 2.8e-5 0.995 -0.005 0.004 0
(0.001) (0.006) (0.001) (1.01e-04) ·

g -0.010 0.247 0.962 0 0.041
(0.003) (0.064) (0.010) · (0.001)

Short rate (rt):

γ0 γpi γg ρ

Regime 1 (CPI ≤ 0.0335) -0.004 -0.068 -0.001 0.970
(3.3e-4) (0.012) (0.001) (0.008)

Regime 2 (CPI > 0.0335) & (UNEMPL ≤ 0.089) 0.007 0.105 -0.010 0.970
(0.001) (0.009) (0.001) (0.008)

Regime 3 (CPI > 0.0335) & (UNEMPL > 0.089) 0.007 0.153 -0.009 0.970
(0.001) (0.009) (0.001) (0.008)

Risk Premia Parameters (λt):

λ0 π g r π2 πg g2

π -0.015 -0.019 -0.005
(3.0e-5) (0.002) (0.006)

g -0.005 0.012 -0.040
(2.1e-4) (0.021) (0.015)

r 0.030 -0.008 0.007 -0.011 0.016 0.034 0.001
(5.0e-5) (0.007) (0.002) (1.9e-4) (0.076) (0.570) (0.017)

Table 3.6: This table presents parameter estimates for the best–fitting restricted 3–regime
model, specified in the text. Asymptotic standard errors, presented in parenthesis, are
calculated using the outer product method. The estimates are obtained on monthly data
over the sample period 1964:01 – 2011:11.
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Parameter Estimates: Unrestricted Model

Macroeconomic Fundamentals (πt, gt):

μ π g π g

π 2.8e-5 0.995 -0.005 0.004 0
(0.001) (0.006) (0.001) (1.01e-04) ·

g -0.010 0.247 0.962 0 0.041
(0.003) (0.064) (0.010) · (0.001)

Short rate (rt):

γ0 γπ γg ρ

Regime 1 (CPI ≤ 0.033) 0.001 -0.028 -0.002 0.895
(4.2e-5) (0.015) (0.001) (0.012)

Regime 2 (CPI > 0.033) 0.001 0.095 -0.010 0.995
(4.0e-5) (0.015) (0.001) (0.010)

Risk Premia Parameters (λt):

λ0 π g r π2 πg πr

π -0.015 -0.018 -0.004
(1.1e-4) (3.9e-3) (1.9e-4)

g -0.005 0.011 -0.006
(2.6e-3) (0.003) (0.037)

r 0.025 -0.008 0.006 -0.008 -0.009 0.0132 0.029
(3.1e-3) (0.001) (2.7e-3) (1.4e-3) (0.007) (0.002) (0.064)

Table 3.7: This table presents parameter estimates for the best–fitting unrestricted 2–
regime model, specified in the text. Asymptotic standard errors, presented in parenthesis,
are calculated using the outer product method. The estimates are obtained on monthly
data over the sample period 1964:01 – 2011:11.
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proceed discussing the overall impact of the individual macroeconomic factors on the term

structure.

The optimal unrestricted and restricted specifications yield similar market price of risk

results. The price of inflation risk is negative on average, implying higher compensation for

investors. This feature becomes even more pronounced in periods of high inflation. Inflation

is also riskier when unemployment and short rate are higher. The price of unemployment

growth rate is positive on average, suggesting a decrease in the future short rate dynamics.

Term Structure Factors

To assess the impact of the individual risk factor on each yield of maturity n, we use

Equation (3.17) and compute the factor loadings A, B and C. Figure 3.4 superimposes the

resulting term structure.

Estimates from both the restricted and unrestricted models suggest a similar positive

slow decaying response to short rate. The intercept, inflation and the squared inflation

factor loadings are somewhat different across both specifications. While in the restricted

short rate representation higher inflation implies higher yields with the maximum loading

around a maturity of 20 months, in the 2–regime unrestricted model the impact of inflation

increases with time to maturity. The unemployment growth rate weight for is negative with

a peak at 24 months for the unrestricted representation. Despite the differences discussed

above, in practise the sum of the three factors A(n), Bπ(n) and Bg(n) result almost identical

term structure dynamics. One explanation for this finding is that the long–term inflation

and unemployment expectations implied by the classical VAR representation, used to model

the underlying macroeconomic state dynamics, are almost constant (see Kim (2008)).

We now move to a discussion about the factor loadings of the higher order components

C(n). Those terms are typically not present in the classical affine term structure models. It

is important to stress that in our framework those terms are not predetermined, but arise

naturally as a result (by-product) of the regime–switching short rate dynamics. In this

way, we can identify (select) the most important higher order terms, avoiding full model

specification, which typically leads to overparametrization. Moreover, our framework allows

us to establish a tight link between yields and directly interpretable economic quantities

without resorting to purely latent factors.

Several empirical findings are worth emphasizing. First, we find that inflation volatil-

ity is positively related to bonds, increasing with time to maturity of yields. Second, the

empirical correlation loading between inflation and unemployment is almost zero for all

maturities. The presence of this term can be reconciled with the stock–bond correlation

models in the spirit of Campbell, Sunderam, and Viceira (2010), David and Veronesi (2009),

where depending on the joint dynamics of consumption (unemployment) and inflation nom-

inal bonds can act as “inflation bets or deflation hedges”. The fact that this term has zero
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Term Structure Factor Loadings

Panel A: Unrestricted Model
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Figure 3.4: The two graphs report factor loadings from the optimal unrestricted (Panel A)
and restricted (Panel B) three–regime Taylor rule specification. The weights are scaled to
correspond to one standard deviation movements in the factors.
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effect in pricing bonds, but has a big impact on yields’ time variation makes it unspanned.

Indeed, a big class of recent literature discusses the presence of unspanned factors in the

term structure. Duffee (2011), for example, extract those hidden factor using a Kalman

filter technique, Joslin, Priebsch, and Singleton (2009) employ two macro factors, inflation

and real activity, and model them as orthogonal to yields. Ludvigson and Ng (2009b)

extract them from a large panel of macroeconomic indexes. As mentioned above, the key

difference between those models and ours is that in our framework this factor is selected

in a purely endogenous way and is consequence of the regime–switching structure. The

volatility of unemployment growth rate, −Cπr(n), in the restricted model and the weight

−Cπr(n) in the unrestricted specification has almost no effect on the cross section of yields,

contributing additional sources of unspanning.

Impulse Response

While inflation and unemployment matter for the term structure dynamics, recent empirical

studies (see, e.g., Beber and Brandt (2010)) show that bond returns’ response to macroe-

conomic news differ in expansion and recession. Indeed, the previous subsection provides

several insights into the nonlinear response of macroeconomic news to the term structure.

By computing impulse responses, we now discuss how bond yields change with economic

surprises. While the traditional affine term structure models generate symmetric response

of the yield curve to good and bad news, our modeling framework allows asymmetric effects

on yields.

It is interesting to see how the yield curve respond to macroeconomic risk under each

regime. As mentioned in the previous section, not all of the market price of risk factors can

be uniquely determined. Whenever necessary, we split the factor proportionally among the

regimes. Therefore, we interpret the resulting dynamics under each individual regime with

some caution. Figure 3.5, Panel A, plots impulse responses of the unrestricted model’s short

rate rt, 5–year nominal bond y(60), to unemployment growth rate and inflation conditional

on one regime being in place.

Looking at the unrestricted model specification, in times when inflation is low (Figure

3.5, Panel A), a positive unemployment shock increases both short and long term yields and

decreases the term spread. When inflation is medium or high, a shock in unemployment

suggests a slight initial decrease in yields. The key differences between the two regimes,

however, lie in the reaction of the short rate to inflation and the repond of the long yield to

unemployment growth rate. This is intriguing but consistent with the finding of Campbell,

Sunderam, and Viceira (2010). The fear of deflation (hyperinflation) causes an increase

(decrease) in the short rate’s level over time. This fact results also a change in term

spread’s slope.
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Panel A: Unrestricted Model, Regime 1 (CPI ≤ 0.0335)
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Panel B: Unrestricted Model, Regime 2 (CPI > 0.0335)
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Figure 3.5: The figure shows one standard deviation impulse responses of the short rate, rt

(column 1), 5-year nominal bond, y(60), (column 2) and term spread y(60) − rt (column 3)
to inflation, πt and unemployment growth, gt, respectively. The individual Panels A and B
display impulse responses conditional on the first and the second regime, respectively. The
first row of each Panel shows the respond to inflation, whereas the second row present the
impulse response to unemployment growth.
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Panel A: Restricted Model, Regime 1 (CPI ≤ 0.033)
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Panel B: Restricted Model, Regime 2 (CPI > 0.033 and UNEMPL ≤ 0.089)
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Panel C: Restricted Model, Regime 3 (CPI > 0.033 and UNEMPL > 0.089)
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Figure 3.6: The figure shows one standard deviation impulse responses of the short rate,
rt (co lumn 1), 5-year nominal bond, y(60), (column 2) and term spread y(60) − rt (column
3) to inflation, πt and unemployment growth, gt, respectively. The individual Panels A, B
and C display impulse responses conditional on the first and second and the third regime,
respectively. The first row of each Panel shows the respond to inflation, whereas the second
row present the impulse response to unemployment growth.
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Impulse responses of the restricted model conditional on the three regimes are presented

in Figure 3.6. Similar to the unrestricted model, depending on the level of inflation, we

document substantial differences in monetary policy’s reaction to inflation shocks. More

precisely, shocks to inflation causes and an increase (decrease) in short rate in times when

inflation is low (high).

The reaction of the short rate to unemployment growth rate is quite similar across the

three regimes. However, this is not valid for long term yield. While in the first regime and

the third regime a shock in unemployment growth rate has a pronounced increasing effect

on the long term yield, it has a different impact on the slope. This is quite intuitive: High

unemployment growth typically occurs in periods right after recession. Since expansions are

characterized with upward sloping yield curve, the unemployment shocks’ effect is consistent

with the business cycle patterns.

Bond Pricing

In this subsection we evaluate our optimal unrestricted and restricted regime switching

models’ ability for pricing and forecasting yields. Table 3.8 and Table 3.9 compare the

in– and out–of–sample performance of our regime–switching models to their one regime

counterpart. For completeness, we also add random walk forecasting results.

It is well known that the traditional dynamic term structure models fail to outperform

out-of-sample the random walk predictions, especially over short horizons (see, e.g., Duffee

(2002) and Ang and Piazzesi (2003)). Thus, by including random walk forecasts, we make

an indirect comparison of the predictive ability between our models and the classical affine

term structure models.

We look at four different forecasting horizons: 1, 3 , 6 and 12 months. Overall, the

performance of the two regime–switching models is quite similar. The in–sample results (see

Table 3.8) show that both regime-switching models lead to substantial RMSE reduction,

for maturities below one year. The superior performance of the regime-switching model

over different forecasting horizons retains in our out-of-sample study (Table 3.9), yet only

for the short maturities.

At first sign the performance of our regime–switching models could be a bit surprising

in the context of the results found in the classical macro-finance affine term structure

model literature (see e.g. Dewachter and Lyrio (2006), Ang and Piazzesi (2003)), where

predictability improves with time to maturity and forecasting horizon. However, by relying

only on most recent macroeconomic information, we are able to capture in a more accurate

way the short-run monetary policy related Phillips curve movements. As discussed by Fama

(2006), to match adequately the dynamics of the long term maturities, a slow moving, highly

persistent latent component is needed. This component bares the intuition of Bansal and

Yaron’s (2004) long–run risk economy and is associated with the central banks credibility
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In–Sample Forecasting Performance: Yield Curve

Yield Forecasting Random 2 regimes unrestricted 1 Regime 3 regimes restricted
Maturity Horizon Walk Taylor Rule Taylor Rule Taylor Rule

3M 1 0.0041 0.0032 0.0054 0.0044
6M 1 0.0055 0.0056 0.0071 0.0054
1Y 1 0.0056 0.0113 0.0114 0.0108
2Y 1 0.0049 0.0181 0.0182 0.0172
5Y 1 0.0040 0.0240 0.0270 0.0205

3M 3 0.0109 0.0091 0.0096 0.0091
6M 3 0.0098 0.0088 0.0087 0.0090
1Y 3 0.0097 0.0120 0.0118 0.0120
2Y 3 0.0087 0.0178 0.0181 0.0171
5Y 3 0.0069 0.0239 0.0270 0.0200

3M 6 0.0135 0.0132 0.0143 0.0133
6M 6 0.0132 0.0117 0.0126 0.0122
1Y 6 0.0127 0.0128 0.0130 0.0133
2Y 6 0.0115 0.0174 0.0172 0.0168
5Y 6 0.0093 0.0236 0.0268 0.0192

3M 12 0.0196 0.0186 0.0194 0.0196
6M 12 0.0183 0.0165 0.0175 0.0182
1Y 12 0.0174 0.0155 0.0162 0.0176
2Y 12 0.0158 0.0175 0.0182 0.0181
5Y 12 0.0130 0.0232 0.0267 0.0181

Table 3.8: This table compares the in–sample forecasting performance of four different
models as described in the text. The root mean squared error (RMSE) for a given yield
maturity n = 3, 6, 12, 24, 60 months and given forecasting horizon h = 1, 3, 6, 12 months is

computed as RMSE(n, h) =

√
1

T−h

(∑T−h

t=1 Et(y(t+ h, n)) − ỹ(t+ h, n)
)2

, where Et(y(t+

h, n)) is the expected model implied yield and ỹ(t+h, n) denotes its realized value. Sample
period 1964:01 – 2011:11, with a total of T = 575 observations.
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Out–of–Sample Forecasting Performance: Yield Curve

Yield Forecasting Random 2 regimes unrestricted 1 Regime 3 regimes restricted
Maturity Horizon Walk Taylor Rule Taylor Rule Taylor Rule

3M 1 0.0028 0.0020 0.0028 0.0028
6M 1 0.0026 0.0041 0.074 0.0047
1Y 1 0.0026 0.0106 0.0183 0.0128
2Y 1 0.0028 0.0203 0.0304 0.0277
5Y 1 0.0029 0.0328 0.0359 0.0326

3M 3 0.0061 0.0044 0.0057 0.0045
6M 3 0.0060 0.0065 0.0093 0.0072
1Y 3 0.0060 0.0122 0.0195 0.0143
2Y 3 0.0060 0.0213 0.0311 0.0285
5Y 3 0.0051 0.0331 0.0361 0.0407

3M 6 0.0105 0.0091 0.0108 0.0091
6M 6 0.0102 0.0104 0.0128 0.0110
1Y 6 0.0098 0.0147 0.0215 0.0168
2Y 6 0.0093 0.0227 0.0321 0.0300
5Y 6 0.0074 0.0304 0.0364 0.0397

3M 12 0.0182 0.0169 0.0182 0.0174
6M 12 0.0174 0.0178 0.0211 0.0183
1Y 12 0.0161 0.0210 0.0264 0.0231
2Y 12 0.0141 0.0277 0.0355 0.0352
5Y 12 0.0094 0.0353 0.0376 0.0430

Table 3.9: This table compares the out–of–sample forecasting performance of four different
models as described in the text. The root mean squared error (RMSE) for a given yield
maturity n = 3, 6, 12, 24, 60 months and given forecasting horizon h = 1, 3, 6, 12 months is

computed as RMSE(n, h) =

√
1

T−h

(∑T−h
t=1 Et(y(t+ h, n) − ỹ(t+ h, n)

)2

, where Et(y(t +

h, n)) is the expected model implied yield and ỹ(t + h, n) denotes its realized value. The
model is estimated over the in–sample period 1964:01 – 2004:12, and evaluated over the
out–of–sample period 2005:01 – 2011:11. T = 71 is the total number of out–of–sample
observations.
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and policymakers perceptions of the long–term inflation target.

We resign including a latent factor for several reasons. First, while the inclusion of

latent component improves the empirical fit of the mid and long end of the yield curve,

it comes at a cost of direct economic interpretability. The improved fit, conceals also a

deeper problem. Due to the highly correlated and very persistent yield structure, when

estimating the model with a latent component(s), the model quickly allocates the latent

factor to reducing the pricing errors on yields, making observable macroeconomic variables

only marginally significant. This fact, however, is a statistical feature, rather than an

economically interpretable phenomenon.

We do not see the increasing RMSE for maturities above one year implied by our

model as a drawback. In fact, our empirical study complements the standard dynamic

term structure framework by uncovering the macroeconomic nature of the short–run yield

fluctuation, without resorting to any latent factors.

Bond Risk Premia and the Yield Curve

In this section, we study two further implications of our regime–switching framework,

namely the flexibility of our model to reproduce different yield curve patterns and bond

excess return predictability.

Figure 3.7 shows the ability of our models to reproduce different yield curve shapes:

upward sloping, downward sloping, humped and inverted humped. While the optimal

restricted and unrestricted regime–switching model fits differ at some time periods, overall

they produce similar results.

An important result in the term structure literature to evaluate the goodness of a

model is related to bond returns. Using a methodology, introduced in the term structure

literature by Stambaugh (1988), Cochrane and Piazzesi (2005) recently show that a single

linear combination of forward rates is the best predictor of bond excess returns at a wide

range of maturities. The aim here is to test if our models reproduce the observed (tent

shape) pattern. Since our modeling framework is mainly devoted to the short end of the

yield curve, we implement Cochrane and Piazzesi’s (2005) analysis in somewhat different

setting. Instead of working with a one-year short rate and a one-year holding period, we

take three month bond as a short rate. To avoid data overlap, we consider a three month

holding period.

Despite those changes, the predictability of bond excess returns is small in our models.

Regressing 3–month bond excess returns on 3-, 6- and 9-month forward rates, we are able to

reproduce the observed pattern. However, the estimates from the model–implied regressions

are larger in comparison to those estimated from the data. Figure 3.8 and Table 3.10 show

the results.

The linear combination of data-implied forward rates explains about 25% of 3-month
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Yield Curve Shapes
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Figure 3.7: The figure shows fitted (model-based) yield curves (dotted lines) for selected
dates , together with actual yields (stars). The left panel presents the results from the
optimal restricted 3-regime restricted model. The right panel shows the resulting curve
from the optimal 2- regime unrestricted model.
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Regression Coefficients of 3-month Excess Returns on Forward Rates

Model Data 2 regimes Linear 3 regimes
Implied unrestricted model restricted

Intercept −0.002 -0.001∗∗∗ 0.001 -0.004

(-1.462) (-4.264) (0.536) (-1.456)

f1 −0.643∗∗∗ -0.245 0.974 0.409∗

(-5.673) (-1.910) (0.105) ( 0.224)

f2 0.547∗∗ 0.621 1.651 0.792

(2.763) (1.999) (0.084) (0.208)

f3 0.147 −0.394∗∗ 0.68 0.390

(1.223) (-2.020) (0.067) (0.197)

R2 0.259 0.145 0.09 0.140

Table 3.10: The table shows parameter estimates from regressions of 3-month excess returns
on 3-,6- and 9-month forward rates, denoted by f1,f2,f3, respectively. The results in columns
are from (i) the real data–implied model (column 2); (ii) the 2-regime unrestricted regime-
switching model (column 3); (iii) the global linear model (column 4); and (iv) the 3-regime
restricted regime-switching model (column 5). t -statistics (in parenthesis) are based on
heteroscedastic-consistent standard errors. Asterisks ∗ ,∗∗ ,∗∗∗ denote significance at the
10%, 5%, 1% level, respectively. The estimates are obtained on monthly data over the
sample period 1964:01 – 2011:11.
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Regression Coefficients of 3-month Excess Returns on Forward Rates
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Figure 3.8: The figure shows parameter estimates from four different model implied bond
excess returns on their corresponding model–implied forward rates. The models taken into
consideration are (i) real data–implied model; (ii) 2-regime unrestricted regime-switching
model; (iii) the global linear model; and (iv) 3-regime restricted regime-switching model.
The estimates are obtained on monthly data over the sample period 1964:01 – 2011:11.

bond excess return, whereas the R2 of our regime-switching models, account for up to 14.5%

of the bond excess returns.

3.6 Generalizations and Possible Applications

This work can be extended in many directions. The first and probably the most intuitive

extension is to include a long–term macroeconomic component as an additional yield curve

risk factor. As already mentioned in the chapter, the absence of long–term factor(s) makes

our analysis less attractive for modeling the long end of the yield curve. While incorporating

a latent component, as typically done in term structure literature is straightforward, a more

involved task is to link it directly to macroeconomic variables. In the spirit of Dewachter,

Lyrio, and Maes (2006), Dewachter and Lyrio (2006) or Kozicki and Tinsley (2005) this

component can be extracted by decomposing inflation (and other macro factors) into a

permanent and transitory component. Survey data can come at favor uncovering the long–

run macro risks in the economy. In this way we will be able to use macro information

related to different economic frequencies.

Our results show the importance of nonlinearities that capture changing roles of macro

variables in different economic conditions. However, the fact that when modeling the tran-

sition probabilities we rely only on the last observation, relates our regimes to business
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cycles. If the final goal is to uncover smoother long–term changes in interest rates, not only

the most recent, but also lagged macroeconomic information should be added.

While our study focuses on the first moments, an important caveat is the absence of

stochastic volatility. Without loss of generality stochastic volatility in both yield and macro

factors could be modeled as a separate state variable(s) as typically done in the classical

affine term structure framework (see, e.g., Dai and Singleton (2002), Duffee (2002)).

It is important to stress that all of the above–mentioned extensions require absolutely

no alteration in our modeling framework or estimation procedure. Those generalizations

are simply suggestions aimed at improving the empirical fit and/or providing better under-

standing of the various economic risks driving the yield curve dynamics.

The regime–switching modeling framework can be successfully applied in at least one

more direction, closely related to our study. A benchmark result in the literature (see,

e.g., Cochrane and Piazzesi (2005); Stambaugh (1988)) shows that a single linear combi-

nation of forward rates is the best predictor of bond returns. Unfortunately, the economic

interpretation of that factor remains an open question. While a linear combination of

macroeconomic factors fail to provide any reasonable explanation in that direction, the

flexible way in which we model the regime shifts might be useful to uncover a possible

nonlinear relationship between macro factors and bond risk premia.
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.3 Unscented Kalman Filter

This part of the Appendix describes in details the unscented Kalman filter procedure.

As mentioned in the chapter, to estimate the model parameters on the observed yields,

inflation and unemployment, we cast the model into a state-space form and infer the three

unobserved state variables. The transition equation is given by:

xt+1 = F (xt, u) + εt+1, (28)

where the state variable xt = (πt, gt, rt)
′ represents the unobserved inflation, unemploy-

ment and short rate dynamics. The explicit form of the F function is given in the text

equations 3.20

The measurement equation dynamics is of the form:

mt = H(xt, u) + ϑt+1, (29)

where mt = (π̃t, g̃t, ỹ(t, 3), ỹ(t, 6), ỹ(t, 12), ỹ(t, 24), ỹ(t, 60))′ is the collection of observed

inflation, observed unemployment, and five observed yields with time to maturity 3, 6,

12, 24, and 60 months, respectively. The covariance matrix of the transition equation is

diagonal:

εt+1 = (επ
t+1, ε

g
t+1, ε

r
t+1)

′ ∼ N(0,ΣΣ′),

Σ =

⎛⎜⎜⎝
σπ 0 0

0 σg 0

0 0 σr

⎞⎟⎟⎠
Similar to the transition equation, the measurement shocks are normally distributed

and are uncorrelated with each other. The variance–covariance matrix of the measurement

equation is of the form:

Cov(ϑ) =

⎛⎜⎜⎝
σ̃2

π 0 05×5

0 σ̃2
g 05×5

0 0 σ̃2
yI5×5.

⎞⎟⎟⎠
Furthermore, we assume that the shocks of the measurement equation are uncorrelated

with the transition equation’s innovations.

The presence of nonlinearities in the measurement and transition equations motivate

our choice for using UKF.

The basis of the UKF is the use of unscented transformation. In essence, the unscented

transformation (UT) is a method for calculating the statistics of a random variable, which

undergoes a nonlinear transformation (see Julier and Uhlmann (1997)). Below, we explain

unscented transformation the procedure.
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Unscented Transformation

Let x has a mean x and covariance P . We build a matrix of 2L+ 1 sigma vectors χ as

follows:

χ0 = x

χi = x+
(√

(L+ κ)Px

)
i
, i = 1, . . . , L

χi = x−
(√

(L+ κ)Px

)
i−L

, i = L+ 1, . . . , 2L,

where L is the dimension of the state, κ is a composite scaling parameter governing

the dispersion of the sigma points around the mean.
(√

(L+ κ)Px

)
i

is the i-th row or

column of the matrix square root of (L + κ)Px. Sigma points are propagated through

the measurement function H(·) to generate M. The mean and the covariance of mt are

approximated by:

m ≈

2L∑
i=0

W μ
i Mi

Pm ≈
2L∑
i=0

W c
i (Mi −m)(Mi −m)′, i = 1, . . . , L

where Wμ and W c are the weights for the mean and the covariance matrix.

W μ
0 =

κ

L+ κ

W c
0 =

κ

L+ κ
+ 1 − α2 + β,

W μ
i = W c

i =
κ

2(L+ κ)
i = 1, . . . , 2L

α and β are tune in parameters, determining the higher order moments of the distribu-

tion.

The UKF Algorithm

The specification of the UKF algorithm formalized below is especially designed for zero-

mean additive noise. For general treatment, we refer to Wan and van der Merwe (2001).

(i) Initialize with
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x̂0 = E[x0]

P0 = E[(x0 − x̂0)(x0 − x̂0)
′]

for k ∈ 1, . . . ,∞ :

(ii) Calculate sigma points:

χk−1 = [x̂k−1 x̂k−1 +
√

(L+ κ)Pk−1 x̂k−1 −
√

(L+ κ)Pk−1] (30)

(iii) Time update

χ∗
k|k−1 = F (χk−1)

x̂−k =

2L∑
i=0

χ∗
k|k−1

P−
k =

2L∑
i=0

(χ∗
k|k−1 − x̂−k )(χ∗

k|k−1 − x̂−k )′ + Cov(ε)

(a) Redraw sigma points

χk−1 = [x̂k−1 x̂k−1 +
√

(L+ κ)Pk−1 x̂k−1 −
√

(L+ κ)Pk−1]

Mk|k−1 = H(χk−1)

m̂−
k =

2L∑
i=0

Mk|k−1

(iv) Update measurement equation:

P−
mkmk

=
2L∑
i=0

(Mik|k−1 − m̂−
k )(Mik|k−1 − m̂−

k )′ + Cov(ϑ)

Pxkmk
=

2L∑
i=0

(ik|k−1−m̂
−
k )(Mik|k−1 − m̂−

k )′

Kk = Pxkmk
P−1

mkmk

x̂k = x̂−k + Kk(mk − m̂−
k )

Pk = Pk−1 −KkP
−
mkmk

K′
k

123



124



Bibliography

Ahn, D., R. Dittmar, and R. Gallant (2002): “Quadratic Term Structure Models:

Theory and Evidence,” Review of Financial Studies, 15, 243–288.

Aı̈t-Sahalia, Y. (1996a): “Non-Parametric Pricing of Interest Rate Derivative Securities,”

Econometrica, 64(3), 527–560.

(1996b): “Testing Continuous-Time Models of the Spot Interest Rate,” Review of

Financial Studies, 9(2), 385–426.

Ang, A., and G. Bekaert (2002): “Regime Switches in Interest Rates,” Journal of

Business and Economic Statistics, 20(2), 163–182.

Ang, A., G. Bekaert, and M. Wei (2008): “The Term Structure of Real Rates and

Expected Inflation,” Journal of Finance, 64(2), 797–849.

Ang, A., J. Boivin, S. Dong, and R. Loo-Kung (2010): “Monetary policy shift and

the term structure,” Review of Economic Studies, 2 (47), 429–457.

Ang, A., and M. Piazzesi (2003): “No-Arbitrage Vector Autoregression of Term Structure

Dynamics with Macroeconomic and Latent Variables,” Journal of Monetary Economics,

50(4), 745–787.

Ang, A., M. Piazzesi, and M. Wei (2006): “What Does the Yield Curve Tell Us About

GDP Growth,” Journal of Econometrics, (131), 359–403.

Audrino, F. (2006): “Tree-Structured Multiple Regime in Interest Rates,” Journal of

Business and Economic Statistics, 24(3), 338–353.
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