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Abstract

This dissertation uses game-theoretic and experimental methods to analyze the behavior
of optimizing agents in different contest environments.

Part 1 contributes to the literature on contest theory and derives the subgame perfect
Nash equilibrium solution of a multi-stage pair-wise elimination contest with heteroge-
neous participants. Subsequently, equilibrium properties of this dynamic contest format
are compared to properties of a static one-shot contest. The comparison indicates that the
effect of heterogeneity on contest participants is structure specific: While total outlays in
both formats are identical in interactions between homogeneous agents, total outlays are
strictly higher in the dynamic than in the static contest when agents are heterogeneous.

Part 2 considers a principal who organizes a tournament between heterogeneous em-
ployees. Comparing the incentive effect of heterogeneity in different tournament struc-
tures, the results indicate that the effect is always negative in static formats, but often
positive in dynamic elimination tournaments. Experimental evidence from lab experi-
ments confirms these theoretical predictions. Subsequently, the dissertation investigates
to what extent a promotion tournament can accomplish both the selection of the most
able employee and the provision of incentives. The results suggest that any tournament
with heterogeneous participants provides some incentives for effort and some sorting of
types. However, modifications which improve the performance in one will deteriorate the
performance in the other dimension, i.e., tournament formats that perform better in terms
of incentive provision do worse in terms of selecting the best participant, and vice versa.

Part 3 uses experimental methods to analyze the effect of prize structure variations
on optimal behavior. Initially, we consider a single prize treatment, which is supposed
to maximize total effort provision, and a treatment with multiple prizes which ensure
incentive maintenance across stages. While the experimental design does not introduce
any ex-ante heterogeneity between subjects, we observe ex-post heterogeneity – risk atti-
tudes by experimental subjects have a strong effect on their behavior. In a next step, we
compare a treatment where agents receive an immediate reward for winning stage 1 with
a specification where the reward for winning stage 1 is delayed until the stage-2 interac-
tion is over. The results indicate that stage-1 effort choices by experimental subjects are
higher in the delayed than in the immediate reward treatment, while effort provision in
stage 2 does not differ between treatments. The finding that differences across treatments
are fully explained by risk attitudes suggests that experimental subjects are separately
evaluating each stage of the contest.
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Zusammenfassung

Die vorliegende Arbeit untersucht die Auswirkungen von Strukturveränderungen auf das
Verhalten von Wettkampfteilnehmern.

Im ersten Teil der Arbeit wird das teilspielperfekte Nash-Gleichgewicht in einem
mehrstufigen Wettkampfmodell mit paarweiser Elimination und heterogenen Teilnehmern
bestimmt. Anschliessend werden die Gleichgewichtsentscheidungen von Spielern in diesem
mehrstufigen Wettkampfmodell mit den optimalen Entscheidungen in einem einstufigen
Wettkampf verglichen. Unter der Annahme homogener Teilnehmer sind beide Wettkampf-
modelle strategisch äquivalent. Im generellen Fall mit heterogenen Teilnehmern zeigt sich
jedoch, dass die Investitionsanreize im mehrstufigen Wettkampf höher als im einstufigen
Wettkampf sind. Der Effekt von Heterogeneität auf die optimalen Investitionsanreize
hängt also von der Wettkampfstruktur ab.

Der zweite Teil der Arbeit betrachtet Wettkämpfe als Modellrahmen für Bonus- und
Beförderungsturniere in Unternehmen. Zunächst wird untersucht, inwieweit die in der
Personalökonomie weit verbreitete Ansicht, dass Heterogeneität zwischen Beschäftigten
eines Unternehmens die Leistungsanreize in Bonusturnieren reduziert, generell zutrifft.
Dabei zeigt sich, dass Heterogenität in dynamischen Turnieren oft zu positiven Anreiz-
effekten führt, während dieser Effekt in den bisher schon häufig betrachteten statischen
Turnieren immer negativ ist. Dieses Muster zeigt sich auch in einer empirischen Un-
tersuchung. Anschliessend werden Beförderungsturniere betrachtet, bei denen es neben
absoluten Leistungsanreize auch darauf ankommt Führungspositionen mit den fähigsten
Mitarbeiter zu besetzen. Die Untersuchung zeigt, dass diese beiden Ziele inkompatibel
sind; wenn Veränderungen der Turnierstruktur die Performance in der Anreizdimension
erhöhen, reduzieren sie gleichzeitig die Selektionsfähigkeit des Turniers (und umgekehrt).

Im dritten Teil der Arbeit wird die Anreizwirkung unterschiedlicher Preisstrukturen
in mehrstufigen Wettkämpfen mit Hilfe von Laborexperimenten untersucht. In einem
ersten Schritt wird die Anzahl der vergebenen Preise variiert. Laut theoretischen Vorher-
sagen sinken die Investitionsanreize bei gleichbleibender Preissumme mit der Anzahl der
vergebenen Preise. Die empirische Untersuchung qualifiziert diese Aussage insofern, als sie
nur für risiko-neutrale Entscheider zu gelten scheint; für risiko-averse Entscheider hingegen
scheint der Versicherungseffekt eines zweiten Preises den negativen Anreizeffekt zu über-
wiegen. In einem zweiten Schritt wird der Zeitpunkt der Preisvergabe variiert. Dabei zeigt
sich, dass eine spätere Preisvergabe die Anreize erhöht, obwohl der Zeitpunkt laut theo-
retischen Vorhersagen keinen Einfluss auf das Verhalten der experimentellen Entscheider
haben sollte. Genauere Untersuchungen deuten darauf hin, dass dieser Unterschied da-
rauf zurückzuführen ist, dass die Entscheider jede Turnierstufe separat evaluieren anstatt
ihren Nutzen über das Gesamtturnier zu maximieren.
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Chapter 1

General Introduction

Contest models are prominent in many different areas of economics: Researchers in the
field of personnel economics use contests as one possible mechanism to solve incentive
and/or informational problems, for example.1 In addition, contests are used to model
election campaigns, rent-seeking games, R&D races, procurement tournaments, the com-
petition for monopolies, litigation, wars, or the competition for titles in sports. Generally
speaking,

...a contest is a game in which at least two agents compete over at least one
prize by making costly and irreversible outlays. Each agent’s outlay increases
the own probability of success, and reduces the chances of the opponent(s) at
the same time.2

The meaning of outlays is application specific and may capture monetary expenses, effort
provision, or a combination of these two factors. What is crucial, however, is that outlays
are costly for participants of the contest, and that costs are independent of success or
failure. As a consequence, each agent faces a trade-off when deciding about his/her
outlays; own outlays do not only lead to uncertain gains in the sense that they increase the
probability to win, but they also imply certain costs. Assuming that contest participants
are risk-neutral and maximize their expected payoff, the resulting decision problem of
agent i who chooses his/her outlay xi in a one-shot interaction with a single prize B
formally reads

max
xi

Πi(xi, x−i) = p(xi, x−i) ∗B − c(xi),

where pxi(⋅) ≥ 0, px−i(⋅) ≤ 0, and cxi(⋅) > 0; x−i is the vector of individual outlays chosen
by all other agents.

Apart from functional form assumptions about the cost function c(xi), the so-called
contest success function p(xi, x−i), which translates outlays made by participants into

1In this field, it is common to use the term tournament rather than contest.
2Definition of a contest similar the one given by Clark and Riis (1998b), p.1.
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winning probabilities, is a central ingredient to any contest model. A contest success
function (CSF) can either be perfectly or imperfectly discriminating. In a contest with a
perfectly discriminating CSF, the agent whose outlay is higher than the outlay of any other
player wins with probability one. Intuitively, it does not matter how big the difference
between the outlays is in this specification, it suffices if the own outlay is marginally higher
than the outlay of any other agent to win for sure. This situation is commonly referred to
as “all-pay auction”. Due to its analytical simplicity, the all-pay auction case is probably
the most explored setting.3 At the same time, this approach has two potential flaws:
First, equilibria in all-pay auctions are often in mixed strategies, which may constrain
empirical and especially experimental testing of theoretically derived results, particularly
in small samples.4 Second, the assumption that a marginal lead by any one agent leads
to a deterministic outcome is inappropriate in many real-life situations, where contest
outcomes are at least partly determined by chance.5 Imperfectly discriminating CSFs
account for these problems; the equilibrium is often in pure strategies, and in addition, the
outcome is partly determined by chance. This dissertation employs the standard Tullock
(1980) contest model with a linear cost function and an imperfectly discriminating CSF,
which formally defines the winning probability of agent i as6

pi(xi, x−i) =
xri

xri +∑j≠i x
r
j

.

The parameter r allows for variations of the importance of chance (relative to outlays) for
the contest outcome. One says that r measures the discriminatory power, since chance
becomes less and less relevant for the contest outcome as r increases; for r →∞, the ratio
CSF by Gordon Tullock approaches the perfectly discriminating all-pay auction CSF.

Many different aspects of the Tullock model have been analyzed in the past. While one
strand of the literature investigates application specific research questions, other scholars
consider it as equally important to understand general properties of contest games without

3Properties of the all-pay auction are discussed by Amman and Leininger (1996), Baye, Kovenock,
and de Vries (1996), Clark and Riis (1998a), Moldovanu and Sela (2001), Moldovanu and Sela (2006), as
well as Groh, Moldovanu, Sela, and Sunde (2012), for example.

4To be precise, the equilibrium is in mixes strategies in settings with complete information, while pure
strategy equilibria are usually encountered if player types are private information.

5The performance of workers in an evaluation period is usually a composite measure of effort and luck;
a sports tournament may be won by the player who provides less effort by chance. Similar arguments
hold for most real-life interactions with contest properties.

6The second prominent imperfectly discriminating CSF is the additive noise difference specification,
which assumes that each agent chooses a certain outlay level initially, that some random variable is
subsequently added to the chosen outlay, and that the agent whose sum of outlay and random component
is highest ultimately wins the contest. In this case, type and bounds of the distribution function from
which the random variable(s) are drawn determine the relative importance of chance for the outcome of
the contest. For a comparison of these two CSFs, see Hirshleifer (1989); Skaperdas (1996), Clark and Riis
(1998b), and Rai and Sarin (2009) present an axiomatization of both contest technologies.
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making reference to particular applications: Issues like the number of participating agents,
the structure of the competition, the structure of prizes, the type of participants, or
informational assumptions, for example, were addressed with respect to their impact on
agents’ equilibrium behavior. This cumulative dissertation contributes to both strands
of the contest literature: Chapters 2 and 3 are rather technical, while Chapters 4 and 5
consider an application, namely bonus and promotion tournaments as an instrument for
human resources management on internal labor markets. Finally, the last two chapters
are empirical contributions which use experimental data from the lab. Note that each
chapter is written as an independent contribution in paper form, which implies that
certain aspects, such as the definition of a contest, the description of the experimental
implementation, or the experimental instructions, are repeated several times.

The next chapter (Chapter 2) presents the subgame perfect Nash equilibrium solution
of a multi-stage pair-wise elimination contest. While previous analyses of this contest
format restricted attention to the case where all agents are homogeneous, I consider the
general case with heterogeneous contest participants. Chapter 3 uses the solution from
Chapter 2 to compare the dynamic multi-stage to a static one-shot contest. The compar-
ison indicates that the effect of heterogeneity on contest participants is structure specific:
While total outlays in both formats are identical in interactions between homogeneous
agents, I find that total outlays are usually higher in the dynamic than in the static contest
when agents are heterogeneous. In contrast to Chapters 2 and 3, the focus of Chapters
4 is on a particular application. Together with my co-author Uwe Sunde, I consider a
principal who uses a tournament compensation scheme to incentivize workers. We find
that the overall effect of heterogeneity on total effort provision by all workers depends
on the tournament format. While the effect is always negative in static formats, we find
that the incentive effect of heterogeneity can be strictly positive in dynamic elimination
tournaments. Experimental evidence from lab experiments confirms these theoretical pre-
dictions. Chapter 5 is joint work with Wolfgang Höchtl, Rudolf Kerschbamer, and Uwe
Sunde. As in Chapter 4, we consider the personnel economics application of a principal
who uses tournaments as a means of human resource management. In particular, we in-
vestigate to what extent a promotion tournament can accomplish both the selection of the
most able employee and the provision of incentives. The results suggest that any tourna-
ment with heterogeneous participants provides some incentives for effort and some sorting
of types. However, modifications which improve the performance in one will deteriorate
the performance in the other dimension, i.e., tournament formats that perform better in
terms of incentive provision do worse in terms of selecting the best participant, and vice
versa. From a policy perspective, this suggests that multiple instruments should be used
whenever both goals are equally important. The last two chapters of this dissertation
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use experimental methods to analyze prize structure variations in multi-stage pair-wise
elimination contests. Chapter 6 (joint work with Wolfgang Höchtl, Rudolf Kerschbamer,
and Uwe Sunde) considers a single prize treatment, which is supposed to maximize total
effort provision, and a treatment with multiple prizes which ensure incentive maintenance
across stages. While the experimental design does not introduce any ex-ante heterogene-
ity between subjects, we observe ex-post heterogeneity – risk attitudes by experimental
subjects have a strong effect on their behavior. In particular, we find that total effort
is maximized in the single prize treatment for risk-neutral, but not for risk-averse sub-
jects. Independent of risk attitudes, we observe incentive maintenance across stages in
the multiple prizes setting. The last chapter (joint work with Rudolf Kerschbamer and
Uwe Sunde) analyzes which effect the timing of rewards has on the behavior of agents in
two-stage pair-wise elimination contests. We compare a treatment where agents receive
an immediate reward for winning stage 1 with a specification where the reward for win-
ning stage 1 is delayed until the stage-2 interaction is over. Theory predicts that the two
treatments are strategically identical in both stages if agents are risk neutral, or if agents
jointly evaluate the payoff of both interactions. Yet, we find that stage-1 effort choices by
experimental subjects are higher in the delayed than in the immediate reward treatment,
while effort provision in stage 2 does not differ between treatments. In particular, average
differences of stage-1 effort choices between treatments are fully explained by choices of
risk averse subjects: While their stage-1 effort choices in the delayed are much higher than
in the immediate reward treatment, there is no difference across treatments for risk neu-
tral subjects. This pattern is consistent with theoretical predictions only if experimental
subjects separately evaluate the payoff of each stage. In this case, delayed rewards provide
an insurance for risk averse decision makers, such that stage-1 effort choices should indeed
differ across treatments for risk averse, but not for risk neutral decision makers.
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Chapter 2

Multi-Stage Elimination Contests with
Heterogeneous Agents

2.1 Introduction

Contest models are used to describe strategic interactions between agents in many differ-
ent settings, including diverse areas such as war, rent-seeking or R&D competitions, and
sport tournaments. Due to the impressive variety of possible applications, many different
contest structures have been considered in the literature already. One of the most promi-
nent structures is the multi-stage pair-wise elimination format, which is sometimes also
referred to as knock-out contest, since the loser of each interaction is eliminated from any
future competition, while the winner moves on to the next stage. This contest structure
is probably best known from sports: Disciplines like baseball, boxing, hockey, soccer, ten-
nis, or even chess make use of this structure at least in later stages of the competition, in
the so-called “playoff” stage. However, the structural feature of subsequent elimination is
relevant in many other fields as well: In personnel economics, for example, where promo-
tion tournaments within firms are usually modeled as elimination contests, or in political
sciences, where multi-stage election campaigns like the one for US presidency have this
structural feature.

In this paper, I analyze multi-stage pair-wise elimination contests with heterogeneous
agents, assuming that types are common-knowledge among participants of the contest.
I show under which conditions a subgame perfect Nash equilibrium exists when a gen-
eral Tullock contest success function (CSF) is used. Moreover, the equilibrium solution
is derived analytically for the special case of a lottery CSF, and characterized for the
remaining cases. Note that the main difficulty which arises in multi-stage contests once
agents are allowed to be heterogeneous is that continuation values in early stages become
endogenous due to feedback effects across different branches of the game. Therefore, I
devote special attention to the analysis of these feedback effects. At the end of the paper,
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I investigate several properties of the model, such as comparative static results, and effort
maximizing prize structures. In particular, I also compare “Seeding” properties in my
Tullock CSF model with properties previously established by Groh, Moldovanu, Sela, and
Sunde (2012) for the perfectly discriminating all-pay auction CSF.

Given the wide variety of potential applications, it is almost surprising that the exist-
ing literature has (almost) exclusively concentrated on the most simple case of multi-stage
elimination contests in which all participating agents are identical. Even a very recent
paper on the optimal design of multi-stage contests by Fu and Lu (2012) entirely focusses
on settings with homogeneous agents. However, the consideration of research on settings
with heterogeneous agents is recommended for future research in the conclusion.1 Only
special cases of the arguably more relevant case where agents can be of different types
have been analyzed in the past: In the theoretical literature on contest design, Stein and
Rapoport (2004) compare the behavior of asymmetric agents in two-stage contests with
different orderings of competition within and between groups. However, since homogene-
ity is assumed within each group, the major complication that arises in a multi-stage
competition between heterogeneous agents is avoided, namely the endogeneity of contin-
uation values in early stages of the game. Other authors focus on specific applications
of multi-stage contests: Rosen (1986), for example, uses multi-stage pair-wise elimination
contest structure to model a promotion tournament. The analysis mainly concentrates on
the case where agents are homogeneous, only numerical examples address heterogeneous
settings.2 A paper by Harbaugh and Klumpp (2005) considers the same contest structure
as I do in this paper, but makes two simplifying assumptions: First, agents can only be of
two different types, and second, total effort provision by each participant in both stages
of the contest is equal to some constant by assumption. In other words, Harbaugh and
Klumpp (2005) analyze a version of the model where all agents face the same binding
effort endowment (which has no intrinsic value), and then discuss how the endowment
is optimally distributed across the two stages. Finally, Klumpp and Polborn (2006) con-
sider heterogeneous contestants in a multi-stage competition, but their contest structure
is somewhat different from the one that is analyzed in this paper, because they assume
that the same two agents interact repeatedly within stage 1.

Somewhat more is known about the properties of multi-stage contests with hetero-
geneous agents in a different branch of the contest literature, which uses a perfectly

1Another example is the paper by Gradstein and Konrad (1999), where single- and multi-stage contests
are compared for the case of homogeneous agents only.

2Sherwin Rosen determines the optimal structure of prizes under the assumption that agents are
perfectly homogeneous; optimality refers to constant incentives for effort provision across stages. In the
last section of the paper, he discusses by use of numerical examples to what extent the results do hold in
settings with heterogeneous agents.
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discriminating CSF, the so-called “all-pay auction”.3 Moldovanu and Sela (2006) com-
pare one-stage and multi-stage contests and explicitly allow for heterogeneity between
the contestants. Groh, Moldovanu, Sela, and Sunde (2012) consider the case of four het-
erogeneous, optimizing agents in a two-stage pair-wise elimination tournament, as I do in
this paper. However, they derive the mixed-strategy equilibrium for the all-pay auction
and determine how players should be paired, or seeded, in stage 1 to satisfy four different
optimality criteria. Although the baseline situation is the same in their and in my model,
the focus is very different: Groh, Moldovanu, Sela, and Sunde (2012) restrict their atten-
tion exclusively to the effect which the allocation of player types in stage 1 (“Seeding”) has
on the properties of a two-stage contest with four agents. The approach in my paper is
broader; I analyze comparative statics behavior, and discuss the effect of heterogeneity in
multi-stage contests on the structure of optimal prizes. Further, the feedback effect across
different branches of the game is considered in some detail, as well as situations with more
than two stages. Apart from that, I use a general Tullock CSF which, in contrast to the
all-pay auction case, does not restrict the structure of prizes in any dimension, and gives
an equilibrium in pure strategies.4

I proceed as follows: Section 2 starts by considering the simplest case of a multi-stage
pair-wise elimination contest, which is a contest with two-stages and four agents. First, I
generally characterize the subgame perfect Nash-equilibrium solution for a discriminatory
power r, before I derive the analytical solution for the special case of a lottery CSF (r = 1).
At the end of the section, extensions of the baseline model to three or more stages are
discussed. Section 3 analyzes several properties of the simplest multi-stage contest with
two stages. In particular, I present some comparative static results and briefly address
the issue of optimal, i.e., effort maximizing prizes. Section 4 concludes.

2.2 Modeling Multi-Stage Elimination Contests

2.2.1 A Two-Stage Tullock Contest with Discriminatory Power r

In a two-stage contest, there are three pair-wise interactions: Two in stage 1, and a
third one in stage 2 between the two winners of stage 1. The four agents are assumed
to be risk neutral and identical apart from the individual effort productivity parameter
ai ≥ 0 which determines their type. The higher ai, the stronger (or more productive)
is agent i.5 Agents are perfectly informed about both their own type and the type of

3In such a setting, a marginal lead in terms of contest investments implies a winning probability of 1.
4A pure strategy equilibrium is an advantage if one intends to test certain predictions of the model in

a controlled laboratory experiment, for example.
5All productivity parameters are assumed to be non-negative and finite. It is without loss of generality

that I model heterogeneity between agents in terms of effort productivity. All the subsequent results do
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the remaining three agents participating in the contest. They do not know, however,
which agent they will meet in stage 2 of the game, since decisions of all agents in stage
1 are made simultaneously.6 Therefore, agents make decisions based on expectations
with respect to the probability that they meet a certain type in stage 2. Any pair-wise
interaction is modeled using linear effort costs and a Tullock contest success function,
as in the standard rent-seeking model by Tullock (1980). Assuming that agents i and j
optimally choose efforts xi and xj, respectively, the winning probability pij of agent i is
defined as

pij =

⎧⎪⎪
⎨
⎪⎪⎩

aix
r
i

aixri+ajxrj
if xi + xj > 0

1
2 if xi + xj = 0

.

r is the discriminatory power of the contest success function, while the parameter ai (aj)
measures the effort productivity of agent i (j).7

Three prizes are awarded in the contest: The prize PH ≥ 0 is awarded to the winner
of the stage-2 subgame, while the two agents who reach stage 2 each receive PL ≥ 0.
Consequently, the winner of stage 2 receives PL+PH , and the overall amount of resources
that are used for prizes is equal to the sum 2PL + PH .8

It is assumed without loss of generality that agents 1 and 2 meet in one of the two in-
teractions in stage 1, while agents 3 and 4 compete in the remaining one. The equilibrium
concept needed to solve this game is subgame perfect Nash: Using backwards induction,
I start by solving stage 2 of the game, or, to be precise, all potential constellations of
second stage games, and subsequently consider the first stage, taking optimal choices in
stage 2 as given.

Stage 2. Since only one agent from each subgame proceeds to the second stage, there
are four potential constellations in the stage-2 subgame: (i) agent 1 - agent 3, (ii) agent
1 - agent 4, (iii) agent 2 - agent 3, or (iv) agent 2 - agent 4.9 All constellations are simple
interactions between two heterogeneous agents, a situation which has been studied by
Allard (1998) and Nti (1999) in slightly different settings.10 I will now derive a solution
for the general case where agent i meets agent j. It is assumed without loss of generality
that agent i is stronger than agent j, i.e., the relation ai ≥ aj ≥ 0 does hold. xij ≥ 0

also hold if agents have different valuation or cost of effort parameters.
6Nothing changes if decisions are made sequentially, as long as no agent is informed about the decision

of any other agent before he/she has made his own decision in stage 1.
7This contest success function has been axiomatized by Clark and Riis (1998b).
8The solution to the game is the same under the assumption that only one or two prizes exist; if two

prizes exist, one would be for the winner of the second stage game, and one for the loser of the second
stage game.

9Note that two or more of these interactions may be strategically equivalent, if at least two agents are
of the same type, i.e. if their effort productivity ai is identical.

10Allard (1998) focuses on existence and uniqueness of equilibria in heterogeneous Tullock contests,
while Nti (1999) presents extensive comparative static results for heterogeneous two player contests.
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(xji ≥ 0) denotes the effort of agent i (j) in an interaction with agent j (i).11 The two
agents compete for the prize PH and choose their efforts in such a way as to maximize
their expected payoff πi(i − j) and πj(j − i), respectively. Formally, the corresponding
optimization problems are

max
xi≥0

πi(i − j) =
aixrij

aixrij + ajx
r
ji

PH − xij,

max
xj≥0

πj(j − i) =
ajxrji

aixrij + ajx
r
ji

PH − xji.

First derivatives with respect to the choice variable deliver the following system of first-
order conditions:

raiajx
r−1
ij xrjiP

H − (aix
r
ij + ajx

r
ji)

2 = 0 (2.1)

raiajx
r−1
ji x

r
ijP

H − (aix
r
ij + ajx

r
ji)

2 = 0 (2.2)

These conditions are necessary and sufficient for the unique pure-strategy equilibrium if
the discriminatory power r is not too high.12 Nti (1999) derived a formal condition which
assures that the equilibrium is in pure strategies in two player contests with heterogeneous
agents.

Assumption 2.1. The contest between agents i and j has a unique pure strategy equilib-
rium, i.e., I assume that the discriminatory power r is not too high relative to the degree
of heterogeneity between agents in terms of effort productivity differences. Formally, it
must hold that

r ≤
aj
ai
+ 1,

where ai ≥ aj ≥ 0.

For the remainder of this paper, I assume that this condition is satisfied. Under
Assumption 2.1, the system of equations (2.1) and (2.2) fully characterizes the equilibrium,
i.e., the optimality conditions are necessary and sufficient. Combination of these equations
delivers equilibrium efforts

x∗ij = x
∗
ji = r

aiaj
(ai + aj)2

PH . (2.3)

In equilibrium, both agents provide the same effort, even though their productivity pa-
rameters ai and aj may be different. This does not hold, however, for expected equilibrium

11The assumption that xij ≥ 0 is standard in the literature, since negative investments into a contest
do not make sense.

12Mixed strategies which occur in homogeneous two player Tullock contests if r > 2 are discussed by
Baye, Kovenock, and de Vries (1994).
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payoffs. Inserting x∗ij and x∗ji in the payoff functions πi gives the expected equilibrium
payoffs

π∗i (i − j) =
a2
i + (1 − r)aiaj
(ai + aj)2

PH , and π∗j (j − i) =
a2
j + (1 − r)aiaj

(ai + aj)2
PH . (2.4)

Recall that agent i is assumed to be stronger than agent j, i.e., the relation ai ≥ aj ≥ 0 is
assumed to hold. Inspection of the expected equilibrium payoffs reveals that π∗i (i − j) ≥
π∗j (j − j), such that the expected equilibrium payoff of the stronger agent is higher, as
intuition would suggest. Further, the difference (or ratio) of the expected equilibrium
payoffs of the stronger and weaker agent is increasing in the difference (or ratio) of the
effort productivity parameters.

Stage 1. Without loss of generality, assume that agent 1 is stronger than agent 2, while
agent 3 is stronger than agent 4, i.e. a1 ≥ a2 ≥ 0, and a3 ≥ a4 ≥ 0 do hold. Recall that there
are two interactions on stage 1: One between agents 1 and 2, and another one between
agents 3 and 4. I will first consider the former one. Let’s assume that yij is the stage-1
effort by agent i who meets j. Then, agents 1 and 2 face the following maximization
problems:

max
y12≥0

Π1 =
a1y

r
12

a1yr12 + a2yr21

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

PL +
a3y

r
34

a3yr34 + a4yr43

π∗1(1 − 3) +
a4y

r
43

a3yr34 + a4yr43

π∗1(1 − 4)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P c
1 (y34,y43)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− y12

max
y21≥0

Π2 =
a2y

r
21

a1yr12 + a2yr21

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

PL +
a3y

r
34

a3yr34 + a4yr43

π∗2(2 − 3) +
a4y

r
43

a3yr34 + a4yr43

π∗2(2 − 4)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P c
2 (y34,y43)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− y21.

Note that the value of winning stage 1, i.e., the prize for which agents compete in stage 1,
consist of two parts: First, each agent who reaches stage 2 receives PL, and second, each
agent i who reaches stage 2 has the chance to win the prize PH ; the winning probability
and the effort costs of the stage 2 interaction are included in the expected equilibrium
payoffs, π∗i (i − j) (see above). I call this second part of the prize the continuation value,
i.e., P c

1(y34, y43) and P c
2(y34, y43), respectively, are the continuation values of agents 1

and 2. Due to the assumption that agent 1 is stronger than agent 2, it must hold that
P c

1(y34, y43) ≥ P c
2(y34, y43), since the expected equilibrium payoff of a stage-2 participation

is higher for agent 1 than for agent 2, no matter whether he/she meets agent 3 or 4 in stage
2.13 Note, however, that the continuation values also depend on actions of agents 3 and 4

13From the discussion in the previous section it is clear that the ratio or difference of expected equi-
librium payoffs is increasing in the ratio or difference of productivity parameters, which measure the
(relative) strength of an agent.
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in the parallel stage-1 interaction, because meeting agent 3 in stage 2 has a different value
for agents 1 or 2 than meeting agent 4, at least if agents 3 and 4 are not of the same type.
Therefore, in general each agent does not only play a best response to his/her immediate
opponent, but in addition, the stage-1 actions of prospective stage-2 opponent(s) matter.
This indirect effect, which connects the two stage-1 interactions, makes the continuation
values endogenous and constitutes the main difficulty in solving multi-stage contests with
heterogeneous agents. If the continuation values were known, the two stage-1 interactions
would be independent from one another and the standard solution used for stage 2 could
be employed.

Independent of this complication, first-order conditions are still necessary equilibrium
conditions. The maximization problems of agents 1 and 2 imply that the following two
first-order optimality conditions do hold:

ra1a2y
r
21y

r−1
12 [PL + P c

1(y34, y43)] = (a1y
r
12 + a2y

r
21)

2 (2.5)

ra1a2y
r
12y

r−1
21 [PL + P c

2(y34, y43)] = (a1y
r
12 + a2y

r
21)

2 (2.6)

Combining these equations, one can characterize the ratio of equilibrium efforts:

y∗21

y∗12

=
a4[PL + π∗2(2 − 4)] (y43y34

)
r
+ a3[PL + π∗2(2 − 3)]

a4[PL + π∗1(1 − 4)] (y43y34
)
r
+ a3[PL + π∗1(1 − 3)]

≡ G(
y43

y34

) . (2.7)

Intuitively, the ratio of equilibrium efforts is equal to the ratio of prize valuations, a
relation known from Nti (1999). Since agent 1 is at least as strong as agent 2 (a1 ≥ a2 ≥ 0),
the continuation value for agent 1 is at least as high as the one for agent 2. Consequently,
it holds that 0 ≤

y∗21
y∗12

≤ 1. Further, note that the ratio of equilibrium efforts y∗21
y∗12

is a function
of the effort ratio in the parallel stage-1 interaction between agents 3 and 4, which implies
that knowledge of equilibrium efforts y∗34 and y∗43 is, strictly speaking, not necessary to
determine the continuation values of agents 1 and 2. All one needs to know is the ratio
of equilibrium efforts, which makes intuitive sense, since the ratio of equilibrium efforts
determines winning probabilities in pair-wise interaction, i.e., from the perspective of
agents 1 and 2, the ratio of effort choices by agents 3 and 4, y34 and y43, determines the
probability that either one of these agents wins in stage 1 and reaches stage 2.

When considering the stage-1 interaction between agents 3 and 4, one can determine
a relation analogous to (2.7), which reads

y∗43

y∗34

=
a2[PL + π∗4(4 − 2)] (y21y12

)
r
+ a1[PL + π∗4(4 − 1)]

a2[PL + π∗3(3 − 2)] (y21y12
)
r
+ a1[PL + π∗3(3 − 1)]

≡ R(
y21

y12

) . (2.8)

Since agent 3 is assumed to be at least as productive as agent 4 (a3 ≥ a4 ≥ 0), the ratio of
equilibrium efforts y∗43

y∗34
is also between zero and one.
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Summing up, equations (2.7) and (2.8) show that the ratio of efforts by agents in one
stage-1 interaction determines the ratio of equilibrium efforts by agents in the other stage-1
interaction. Said differently, equations (2.7) and (2.8) independently ensure that agents 1
and 2, as well as 3 and 4 play mutually best responses for given continuation values, while
they jointly determine the equilibrium continuation values of the stage-1 subgame. Before
further considering the equilibrium of the stage-1 subgame, it must be ensured that the
(partial) equilibrium in each of the two pair-wise stage-1 interactions is in pure strategies
for given continuation values, since the optimality conditions are otherwise not necessary
and sufficient. Intuitively, the degree of heterogeneity between immediate opponents in a
stage-1 interaction must not be too high for the given discriminatory power.

Assumption 2.2. Let P c
1(y

∗
34, y

∗
43), P c

2(y
∗
34, y

∗
43), P c

3(y
∗
12, y

∗
21) and P c

4(y
∗
12, y

∗
21) be the equi-

librium continuation values. Then, the following relations are satisfied:

r ≤
a2

a1

(
PL + P c

2(y
∗
34, y

∗
43)

PL + P c
1(y

∗
34, y

∗
43)

)

r

+ 1, and r ≤
a4

a3

(
PL + P c

4(y
∗
12, y

∗
21)

PL + P c
3(y

∗
12, y

∗
21)

)

r

+ 1.

To be precise, assumption 2.2 provides a condition that must be checked after equilibrium
efforts are determined to ensure that the derived solution is correct. The assumption
matters, however, if and only if the impact function of the CSF is convex (r > 1); it
becomes clear by inspection that the condition is always satisfied for linear and concave
impact functions (r ≤ 1).14

To determine equilibrium effort levels of all four players, we need to know either
G∗(

y∗43
y∗34

) =
y∗21
y∗12

, or R∗(
y∗21
y∗12

) =
y∗43
y∗34

. Once one of the two equilibrium ratios is known, it is
straightforward to determine the other one (by use of equation (2.7) or (2.8)). Using the
expressions of R∗(

y∗21
y∗12

) and G∗(
y∗43
y∗34

) from (2.7) and (2.8), equilibrium continuation values
can be defined as follows:

P c∗1 =
a3π

∗
1(1 − 3) + a4π

∗
1(1 − 4)R∗(⋅)

a3 + a4R∗(⋅)
, P c∗2 =

a3π
∗
2(2 − 3) + a4π

∗
2(2 − 4)R∗(⋅)

a3 + a4R∗(⋅)
, (2.9)

P c∗3 =
a1π

∗
3(3 − 1) + a2π

∗
3(3 − 2)G∗(⋅)

a1 + a2G∗(⋅)
, P c∗4 =

a1π
∗
4(4 − 1) + a2π

∗
4(4 − 2)G∗(⋅)

a1 + a2G∗(⋅)
. (2.10)

Once equilibrium continuation values are known, the two stage-1 interactions are inde-
pendent from one another, and each can be solved along the same lines as the stage-2
interaction in section 2.2.1. The resulting equilibrium effort levels in stage 1 are charac-
terized by

y∗12 =
a1a2[PL + P c∗

1 ]

(a1 + a2G∗(⋅))2
, y∗21 =

a1a2[PL + P c∗
2 ]

(a1 + a2G∗(⋅))2
, (2.11)

y∗34 =
a3a4[PL + P c∗

3 ]

(a3 + a4R∗(⋅))2
, y∗43 =

a3a4[PL + P c∗
4 ]

(a3 + a4R∗(⋅))2
. (2.12)

14Assumption 2.2 for the existence of a pure strategy equilibrium in stage 1 is analogous to Assumption
2.1, which ensures that a pure-strategy equilibrium exists for convex impact functions in stage 2.
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Finally, knowledge of stage-1 equilibrium efforts allows for the determination of expected
equilibrium payoffs, total equilibrium effort expenditures, equilibrium winning probabili-
ties, and the like, i.e., for a complete solution of the stage-1 subgame.

For now, I simply assumed that G∗(⋅) and R∗(⋅) are known. However, when combining
equations (2.7) and (2.8), which implicitly define both G∗(⋅) and R∗(⋅), it is impossible
to derive a closed form analytical expression for either one of the two ratios in the general
case. Two special cases can be solved analytically, however: First, it is possible to solve
the game if either a1 = a2 or a3 = a4, or both. If this is the case, it is easy to show that at
least one of the two ratios is equal to one, such that the missing one can be determined.
The intuition for this result is simple: If any two of the agents who interact in stage 1
are equally strong, it is obvious that their continuation values are identical, which implies
that their stage-1 efforts are the same. The second special case is less obvious and will
be discussed in some detail later in the paper: If r = 1, i.e., if a lottery CSF is used, the
system of equations (2.7) and (2.8) can be solved analytically.

The Subgame Perfect Nash Equilibrium in Pure-Strategies. Even though a
closed form solution for G∗(⋅) and R∗(⋅), and therefore for the stage-1 efforts cannot be
derived for the general case, the two-stage contest has a subgame perfect Nash-equilibrium
under Assumptions 2.1 and 2.2. The equilibrium of a two-stage pair-wise elimination
tournament with four agents is given by the strategy profile

S∗ = {(y∗12 (y21,
y43
y34

) , [x∗13(x31), x
∗
14(x41)]) ; ... ; ... ;(y∗43 (y34,

y21
y12

) , [x∗41(x14), x
∗
42(x24)])} ,

i.e., in stage 1, each agent plays a best response to the chosen effort of his immediate
opponent and the ratio of efforts of the remaining two agents in the other stage-1 inter-
action, as was shown in section 2.2.1. In stage 2, the best response is only with respect
to the direct opponent (see section 2.2.1).

Theorem 2.1 (Existence). Under Assumptions 2.1 and 2.2, the two stage Tullock contest
with four agents and discriminatory power r has a subgame perfect equilibrium in pure
strategies, independently of agents’ types.

Proof. See Appendix.

The intuition for the proof is as follows. Assumption 2.1 ensures that the stage-
2 subgame has a unique pure strategy equilibrium. Further, Assumption 2.2 implies
that each of the two stage-1 interactions has a unique pure strategy equilibrium as well,
conditional on given continuation values.15 Consequently, what remains to be shown is
that the system of equations (2.7) and (2.8) has a solution, which then ensures that
equilibrium continuation values are defined. Figure 2.1 plots the two functions G(⋅) as

15This has been proven by Nti (1999) and Cornes and Hartley (2005), for example.
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Figure 2.1: Intuition for the Proof

well as R(⋅) and provides the graphical intuition for the proof, which is that the graphs
of G(⋅) and the inverse function R−1(⋅) intersect at least once in the (

y43
y34
, y21y12

)-space.

The Interaction Effect Across Stage-1 Pairings. The interaction effect across the
two stage-1 interactions is captured by the system of equations (2.7) and (2.8). I use
graphical illustrations to explain the forces at work in this model.

It helps to separately consider two effects: The effect of heterogeneity across stages,
and the effect of heterogeneity across stage-1 interactions. I start with the effect of
heterogeneity across stages and assume that the interaction between agents 1 and 2 is
homogeneous, i.e., that these two agents are equally strong, while the degree of hetero-
geneity between agents 3 and 4 varies. In this case, there is no interaction effect across
the stage-1 interactions. Panel (a) of Figure 2.2 illustrates the position of the G(⋅)- and
R−1(⋅)-loci in the (

y43
y34
, y21y12

)-space under this assumption. G(⋅) is a horizontal line through
the point y21

y12
= 1, while R−1(⋅) is a vertical line. The exact position of this line depends on

the degree of heterogeneity between agents 3 and 4.16 As panel (a) of Figure 2.2 shows,
the line gradually shifts to the left as the degree of heterogeneity between agents 3 and
4 increases. To understand the position of R−1(⋅) in the (

y43
y34
, y21y12

)-space, recall from the
analysis of the stage-2 interaction in section 2.2.1 that the efforts of two players who differ
only in terms of their productivity are equal, independently of the degree of heterogene-
ity. Therefore, deviations of the ratio y43

y34
from 1 capture the endogenous heterogeneity

between agents 3 and 4 that is caused by different valuations of a participation in stage
2. Said differently, the fact that agents 3 and 4 are (still) of different strength in later

16Note that R−1(⋅) is an inverse correspondence rather than an inverse function in this example.
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stages further increases the degree of heterogeneity in early stages of the game through
the continuation values.

Figure 2.2: The Interaction Effect across the Two Stage-1 Pairings

(a) One homogeneous stage-1 interaction (b) Two heterogeneous stage-1 interactions

Next, consider the interaction effect of heterogeneity across stage-1 pairings. Panel
(b) of Figure 2.2 depicts a situation where both stage-1 interactions are heterogeneous.
In contrast to panel (a) of the figure where both loci are straight lines, there is a mutual
interdependence across stage-1 interactions in panel (b), since both G(⋅) and R−1(⋅) are
functions with a strictly positive slope. The slopes are strictly positive if and only if the
strict relations a1 > a2 ≥ 0 and a3 > a4 ≥ 0 are satisfied, i.e., there is no interdependence
if (at least) one of the two stage-1 interactions is homogeneous.17 Consider the following
thought experiment: Assume that the equilibrium is given by the point E in panel (b) of
Figure 2.2. Then, an increase in heterogeneity between agents 3 and 4 (such that agent
3 becomes stronger) induces the R−1(⋅) function to shift to the left, since the equilibrium
effort of agent 4 decreases relative to the equilibrium effort of agent 3. This is the hetero-
geneity effect across stages, which I discussed above. However, due to interaction effect
between the two stage-1 pairings, this change affects the behavior of agents 1 and 2, even
though their types remain unchanged. Two different channels are important. First, there
is a direct effect: The intersection of the two functions is moved further to the left, and
since G(⋅) is increasing, the equilibrium ratio of efforts in the second stage-1 interaction
decreases, i.e., (the weaker) agent 2 reduces his effort provision relative to the effort of
agent 1. The strength of the direct effect depends on the slope of G(⋅), which is deter-
mined by the degree of heterogeneity between agents 3 and 4. For reasonable degrees of
heterogeneity between types, G(⋅) is much flatter than depicted in the plot, such that the
change in the ratio y∗21

y∗12
due to an increase in the strength of agent 3 is rather small. Second,

17Then, the ratio y21
y12

is equal to one, independent of y43
y34

= 1.
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Figure 2.3: Bounds for the Equilibrium Effort Ratios

there is an indirect effect: Agents 1 and 2 react to the change in behavior of agents 3 and
4; the function G(⋅) shifts downwards and becomes somewhat steeper, which then further
reduces the equilibrium ratio y∗21

y∗12
. Intuitively, the fact that agent 3 is stronger has a more

pronounced negative effect on the continuation value of agent 2 than on the continuation
value of agent 1, especially for low values of y∗43

y∗34
, i.e., when the probability to meet the

strong agent 3 on stage 2 is high. Note that this second effect is not depicted in the figure
for reasons of clarity.

As the previous discussion indicated, the strength of the interaction effect depends on
the slope of G(⋅) and R−1(⋅): The steeper G(⋅) and the flatter R−1(⋅), the more important
is the interdependence effect. One can show formally that the steepness of G(⋅), which
is the equilibrium ratio function for the interaction between agents 1 and 2, is increasing
in the degree of heterogeneity between agents 3 and 4.18 An analogous finding applies to
R−1(⋅). Moreover, it became clear that the heterogeneity effect across stages exists if at
least one interaction is between heterogeneous types, while the interaction effect which
implies mutual interdependence in stage 1 does only exist if both stage-1 interactions are
heterogeneous. Whenever the interaction effect across stage-1 pairings exists, a closed
form solution for the general model cannot be derived.

Approximate Solution. Figure 2.3 illustrates that there is a straightforward way to
approximate the solution if it cannot be determined analytically. The key insight is that
the stage-1 equilibrium effort ratios are bounded. Note that both y∗43

y∗34
∈ [R(0),R(1)] and

y∗21
y∗12

∈ [G(0),G(1)] must hold. Therefore, one can bound the two equilibrium ratios as
follows:

y∗21

y∗12

∈ [G(R(0)),G(R(1))] and
y∗43

y∗34

∈ [R(G(0)),R(G(1))].

18Details are provided in the Appendix, in particular in the proof of Theorem 2.1.
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For low and intermediate degrees of heterogeneity between agents, these bounds are very
narrow, such that the equilibrium solution can be approximated with a high precision.
The upper bound is a good approximation if heterogeneity between agents 1 and 2 (or
agents 3 and 4, respectively), is low, since, intuitively, the continuation values of the two
agents do not differ much then. Contrary, the lower bound is preferable if heterogeneity
is high due to the same reasoning. However, the approximation becomes most precise
for y21

y12
= a2

a1+a2 as well as y43
y34

= a4
a3+a4 rather than 1 or 0, respectively. Obviously, both

expressions are between zero and one, and in addition, this formulation accounts for the
degree of heterogeneity in each stage-1 interaction. Extensive numerical testing suggests
that the percentage deviation of this approximated solution from the correct one is below
1 percentage point even for high degrees of heterogeneity. Using this approximation
technique, the equilibrium effort ratios satisfy

y∗21

y∗12

≈ G [R(
a2

a1 + a2

)] and
y∗43

y∗34

≈ R [G(
a4

a3 + a4

)] .

2.2.2 A Two-Stage Tullock Contest for the Lottery CSF

The approximation presented previously is not necessary if a lottery CSF with discrimi-
natory power r = 1 is used. For this special case, a closed-form analytical solution can be
derived. Imposing the assumption r = 1 on equations (2.7) and (2.8) gives the following
system of equations:

y∗21

y∗12

=
a4[PL + π∗2(2 − 4)]y43y34

+ a3[PL + π∗2(2 − 3)]

a4[PL + π∗1(1 − 4)]y43y34
+ a3[PL + π∗1(1 − 3)]

≡ G(
y43

y34

) (2.13)

y∗43

y∗34

=
a2[PL + π∗4(4 − 2)]y21y12

+ a1[PL + π∗4(4 − 1)]

a2[PL + π∗3(3 − 2)]y21y12
+ a1[PL + π∗3(3 − 1)]

≡ R(
y21

y12

) . (2.14)

To make the subsequent analysis tractable, I define the functions κ, φ, λ, µ, θ, γ, ψ, and
ζ, which depend on exogenous heterogeneity and prize parameters only.19 Then, inserting

19The parameters are defined as follows:

κ = a3(P
L
+ π∗1(1 − 3))(PL + π∗3(3 − 1)) + a4(P

L
+ π∗1(1 − 4))(PL + π∗4(4 − 1))

φ = a3(P
L
+ π∗1(1 − 3))(PL + π∗3(3 − 2)) + a4(P

L
+ π∗1(1 − 4))(PL + π∗4(4 − 2))

λ = a3(P
L
+ π∗2(2 − 3))(PL + π∗3(3 − 1)) + a4(P

L
+ π∗2(2 − 4))(PL + π∗4(4 − 1))

µ = a3(P
L
+ π∗2(2 − 3))(PL + π∗3(3 − 2)) + a4(P

L
+ π∗2(2 − 4))(PL + π∗4(4 − 2))

θ = a1(P
L
+ π∗3(3 − 1))(PL + π∗1(1 − 3)) + a2(P

L
+ π∗3(3 − 2))(PL + π∗2(2 − 3))

γ = a1(P
L
+ π∗3(3 − 1))(PL + π∗1(1 − 4)) + a2(P

L
+ π∗3(3 − 2))(PL + π∗2(2 − 4))

ψ = a1(P
L
+ π∗4(4 − 1))(PL + π∗1(1 − 3)) + a2(P

L
+ π∗4(4 − 2))(PL + π∗2(2 − 3))

ζ = a1(P
L
+ π∗4(4 − 1))(PL + π∗1(1 − 4)) + a2(P

L
+ π∗4(4 − 2))(PL + π∗2(2 − 4)).

17



R(
y21
y12

) in (2.13) and G(
y43
y34

) in (2.14), respectively, results in

y∗21

y∗12

=
a2µ

y21
y12

+ a1λ

a2φ
y21
y∗12

+ a1κ
(2.15)

y∗43

y∗34

=
a4ζ

y43
y34

+ a3ψ

a4γ
y43
y∗34

+ a3θ
. (2.16)

In equilibrium, it must obviously hold that y21
y12

=
y∗21
y∗12

, as well as y43
y34

=
y∗43
y∗34

. Imposing this
and rearranging gives two quadratic equations

(
y∗21

y∗12

)

2

+
a1κ − a2µ

a2φ
(
y∗21

y∗12

) −
a1λ

a2φ
= 0 and (

y∗43

y∗34

)

2

+
a3θ − a4ζ

a4γ
(
y∗43

y∗34

) −
a3ψ

a4γ
= 0,

respectively, which are independent from one another. Each of these equations can be
solved analytically, which gives the equilibrium ratios y∗21

y∗12
as well as y∗43

y∗34
:20

y∗21

y∗12

=
a2µ − a1κ +

√
[a2µ − a1κ]2 + 4a1a2φλ

2a2φ
= G∗ (

y∗43

y∗34

) (2.17)

y∗43

y∗34

=
a4ζ − a3θ +

√
[a4ζ − a3θ]2 + 4a3a4ψγ

2a4γ
= R∗ (

y∗21

y∗12

) . (2.18)

Even though the bounds for the approximated solution are not needed for this special
case, it is instructive to determine them for a comparison of the analytical and the ap-
proximate solution. From (2.15) and (2.16), it follows that the equilibrium ratios of effort
are bounded as follows if r = 1:

y∗21

y∗12

∈ [
λ

κ
,
a2µ + a1λ

a2φ + a1κ
] and

y∗43

y∗34

∈ [
ψ

θ
,
a4ζ + a3ψ

a4γ + a3θ
] .

Using the ratios y21
y12

= a2
a1+a2 as well as y43

y34
= a4
a3+a4 as suggested in the previous section gives

y∗21

y∗12

≈
a2

2µ + (a2
1 + a1a2)λ

a2
2φ + (a2

1 + a1a2)κ
and

y∗43

y∗34

≈
a2

4ζ + (a2
3 + a3a4)ψ

a2
4γ + (a2

3 + a3a4)θ

for the approximated equilibrium effort ratios. Comparing them to the analytical solution
in (2.17) and (2.18), one can show that they depend on the same parameters, and have
qualitatively identical comparative statics properties. Numerical testing shows that the
approximate equilibrium effort levels are always marginally higher than their analytical
counterparts.

20Note that the quadratic equation has two roots, only one of which is positive. The negative root is
irrelevant for the question at hand, since effort choices are restricted on the positive domain.
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Figure 2.4: The Eight Agent Case

2.2.3 More Than Two Stages

This section discusses the additional complications which arise in contests with more than
two stages. Figure 2.4 illustrates the case of a three-stage contest with eight agents. In
this case, there are three instead of two subgames. As for the two-stage contest, the
solution of the game is obtained via backwards induction, i.e., start with subgame 3,
continue with subgame 2, and finally consider subgame 1.

Subgame 3 has exactly the same structure as the pair-wise interactions in the last stage
of the two-stage contest. The only difference is that sixteen rather than four different
pairings are possible in the last stage of the three-stage contest. Recall that each of
these interactions can be solved analytically for any degree of heterogeneity and any
discriminatory power as long as Assumption 2.1 is satisfied. The structure of subgame 2
is identical to the one of stage 1 in the two-stage contest. However, now there are four
possible combinations of agents each of the two interaction E and F , which gives sixteen
different situations in subgame 2, namely {(1− 3), (5− 7)};{(1− 3), (5− 8)}; ... and so on.
Solving all of them, either analytically if r = 1, or approximately otherwise, is tedious,
but without problems in addition to these that were discussed previously.

A new complication arises in subgame 1, where each interaction depends on all three
remaining interactions of the subgame, i.e., agents 1 and 2 in pairing A play a best
response to each other, and to the ratio of efforts by agents 3 and 4, by 5 and 6, and by 7
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and 8. The best way to illustrate this point is to analyze the structure of the continuation
values. Denote the effort of agent i in stage 1 by zi and consider the continuation value
P1 of agent 1 in subgame 3:

P1 (
z3

z4

,
z5

z6

,
z7

z8

) = p34(p56[p78 × S1357 + p87 × S1358] + p65[p78 × S
1367 + p87 × S

1368])

+ p43(p56[p78 × S1457 + p87 × S1458] + p65[p78 × S1467 + p87 × S1468])

S1ijk is the expected payoff which a particular constellation of agents in subgame 2 has for
agent 1;21 pij is the probability that agent i wins against agent j, and it is a function of the
ratio zi

zj
. Therefore, as in the case with four agents, probabilities make the continuation

values endogenous. However, the continuation value now depends on three endogenously
determined probabilities rather than only one. The first step of the solution is to consider
the right (1,2,3,4) and left (5,6,7,8) branches separately, i.e., solve the interdependence
between interactions A and B as well as between C and D. Each of the two branches
is of the same structure as stage 1 in a two-stage contest. Then, however, there is still
an interdependence across the two branches. Formally, the problem can be described as
follows:

z∗2
z∗1

/
z∗4
z∗3

=
P2 (

z6
z5
, z8z7 ) × P3 (

z6
z5
, z8z7 )

P1 (
z6
z5
, z8z7 ) × P4 (

z6
z5
, z8z7 )

≡H (
z6

z5

/
z8

z7

) (2.19)

z∗6
z∗5

/
z∗8
z∗7

=
P6 (

z2
z1
, z4z3 ) × P7 (

z2
z1
, z4z3 )

P5 (
z2
z1
, z4z3 ) × P8 (

z2
z1
, z4z3 )

≡ Q(
z2

z1

/
z4

z3

) . (2.20)

This system of equations implicitly defines a solution to subgame 1.22 However, this
solution cannot be determined analytically in general, not even for r = 1. Only special
cases can be solved, where either interactions A and B, or interactions C and D are
homogeneous, or both. In each of these cases, there is no interaction effect across the
two branches AB and CD in subgame 3. In all other cases, the solution can only be
approximated, either numerically if the productivity for each of the eight agents is known,
or analytically, using the technique introduced at the end of section 2.2.2. In the latter
case, one obtains

z∗2
z∗1

/
z∗4
z∗3

≈H [Q(
a2

a1 + a2

/
a4

a3 + a4

)] and
z∗6
z∗5

/
z∗8
z∗7

≈ Q [H (
a6

a5 + a6

/
a8

a7 + a8

)] .

With each additional stage that is added to the multi-stage pair-wise elimination con-
test, the number of potential pairings in later stages of the game increases. It is more
problematic, however, that a new interaction effect across the two different branches of

21Meeting agent 3 in interaction E, for example, while agents 5 and 7 compete in F , is of value S1357

for agent 1.
22The proof for this claim includes the same steps as the one for Theorem 1. The expressions do become

more complicated, however, since there are eight parameters ai, i ∈ [1,2, ...,8] to consider rather than
only four. Therefore, the formal proof is omitted.
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the overall game comes up in the first stage of the game for each additional stage. This
complication can only be avoided if all interactions in (at least) one of the two branches are
homogeneous, such that the interdependence disappears. A solution for the most general
multi-stage pair-wise elimination contest with N players of N different player types, how-
ever, cannot be determined, and even if it were known, the resulting expressions would be
too complicated to characterize analytically. Therefore, the subsequent discussion section
focuses on the properties of a two-stage contest.

2.3 Discussion and Additional Results

If agents are heterogeneous, the multi-stage pair-wise elimination contest has several prop-
erties which have not received much attention in the contest literature so far. This section
provides an analysis of comparative statics properties, of different player arrangements
in stage 1 (“seedings” in short), and of the optimal (total effort maximizing) prize struc-
ture.23 None of these topics is exhausted by the discussion in this section; rather, the
main idea is to encourage future research in these dimensions, now that a solution for
multi-stage pair-wise elimination tournaments with heterogeneous agents is available.

2.3.1 Comparative Statics

In this section, I will discuss how ceteris paribus variations of an agent’s productivity
parameter affect the equilibrium outcome of this agent and the outcomes of other agents
who are participating in the contest. However, working with either the (approximate or
analytical) equilibrium solution in stage 1 is extremely hard, since the resulting expressions
are complicated. Therefore, I do not consider the complete equilibrium reaction. Instead,
I make the following simplifying assumption: If the productivity of agent 1 or 2 changes
(who compete against each other in one of the two stage-1 interactions), the equilibrium
efforts of agents 3 and 4 remain unchanged, even though their continuation values are
allowed to vary. In effect, I suppress the equilibrium response of agents 3 and 4 and its
effect on behavior of agents 1 and 2. For reasons previously discussed, this equilibrium
response is usually very small. In this sense what follows is, strictly speaking, not a
comparative static analysis, but rather an approximation, which is supported by extensive
numerical testing. Finally, note that I only analyze stage 1, which is, however, without loss
of generality, since the continuation values account for any change in stage-2 equilibrium
behavior.

I start by considering the effect which the change on an agent’s productivity has within
one of the two stage 1 interactions.

23Seedings have been considered previously by Groh, Moldovanu, Sela, and Sunde (2012) for a perfectly
discriminating all-pay auction; Rosen (1986) discussed the optimal prize structure of two-stage contests
with heterogeneous agents, using numerical evidence.
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Proposition 2.1. The stage-1 winning probability pij of agent i who meets j in a stage-1
interaction is

(a) increasing in the own productivity parameter ai.

(b) decreasing in the productivity parameter aj of the stage 1 opponent.

The same holds for the expected equilibrium payoff Πi.

Proof. See Appendix.

Quite intuitively, an agent benefits both in terms of his/her winning probability and
the expected payoff if he/she becomes stronger: First, chances of winning stage 1 are
higher, and second, conditional on winning stage 1, the agent fares better in stage 2 as
well, independent of the stage-2 opponent. Therefore, the continuation value of this agent
increases, which further improves chances to win stage 1. If the stage-1 opponent becomes
stronger, however, the opposite holds.

Next, consider the effect of productivity changes in one stage-1 interaction on equi-
librium outcomes in the other stage-1 interaction. In this case, it matters whether the
productivity of the stronger or of the weaker agent is changed. I consider changes in the
productivity of the stronger agent first:

Proposition 2.2. Increasing the productivity parameter of the stronger agent in either
of the two stage-1 interactions reduces the overall winning probabilities and the expected
payoffs of the agents who compete in the parallel stage-1 interaction.

Proof. See Appendix.

Assuming that agents 1 and 2 compete in one, while agents 3 and 4 compete in the
second stage-1 interaction, agents 1 and 2 are potential stage-2 opponents for agents 3
and 4, and vice versa. If the stronger of the two potential stage-2 opponents becomes
even stronger, the continuation values of the agents in the other stage-1 interaction fall
for two reasons: First, if the stronger agent is met, the expected equilibrium payoff is
lower than before due to a lower stage-2 winning probability. Second, the probability to
meet the strong rather than the weak agent in stage 2 increases due to Proposition 2.1.
As a consequence, the overall winning probability (which is the product of the winning
probability in stage 1 and the winning probability in stage 2) decreases, and the expected
equilibrium payoff falls. Things may be different if the weaker of the two agents in the
other stage-1 interaction becomes stronger, however:

Proposition 2.3. Increasing the productivity parameter of the weaker agent in any of
the two stage-1 interactions may increase or decrease the winning probabilities of agents
who compete in the parallel stage-1 interaction; the same holds for expected equilibrium
payoffs.

Proof. See Appendix.
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As in case of Proposition 2.2, the continuation values of the agents competing in
the other stage-1 interaction are affected. However, there are two effects which work in
opposite directions, such that the direction of the overall effect is ambiguous. First, if the
agent whose strength is increased is met in stage 2, both the winning probability and the
expected payoff are reduced, which tends to reduce the continuation value. However, at
the same time, the probability to meet the weaker agent increases due to Proposition 2.1,
and meeting the weaker agent in stage 2 is still better than meeting the stronger one for
any of the two agents in the other stage-1 interaction. Which effect dominates depends
on the specific values of productivity parameters a1, a2, a3, and a4. However, it is easy
to construct situations where it is beneficial for agents in the other stage-1 interaction if
the weak agent becomes stronger.

Without the intuition provided above, this result is surprising, as it implies a non-
monotonicity. In a situation, for example with a1 ≥ a2 ≥ a3 ≥ a4, where agents 1 and 2
compete in one, while agents 3 and 4 compete in the second stage-1 interactions, it can be
that the weakest agent 4 is better of if the already second strongest agent 2 becomes even
stronger. Similar results are impossible in any contest structure where all agents meet
one another, either simultaneously in a one-shot contest, or sequentially in a round-robin
tournament.

2.3.2 Seedings

For the remainder of this section, I assume without loss of generality that agents are
naturally ordered by their strength, i.e., the relation a1 ≥ a2 ≥ a3 ≥ a4 does hold. Note
that there are three different ways to seed the four agents in stage 1 of the two-stage
contest: (1-4, 2-3), where agents 1 and 2 to compete in one of the stage-1 interactions,
whereas agents 3 and 4 participate in the remaining one; (1-3, 2-4), where agents 1 and
3 as well as agents 2 and 4 compete with each other in stage 1, and finally (1-2, 3-4), the
setting which I considered when solving the model in section 2.2.1. These three settings,
or “Seedings”, have different properties, i.e., even if the types of the four agents are left
unchanged, seeding them differently changes the properties of the equilibrium.

The properties of different seedings have been analyzed previously by various authors,
usually considering the case of four players, since the number of possible seedings explodes
with the number of players: With 2N players, there are (2N )!

2(2
N−1)

different seedings, i.e., there
are 3 seedings for 4 players (as seen above), 315 seedings for 8 players, etc. Cases with
up to eight players have only been addressed by the statistical literature where agents are
not optimizing but probabilities are instead given exogenously; even then the problem is
hard to handle analytically.24 To my knowledge, the paper by Groh, Moldovanu, Sela,
and Sunde (2012) is the only one which uses winning probabilities that are endogenously
determined by optimizing agents, as in my model. The main difference between the

24See for example Schwenk (2000), Hwang (1982) or Horen and Riezman (1985).
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approach in this paper and their model is that Groh, Moldovanu, Sela, and Sunde (2012)
use a perfectly discriminating all-pay contest success function, rather than an imperfectly
discriminating CSF.25 Therefore, I will investigate in what follows whether, and if so, in
how far, properties of different seedings are influenced by the choice of the contest success
function.

Groh, Moldovanu, Sela, and Sunde (2012) compare the performance of the three seed-
ings with respect to four optimality, or fairness criteria: (1) maximization of total effort,
(2) maximization of the probability of a stage-2 interaction between the two strongest
agents, (3) maximization of the winning probability of the strongest agent, and (4) win-
ning probabilities of agents are ordered according to the agent’s strength. Criteria (1) to
(3) are optimality criteria that are standard in the literature on seedings, but not only
there: It is a standard goal of designers in the personnel economics literature to maximize
the effort provision of participating employees. Further, in case of promotion tourna-
ments, it might be in the principal’s interest to select the most able employees if ability
is private information. A similar reasoning applies to designers in sports. Criterium (4),
however, is rather a fairness than an optimality criterium: The basic idea is that nobody
should have a strategic disadvantage that is so high that the order of ability and winning
probability is changed.

Following Groh, Moldovanu, Sela, and Sunde (2012), I use the capital letters A, B,
and C to distinguish the three seedings from one another and define Seeding A: 1-4, 2-3,
Seeding B : 1-3, 2-4, and Seeding C : 1-2, 3-4. For their CSF specification, and under the
assumption a1 ≥ a2 ≥ a3 ≥ a4, Groh, Moldovanu, Sela, and Sunde (2012) find that Seeding
A: 1-4, 2-3 satisfies criteria (3) and (4), while Seeding B : 1-3, 2-4 fulfills both (1) and
(2); none of the four criteria applies to Seeding C : 1-2, 3-4. If the prize structure in my
model with an imperfectly discriminating CSF is specified in the same manner as in Groh,
Moldovanu, Sela, and Sunde (2012), I get very similar results, with one notable exception:
It still holds that Seeding A: 1-4, 2-3 satisfies criteria (3) and (4), while Seeding B : 1-3,
2-4 fulfills (2). However, criterion (1) may now be satisfied either by Seeding B : 1-3, 2-4,
or by Seeding C : 1-2, 3-4, depending on the parameters a1, a2, a3, and a4. This finding
is summarized in the subsequent Proposition:

Proposition 2.4. None of the three Seedings maximizes total expected effort provision
for all specifications of heterogeneity a1, a2, a3 and a4.

Proof. See Appendix.

Numerical testing suggests that Seeding C : 1-2, 3-4 is optimal with respect to criterion
(1) if the difference in strengths between the two weaker and the two stronger agents is
not too big; if this difference is extreme, Seeding B : 1-3, 2-4 maximizes total expected

25Apart from that, there is one additional restriction on the prize structure in their model that is not
needed here. In particular, the prize for winning in stage 1 must be strictly positive in the model by
Groh, Moldovanu, Sela, and Sunde (2012) to ensure participation and equilibrium existence in stage 1.
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effort provision. This makes sense intuitively: If the difference in strength between the two
stronger agents and the two weaker ones is relatively small, the three pair-wise interactions
in Seeding C : 1-2, 3-4 are relatively close, such that effort provision is high. If, however,
agents 1 and 2 are much stronger than agents 3 and 4, the stage-2 interaction, where
most of the effort is provided, is extremely unequal, such that the effort is very low.
Then, Seeding B : 1-3, 2-4 ensures a higher effort provision due to the fact that a final
between the two strongest agents is extremely likely, a situation in which effort provision
is high.

Summing up, it seems that measures which depend on relative effort choices such
as probabilities are not affected by the technology of the contest success function, i.e.,
it seems that the choice of a certain seeding automatically implies that criteria which
depend on relative effort provision are satisfied.26 Yet, this does not hold for absolute
measures like total expected effort provision. This implies that any contest designer who
is interested in the maximization of total effort provision needs information about the
importance of productivity differences for contest outcomes, i.e., on the discriminatory
power of the contest success function.

2.3.3 Optimal Prizes

The optimality of the prize structure usually refers to the maximization of total effort
provision.27 It is well known in the contest literature that a unique prize maximizes
total effort expenditures in one-shot contests if agents are homogeneous and risk-neutral,
while multiple prizes can be optimal in heterogeneous settings. This finding holds for all
conventionally used types of contest success functions.28 However, little is known about
the optimal prize structure in multi-stage tournaments, and even less if the agents are
heterogeneous.

It is straightforward to show that a unique prize maximizes total effort expenditures
in multi-stage pair-wise elimination tournaments with a Tullock CSF if all participating
agents are homogeneous; this holds for any discriminatory power r that still allows for
an equilibrium in pure strategies.29 This result, however, may no longer hold if agents
are heterogeneous. To be more precise, multiple prizes can be optimal if the interaction
in stage 2 is likely to be a pairing between two agents whose strength differs a lot, while
at least one of the two stage-1 interactions is fairly homogeneous. An example is a
situation with one superstar and three rather weak agents. In such a setting, it can be
optimal to have two identical prizes, such that no effort is provided in stage 2 and both

26See also the discussion in the conclusion of Groh, Moldovanu, Sela, and Sunde (2012) which relates
to the paper by Horen and Riezman (1985).

27An exception is Rosen (1986), who considers a prize structure as optimal if effort provision is constant
in all stages of a multi-stage pair-wise elimination tournament.

28See, for example, Clark and Riis (1996), Clark and Riis (1998a), Clark and Riis (1998c), Krishna and
Morgan (1998), or Moldovanu and Sela (2001). An excellent survey is provided by Sisak (2009).

29If r > 2, the equilibrium is in mixed strategies. See the respective discussion in Baye, Kovenock, and
de Vries (1994).
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stage-1 interactions become simple static one-shot interactions. The reason is that effort
provision in the homogeneous stage-1 interaction is independent of heterogeneity, and
therefore constant, while effort provision in the two-stage contest with a unique prize
approaches zero as the degree of heterogeneity increases.

Overall, extensive numerical testing suggests that two situations can be distinguished
in tournaments with multiple stages: Either a unique prize is optimal, or it is optimal to
have two identical prizes such that stage 2 is dropped and only two pair-wise interactions
in stage 1 remain. Essentially, this implies that the structure of prizes can be used to
change the structure of the contest. This suggests that the joint optimization of contest
and prize structure, which has so far only been addressed in homogeneous settings (Fu
and Lu 2012), may be an interesting topic for future research.

2.4 Conclusion

This paper characterizes a solution for multi-stage pair-wise elimination contests with
heterogeneous agents who differ with respect to their effort effectiveness. Elimination
contests have received much attention in the contest literature, since they capture many
real life situations, such as promotion and sport tournaments, for example. While atten-
tion has focused on cases where all agents are homogeneous so far, this paper discusses
the arguably more relevant general case where agents are of different types. I show un-
der which conditions a subgame perfect Nash equilibrium exists when a general Tullock
contest success function (CSF) is used. Moreover, the equilibrium solution is derived
analytically for the special case of a lottery CSF, and characterized for the remaining
cases. So far, a solution to multi-stage pair-wise elimination contests is available only for
the perfectly discriminating all-pay auction contest success function (Groh, Moldovanu,
Sela, and Sunde 2012). Most contests in reality are, however, imperfectly discriminating.
Apart from that, the approach taken here has the advantage that no restrictions on the
structure of prizes are needed, and that the equilibrium is in pure strategies, which, for
example, facilitates experimental testing of properties predicted by theory.

The main complication that arises in a multi-stage pair-wise elimination contest once
agents are allowed to be heterogeneous is that continuation values in early stages become
endogenous due to feedback effects across different branches of the game. This paper
analyzes these effects in some detail for the most simple multi-stage contest with only two
stages. Subsequently, additional complications that arise in more complicated settings
with three stages or more were briefly discussed.

A rather short analysis of certain properties of multi-stage pair-wise elimination contest
with heterogeneous agents suggests that this contest format has several features that
distinctly differ from other contest formats. For example, I show that it can be beneficial
for the weakest agent in the contest if some of the other agents becomes even stronger than
he/she already is. Or, with respect to the structure of prizes, it seems that a runner-up
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prize for the loser in stage 2 that is smaller than the main prize is never optimal; either a
unique prize or two equal prizes are optimal with respect to effort maximization. These
issues certainly deserve more attention in future research. Apart from that, it might be
interesting to compare the results of the model presented in this paper to a model in which
agents are budget-constrained. Many authors argue that agents face budget constraints
in real life (Parco, Rapoport, and Amaldoss 2005, Stein and Rapoport 2005, Amegashie,
Cadsby, and Song 2007). The implications of these constraints on behavior of agents
in settings with heterogeneous types and imperfectly discriminating CSFs appear not to
have been explored yet. This would also help to clarify the robustness of the results by
Harbaugh and Klumpp (2005), who consider a special case of the model which is analyzed
in this paper and assume that the endowment is of no intrinsic value to simplify their
analysis.
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Appendix

Proof of Theorem 2.1:

First, note that Assumptions 2.1 ensures that the stage-2 subgame has a unique pure
strategy equilibrium. Further, Assumption 2.2 implies that each of the two stage-1 inter-
actions has a unique pure strategy equilibrium, conditional on given continuation values.30

Consequently, what remains to be proven is that the system of equations (2.7) and (2.8)
has at least one solution.

For the proof, I will first show that the functions G(⋅) and R(⋅) are either strictly
monotonic or constant and equal to one. If at least one of the two functions is constant,
there is no interdependence between equations (2.7) and (2.8), and it is straightforward
to show that there is a (unique) solution to the system of equations. For the second case
where G(⋅) and R(⋅) are strictly monotonic, I will show that the graphs of G(⋅) and the
inverse function R−1(⋅) intersect at least once; the inverse function is defined, since R(⋅)

is strictly monotonic and continuous on the domain [0,1].31
Taking the first derivatives of G(⋅) and R(⋅) with respect to their only argument, one

obtains

∂G(
y43
y34

)

∂ (
y21
y12

)
= a3a4

[PL + π∗1(1 − 3)][PL + π∗2(2 − 4)] − [PL + π∗1(1 − 4)][PL + π∗2(2 − 3)]

[a3(PL + π∗1(1 − 3)) + a4(PL + π∗1(1 − 4)) (y21
y12

)
r
]2

(
y21
y12

)
r−1

∂R (
y21
y12

)

∂ (
y43
y34

)
= a1a2

[PL + π∗3(3 − 1)][PL + π∗4(4 − 2)] − [PL + π∗3(3 − 2)][PL + π∗4(4 − 1)]

[a1(PL + π∗3(3 − 1)) + a2(PL + π∗3(3 − 2)) (y43
y34

)
r
]2

(
y43
y34

)
r−1

Note that the denominator is always positive in both expressions (it is squared). This
implies that the sign of the slope is fully determined by the numerator. Equilibrium
requires that each of the two ratios of effort must be between zero and one. Therefore,
the sign of the numerators of both G(⋅) and R(⋅) depends on a difference of two expressions
of heterogeneity and prize parameters which are exogenously given. As a consequence,
one has to distinguish two cases: For both G(⋅) and R(⋅), respectively, it holds that the
function is either strictly monotone in the domain of interest (increasing or decreasing),
or the slope of the function is always zero. Analysis of G(⋅) reveals that the slope of G(⋅)

is zero if and only if agents 1 and 2 are of the same player type; (if and only) if this is
the case, it holds that G(⋅) =

y∗21
y∗12

= 1, i.e. the two agents choose the same level of efforts.
Similarly, R(⋅) is equal to one for all values of y21

y12
if and only if agents 3 and 4 are of the

same type.
This implies that I have to consider three different scenarios for the proof: (1) G(⋅) and

R(⋅) are equal to one and therefore independent of one another; (2) either G(⋅) or R(⋅)

30This has been proven by Nti (1999) and Cornes and Hartley (2005), for example.
31Recall that the equilibrium ratios y∗21

y∗12
and y∗43

y∗34
must both be between zero and one, since it holds by

assumption that (i) agent 1 is stronger than agent 2 (a1 ≥ a2), and (ii) agent 3 is stronger than agent 4
(a3 ≥ a4).
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are equal to one, i.e. one of the two relations depends on the other one, but not vice versa;
(3) neither G(⋅) nor R(⋅) are equal to one, and the two functions are interdependent. It
is straightforward to show that a solution to the system consisting of (2.7) and (2.8) does
exist in cases (1) and (2); case (3) is somewhat more involved and will be dealt with next.

Due to the previous reasoning, it must be the case that both G(⋅) and R(⋅) are strictly
monotonic in case (3). Therefore, it is possible to determine the inverse function of R(⋅).
It holds that

R−1 (
y21

y12

) ≡
r

¿
Á
Á
Á
ÁÀ

a1

a2

[PL + π∗3(3 − 1)] (
y∗43
y∗34

) − [PL + π∗4(4 − 1)]

[PL + π∗4(4 − 2)] − [PL + π∗3(3 − 2)] (
y∗43
y∗34

)
= (

y21

y12

) . (2.21)

By definition of the inverse function, it must hold that R−1(
y21
y12

) is strictly monotonic.

Further, R−1(
y21
y12

) has a unique root (in the relevant domain y∗43
y∗34

∈ [0,1]) at Z =
[PL+π∗4(4−1)]
[PL+π∗3(3−1)] ,

where 0 < Z < 1. Finally, close inspection of (2.21) reveals that R−1(
y21
y12

) has a pole at

W =
[PL+π∗4(4−2)]
[PL+π∗3(3−2)] , 0 < W < 1. Since G(0) and G(1) are both strictly smaller than 1, it

must be that the graphs of the functions G(⋅) and R−1(⋅) intersect at least once in the
relevant domain y43

y34
∈ [0,1] by intermediate value theorem, which completes the proof.

Proof of Proposition 2.1:

This proof consists of two parts: In part (1), I will consider stage 1 winning probabilities,
whereas I consider expected equilibrium payoffs in part (2). Before I can start with the
proof of Proposition 2.1, however, I will derive the respective expressions for the stage 1
equilibrium winning probability pij and the expected equilibrium payoff in stage 1, Π∗

i .
Without loss of generality, I assume that agents 1 and 2 meet in one, while agents 3 and 4
meet in the second stage 1 interaction. Then, the winning probability of agent 1 in stage
1 is defined as

p12 =
a1yr12

a1yr12 + a2yr21

=
a1

a1 + a2 (
y21
y12

)
r .

From equation (2.7), one can show that

y∗21

y∗12

=
PL + p34 × π∗2(2 − 3) + (1 − p34) × π∗2(2 − 4)

PL + p34 × π∗1(1 − 3) + (1 − p34) × π∗1(1 − 4)
=
PL + P c

2(y34, y43)

PL + P c
1(y34, y43)

.

Note that P c
2(y34, y43) is increasing in a2, while P c

1(y34, y43) is increasing in a1. This is
because the expected equilibrium payoff of a pair-wise interaction between agents i and
j for any agent i is strictly increasing in the effort productivity parameter of agent i, as
inspection of equation (2.4) clearly reveals. Note that the effect of changes in a1 or a2

on p34 is ignored in this analysis; as already mentioned in the paper, the incorporation of
this equilibrium reaction effect complicates the expressions to an extent that cannot be
characterizes analytically.
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(1) Inserting the above expression for the effort ratio in the winning probability gives

p12 =
1

1 + a2
a1

(
PL+P c

2 (y34,y43)
PL+P c

1 (y34,y43)
)
r =

1

1 +Φ
, (2.22)

where Φ = a2
a1
(
PL+P c

2 (y34,y43)
PL+P c

1 (y34,y43)
)r. It is straightforward to show that

∂Φ

∂a1

< 0 and
∂Φ

∂a2

> 0 (2.23)

do hold. In combination with the fact that ∂p12
∂Φ < 0, this proves parts (a) and (b) of

Proposition 2.1. The winning probabilities of agents 2, 3, and 4, have exactly the same
structure, and proving the relations for those expressions goes through the same steps.

(2) Now, I consider the expected payoff, which can be shown to satisfy

Π1 =
1 + (1 − r)Φ

(1 +Φ)2
[PL + P c

1(y34, y43)]. (2.24)

Simple algebra shows that ∂Π1

∂Φ < 0, which in combination with the results of (2.23) proves
the claim. The same holds for the expected equilibrium payoffs of agents 2, 3, and 4,
which have the same structure as the one for agent 1.

Proof of Proposition 2.2:

Without loss of generality, I assume that agents 1 and 2 meet in one, while agents 3 and
4 meet in the second stage 1 interaction. Further, agent 1 is stronger than agent 2, while
agent 3 is stronger than agent 4, i.e. the relations a1 ≥ a2 and a3 ≥ a4 do hold. Now,
I have to proof that both the overall winning probability and the expected equilibrium
payoff of agents 3 and 4 are decreasing in a1. Further, the same must hold for payoffs and
probabilities of agents 1 and 2 with respect to a3. The overall winning probability will be
considered in part (1) of the proof; the expected equilibrium payoff follows in part (2).

(1) The overall winning probability for agent 3 is defined as follows:

℘3 = p
1
34 × [p1

12 × p
2
31 + (1 − p1

12) × p
2
32].

p1
34 is the probability that agent 3 wins against his stage 1 opponent 4. Conditional on

winning stage 1, agent 3 meets agent 1 with probability p1
12 in stage 2, and with probability

p2
31 he wins this stage 2 interaction. With the converse probability, agent 3 meets agent

2 in stage 2, against whom he wins with probability p2
32. As already mentioned in the

previous proof, I do not consider the equilibrium response with respect to stage 1 efforts
that works across the two stage 1 interactions, i.e. the (extremely weak) effect of a change
in a1 on p1

34 is omitted. Note that p2
31 ≤ p

2
32, i.e. agent 3 has a higher winning probability

in stage 2 if he meets agent 2 (who is weaker than agent 1).
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From Proposition 2.1 I know that p1
12 is increasing in a1; p2

32 remains unchanged, but
p2

31 decreases. Consequently, the overall winning probability ℘3 of agent 3 is decreasing
in the strength of the stronger agent in the other stage 1 interaction, a1. Going through
exactly, the same steps, one can show that the same holds for agent 4. Then, since I did
not make any assumptions on the relation between agents 1 and 2 as compared to agents
3 and 4, it can be proven in the same way that the overall winning probability of agents
1 and 2 is decreasing in a3.

(2) The expected equilibrium payoff for agent 3 is defined as

Π3 =
1 + (1 − r)y43y34

(1 + y43
y34

)2
[PL + P c

3(y12, y21)],

where P c
3(y12, y21) = p1

12×π
∗
3(3−1)+(1−p1

12)×π
∗
3(3−2). As in all previous proofs, I ignore

the indirect effect across stage 1 interactions on efforts, i.e. I assume that the ratio y43
y34

is
not affected by a change in a1. Then, I only have to consider the effect of a change in
a1 on Π3: From Proposition 2.1, I know that p1

12 is increasing in a1. Further, note that
π∗3(3 − 1) ≤ π∗3(3 − 2). In addition, π∗3(3 − 1) is decreasing in a1. All those effects reduce
P c

3(y12, y21). Since Π3 is increasing in P c
3(y12, y21), it must hold that Π3 is reduced if a1 is

increasing. Corresponding relations can be shown to hold for the expected payoffs agents
1, 2, and 4.

Proof of Proposition 2.3:

Without loss of generality, I assume that agents 1 and 2 meet in one, while agents 3 and
4 meet in the second stage 1 interaction. Further, agent 1 is stronger than agent 2, while
agent 3 is stronger than agent 4, i.e. the relations a1 ≥ a2 and a3 ≥ a4 do hold. Now, I have
to proof that both the overall winning probability and the expected equilibrium payoff
of agents 3 and 4 may be increasing or decreasing in a2. Further, the same must hold
for payoffs and probabilities of agents 1 and 2 with respect to a4. The overall winning
probability will be considered in part (1) of the proof; the expected equilibrium payoff
follows in part (2).

(1) Recall from the proof that the overall winning probability for agent 3 is defined as

℘3 = p
1
34 × [p1

12 × p
2
31 + (1 − p1

12) × p
2
32].

Now, recall from Proposition 2.1 that p1
12 is decreasing in a2; p2

31 remains unchanged,
but p2

32 decreases. Consequently, the total effect on the overall winning probability ℘3 of
agent 3 is ambiguous: ℘3 is increasing, since p1

12 decreases; however, at the same time, p2
32

decreases, which tends to decrease ℘3. Going through exactly, the same steps, one can
show that the same holds for agent 4. Then, since I did not make any assumptions on
the relation between agents 1 and 2 as compared to agents 3 and 4, it can be proven in
the same way that the overall winning probability of agents 1 and 2 is decreasing in a3.
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(2) The expected equilibrium payoff for agent 3 is defined as

Π3 =
1 + (1 − r)y43y34

(1 + y43
y34

)2
[PL + P c

3(y12, y21)],

where P c
3(y12, y21) = p1

12×π
∗
3(3−1)+(1−p1

12)×π
∗
3(3−2). As in all previous proofs, I ignore

the indirect effect across stage 1 interactions on efforts, i.e. I assume that the ratio y43
y34

is
not affected by a change in a2. Then, I only have to consider the effect of a change in a2

on Π3: From Proposition 2.1, I know that p1
12 is decreasing in a2, which tends to increase

P c
3(y12, y21), since π∗3(3− 1) ≤ π∗3(3− 2). Note, however, that π∗3(3− 2) is decreasing in a2,

an effect that tends to reduce P c
3(y12, y21). As a consequence, the total effect of a change

in a2 on P c
3(y12, y21) is ambiguous. Since Π3 depends linearly on P c

3(y12, y21), the overall
effect of a change in a2 on Π3 is unclear. Corresponding relations can be shown to hold
for the expected payoffs agents 1, 2, and 4.

Proof of Proposition 2.4:

Proposition 2.4 can be proven by the presentation of two examples. Below, I present two
different parameterizations for a two stage contest: Total effort provision is maximized
in Seeding C : 1-2, 3-4 for the first one, while Seeding B : 1-3, 2-4 maximizes total effort
provision for the second one, which proves the claim that there is no Seeding that always
maximized total effort provision.

(1) Assume that the vector (a1, a2, a3, a4) is defined as follows: (a1, a2, a3, a4) =

(4,3,2,1). Under the assumption that r = 1 and PL = 0, the solution to the model that
was presented in section 2.2.2 shows that total effort expenditures are equal to 0.5986 in
Seeding C, to 0.492187 in Seeding B, and to 0.5273 in Seeding A, i.e. total effort provision
is maximized in Seeding C : 1-2, 3-4.

(2) Assume that the vector (a1, a2, a3, a4) is defined as follows: (a1, a2, a3, a4) =

(200,70,20,1). Under the assumption that r = 1 and PL = 0, the solution to the model
that was presented in section 2.2.2 shows that total effort expenditures are equal to 0.3596

in Seeding C, to 0.3687 in Seeding B, and to 0.3261 in Seeding A, i.e. total effort provision
is maximized in Seeding B : 1-3, 2-4.
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Chapter 3

Orchestrating Rent-Seeking Contests
with Heterogeneous Agents

3.1 Introduction

Contests are situations in which agents compete by expending valuable resources to win
a prize. Independently of success or failure, all contestants bear their expenditure costs.
Such situations appear in many different areas of economics – including election cam-
paigns, rent seeking competitions, military conflicts, or the competition for bonus pay-
ments and promotions on internal labor markets. Given the multiplicity of applications,
contests may vary in several dimensions, for example, with respect to their structure. A
large proportion of the existing contest design literature analyzes which effect variations
of the contest structure have on equilibrium investments by contestants, usually assum-
ing that the central goal of the designer is the maximization of aggregate expenditures,
and that contestants are homogeneous. Very little is known, however, about the effect of
heterogeneity between contestants on equilibrium behavior in different contest structures,
even though interactions between heterogeneous contestants are more likely to be the rule
than the exception in reality.

This paper analyzes two prominent contest structures: A static pooling competition
where all contestants interact simultaneously, and a dynamic pair-wise elimination format
where contestants are split into separate branches and are then sequentially eliminated. In
contrast to much of the existing literature, the model in this paper allows for heterogeneous
types, i.e., I consider different valuations of contestants: Some contestants attach a high
value to the contested prize, while the same prize is worth less to others. Intuitively, the
value of being elected in a political campaign, the value of (additional) market shares
in advertising wars, or the value of a new patent in R&D competitions depends on the
type of the contestant; outside options for politicians, costs structures of firms, or the
stock of existing patents in R&D determine the value of the contested good, which I
will subsequently refer to as rent. Apart from that, the standard rent-seeking framework
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with an imperfectly discriminating lottery contest success function (CSF) á la Tullock
(1980), linear cost functions and complete information is employed.1 The question how
the contest structure affects overall expenditures by contestants is particularly intriguing
for imperfectly discriminating CSFs, since they ensure a positive surplus for participants,
i.e., equilibrium contest investments are lower than the value of the rent at stake for this
CSF, such that the rent is incompletely dissipated.2. Thus, the organizers of the contest
may want to modify the design in such a way that the surplus of participants is reduced
and overall contest investments increase. An alternative motivation for the subsequent
analysis is that a thorough understanding of structural effects on behavior of contestants
allows to better understand why particular contest structures are more frequently observed
in reality.

Throughout the paper, I assume that the maximization of the rent dissipation rate
(which is equal to aggregate expenditures normalized by the contested prize) is the natural
goal of the contest designer.3 Using a lottery contest success function which ensures that
the rent dissipation rate in both structures is identical if contestants are homogeneous, I
find that the rent dissipation rate is (almost) always higher in the dynamic than in the
static format in heterogeneous interactions. Intuitively, the detrimental effect of hetero-
geneity on contest investments is lower in the dynamic than in the static contest format.
While it is well known from previous work that heterogeneity reduces the rent dissipation
rate in any immediate interaction, the results indicate that there is a countervailing dy-
namic effect of heterogeneity across different stages in the dynamic format which works
through continuation values: Intuitively, the prospect of facing a low valuation opponent
(type L) in later stages increases the value of winning and therefore the equilibrium invest-
ment levels in early stages for type H contestants.4 Even though equilibrium investment
levels for low valuation types are reduced in early stages (since they are likely to meet an
opponent with a high valuation in stage 2), the dynamic effect of heterogeneity tends to
increase contest investments; the positive dynamic effect of heterogeneity on investments
by high valuation contestants dominates the corresponding negative effect on investments
by low types, since investments into the contest are linearly increasing in the type spe-
cific valuation parameter. While this dynamic heterogeneity effect is always present, the
static format may still lead to a higher rent dissipation rate in some cases, namely, if the
degree of heterogeneity is so high that low valuation contestants drop-out voluntarily in

1The complete information assumption implies that contestants know the type, i.e., the valuation their
competitors attach to the rent. This is particularly relevant in small scale contests, and whenever the
contestants know each other from previous interactions.

2This is not the case in a perfectly discriminating all-pay auction, where the rent is completely dissi-
pated. However, there is a literature on the optimal design in perfectly discriminating contest environ-
ments which assumes incomplete information, i.e., player types are private information.

3This assumption is for simplicity only and without loss of generality. Since only two structures are
compared, the results are equally relevant for settings where contest investments are wasteful and one
should aim at their minimization.

4Using the terminology introduced by Konrad (2010), one might say that heterogeneity reduces the
discouragement effect in early stages which is due to future interactions for high valuation contestants.
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the static, but not in the dynamic format.
While the technical tools to determine equilibrium behavior by contestants are bor-

rowed from Stein (2002) for the static and from Stracke (2012a) for the dynamic format,
this paper is conceptually most closely related to work by Amegashie (1999) and Gradstein
and Konrad (1999). While these two papers also compare static and dynamic pair-wise
elimination contests, they assume that contestants are homogeneous; both Amegashie
(1999) and Gradstein and Konrad (1999) allow for variations of the discriminatory power,
however, i.e., they investigate how the noisiness of the contest technology affects behavior
in static and dynamic contest formats. I complement and extend their work by allow-
ing for heterogeneous contestants. The consideration of heterogeneity is also a general
contribution to the contest design literature which assumes imperfectly discriminating
contest success functions. Recent work by Fu and Lu (2012), for example, considers the
short-listing procedure by Clark and Riis (1996) rather than pair-wise elimination and
determines both the optimal structure of the contest and the effort maximizing prize al-
location rule. However, even though they acknowledge the importance of heterogeneity
in their conclusion, they assume homogeneity. Different contest structures with heteroge-
neous agents have so far only been considered for perfectly discriminating all-pay auctions
technology by Moldovanu and Sela (2006). However, the authors assume that abilities
are private information of contestants in this paper. As a consequence, their result is
driven by a mixture of type uncertainty and type heterogeneity. Instead, this paper uses
a imperfectly discriminating technology and assumes that types are common knowledge
among contestants, which allows for a clean identification of structure specific heterogene-
ity effects.

The remainder of this paper is structured as follow. The next section derives the
equilibrium rent dissipation rates for both contest structures and presents the generic
contest design problem, which is subsequently solved in Section 3.3. Section 3.4 discusses
the main results and assesses their robustness. Section 3.5 concludes.

3.2 Theoretical Model

3.2.1 A Generic Contest Design Problem

Consider the problem of a designer who organizes a rent-seeking contest between four
risk-neutral contestants in such a way that overall contest investments by participants
are maximized; in line with the existing literature, we use the rent dissipation rate as a
measure for overall contest investments. The two available design options S and D are
depicted in Figure 3.1: Either, the recipient of the indivisible rent is determined in a static
contest (S), where all contestants interact simultaneously, or in a dynamic elimination
contest (D) with three pair-wise interactions on two separate stages.

The (utility) values attached to the rent differ among contestants: Agents of type H

35



Figure 3.1: Design Options

(a) Static Contest (S) (b) Dynamic Contest (D)

attach the value vH to the contested rent, while the value of the same rent for agents of
type L amounts to vL. Without loss of generality, I assume vH ≥ vL > 0. While valuations
parameters are common knowledge among contestants, the designer cannot observe the
type of contest participants. She knows, however, that the valuation of agents is either vH
or vL, and second, that the share λ of agents in the overall population N , from which the
four contestants are randomly drawn, is of type L.5 This allows her to use the probability
mass function of a binomial distribution to determine the likelihood for an arbitrary
configuration with 0 ≤ n ≤ 4 contestants of type L and 4 − n contestants of type H; the
corresponding probability is f(λ,n) = (

4
n
)λn(1 − λ)4−n. Defining the rent dissipation rate

by n contestants of type L and 4 − n contestants of type H in design i as RDi
(n), the

resulting optimization problem of the designer formally reads

max
i∈{S,D}

E(RDi
) , where E(RDi

) =∑
4

k=0
f(λ,n) ∗RDi

(n), (3.1)

i.e., the designer chooses any one of the two contest design options S and D such that the
expected rent dissipation, denoted E(RDi

), is maximized for a given value of λ.

3.2.2 Equilibrium Behavior by Contestants

Overall, the setup with four contestants of two different types allows for five configurations
with differing shares of each type. Throughout, I employ the prominent model of a
Tullock (1980) rent-seeking contest with a ratio contest-success-function (CSF) and linear
investment costs. The CSF defines an exponential impact function z(xi) = xri , such that
winning probabilities of contestants are as follows: If agent i competes against agent j
in any one of the three pair-wise interactions of the dynamic contest, or simultaneously
against three other agents j, k and l in the static contest, his/her winning probability
pi is given by the ratio of own expenditure impact z(xi) over expenditure impact by

5Since agents are either of type H or of type L, the share of type H agents in N is 1 − λ.
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all contestants X = ∑b∈B z(xb), where B = {i, j, k, l} in the static, and B = {i, j} in the
dynamic design option. Formally,

pi =

⎧⎪⎪
⎨
⎪⎪⎩

xri
xri+∑m≠i x

r
m

if ∑b∈B xb > 0
1

#B if ∑b∈B xb = 0,

where #B is the number of participants in the contest.6 The parameter r ≥ 0 captures
the discriminatory power of the CSF and measures the importance of randomness relative
to investments in the decision process on an inverse scale.7 Independent of r, the chosen
CSF implies that the winning probability of a contestant is increasing in own investment
and decreasing in the investments of the immediate opponent(s). Since investments into
the contest are costly for participants, they face a trade-off: Ceteris paribus, increasing
the own investment leads to both higher costs and a higher probability of winning. In
equilibrium, contestants choose their investment levels such that the marginal costs of
investment equal expected marginal gains in terms of a higher probability of winning.

Equilibrium properties of the static and the dynamic contest format are only deter-
mined for the special case of a lottery CSF subsequently, i.e., I assume r = 1. However,
likely effects of variations in the discriminatory power r on the optimal decision of the
designer will be discussed in Section 3.4, where the main results are related to previous
findings by Gradstein and Konrad (1999).

3.2.2.1 Static Contest (S)

Since the one-stage contest is a simultaneous move game, the solution concept is Nash
Equilibrium (NE). Each contestant i maximizes his/her expected payoff by choosing the
optimal level of contest investment, taking as given the investment choices of opponents j,
k, and l. Formally, the optimization problem of contestant i with valuation vm (m = {H,L})
is defined as follows:

max
xi≥0

Πi(xi, xj, xk, xl) =
xi
X
vm − xi, (3.2)

where X = xi + xj + xk + xl. Since (3.2) is concave in xi, the first-order condition is both
necessary and sufficient for optimality. The partial derivative of (3.2) with respect to xi
reads

∂Πi(xi, xj, xk, xl)

∂xi
=
X − xi
X2

vm − 1,

such that the first-order condition for maximization of the objective function (3.2) is
either ∂Πi(⋅)

∂xi
= 0 if xi > 0, or ∂Πi(⋅)

∂xi
≤ 0 if xi = 0. In equilibrium, contest investments by all

contestants with valuation vm are the same due to symmetry of the objective functions,
independent of the particular configuration under consideration. Therefore, the indices i,
j, k, and l are dropped and x∗m(n) defines the equilibrium investment level by an agent

6See Skaperdas (1996) for an axiomatization of this CSF.
7The decision is independent of investments for r = 0, and independent of randomness in the limit for

r →∞.
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with valuation vm in a configuration with n contestants of type L. In configurations where
all agents are of the same type (n = 0 or n = 4), the first-order optimality conditions are
binding and all contestants choose the same (strictly positive) equilibrium investment.
Using first-order conditions and symmetry delivers

x∗H(0) =
3

16
vH and x∗L(4) =

3

16
vL, (3.3)

respectively. When considering the remaining configurations with agents of both types
(0 < n < 4), however, the n contestants with valuation vL may optimally choose to invest
zero in some settings, and only the equilibrium investment levels of 4−n agents with val-
uation vH remain strictly positive. As a consequence, the first-order optimality condition
is always binding for high valuation types, but not necessarily for contestants with a low
valuation.8 Considering a configuration with agents of both types and assuming that the
first-order conditions are binding for either type, they jointly determine the equilibrium
investment ratio:

θ ≡
x∗L(n)

x∗H(n)
=
vH − (4 − n)(vH − vL)

vL + n(vH − vL)
. (3.4)

Since x∗m(n) ≥ 0 and vH ≥ vL > 0 by assumption, θ ≥ 0 must hold in an interior NE. This
is the case if and only if vL

vH
≥ 3−n

4−n . Consequently, contestants with a low valuation invest
zero into the contest if their valuation vL is too low compared to the valuation vH for a
given number of high valuation contestants, i.e., if

vL
vH

≤
3 − n

4 − n
. (3.5)

Thus, equilibrium investment levels in configurations with agents of both types are deter-
mined by (3.4), (3.5) and the first-order conditions of high and low valuation types, i.e.,
I obtain

x∗H(n) =

⎧⎪⎪
⎨
⎪⎪⎩

3−(1−θ)n
[4−(1−θ)n]2vH (θ ≥ 0)

3−n
(4−n)2vH (θ < 0)

and x∗L(n) =

⎧⎪⎪
⎨
⎪⎪⎩

θ2(n−1)+θ(4−n)
[4−(1−θ)n]2 vL (θ ≥ 0)

0 (θ < 0)
(3.6)

for contestants of type H and L, respectively, in configurations with agents of both types
(0 < n < 4).

3.2.2.2 Dynamic Contest (D)

We employ Subgame Perfect Nash Equilibrium as solution concept due to the dynamic
nature of this contest format. The equilibrium is obtained through backward induction.
Therefore, I start by analyzing all possible stage-2 interactions. Equilibrium behavior
by contestants in all potential stage-1 configurations is considered subsequently; contest
investments by contestants i in stage s = {1,2} are denoted xis, and the expected payoff

8Formally, this implies X−x∗H
X2 vH − 1 = 0 and X−x∗L

X2 vL − 1 ≤ 0, respectively.
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of i in stage s is defined as Πis.

Stage 2. Consider a pair-wise interaction between contestants i and k and the opti-
mization problem of agent i, who maximizes his/her expected payoff by choosing contest
investment xi2, taken as given the investment choice of the opponent k. Formally, the
optimization problem of contestant i with valuation vm (m = {H,L}) reads

max
xi2≥0

Πi2(xi2, xk2) =
xi2
X
vm − xi2,

where X = xi2 + xk2. The resulting first-order optimality condition xk2vm − X2 = 0 is
both necessary and sufficient. Moreover, it is always binding in a pair-wise contest for
the chosen CSF, independent of the type of contestants i and k.9 With respect to types,
there are three potential constellations: Either both contestants attach the value vH or vL
to the prize, respectively, or the two contestants have different valuations. In the former
two cases, invoking symmetry (x∗i2 = x∗k2) delivers equilibrium investment levels

x∗m2(mm) ≡ x∗i2 = x
∗
k2 =

vm
4
, m = {H,L}. (3.7)

Inserting equilibrium choices in the objective function gives the expected equilibrium
payoff10

Π∗
2(mm) ≡ Π∗

i2(x
∗
i2, x

∗
k2) = Π∗

k2(x
∗
i2, x

∗
k2) =

vm
4
, m = {H,L}. (3.8)

In the remaining constellation where stage-2 participants have different valuations, I as-
sume without loss of generality that contestant i (k) has valuation vH (vL). Combining
the respective first-order conditions delivers equilibrium investment levels

x∗H2(LH) ≡ x
∗
i2 =

v2
HvL

(vH + vL)2
and x∗L2(LH) ≡ x

∗
k2 =

vHv2
L

(vH + vL)2
, (3.9)

respectively. The resulting expected equilibrium payoffs for contestants i = H and j = L
are

Π∗
H2(LH) ≡ Π∗

i2(x
∗
i2, x

∗
k2) =

v2
H(vH + vL) − v

2
H

(vH + vL)2
(3.10)

Π∗
L2(LH) ≡ Π∗

k2(x
∗
i2, x

∗
k2) =

v2
L(vH + vL) − v

2
L

(vH + vL)2
. (3.11)

Stage 1. Assume that contestants i and j, as well as contestants k and l, compete
with each other for the right to move on to the next stage in the two pair-wise stage-
1 interactions of the dynamic contest. Consider the optimization problem of agent i,
who maximizes his/her expected payoff Πi1 by choosing contest investment xi1. The

9See Cornes and Hartley (2005) for details.
10Note that the expected payoff is the same for player i and player k, therefore the indices i and k can

be dropped.
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(continuation) value of a participation in stage 2 for agent i, denoted Ci, depends on the
type of the potential stage-2 opponents k and l, since their type determines the expected
stage-2 payoffs Π∗

i2(x
∗
i2, x

∗
k2) and Π∗

i2(x
∗
i2, x

∗
l2), respectively. Whenever k and l are different

types, agent i does not only take the investment xj1 by the immediate opponent as given,
but also the investment choices xk1 and xl1 by contestants k and l in the parallel stage-
1 interaction; xk1 and xl1 jointly determine the probability that contestant i interacts
with an agent of either type in stage 2. Formally, the general optimization problem of
contestant i is defined as follows:

max
xi1≥0

Πi1(xi1, xj1, xk1, xl1) =
xi1

xi1 + xj1
[

xk1

xk1 + xl1
Π∗
i2(x

∗
i2, x

∗
k2) +

xl1
xk1 + xl1

Π∗
i2(x

∗
i2, x

∗
l2)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ci(xk1, xl1)

−xi1.

The first derivative of Πi1(⋅) with respect to xi1 delivers the necessary and sufficient
optimality condition

∂Πi1(xi1, xj1, xk1, xl1)

∂xi1
=

xj1
(xi1 + xj1)2

Ci(xk1, xl1) − 1 = 0, (3.12)

which is strictly binding for any type. All possible configurations are separately ana-
lyzed below; the stage-1 equilibrium investment level of agent i in a configuration with n
contestants of type L and 4 − n contestants of type H is denoted x∗i1(n).
n = 0, n = 4: All contestants i, j, k, and l are of type m = {L,H}. Since agent i knows
that the potential stage-2 opponent is always of type m = {L,H}, the formal expression
for the continuation value simplifies to Ci = Π∗

2(mm), where Π∗
2(mm) = vm

4 according to
(3.8). In equilibrium, the continuation values and investment choices by all contestants
are the same due to symmetry of the objective functions; defining Cm ≡ Ci = Cj = Ck = Cl

and x∗m1(n) ≡ x
∗
i1(n) = x

∗
j1(n) = x

∗
k1(n) = x

∗
l1(n), m = {L,H}, equation (3.12) gives stage-1

equilibrium investment

x∗H1(0) =
1

16
vH and x∗L1(4) =

1

16
vL, (3.13)

respectively.
n = 1: Contestants i, k, and l are of type H, only contestant j is of type L. Consider
first agents i and j who anticipate that their stage-2 opponent (conditional on winning
stage 1) is of type H, independent of stage-1 efforts by k and l. Therefore, it holds that
Ci = Π∗

2(HH) and Cj = Π∗
L2(LH).11 Combining the first-order conditions of contestants i

and j delivers

x∗i1(1) =
4v4

Hv
3
L

[v3
H + 2v2

HvL + vHv
2
L + 4v3

L]
2

and x∗j1(1) =
16v3

Hv
6
L

[vH + vL]2[v3
H + 2v2

HvL + vHv
2
L + 4v3

L]
2
,

(3.14)
11The respective expressions are defined in (3.8) and (3.11), respectively.
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respectively. The optimization problems of agents k and l are symmetric. Both attach
the value Ck = Cl = pi(⋅) ∗Π∗

2(HH) + [1 − pi(⋅)] ∗Π∗
H2(LH) to a stage-2 participation, where

pi(⋅) ≡ pi(x∗i1(1), x
∗
j1(1)) is the probability that type H agent i wins the stage-1 interaction

against (type L) agent j. Using (3.12), (3.14), and symmetry gives stage-1 equilibrium
investments for agents k and l,

x∗k1(1) = x
∗
l1(1) =

v2
H[vH + vL]

4 + 16v3
Hv

3
L

16(vH[vH + vL]4 + 4v3
L[vH + vL]

2)
. (3.15)

n = 2: The configuration n = 2 allows for two different settings in the dynamic contest
model: Either, stage-1 interactions are mixed (denoted LHLH), or contestants of the same
type compete against each other in the two separate stage-1 pairings (denoted LLHH).
Setting LHLH occurs with probability 2/3, the probability for the alternative setting LLHH
is 1/3.12 Consequently, the expected stage-1 equilibrium investment for n = 2 is defined
as

x∗b1(2) =
1

3
x∗b1(LLHH) +

2

3
x∗b1(LHLH), (3.16)

where b = {i, j, k, l}. Equilibrium behavior by contestants in each of the two settings is
analyzed below. Consider first setting LLHH, where i and j are of type H, while k and
l are of type L. Contestants i and j know that their potential stage-2 opponent is of
type L, therefore Ci = Cj = Π∗

H2(LH) does hold. Similarly, agents k and l anticipate that
they compete with a type H agent in stage 2, conditional on winning stage 1. Thus,
Ck = Cl = Π∗

L2(LH). Conditions (3.10), (3.11), (3.12), and symmetry (x∗i = x∗j , as well as
x∗k = x

∗
l ) jointly determine stage-1 equilibrium investment

x∗i1(LLHH) = x
∗
j1(LLHH) =

v3
H

4[vH + vL]2
and x∗k1(LLHH) = x

∗
l1(LLHH) =

v3
L

4[vH + vL]2
. (3.17)

Consider now setting LHLH, where contestants i and k are of type H, while j and l are
type L agents. Since each agent of type H interacts with an agent of type L in stage 1,
contestants know that their stage-2 opponent may be of either type. Therefore, Ci =
pk(⋅) ∗Π∗

2(HH)+ [1− pk(⋅)] ∗Π∗
H2(LH) and Cj = pk(⋅) ∗Π∗

L2(LH)+ [1− pk(⋅)] ∗Π∗
2(HH), where

pk(⋅) ≡ pk(x∗k1(1), x
∗
l1(1)). The optimization problems of contestants i and k, as well as of

j and l are symmetric, such that x∗H1 ≡ x
∗
i1 = x

∗
j1 and x∗L1 ≡ x

∗
k1 = x

∗
l1 do hold. In combination

12After the first contestant has been chosen randomly from the pool of four agents, the probability
that the next agent drawn from the pool of the remaining three contestants is of the same type is 1/3
for n = 2 (since only one of the remaining agents is of the same type), while the probability that the next
contestant is of the other type is 2/3 (because two of the three remaining agents are of the other type).
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with (3.8), (3.10), (3.11), and (3.12), these symmetry conditions deliver13

x∗H1 ≡ x
∗
i1(LHLH) = x

∗
k1(LHLH) =

vH[vH + vL]2F (vH, vL)2 + 4v3
HF (vH, vL)

4[vH + vL]2[1 + F (vH, vL)]3
(3.18)

x∗L1 ≡ x
∗
j1(LHLH) = x

∗
l1(LHLH) =

vL[vH + vL]2F (vH, vL) + 4v3
LF (vH, vL)2

4[vH + vL]2[1 + F (vH, vL)]3
, (3.19)

where F (vH, vL) is defined as

F (vH, vL) =
(vH − vL)(vL + vH)2 +

√
64v3

Hv
3
L + (vL − vH)2(vL + vH)4

8v3
L

. (3.20)

n = 3: Contestants i, k, and l are of type L, only contestant j is of type H. Consider first
agents i and j who anticipate that their stage-2 opponent (conditional on winning stage
1) is of type L, independent of stage-1 investment choices by k and l. Therefore, it holds
that Ci = Π∗

2(LL) and Cj = Π∗
H2(LH). Combining the first-order conditions of contestants i

and j delivers

x∗i1(3) =
v3
Hv

2
L[vH + vL]

2

[4v3
H + v

2
HvL + 2vHvL + v3

H]
2

and x∗j1(3) =
4v6

HvL
[4v3

H + v
2
HvL + 2vHvL + v3

H]
2
, (3.21)

respectively. The optimization problems of agents k and l are symmetric. Both attach
the value Ck = Cl = pi(⋅) ∗Π∗

2(LL) + [1 − pi(⋅)] ∗Π∗
L2(LH) to a stage-2 participation, where

pi(⋅) ≡ pi(x∗i1(1), x
∗
j1(1)) is the probability that agent i (type L) wins the stage-1 interaction

against agent j (type H). Using (3.8), (3.11), (3.12), (3.21), and symmetry delivers

x∗k1(3) = x
∗
l1(3) =

v2
L[vH + vL]

2 + 16v3
Hv

3
L

16(4v3
H[vH + vL]

2 + vL[vH + vL]4)
(3.22)

as stage-1 equilibrium investment for agents k and l.

3.2.3 Rent Dissipation Rates

Equilibrium investments by contestants determine the rent dissipation rate, which is de-
fined as the sum of individual investments, normalized by vH, the value of the rent to
contestants of type H. Consequently,

RDS(n) =
1

vH
∑b∈B x

∗
b (n) (B = {i, j, k, l}) (3.23)

gives the rent dissipation rate for a configuration with n contestants of type L and 4 − n

contestants of type H in the static contest format (S).14 It is slightly more complicated to
13For details on how to solve this slightly more complicated setting, see Höchtl, Kerschbamer, Stracke,

and Sunde (2011). Höchtl et al. (2011) assume that types differ with respect to costs (rather than
valuations); the necessary steps to derive the equilibrium solution are the same, however. A proof of
equilibrium existence and uniqueness is provided in Stracke (2012a).

14Individual equilibrium investments x∗b(n) are defined in (3.3) and (3.6), respectively.
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compute the rent dissipation rate in the dynamic contest, even though the concept is the
same. However, three different stage-2 interactions may occur from an ex-ante perspective,
and equilibrium investment choices vary across settings LL, LH, and HH, such that the rent
dissipation rate is an expected value. To circumvent this complication, we define the
expected stage-2 equilibrium investment choice by contestant b in a configuration with n
contestants of type L as x̄∗b2(n); formally,

x̄∗i2(n) =
x∗i1(n)

x∗i1(n) + x
∗
j1(n)

[
x∗k1(n)

x∗k1(n) + x
∗
l1(n)

∗ x∗i2(IK) +
x∗l1(n)

x∗k1(n) + x
∗
l1(n)

∗ x∗i2(IL)]

is the expected stage-2 investment by contestant i, where I, K, and L are the types of
contestants i, k, and l, respectively.15 Using this measure for stage-2 investment, the rent
dissipation rate for a configuration with n contestants of type L and 4 − n contestants of
type H in the dynamic contest format (D) reads16

RDD(n) =
1

vH
{∑b∈B[x

∗
b1(n) + x̄

∗
b2(n)]} (B = {i, j, k, l}). (3.24)

3.3 Optimal Contest Design

3.3.1 Comparison by Configuration

Before the solution to the design problem is presented, I will briefly compare the rent
dissipation rates of the static and the dynamic contest by configuration. Essentially, this
comparison corresponds to a situation where the designer cannot observe the valuation
parameters of the contestants, but she knows the share of high and low valuation types,
i.e., she knows that n contestants are of type L, while the remaining 4−n contestants are
of type H. Through a comparison of (3.23) and (3.24) for n ∈ {0,1,2,3,4}, I determine
the optimal contest format for each potential configurations. Figure 3.2 plots the rent
dissipation rates both for the static and the dynamic contest format as a function of vL

vH

and illustrates the following relations:17

Proposition 3.1 (Rent Dissipation by Configuration). The rent dissipation rate in a
configuration with n contestants of type L and 4 − n contestants of type H is

(a) identical in the static and the dynamic contest for n = 0 and n = 4, independent of
vH and vL:

RDS(0) = RDD(0) and RDS(4) = RDD(4) ∀ 0 ≤
vL
vH

≤ 1.

15The formal expressions for x∗i2(IK) and x∗i2(IL) are provided in (3.7) and (3.9), respectively.
16Individual stage-1 equilibrium investments x∗b1(n) are defined in (3.13), (3.15), (3.16), and (3.22).
17The ratio of valuations measures the degree of heterogeneity between types on an inverse scale:

Heterogeneity is extremely high if the valuations are infinitely far apart (vL
vH

= 0), while heterogeneity
approaches zero once valuations do not differ across types (vL

vH
= 1), i.e., the higher vL

vH
, the lower is the

degree of heterogeneity between types, and vice versa.
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Figure 3.2: Rent Dissipation RDi by configuration

(a) n=1

(b) n=2

(c) n=3
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(b) higher in the dynamic than in the static contest for n = 2 and n = 3, independent of
vH and vL:

RDS(2) ≤ RDD(2) and RDS(3) ≤ RDD(3) ∀ 0 ≤
vL
vH

≤ 1.

(c) higher in the dynamic than in the static contest for n = 1 if E ≤ vL
vH

≤ 1, where
E ≈ 0.37. Rent dissipation is higher in the static than in the dynamic contest for
n = 1 and 0 ≤ vL

vH
≤ E:

RDS(1) ≤ RDD(1) if E ≤
vL
vH

≤ 1 ; RDS(1) ≥ RDD(1) if 0 ≤
vL
vH

≤ E.

Proof. See Appendix.

Note that the homogeneous configurations n = 0 and n = 4 are omitted, as the rent
dissipation rates are identical and constant in these cases. The three heterogeneous con-
figurations are separately provided in panels (a), (b), and (c). First, Figure 3.2 shows that
the rent dissipation rate is a smooth function of vL

vH
in all configurations of the dynamic

contest, while the corresponding function for the static contest has a kink in some cases.
The reason is that low valuation types do not participate in the static contest if their
valuation vL is too low relative to vH for the given number of high valuation types. Below
the respective threshold, changes of vL relative to vH do not further affect rent dissipation,
which explains the kink. Figure 3.2 shows that the participation by type L contestants
is an issue in the static contest for n = 1 and n = 2, but not for n = 3.18 In addition,
Figure 3.2 provides a graphical representation of Proposition 3.1: The rent dissipation
rate in any heterogeneous configurations of the dynamic format is (weakly) higher than
in the corresponding configuration of the static contest with one exception: If n = 1 and
0 ≤ vL

vH
≤ E, the static format delivers a higher rent dissipation rate than the dynamic one.

3.3.2 Solution of the Contest Design Problem

Recall from section 3.2.1 that the designer chooses the contest format i ∈ {S,D} which
maximizes

E(RDi
) =∑

4

k=0
f(λ,n) ∗RDi

(n).

We already know from Proposition 3.1 that the equilibrium rent dissipation rate in any
configuration of the dynamic contest is (weakly) higher than in the corresponding con-
figuration of the static contest if E ≤ vL

vH
≤ 1 holds. Noting that the central measure of

interest to the designer, E(RDi
), is a composite of rent dissipation rates in each possible

configuration, delivers Proposition 3.2:
18See also section 3.2.2.1, in particular equation (3.5) for details.
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Proposition 3.2 (Expected Rent Dissipation). Expected rent dissipation in the dynamic
contest is higher than in the static contest if E ≤ vL

vH
≤ 1, independent of λ:

E(RDD) ≥ E(RDS) ∀ λ ∈ [0,1] if E ≤
vL
vH

≤ 1.

Proof. The proof follows directly from Proposition 3.1, which shows that the rent dissipa-
tion rate is weakly higher in any configuration of the dynamic than in the static contest
if

vL
vH

≥ E.

Intuitively, the probability λ to draw a low valuation type, which determines the
chances that a particular configuration realizes, is irrelevant for the decision of the designer
if E ≤ vL

vH
≤ 1, since this implies that rent dissipation in the dynamic contest is (weakly)

higher than in the static one in any configuration. Figure 3.3 shows that this changes once
the ratio vL

vH
decreases below its critical value E. While expected rent dissipation is higher

in the dynamic than in the static contest for any λ in panel (a), which plots the graphs for
vL
vH
= 2

3 ≥ E, the pattern changes in panel (b) where vL
vH
= 1

10 ≤ E. In this case, the expected
rent dissipation rate is higher in the static than in the dynamic contest for low values
of λ, while the opposite relation holds for high values of λ. The previous comparison
by configuration helps to explain this finding: Recall from Proposition 3.1 that the rent
dissipation rate in the static contest can only be higher than in the dynamic contest if
one low valuation and three high valuation types (n = 1) interact. This configuration is
particularly likely to occur if the probability to draw a low valuation type (λ) is low, which
explains the dominance of the static over the dynamic contest for low values of λ. For
higher values of λ, the fact that the rent dissipation rate in the dynamic is higher than in
the static contest in configurations n = 2 and n = 3 becomes more and more important, as
the probability that these configurations realize increases with λ. Consequently, expected
rent dissipation is higher in the dynamic than in the static contest (even if vL

vH
≤ E) for

high values of λ.
Figure 3.4 provides a complete graphical solution of the contest design problem for any

λ ∈ [0,1] and vL
vH
∈ [0,1]. In line with Proposition 3.2, it is optimal for the designer to choose

the dynamic contest if the ratio of valuations is above its critical value E, independent
of the probability to draw a low valuation type, λ. When the ratio of valuations vL
and vH falls below E, the optimal contest format depends on both λ and vL

vH
. Roughly

speaking, the static contest is the dominant option for low values of both λ and vL
vH
, while

the dynamic contest delivers a higher expected rent dissipation rate for high values of
these parameters.
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Figure 3.3: Expected Rent Dissipation E(RDi
)

(a) vL
vH
= 2

3
≥ E

(b) vL
vH
= 1

10
≤ E

3.4 Discussion of Results

The analysis in the previous section assumes a lottery contest success function, i.e., a
discriminatory power of r = 1. As previously shown by Amegashie (1999) and Gradstein
and Konrad (1999), the rent dissipation rate in both contest structures is identical for this
specification of the contest technology if participants are homogeneous. This paper shows
that the equality disappears when contestants are heterogeneous. Said differently, I show
that the effect of heterogeneity between participants on their equilibrium investments into
the contest depends on the structure of the competition. In a static contest, heterogeneity
unambiguously reduces contest investments and therefore the rent dissipation rate, as is
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Figure 3.4: Graphical Solution of the Design Problem

well known from previous work (Baik 1994, Nti 1999, Stein 2002). In principle, the same
holds in any heterogeneous interaction of the dynamic format, but in addition, there
is a countervailing dynamic effect of heterogeneity across different stages. Intuitively,
the prospect of facing a low valuation opponent (type L) in later stages increases the
value of winning and therefore the equilibrium investment levels in early stages for type
H contestants. At the same time, equilibrium investment levels for low valuation types
are reduced, since they are likely to meet an opponent with a high valuation in stage
2. However, investments into the contest are linearly increasing the valuation parameter,
such that the positive dynamic effect of heterogeneity on investments by high valuation
contestants dominates the corresponding negative effect on investments by low types.19

As a consequence, the rent dissipation rate is higher in the dynamic than in the static
format, independent of the configuration under consideration. As shown previously, there
is one exception to this general result: When the valuation of type L contestants, vL,
is very low relative to the valuation of type H contestants, vH, contestants of the former
type cease to participate in the static contest. Consequently, the rent dissipation rate in
the static format is not affected if the degree of heterogeneity between types is increased
above the value where low valuation types drop-out, while higher degrees of heterogeneity
do always reduce overall rent dissipation in the dynamic contest. Therefore, the rent
dissipation rate may be higher in the static than in the dynamic format if the degree of
heterogeneity between types is extremely high.

A natural question is whether or not the results of this paper survive a generalization
of the contest technology. To address this point, I will relate the results of this paper to

19This is why the difference in terms of rent dissipation rates between the static and the dynamic
format is particularly pronounced if the number of low valuation types is low, i.e., for n = 1 and n = 2.
See Figure 3.2 for details.
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previous work by Gradstein and Konrad (1999), who consider exactly the same contest
formats, but restrict attention to settings with homogeneous participants. Gradstein and
Konrad (1999) find that reductions of the discriminatory power r reduce incentives to
invest into the contest in both formats considered in this paper; however, this effect is
weaker in the dynamic format. Intuitively, there is a countervailing effect of discriminatory
power reductions in the dynamic format, which is very similar to the previously mentioned
dynamic heterogeneity effect: If incentives to invest in stage 2 are low due to reductions
of the parameter r, this increases the value of participation in stage 2, and therefore
incentives to invest in stage 1.20 As a consequence of this effect, the rent dissipation rate
is higher in dynamic than in static contest if the discriminatory power is low (r < 1),
while the opposite holds if the discriminatory power is high (r > 1). Therefore, the result
from this paper, which restricts attention to the case where r = 1, cannot be generalized
in quantitative terms: If the discriminatory is sufficiently high, the rent dissipation rate
will be higher in static than in dynamic contests, even if contestants are heterogeneous.
However, the detrimental effect of heterogeneity on the rent dissipation rate will be lower
in the dynamic than in the static contest for any discriminatory power, i.e., the results of
this paper do still hold in qualitative terms. With respect to the discriminatory power,
this implies that the rent dissipation rate is higher in dynamic contests than in static ones
even for weakly convex impact functions, i.e., for a discriminatory power r slightly above
one, if contestants are heterogeneous.

Another important issue is whether or not the restriction on small scale contests with
four participants matters for the result. Even though a formal proof is hard to make due
to the then even larger number of potential configurations, I believe that the the main
finding of this paper, namely the presence of structure specific heterogeneity effects, carries
over to larger contests. Note, however, that the range where low valuation types drop-out
from the static contest is increasing with the number of participants.21 Therefore, the
threshold E below which the rent dissipation rate may be higher in the static than in the
dynamic contest is likely to increase with the number of contestants. Ultimately, however,
the assumption that contestants know the type of their competitors, which allows for the
identification of structure specific heterogeneity effects, will restrict the size of the contest.
This assumption is very plausible in interactions between a limited number of competitors
which know each other well (e.g. due to previous competitions) and react strategically to
each other. If the field of contestants is very large, it is more reasonable to assume that
all types are drawn from some distribution function, while each contestant has private
information about his/her own type.

20See Amegashie (2000) for an extensive discussion of this verbal argument.
21See Stein (2002) for details.
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3.5 Concluding Remarks

This paper analyzes two prominent contest structures: A static pooling competition where
all contestants interact simultaneously, and a dynamic pair-wise elimination format where
contestants are split into separate branches and are then sequentially eliminated. Using
a lottery contest success function which ensures that the rent dissipation rate in both
structures is identical if contestants are homogeneous, I find that the rent dissipation rate
is almost always higher in the dynamic than in the static format in heterogeneous interac-
tions. Intuitively, the detrimental effect of heterogeneity on contest investments is lower in
the dynamic than in the static contest format. While it is well known from previous work
that heterogeneity reduces the rent dissipation rate in any immediate interaction, the re-
sults indicate that there is a countervailing dynamic effect of heterogeneity across different
stages in the dynamic format which works through continuation values: Intuitively, the
prospect of facing a low valuation opponent (type L) in later stages increases the value
of winning and therefore the equilibrium investment levels in early stages for type H con-
testants. Even though equilibrium investment levels for low valuation types are reduced
in early stages (since they are likely to meet an opponent with a high valuation in stage
2), the dynamic effect of heterogeneity tends to increase contest investments; the positive
dynamic effect of heterogeneity on investments by high valuation contestants dominates
the corresponding negative effect on investments by low types, since investments into the
contest are linearly increasing in the type specific valuation parameter.

This finding does not imply that dynamic contests do always dominate static ones
in terms of their rent dissipation rate when participants are heterogeneous. First, the
static format leads to a higher rent dissipation rate if the degree of heterogeneity is so
high that low valuation contestants drop-out voluntarily in the static, but not in the
dynamic format. Second, the static format does also dominate if the discriminatory
power of the contest technology is high. Rather, this paper shows that the effect of
heterogeneity on equilibrium investments by participants depends on the structure of
the competition. Since interactions between heterogeneous contestants are more likely
to be the rule than the exception in reality, the results of this paper raise the question
whether or not past findings with respect to the optimal design of contests depend on the
homogeneity assumption. I believe that answering this question is a promising, though
technically challenging avenue for future research.
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Appendix

Lemma 3.1. Assume without loss of generality that vH = 1 and define f(vL) =
v2L+2vL+5

5v3L+2v2L+vL
.

Then, the relation F ∗(1, vL) > f(vL) does hold for all 0 < vL < 1, where F ∗(1, vL) is defined
as in (3.20). Furthermore, for vL = 1 it holds that F ∗(1, vL) = f(vL) = 1.

Proof. When assuming symmetry across the two stage-1 interactions of the LHLH setting in
the dynamic contest for n = 2, one can easily show that the ratio of efforts is proportional
to the continuation values of contestants in each interaction, i.e., xi1xj1

= vH
vL

Ci

Cj
. The function

F (vH, vL) in equation (3.20) takes the dependence of continuation values on effort decisions
by contestants in the parallel stage-1 interaction into account and provides the equilibrium
value of this ratio, i.e., x∗i1

x∗j1
= F ∗(vH, vL). Consequently, using the normalizing assumption

vH = 1, it must hold that

F ∗(1, vL) =
1

vL

Ci
Cj

=
4 + (1 + vL)2 ×

xk1
xl1

(1 + vL)2vL + 4v3
L ×

xk1
xl1

.

Note that
∂F ∗(1, vL)

∂
xj1
xl1

= vL
(1 + vL)4 − 16v2

L

[(1 + vL)2vL + 4v3
L ×

xk1
xl1

]2
> 0

if vL < 1. Further, recall that player l has a lower continuation value than player k
(Ck > Cl), such that xk1 > xl1 does hold. Therefore, assuming xk1 = xl1 underestimates
F ∗(1, vL). Since

f(vL) =
v2
L + 2vL + 5

5v3
L + 2v2

L + vL

is the expression I derive from F ∗(1, vL) under this assumption, I have proven F ∗(1, vL) >

f(vL). If I assume vL = 1, all contestants are perfectly symmetric, such that xk1 = xl1 does
hold. Consequently, the relation F ∗(1, vL) = f(vL) does hold for vL = 1.

Lemma 3.2. Assume without loss of generality that vH = 1 and define flow(vL) = 2
vL
− 1.

Then, the relation F ∗(1, vL) < flow(vL) does hold for all 0 < vL < 1. Furthermore, for vL = 1,
it holds that f(vL) = flow(vL).

Proof. I start with the relation that I want to prove, namely:

f(vL) > flow(vL)

⇔ v2
L + 2vL + 5 > (

2

vL
− 1)(5v3

L + 2v2
L + vL)

⇔ 3c3
W − c

2
W − 7cW + 5 > 0

I now have to prove that φ(cW) ≡ 3c3
W − c

2
W − 7cW + 5 > 0 does always hold for cW > 1. To

see this, note that φ(⋅) is a cubic function that has a local minimum at cW = 1, and a
local maximum at cW = −7/9. Furthermore, φ(1) = 0, which implies that φ(cW) > 0 for all
cW > 1.

51



Proof of Proposition 3.1

Parts (a), (b), and (c) will be considered separately in their natural order:

(a) Equations (3.3) and (3.23) determine the rent dissipation rates in the two homo-
geneous configurations of the static contest, which are formally defined as RDS(0) = 3

4

and RDS(4) = 3vL
4vH

, respectively. Equilibrium efforts for stages 1 and 2 of the dynamic
format are defined in (3.7) and (3.13), respectively. Using the formal definition of the
rent dissipation rate provided in (3.24), I obtain RDD(0) = 3

4 and RDD(4) = 3vL
4vH

. A formal
comparison of RDS(0) and RDD(0), and of RDS(4) and RDD(4) immediately delivers
part (a) of Proposition 3.1.

(b) Below, the two relations RDD(2) > RDS(2) and RDD(3) > RDS(3) will be proven
separately for all 0 ≤ vL

vH
≤ 1.

n = 2: I make the normalizing assumption vL < vH = 1 which simplifies the formal analysis
and is without loss of generality. Using the formal expression provided in (3.6) and (3.23),
I obtain RDS(2) = max{ 3vL

2+2vL
, 1

2} as the rent dissipation rate in the static contest. The
corresponding measure for the rent dissipation rate in the dynamic contest format is more
complicated. In fact, I have to account for the rent dissipation rate in the two potential
settings LLHH and LHLH. Formally, RDD(2) is defined as

RDD(2) =
1

3
RDD(LLHH) +

2

3
RDD(LHLH).

Rent dissipation rates in the two settings are defined by (3.7), (3.9), (3.17), (3.19), and
(3.24). Since RDS(2) is defined stepwise, I will separately consider the the parameter
ranges 0 ≤ vL ≤ 0.5, where the rent dissipation rate equals RDS(2) = 0.5, and 0.5 ≤ vL ≤ 1,
where RDS(2) = 3vL

2+2vL
.

(i) 0.5 ≤ vL ≤ 1: I have to show that

RDS(2) < RDD(2)

⇔
3vL

2 + 2vL
<

1

3
RDD(LLHH) +

2

3
RDD(LHLH).

The rent dissipation rate in the dynamic format is complicated by the function F (1, vL)

in setting LHLH, which is defined in equation (5.23). Note that RDD(LHLH) is increasing
in F (1, vL), since

∂RDD(LHLH)
∂F (1, vL)

=
vL(4 + vL − 2v2

L) − 7 − (1 + vL)(3vL − 1)F (1, vL)

2(1 + F (1, vL))3(1 + vL)2
> 0.

Therefore, it is without loss of generality to replace F (1, vL) by flow(vL), since flow(vL) ≤
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F (1, vL) (see Lemmata 3.1 and 3.2). This gives the relation

3vL
2 + 2vL

<
6 + vL(10 + vL(16 + vL(5 + (vL − 2)vL)))

12(1 + vL)2

⇔ 0 <
(vL − 1)2(6 + 4vL + v3

L)

12(1 + vL)2
.

The expression on the right hand side is always positive, which completes this part of the
proof.
(ii) 0 ≤ vL ≤ 0.5: I have to show that

RDD(2) > RDS(2)

⇔
1

3
RDD(LLHH) +

2

3
RDD(LHLH) >

1

2

This gives

F (1, vL)
2[3v3

L + 8v2
L + 10vL + 5] + F (1, vL)[6v

3
L + 22v2

L + 24vL + 8] + 5v3
L + 10v2

L + 8vL + 11

3[1 + F (1, vL)]2(1 + vL)
> 1

⇔ F (1, vL)
2
[3v3

L + 5v2
L + 4vL + 2] + F (1, vL)[6v

3
L + 16v2

L + 12vL + 2] + 5v3
L + 7v2

L + 2vL + 8 > 0

Since F (1, vL), as it is defined in equation (5.23), is strictly positive, the above relation is
always satisfied.
n = 3 ∶ I make the normalizing assumption vL < vH = 1 which simplifies the formal analysis
and is without loss of generality. Under this assumption, (3.6) and (3.23) deliver RDS(3) =
3vL

3+vL as the rent dissipation rate in the static contest format. Similarly, (3.9), (3.7), (3.21),
(3.22), and (3.24) define the rent dissipation rate in the dynamic format, which is formally
defined as follows:

RDD(3) =
vL
8

(5 +
4

(1 + vL)2
+

4(1 − vL)

4 + vL(1 + vL)2
) .

I must show that

RDS(3) ≤ RDD(3)

does hold for all 0 ≤ vL ≤ 1, i.e.,

5 +
4

(1 + vL)2
+

4 − 4vL
4 + vL(1 + vL)2

−
24

3 + vL
≥ 0

Since 0 ≤ vL ≤ 1 by assumption, it must hold that

4 − 4vL
4 + vL(1 + vL)2

≥ 0.
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Therefore, it is sufficient to show that

5 +
4

(1 + vL)2
−

24

3 + vL
≥ 0

⇔
15 − 19vL

3 + vL
+

4

(1 + vL)2
≥ 0

⇔
(15 − 19vL)(1 + vL)2

(3 + vL)(1 + vL)2
+

12 + 4vL
(3 + vL)(1 + vL)2

≥ 0

⇔
27 + 15vL − 23v2

L − 19v3
L

(3 + vL)(1 + vL)2
≥ 0

⇔ 27 + 15vL − 23v2
L − 19v3

L ≥ 0

Since 0 ≤ vL ≤ 1, this relation is always satisfied; it holds that 27 + 15vL = 23v2
L + 19v3

L if
vL = 1, while 27 + 15vL > 23v2

L + 19v3
L for any 0 < vL < 1.

(c) For n = 1, I make the normalizing assumption vL < vH = 1 which simplifies the
formal analysis and is without loss of generality. Under this assumption, (3.6) and (3.23)
deliver RDS(1) = max{2

3 ,
3vL

1+3vL
} as the rent dissipation rate in the static contest format.

Similarly, (3.9), (3.7), (3.14), (3.15), and (3.24) define the rent dissipation rate in the
dynamic format, which is formally defined as follows:

RDD(1) =
32v5

L + 37v4
L + 68v3

L + 30v2
L + 20vL + 5

8(1 + vL)2(1 + vL(2 + vL + 4v2
L))

.

For this proof, I must show that there is a unique intersection of RDS(1) and RDD(1) in
the range 0 ≤ vL ≤ 1. For vL = 1, it holds that RDS(1) = RDD(1) = 3

4 , while RDS(1) = 2
3 >

RDD(1) = 5
8 for vL = 0. For 0 ≤ vL ≤ 1,

∂RDD(1)
∂vL

≥ 0,

and
∂RDD(1)

∂vL
=

21v2
L + 27v3

L + 6v4
L + 18v5

L − 43v6
L + 35v7

L

2(1 + vL)3(1 + vL(2 + vL + 4v2
L))

2
> 0

do hold. Therefore, there is either one or no intersection between RDS(1) and RDD(1) in
the range 0 < vL < 1. When equalizing the two expressions, I find that RDS(1) = RDD(1)
if and only if vL = E, where E ≈ 0.37. Since the slope of RDS(1) at E is zero, while the
slope of RDD(1) is strictly positive,

RDS(1) ≤ RDD(1) if vL ≥ E ; RDS(1) ≥ RDD(1) if vL ≤ E.

must hold.
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Chapter 4

Ability Matters and Heterogeneity Can
Be Good: The Effect of Heterogeneity
on the Performance of Tournament
Participants

This chapter is based on joint work with Uwe Sunde from the University of St. Gallen
(Stracke and Sunde 2012).

4.1 Introduction

Tournaments constitute an important element within the field of Personnel Economics
ever since Lazear and Rosen (1981) showed that rank-order tournaments are optimal
labor contracts under certain conditions. In particular, if workers’ individual effort is
not verifiable (e.g., because it is observed with some noise), it might not be possible
or optimal to implement piece rates or other pay-for-performance remuneration schemes
(Malcomson 1984). As long as an ordinal ranking of workers’ performance is still possible,
Lazear and Rosen’s results show that rank-order tournaments for discrete prizes or bonus
payments can be used in such settings as a compensation scheme to provide workers
with efficient incentives for effort provision. Tournaments are not only used to model the
competition for bonus payments within a company, however. Internal labor markets are
often modeled as promotion tournaments along the lines of Rosen (1986). Surveys of the
respective literature are provided by McLaughlin (1988) and Prendergast (1999).

One issue that received comparably little attention in the tournament literature is
the effect of heterogeneity between participants on their equilibrium performance in dy-
namic settings, such as promotion tournaments with multiple stages. In reality, workers
typically differ in their ability, which implies that virtually all tournaments involve hetero-
geneous participants. Moreover, empirical evidence by Gibbs and Hendricks (2004) shows
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that promotion tournaments are an important means for the provision of incentives in
organizations. Still, the incentive properties of dynamic tournaments with heterogeneous
participants are largely unexplored. It remains an open question whether or not the re-
sult by Lazear and Rosen (1981) that effort provision and performance decrease with the
degree of heterogeneity in static tournaments carries over to dynamic settings.

This paper takes a closer look at the effects of heterogeneity between participants
on overall tournament performance. We consider both a static tournament model and a
dynamic model with multiple stages, applying the same tournament setup as in Rosen
(1986). The theoretical analysis of these two models delivers three main results: First,
we find that the average ability level of tournament participants has a strong impact on
their performance, independent of the tournament format. Second, our results show that
the incentive effect of heterogeneity on the overall performance of tournament partici-
pants depends on the structure of the competition. To isolate the effect of heterogeneity
on incentives, we compare homogeneous and heterogeneous situations, where the average
ability level of participants is the same. This allows us to separate effects of changes in
ability from the effect of variations in the degree of heterogeneity on incentives. The find-
ings show that the incentive effect of heterogeneity on performance is negative in static
tournaments, which is in line with the common perception in the literature. However,
the opposite holds in the dynamic specification, where heterogeneity has a strictly posi-
tive incentive effect on the overall performance of tournament participants. The reason
is that heterogeneity increases the value of winning in early stages for strong agents, as
they anticipate that it will be easier to win another time in later stages of the tourna-
ment due to the presence of weak agents. Therefore, the performance of strong agents is
higher in early stages. Finally, the comparison of both, the direct (absolute) ability effect
and the incentive effect of heterogeneity through relative ability reveals that the effect of
variation in heterogeneity through changes in the average level of absolute abilities domi-
nates the corresponding effect through incentives, if ability and heterogeneity are changed
simultaneously.1

In the second part of the paper, we provide some experimental evidence regarding the
theoretical predictions. The findings provide empirical support for the main qualitative
predictions: First, we find that the level of average ability of tournament participants
has a strong influence on performance. Second, the incentive effect of heterogeneity on
performance is negative in the static tournament treatments, while the effect is positive
in dynamic tournaments. The (negative or positive) effect of heterogeneity is much more
pronounced than one would expect from the theory. While the theoretical results predict
a 4% reduction of overall performance due to heterogeneity for the static tournament, we
observe a reduction of more than 15%; similarly, overall performance should be approxi-
mately 1.5% higher in the dynamic tournament, but we observe an increase of almost 20%

1Average ability and the degree of heterogeneity are changed simultaneously if, for example, a par-
ticipant i of the tournament is replaced with somebody who has either a higher or a lower ability than
i.
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in response to a higher degree of heterogeneity. As a consequence, we find little evidence
for the third theoretical result that the effect of ability on overall performance dominates
the effect of heterogeneity. Instead, the experimental analysis suggests that both effects
are equally important under the parametric setup of the experiment.

Our results have several interesting implications for the performance of corporate tour-
naments. We show that the effect of heterogeneity between participants of a tournament
can be affected by the structure of the tournament. Consequently, the specific tourna-
ment format plays a role as to whether or not it makes sense for a tournament designing
principal to separate or pool different types. In addition, the results also show that the
average ability of the workforce participating in a tournament can be as important as neg-
ative (or positive) effects of heterogeneity. According to our findings, an increase of the
average ability does always have a strictly positive effect, independent of the tournament
structure. This suggests that the ability of employees might be more relevant for hiring
decisions than potential concerns for the homogeneity among participants of corporate
bonus or promotion tournaments for reasons of incentive provision.

This paper complements the existing theoretical and empirical literature on tourna-
ments in several ways. We provide a systematic comparison of the effects of heterogeneity
in the two most prominent tournament models in the Personnel Economics literature, the
static one-shot tournament along the lines of Lazear and Rosen (1981), and the dynamic
multi-stage tournament as suggested by Rosen (1986). Existing theoretical comparisons
between static and dynamic tournament models either assume homogeneity of participants
(Gradstein and Konrad 1999), or consider the case of a perfectly discriminating all-pay
auction (Moldovanu and Sela 2006).2 The results of this paper also complement earlier
studies which suggest that the tournament designing principal has an incentive to induce
self-sorting of worker types by ability into different tournaments (O’Keeffe, Viscusi, and
Zeckhauser 1984, Bhattacharya and Guasch 1988), or alternatively, if types are observable,
to handicap stronger workers (Lazear and Rosen 1981, Gürtler and Kräkel 2010).

Second, this paper is related to existing experimental work on behavior in tournaments.
The papers most closely related are the ones by Sheremeta (2010) and Altmann, Falk, and
Wibral (2012), who compare static one-stage and dynamic two-stage tournaments with
homogeneous participants. We complement their work and additionally consider settings
with heterogeneous agents. Further, our experimental analysis is related to research by
Bull, Schotter, and Weigelt (1987), Orrison, Schotter, and Weigelt (2004), and Harbring
and Lünser (2008), who analyze the behavior in static tournaments. These studies con-
sider homogeneous and heterogeneous treatments, but do not provide a systematic assess-
ment of the strength of the effect of heterogeneity on performance, since average ability of
participants is not held constant across treatments. Finally, the paper is also related to the
empirical literature that has investigated the performance effects of heterogeneity. In this

2In the latter case, it is assumed that signals on the relative performance of tournament participants
are always correct and fully informative, an assumption that is likely to be violated in reality.
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strand of the literature, field data from sports (Abrevaya 2002, Sunde 2009, Brown 2011)
and corporations (Knoeber and Thurman 1994, Eriksson 1999) has been used to test the
implications of heterogeneity that follow from static one-stage tournament models. We
provide this empirical literature with a new testable hypothesis for dynamic tournaments
with multiple stages, which are quite common both in corporate and sport tournaments.

The remainder of the paper is structured as follows. Section 4.2 presents a theoretical
analysis of equilibrium behavior in static one-stage and dynamic two-stage tournaments.
Section 4.3 presents experimental evidence of tests of the main theoretical predictions,
and section 4.4 concludes.

4.2 Theoretical Analysis

We consider two different tournament models. In both models, we allow for ability differ-
ences between tournament participants, which we will refer to as “workers” subsequently.
The baseline specification is a static one-shot tournament, in which two workers compete
for some exogeneously given prize P .3 The prize can be understood as a performance
reward for a worker, who receives some bonus payment or a promotion to a better paid
position. The second model is a straightforward dynamic extension of the one-shot tour-
nament in the spirit of Rosen (1986). By adding a qualification stage to the static tour-
nament, one can analyze a dynamic tournament with two stages. In the first stage of this
tournament, four workers compete in two separate pair-wise interactions for a promotion
to stage 2. The two losers of the first stage are eliminated from the competition, while
the two winning workers are promoted. They encounter each other in stage 2, where they
compete for some exogenously given prize P , as in the static tournament model.4

The remainder of this section first derives equilibrium solutions for homogeneous and
heterogeneous specifications of both tournament models, which allow us to describe opti-
mal behavior of workers in the respective setting. Then, we analyze the effect of hetero-
geneity on measures of interest for a tournament designing principal in both the static and
the dynamic tournament model. The analysis focuses on two central questions: Should a
principal separate strong and weak workers from each other, given that both types are em-
ployed in his company? And second, should hiring decisions of new workers be influenced
by concerns for homogeneity of the workforce? At the end of this theoretical section,
we discuss the implications and the robustness of our results for the optimal design of
tournaments.

3Nothing changes if we assume that an additional prize is available for the worker who places second.
Then, P would simply denote the spread between the two prizes.

4The analysis does not address the question of optimal prize structures or wage profiles for multi-stage
pair-wise elimination tournaments. In fact, however, the model employs a “winner-takes-all” structure
that can be shown to maximize overall incentives in all dynamic settings under consideration. For
information on optimal wage profiles or prize structures, see Rosen (1986) or Moldovanu and Sela (2001),
for example.
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4.2.1 Static and Dynamic Tournament Models

Both types of tournament models describe a situation in which a principal awards some
valuable prize to the best worker, i.e., to the worker who produces the highest amount
of output in a given time frame.5 We define the individual output produced by a type i
worker as yi(ai, xi) = aixi ≥ 0, where output is the product of ability ai and effort xi. Given
individual outputs of two workers i and j, the probability pi that the prize is awarded to
worker i equals

pi =

⎧⎪⎪
⎨
⎪⎪⎩

[yi(ai,xi)]r
[yi(ai,xi)]r+[yj(ai,xi)]r if yi(⋅) + yj(⋅) > 0

1
2 if yi(⋅) + yj(⋅) = 0

.

This formulation is similar to the one used by Rosen (1986) and implies that the prin-
cipal cannot always perfectly observe which worker produced more, i.e. the monitoring
technology is affected by some random component.6 The parameter r reflects the degree
of this randomness: When r approaches infinity, the winning probability of the worker
with the higher output converges to 1, implying that the principal can perfectly observe
which of the two workers produced more output. For all strictly positive and finite values
of r, the monitoring technology implies that the probability to win is greater than 0.5 for
the agent whose contribution to aggregate output is higher. Consequently, the winning
probability is strictly increasing in the individual output yi(ai, xi), and strictly decreasing
in the output yj(aj, xj) produced by the opponent j for all values of r > 0.

In both theoretical models considered below, we use this monitoring technology for
reasons of analytical tractability.7

Model 1: Static Tournament. We start with the static baseline model, where two
risk neutral workers compete with each other for some prize P . For simplicity, it is
assumed that workers receive no fixed wages. Workers can be of two different types:
They are either “strong” (type S), or “weak” (type W). Types may differ with respect to
their productive ability ai (aS ≥ aW) or their dis-utility of labor (or effort costs) ci (cS ≤ cW),
or both. Compared to weak workers, strong workers either have a higher productivity or
a lower dis-utility of labor (or both).8 Workers are assumed to know their type and the
types of their competitors. The two type assumption allows for three different settings:
Either, both workers are strong (SS) or weak (WW), or workers are of different types (SW),
i.e., we have to consider two homogeneous and one heterogeneous tournament settings.
It suffices to solve the general case where workers are allowed to be of different types,

5Nothing changes if we assume that each worker also receives some fixed wage payment, since we
assume that workers are risk-neutral below.

6See Skaperdas (1996) and Clark and Riis (1998b) for an axiomatization of this ’contest success
function’.

7In the literature, this monitoring technology is usually referred to as the ratio contest success function
á la Tullock (1980). Another prominent functional form is the additive noise difference specification. See
Hirshleifer (1989) for a comparison of the properties of different contest success functions.

8A third possibility would be to model heterogeneity in terms of heterogeneous valuations of prizes.
Using this specification would leave the main results unaffected. Details are available upon request.
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however, because one can derive the respective expressions for the homogeneous settings
by simply imposing the restriction that type specific parameters are equal. Therefore, we
start by considering a situation where one worker is of type S, while his opponent is of
type W. Formally, the optimization problems can be described as follows:

Type S ∶ max
xS

ΠS =
arSx

r
S

arSx
r
S + a

r
Wx

r
W
P − cSxS (4.1)

Type W ∶ max
xW

ΠW =
arWx

r
W

arSx
r
S + a

r
Wx

r
W
P − cWxW, (4.2)

where each worker maximizes his expected payoff Πi by choosing effort xi. Workers face
a trade-off with respect to effort provision: On the one hand, effort increases individual
output yi(ai, xi) = aixi and therefore the probability to win the tournament. At the same
time, however, each worker bears marginal costs ci for each unit of effort provided, no
matter whether he wins the tournament or not.9 In equilibrium, workers choose their
level of effort provision optimally such that marginal costs equal marginal benefits. Note,
however, that first-order conditions are necessary and sufficient for optimal behavior only
if the strategic advantage of strong workers is not too high for the given precision of
the monitoring technology r. For the necessary conditions to be sufficient, heterogeneity
between workers must not exceed a certain threshold if the monitoring technology is
relatively precise, otherwise pure strategy equilibria do not exist, as was shown by Nti
(1999). Apart from the fact that only mixed-strategy equilibria exist in such a scenario,
little is known about the properties of equilibria in tournaments where this restriction is
violated, which is why we restrict attention to equilibria in pure strategies throughout the
paper.10 To ensure the existence of equilibria in pure strategies, we impose a parametric
restriction on heterogeneity. For notational clarity, denote the relative ability advantage
of strong workers in terms of ability and effort costs by

φ = (
aScW
aWcS

)
r

, (4.3)

where φ ≥ 1, since by assumptions workers of type S have a higher productive ability as
well as a lower dis-utility of labor (or effort) than workers of type W. Essentially, φmeasures
the degree of heterogeneity in the tournament: If φ = 1, both worker types are identical
and the tournament is homogeneous, while high values of φ indicate that types differ
substantially. We use this measure of heterogeneity to ensure that first-order conditions
characterize optimal behavior (and hence the existence of pure strategy equilibria), which

9The assumption of constant marginal costs implies a substantial simplification in terms of analytical
tractability, but is not central for the main results of this paper.

10The design of the experiments presented below ensure that this condition holds. To our knowledge, the
only paper which addresses mixed-strategy equilibria in a Tullock contest is the one by Baye, Kovenock,
and de Vries (1994).
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is the case if and only if the relation

r ≤ 1 +
1

φ
(4.4)

is satisfied.11

Assumption 4.1. Relation (4.4) is always satisfied, which implies that the degree of
heterogeneity between workers (measured by φ) is not too high for the given precision r of
the monitoring technology.

Under Assumption 1, the definition of φ, and the two first-order optimality conditions
which follow from the optimization problem described above, equilibrium efforts are given
by

x∗S(SW) = r (
1

cS
)

φ

[1 + φ]
2P and x∗W(SW) = r (

1

cW
)

φ

[1 + φ]
2P. (4.5)

Inserting equilibrium efforts x∗S(S,W) and x∗W(S,W) in (4.1) and (4.2) determines the corre-
sponding equilibrium payoffs

Π∗
S(SW) =

φ2 + (1 − r)φ

[1 + φ]2
P and Π∗

W(SW) =
1 + (1 − r)φ

[1 + φ]2
P, (4.6)

which solves the heterogeneous interaction (SW). The expressions in (4.5) and (4.6) can
then be used directly to characterize equilibrium behavior and outcomes in each of the
two homogeneous settings, SS and WW. Recall that φ = 1 by definition in homogeneous
specifications. Imposing this assumption on (4.5), we obtain equilibrium efforts

x∗S(SS) = r (
1

4cS
)P and x∗W(WW) = r (

1

4cW
)P, (4.7)

which, when inserted into the formal maximization problems, imply that workers in the
homogeneous interactions can expect equilibrium payoffs of

Π∗
S(SS) =

2 − r

4
P and Π∗

W(WW) =
2 − r

4
P. (4.8)

Under Assumption 1, these are strictly positive.

Model 2: Dynamic Tournament. The static baseline model can be extended to a
dynamic tournament model along the lines of Rosen (1986) by adding a qualification stage
to each of the three specifications of the static baseline model, as illustrated in Figure 4.1.
In the case of the homogeneous setting with strong workers only (SS), this implies adding
two pair-wise stage-1 interactions with two strong workers each; this dynamic setting is

11A proof for this claim is provided by Nti (1999).
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Figure 4.1: The Dynamic Extension of the Static Baseline Model

denoted SSSS. Similarly, setting WWWW is the dynamic extension of the static model with
two weak workers (WW). Analogously, one can add a qualification stage to the static model
with heterogenous workers (SW), where two strong and two weak workers compete with
each other in stage 1; in what follows, we will refer to this dynamic setting as SSWW. A
common feature of these dynamic tournaments is that two workers compete for the right
to participate in stage 2 in two separated stage-1 interactions. One worker from each
interaction qualifies for stage 2, where the two stage-1 winners compete for prize P as in
the static model considered in the previous section; the workers who lost in stage 1 are
eliminated from the competition.

All three settings SSSS, SSWW and WWWW are solved via backwards induction due to the
dynamic structure of the tournament. Equilibrium efforts in the pair-wise interactions
on stage 2 are already known from the analysis of the previous section and are given by
the respective expressions in (4.5) and (4.7). In stage 1, the optimization problems differ
across specifications, and we start by analyzing setting SSSS. Note that the two stage-1
interactions are fully symmetric, since two workers of the same type compete in each of
the two interactions for the right to participate in stage 2. Participation in stage 2 is
valuable for workers, because they have a chance to win the prize P only if they reach
stage 2. This continuation value is given by the payoff that a strong worker can expect
in equilibrium if he/she competes with a strong worker for a prize P . Using the results
about the expected equilibrium payoff from the previous section in equation (4.8), the
continuation value is given by Π∗

S(SS) =
2−r
4 P . Consequently, the two workers in each of

the homogeneous stage-1 interactions compete for a prize of value Π∗
S(SS). Recall that
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the equilibrium efforts for two strong workers who compete for a prize P are given in
(4.7); replacing P by the expression for Π∗

S(SS), we obtain:

x1∗
S (SSSS) = r (

1

4cS
)

2 − r

4
P, (4.9)

where the superscript 1 indicates that effort is provided in stage 1 of setting SSSS. Note
that an analogous line of argument applies to setting WWWW, where weak workers compete
in two separate stage-1 interactions for the value of participation in stage 2, which is given
by Π∗

W(WW) =
2−r
4 P according to equation (4.8). Consequently, equilibrium effort in stage

1 by weak workers equals

x1∗
W (WWWW) = r (

1

4cW
)

2 − r

4
P. (4.10)

Finally, we analyze the slightly more complicated setting SSWW with heterogeneous work-
ers. Note that both stage-1 pairings are between workers of the same type, i.e., strong
workers compete in one, while weak workers compete in the other interaction. There-
fore, the value of participation in stage 2 depends on the type of a worker. We already
saw in the previous section that strong workers can expect a payoff that amounts to
Π∗

S(SW) =
φ2+(1−r)φ

[1+φ]2 P in a competition with a weak worker for a prize P . Similarly, a weak
worker can expect a payoff that amounts to Π∗

W(SW) =
1+(1−r)φ
[1+φ]2 P in equilibrium. Conse-

quently, the two strong workers compete for a prize Π∗
S(SW) in stage 1, while the prize

amounts to Π∗
W(SW) in the interaction with weak workers. From the analysis of the static

tournament model, we know that this implies equilibrium efforts

x1∗
S (SSWW) = r (

1

4cS
)
φ2 + (1 − r)φ

[1 + φ]2
P and x1∗

W (SSWW) = r (
1

4cW
)

1 + (1 − r)φ

[1 + φ]2
P. (4.11)

This completes the solution of of the static and dynamic tournament models. These
solutions constitute the incentive compatibility constraints for a tournament designing
principal. Expected equilibrium payoffs are strictly positive for both types and both
tournament models under Assumption 1.

4.2.2 Optimal Tournament Design: The Principal’s Perspective

This section analyzes how ability and heterogeneity between workers affect output as the
central measure of interest of a tournament designing principal. Both the direction and
the magnitude of these effects are important to answer the two central questions of our
analysis, namely whether or not strong and weak workers should be separated by the
principal, and to what extent concerns for the homogeneity of the workforce should affect
hiring decisions. We assume that the principal’s objective is to maximize profits of the
company and abstract from other objective functions that a principal might have. The
principal has prior information about the type of each worker. Since total wage costs as
well as the price for the output good are assumed to be given exogenously, the principal’s
problem reduces to a maximization of total output (denoted Y subsequently) produced by
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all employees.12 Following the literature on tournament design, we abstract from ability
specific tasks or complementarities between output by individual workers and consider
the simple case where total output Y equals the sum of individual outputs of all S and W
type workers. Recall that individual output is given by the product of ability and effort
of a worker, i.e. yi(ai, xi) = aixi.13 Then, total output is formally defined by the relation

Y =K ⋅ yS(aS, xS) +M ⋅ yW(aW, xW), (4.12)

where K and M are the numbers of S and W type workers the principal employs. Total
output production for all specifications of the static tournament can then be computed
using the expressions for equilibrium efforts given in (4.5) and (4.7) as

Y (SS) = r (
aS
cS

)
1

2
P, Y (SW) = r (

aS
cS

+
aW
cW

)
φ

[1 + φ]
2
P, and Y (WW) = r (

aW
cW

)
1

2
P. (4.13)

It is slightly more complicated to compute total output levels for the dynamic tournament
specifications. Note, however, that total output in stage 2 is already known, since the
stage-2 interaction is completely identical to the respective static tournament setting.
When adding output produced in both stage-1 interactions, we obtain

Y (SSSS) = r (
aS
cS

)
4 − r

4
P and Y (WWWW) = r (

aW
cW

)
4 − r

4
P (4.14)

for the homogeneous specifications, while total output in the heterogeneous case amounts
to

Y (SSWW) = r [(
aS
cS

)
φ2 + (3 − r)φ

2[1 + φ]2
+ (

aW
cW

)
1 + (3 − r)φ

2[1 + φ]2
]P. (4.15)

We are now in the position to compare total output across different specifications for a
particular model. When comparing total output levels of the homogeneous and hetero-
geneous specifications, the following relations hold for both the static and the dynamic
tournament model:14

(i) Total output in the homogeneous setting with strong workers is always higher than
output in the heterogeneous setting with equal shares of strong and weak workers,
i.e.

Y (SS) ≥ Y (SW) and Y (SSSS) ≥ Y (SSWW).

(ii) Total output in the homogeneous setting with weak workers is always lower than
output in the heterogeneous setting with equal shares of strong and weak workers,

12We refrain from modeling the outside options of workers or details of the hiring process. Instead,
we assume that workers receive some wage payment by the principal in addition to the tournament
compensation. Non-negative expected payoffs are sufficient for participation in the bonus or promotion
tournament.

13Subsequent results do not depend on this specific functional form assumption. All that is needed is
a complementarity between ability and effort.

14Relations (i) to (iii) below hold with strict equality whenever strong and weak worker types differ,
i.e. if φ > 1.
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i.e.
Y (SW) ≥ Y (WW) and Y (SSWW) ≥ Y (WWWW).

(iii) Total output in the homogeneous setting with strong workers is always higher than
output in the homogeneous setting with weak workers, i.e.

Y (SS) ≥ Y (WW) and Y (SSSS) ≥ Y (WWWW).

The first statement is in line with the standard perception that heterogeneity is associated
with lower effort provision by workers and therefore lower total output. The comparison
of homogeneous and heterogeneous settings in (ii) tells a very different story, however, in-
dicating that output is always higher in the heterogeneous settings SW and SSWW compared
to the homogeneous settings with weak workers. Finally, relation (iii) states that total
output is not the same in two different homogeneous settings, illustrating that the com-
mon distinction between homogeneous and heterogeneous tournament settings is some-
times misleading. The intuition for these relations becomes obvious once one separately
considers changes of the average ability level of all workers who participate in a cer-
tain tournament, and changes in terms of relative abilities of different worker types: In
(iii), for example, settings SS/SSSS and WW/WWWW differ only in terms of the average ability
level; relative abilities, which are measured by the degree of heterogeneity φ, are identical.
Strong workers are more productive and face a lower dis-utility of working by definition,
such that average ability and therefore total output is higher in the situation where strong
workers compete with each other. Consequently, the average level of ability has a strictly
positive effect on total output when keeping heterogeneity (or relative abilities) constant.
Since this is a general result, we summarize this finding in the following Proposition:

Proposition 4.1 (Ability Effect). When holding the degree of heterogeneity, as measured
by relative abilities φ, constant, total output is strictly increasing in the (absolute) ability
of each worker in both the static and the dynamic tournament model.

Proof. See Appendix.

Note that any ceteris paribus increase in the absolute ability level of any worker type
increases the average level of abilities. This fact can explain the seemingly contradictory
findings in (i) and (ii). Note that settings SS/SSSS and SW/SSWW, as well as settings
WW/WWWW and SW/SSWW differ in two dimensions, namely in terms of both the average
ability level and the degree of heterogeneity φ (measured by relative abilities of different
worker types). The average ability level is higher in the homogeneous setting with strong
workers only as compared to the heterogeneous situation with equal numbers of strong and
weak workers (see comparison in (i)). The opposite holds for the comparison in (ii), where
the average level of abilities is higher in the heterogeneous specification with both strong
and weak workers than in the homogeneous one with weak workers only. Consequently,
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the two comparisons of homogeneous and heterogeneous tournaments cannot be used
to determine the effect of heterogeneity (or relative abilities) on total output, since the
average level of abilities changes at the same time.15 To measure the incentive effect of
heterogeneity on total output, however, one has to compare a heterogeneous tournament
setting with a homogeneous situation where workers have the same average level of ability.
In other words, for a meaningful comparison, average ability must be kept constant to
isolate the effect of heterogeneity on incentives. Essentially, we use the concept of a mean
preserving spread in this comparison, since average ability (the mean) is held constant,
while relative ability differences and therefore heterogeneity are increased. Using this
approach, the effect of heterogeneity on total output crucially depends on the tournament
format:

Proposition 4.2 (Incentive Effect). When holding the average ability level constant, total
output is

(a) decreasing in the degree of heterogeneity between workers (as measured by relative
abilities φ) in the static tournament model.

(b) increasing in the degree of heterogeneity between workers (as measured by relative
abilities φ) in the dynamic tournament model.

Proof. See Appendix.

Proposition 4.2 shows that the incentive effect of heterogeneity between workers can
have a positive or a negative effect on performance. In case of the static tournament model,
we find support for the general perception in the tournament literature that heterogeneity
reduces incentives for effort provision, such that total output decreases. Surprisingly,
however, the opposite holds for the dynamic tournament, where total output increases
in the degree of heterogeneity. Different effects are at work here, which we will analyze
separately below. We start with the static tournament model, since it also captures the
effect of heterogeneity in stage 2 of the dynamic model.

A higher degree of heterogeneity, or a higher value for φ, implies that weak workers
reduce effort and therefore the production of output independent of the effort provided
by the opponent, i.e., the best response function of weak workers is lower for all effort
levels. On the other hand, strong workers also reduce their equilibrium effort to account
for the fact that it is easier to win against a relatively weaker opponent. Both effects
unambiguously reduce effort provision, and therefore output. There is an opposing effect,
however, in the dynamic tournament setting. The fact that workers of both types provide
less effort in stage 2 makes it more attractive to reach stage 2, since the promotion to

15It is worth noting in this context that on the individual level the effect of heterogeneity is detrimental
for individual effort provision in static tournaments since x∗W(SW) < x

∗
W(WW) and x∗S(SW) < x

∗
S(SS). Much of

the previous literature has focused on this relation without considering the effects on total tournament
performance.
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Figure 4.2: The Incentive Effect of Heterogeneity on Total Output

the top level position becomes more likely. This holds particularly for strong workers,
whose winning probability is increased by a higher relative ability. Consequently, the
continuation value of strong workers increases, such that they provide more effort and
produce more output in stage 1. Weak workers provide slightly less effort in stage 1,
as their continuation value decreases, which means that the effect of heterogeneity on
individual output differs across worker types. The overall effect of heterogeneity on total
output is unambiguously positive in the dynamic tournament model, however.

It is important to highlight that the effect of heterogeneity is rather small in both the
static and the dynamic tournament for modest degrees of heterogeneity. Figure 4.2 shows
the percentage change in total output due to changes of the degree of heterogeneity for
both tournament formats. One can see, for example, that degrees of heterogeneity in the
range of a 10 to 20% difference in abilities between types have almost no detectable effect
on total output. For the same average level of abilities, total output in static tournaments
is between 1 and 2% lower in a heterogeneous specification where strong workers are 10-
20% stronger than weak ones; in dynamic tournaments, output is 0-0.5% higher in the
heterogeneous specification for this degree of heterogeneity. Apart from that, the figure
also shows that the strength of the heterogeneity effect depends on the precision of the
monitoring technology. In line with economic intuition, the positive or negative effect of
heterogeneity is stronger when the signal that the principal receives becomes more precise
(in the sense of a higher discriminatory power r of the contest success function), since
this discourages the weak worker type, whose probability to win by chance is reduced.

While the effect of heterogeneity on total output is small, changes in the average
ability of workers have a large effect on total output: A 1% increase (reduction) of the
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average ability level increases (reduces) total output by 1%. Therefore, the effect of a
change in average ability dominates the effect of heterogeneity on total output if both
average ability and the degree of heterogeneity are changed simultaneously. Comparison
(ii) between settings WW and SW above illustrates this fact for the static tournament: The
positive effect on total output of an increase in the average ability level according to
Proposition 4.1 dominates the negative effect of higher heterogeneity (Proposition 4.2),
i.e., when moving from a homogeneous situation with two weak workers to a heterogeneous
setting with one worker of each type, total output does always increase, irrespective of
how small is the difference in ability. The average level of ability is also more important
than the degree of heterogeneity in the dynamic tournament specification: When moving
from a homogeneous situation with four strong workers to a heterogeneous setting with
two workers of each type, total output does always decrease. The negative effect on total
output caused by the decrease of the average ability level according to Proposition 4.1
dominates the positive effect of a higher degree of heterogeneity (Proposition 4.2). We
summarize these findings in Proposition 3:

Proposition 4.3 (Strength of Ability and Incentive Effects). If the average ability level
and the degree of heterogeneity are changed simultaneously, the effect of the change in
absolute average ability on total output is always stronger than the corresponding incentive
effect of changes in heterogeneity that works through relative ability. This relation holds
in static and dynamic tournaments.

Proof. See Appendix.

This finding is particularly important in reality for hiring or firing decisions. The
replacement of workers usually implies a simultaneous change of ability and heterogeneity,
because it is rather unlikely that a newly hired worker has exactly the same ability level as
workers already employed by the company, or as a worker who was recently fired. In such
a setting, Proposition 3 tells us that the principal should focus entirely on the absolute
ability of this worker, and neglect potential effects on the degree of heterogeneity.

4.2.3 Discussion

The previous analysis of static and dynamic tournaments illustrates that the distinction
between the average level of abilities and the degree of heterogeneity in terms of relative
abilities is important. We find that individual abilities of a worker determine his general
willingness to provide effort in a tournament where ability and effort are complements.
Heterogeneity between participants may have a positive or a negative effect on incentives
and therefore the production of output, depending on the tournament format: hetero-
geneity can in fact be good. As a general result, however, changes in the level of average
abilities have a stronger impact on effort and total output than corresponding changes
in the degree of heterogeneity. Therefore, the theoretical analysis suggests that it is the
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average ability of a workforce rather than its degree of homogeneity which is crucial for a
firm that makes use of tournaments as a compensation scheme. In other words, a principal
should be interested mainly in the average ability of his workforce rather than its homo-
geneity. Whether strong and weak workers are separated into different tournaments does
not matter much. It can even be in the interest of the principal not to separate different
worker types in dynamic tournaments with multiple stages. While these results suggest
that larger heterogeneity can be beneficial for output in the typical static and dynamic
tournament settings where ability and effort are complements due to the dominant effect
of ability, the results do not imply that greater heterogeneity is always good, however.
Under alternative production technologies, e.g., when ability and effort are substitutes,
or when firms are primarily interested in balanced competition for different reasons than
total output maximization, the results might differ.16

Two questions remain: First, it is not clear how general the previous results are, since
the theoretical analysis restricted attention to two special cases, namely to static tourna-
ments with two, and to dynamic tournaments with four workers. Second, relatively little
is known about the behavior of participants in heterogeneous tournaments, and it cannot
be taken for granted that individuals react to heterogeneity in the same way as theory
predicts. In fact, some existing evidence suggests that behavior in tournaments with het-
erogeneous agents strongly deviates from Nash equilibrium predictions.17 Therefore, we
briefly discuss the robustness of our results to changes in the theoretical setup, before we
test the relevance of our theoretical results for actual behavior in the next section.

Robustness. The previous theoretical analysis is restricted along two important dimen-
sions: First, we only consider static tournaments with two, and dynamic tournaments with
four workers. Second, we assume that there are always equal shares of strong and weak
workers in heterogeneous situations. A more general model with both arbitrary numbers
of workers and varying shares of worker types can only be analyzed if the generality of
the model is restricted in other dimensions, such as the potential for variations in the pre-
cision of the monitoring technology (parameter r). However, none of the two restrictions
mentioned above affects the main result that the average level of ability has a sizeable
effect on total output, while the positive or negative effect of heterogeneity on incentives
for effort provision is comparably weak, as we show next.

Two complications arise when one increases the number of workers in the static tour-
nament model and allows for variations in the share of strong and weak workers. First, a
closed-form analytical solution is only available for a specific precision of the monitoring
technology (lottery contest with r = 1) if more than two workers interact.18 Second, if
at least two S type workers jointly compete with some workers of type W, the latter ones

16See, e.g., Gürtler and Kräkel (2011) for a description of alternative tournament settings in which
firms might have an incentive to hire low-ability workers.

17See for example Bull, Schotter, and Weigelt (1987), or Harbring and Lünser (2008).
18See Stein (2002) for a solution of such a model.
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might optimally drop out, i.e., their relative costs of participation in the tournament may
exceed potential gains, such that they optimally produce nothing. This will, however,
only occur in cases where the strategic disadvantage of weak workers is either extremely
high, or alternatively, if each weak worker faces a large number of strong opponents, i.e.,
if weak workers are very rare. Still, the main results are not affected even in these extreme
cases, as the analysis of the case with r = 1 for situations with four or eight agents and
different shares of strong and weak workers shows:19 Absolute ability does still have a
positive effect on total output that is much stronger than the negative effect of hetero-
geneity. Surprisingly, the relative strength of the effect of heterogeneity on total output
is completely independent of the number of competing workers, as long as equal shares
of both types compete with each other, as we show in part B of the Appendix. We will
come back to this finding in the discussion of the experimental setup.

Finally, consider dynamic promotion tournaments with more than four workers, or
with different shares of strong and weak workers. Simply adding stages to the tournament
while maintaining the assumption of equal shares of workers of both types implies no
qualitative changes as there are simply more pair-wise interactions between workers of
the same type before the final stage is reached.20 One result may change, however, if the
shares of strong and weak workers are varied, or if workers are seeded differently in stage
1.21 Then, heterogeneity can have a negative effect in certain situations, for example if
there are three strong and only one weak worker in the tournament. Yet, it is important
to stress that the dynamic nature of multi-stage tournaments always reduces the (already
relatively weak) negative effect of heterogeneity in comparable static tournaments. The
reason is again that the competition for promotions in later stages of the tournament
becomes cheaper for strong workers due to the existence of weak workers, which induces
the strong workers to increase effort and consequently output production in earlier stages.
This effect exists in all dynamic tournaments, but its strength varies across different
specifications, such that it overcompensates the negative effect of heterogeneity on total
output in later stages in some, but not in all cases.

In summary, the result that heterogeneity can have a positive incentive effect on
performance appears to be robust, contrary to the perceived wisdom of a negative effect
of heterogeneity on performance. The next section investigates the empirical relevance of
this result.

19Results are available upon request.
20A detailed analysis is available upon request.
21Seedings are considered in detail by Höchtl, Kerschbamer, Stracke, and Sunde (2011). Using the

solution of the theoretical model where both stage 1 interactions are heterogeneous (setting SWSW) from
this paper, one can show that the effect of heterogeneity on total output is weakly negative for low degrees
of heterogeneity, but strongly positive if heterogeneity is high. Details are available upon request.
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4.3 Experimental Evidence

The theoretical analysis in section 4.2 provides several testable hypotheses. We use lab-
oratory experiments to test the theoretical predictions, because the use of experimental
methods has the clear advantage that all relevant parameters, in particular in terms of
ability, heterogeneity, and the structure of the tournament, are fixed by the experimental
design. This allows us to test the theoretical predictions in a direct and controlled way.
An investigation using an empirical approach with data from personnel files of compa-
nies, like Eriksson (1999), or using data from sports tournaments, would be more difficult
because reliable information about absolute levels of ability, an essential component of all
our theoretical predictions, is typically not available.22

4.3.1 Experimental Design

Following the theoretical model, we assume that agents can be of two different types:
Either, they are of the strong type S, or of the weak type W. The cost of effort (or dis-
utility of labor) parameter for weak agents is equal to cW = 1.50 as compared to cS = 1.00

for strong ones. By assumption, productive ability of both agent types is normalized to
one (aW = aS = 1), such that total output equals total effort. For the remainder of this
section, we will use the term total output.

Apart from ai and ci, there are two additional free parameters in the theoretical model,
namely P , which is the value of the bonus payment, or the value of the promotion to
the top level position, respectively, and r, which measures the precision of the monitoring
technology used by the principal. We set P = 240, and r = 1. The choice of r = 1 has several
advantages: First, this case is easy to explain to experimental subjects, which might
be the main reason for its popularity in the experimental literature on tournaments.23

Second, as already mentioned previously, this specification allows us to analytically solve
a static tournament model with more than two agents, even if agents are heterogeneous.
Therefore, we can consider tournaments with four agents for both one-stage and two-
stage tournaments, which facilitates comparison, since the tournaments are completely
identical in all but one dimension: The one-stage tournament is static, while the two-
stage tournament has a dynamic dimension. A solution to the static tournament with
four workers is provided in Appendix B, where we also show that the strength of the
effect of the degree of heterogeneity on total output is independent of the number of
participating workers.24

Overall, we consider six different treatments, three treatments for the static tourna-
ment and three treatments for the dynamic tournament. For both tournament formats,
we have one treatment with strong agents only, denoted SSSSi, where i = 1 (i = 2) in the

22For instance, even very rich sports data typically only provide ordinal rankings of ability. See Abre-
vaya (2002), Brown (2011), or Sunde (2009).

23See for example Sheremeta (2011), Sheremeta (2010), and the references provided therein.
24See also Stein (2002) for details.
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Table 4.1: Theoretical Equilibrium Predictions of Total Output

Static Tournament Dynamic Tournament

Treatment Total Output Treatment Total Output

SSSS1 180 SSSS2 180
SSWW1 144 SSWW2 152
WWWW1 120 WWWW2 120

mean(SSSS1,WWWW1) 150 mean(SSSS2,WWWW2) 150

Note: Equilibrium predictions for total output, i.e. the sum of individuals efforts, in the
specific treatment with a single prize of value 240. Note that total effort provision corre-
sponds to total output given the linear production technology with ability normalized to 1
and heterogeneity affecting effort costs. See text for details.

tournament with one (two) stages. All agents are of type W in the second homogeneous
treatment WWWWi, while equal shares are strong and weak in the heterogeneous treatment
SSWWi. A list of these six treatments and the corresponding theoretical equilibrium pre-
dictions for total output in each treatment is provided in Table 4.1. This experimental
design allows us to test three different hypotheses which directly follow from the theoret-
ical analysis. First, Proposition 4.1 implies that total output is increasing in the absolute
ability of each participating worker in both static and dynamic tournaments. Therefore,
we should observe that total output is higher in the treatment with four strong agents
than in the treatment with four weak ones; theory predicts that output equals 180 units
in SSSSi for both one-stage and two-stage tournaments, as compared to 120 units in the
WWWWi treatments.

Hypothesis 4.1 (Ability Effect). Total output is increasing in the ability of workers in
static and in dynamic tournaments. Therefore:

(a) Total output in SSSS1 > Total output in WWWW1

(b) Total output in SSSS2 > Total output in WWWW2

Following the order of Propositions in the theoretical analysis, Hypothesis 2 addresses
the effect of heterogeneity on total output. According to Proposition 4.2, heterogeneity
reduces total output in static tournaments, while heterogeneity has a positive incentive
effect through changes in relative ability on total output in dynamic tournaments. Recall
that it is essential that the average level of ability remains constant when comparing
homogeneous and heterogeneous specifications. This is not the case in any pair-wise
comparison of our experimental treatments, which were designed to keep types exactly
comparable across the different tournament settings. However, one can easily construct a
respective contrast by a simple thought experiment. Suppose that the principal employs
eight workers, where four are strong and four are weak. Then, there are (at least) two
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design options: He can either separate types, which implies that two tournaments with
four players each are homogeneous (SSSSi and WWWWi), or he mixes types and designs two
heterogeneous tournaments (2 × SSWWi). Absolute and average abilities are identical in
both options. Therefore, the comparison of these two design options allows us to isolate
the effect of heterogeneity on total output, while keeping absolute ability constant. In
what follows, we will therefore use the average value of total output in treatments SSSSi
and WWWWi and compare this value with total output in the heterogeneous treatment SSWWi,
which analogously ensures that absolute ability is unchanged. As Table 4.1 shows, the
average of total output in the homogeneous treatments equals 150 units in both the one-
stage and the two-stage tournament. Heterogeneity reduces total output to 144 units in
the static tournament model, while total output increases to a value of 152 units due to
heterogeneity in the dynamic tournament model with two stages.

Hypothesis 4.2 (Incentive Effect). The incentive effect of heterogeneity on total out-
put depends on the tournament format: The effect is negative in static, and positive in
dynamic tournaments:

(a) mean(Total output in SSSS1 and WWWW1) > Total output in SSWW1

(b) mean(Total output in SSSS2 and WWWW2) < Total output in SSWW2

Proposition 4.3 above provides us with another testable hypothesis. According to this
Proposition, the effect of changes of the average level of ability on total output is stronger
than the corresponding effect of variations in the degree of heterogeneity, if ability and
heterogeneity are changed simultaneously. In terms of our experimental treatments, this
implies that we have to compare treatments in which ability and heterogeneity effects
work in opposite directions. For the static tournament, this is the case if we compare
treatments SSWW1 and WWWW1: Average ability is higher in SSWW1, which should increase
total output. At the same time, however, heterogeneity is also higher in SSWW1 than in
the homogeneous treatment WWWW1, which tends to reduce total output. Theory predicts
that the ability effect dominates, since total output amounts to 144 units in SSWW1 and
to 120 units in WWWW1, respectively (see Table 4.1). In the dynamic two-stage tournament
setting, we have to compare total output of treatments SSSS2 and SSWW2, since a higher
level of average ability positively affects total output in SSSS2, while heterogeneity tends
to increase total output in SSWW2. Theory predicts that total output amounts to 180 units
in SSSS2 as compared to 152 units in SSWW2 (see Table 4.1).

Hypothesis 4.3 (Relative Strength of Ability and Incentive Effect). When the effects
of changes in ability and heterogeneity work in opposite directions, the effect of absolute
ability on total output dominates the effect of heterogeneity:

(a) Total output in WWWW1 < Total output in SSWW1

(b) Total output in SSSS2 > Total output in SSWW2
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The theoretical predictions in Table 4.1 show that there is one additional advantage
of considering a static tournament with four rather than two workers in the experimen-
tal implementation. According to the theoretical predictions for this specification, total
output should be identical in both tournament formats when the worker pool is homo-
geneous. The design in terms of a static or dynamic tournament should not matter for
performance if workers are homogeneous. This theoretical result is well-known and goes
back to Gradstein and Konrad (1999).25 Yet, the table also shows that this result does
not hold when workers are of different types: Total output is predicted to be higher in
the dynamic setting SSWW2 than in the static specification SSWW1 (152 compared to 144
units, respectively). This constitutes an additional testable hypothesis that serves as a
robustness check for our theoretical prediction that the effect of heterogeneity depends on
the tournament format.

Hypothesis 4.4 (Heterogeneity and Tournament Format). Total output is the same in
static and dynamic tournament specifications if workers are homogeneous, while total
output differs across the two tournament formats if workers are heterogeneous:

(a) Total output in SSSS1 = Total output in SSSS2

(b) Total output in WWWW1 = Total output in WWWW2

(c) Total output in SSWW1 < Total output in SSWW2

4.3.2 Experimental Implementation

In the experimental sessions, we adopted a between-subject design, such that experimental
subjects encountered only one of the six treatments. Each participant played the same
tournament 30 times. We use the experimental currency “Taler”, where 200 Taler equal
1.00 Euro. As mentioned previously, we define P = 240 such that subjects compete for a
single prize of 240 Taler in each interaction. Effort provision was implemented in terms of
investments into a lottery: Participants were told that they could buy a discrete number
of balls in each interaction. The chosen value for P ensures that equilibrium efforts in all
stages and both tournaments are positive integers, which implies that the discrete grid
has no consequences for the equilibrium strategies; the equilibrium in pure strategies is
unique. The balls purchased by the subjects as well as those purchased by their respective
opponents were then said to be placed in the same ballot box, out of which one ball
was randomly drawn. This setting reflects the experimental implementation of the the
monitoring technology with precision r = 1 from the theoretical set-up. Players had to
buy (and pay for) their desired number of balls before they knew whether or not they
won the prize in a given tournament. Therefore, each participant received an endowment
of 240 Taler in each round to avoid limited liability problems. This endowment could

25Experimental tests of this hypothesis are also provided by Sheremeta (2010).
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be used to buy balls. In multi-stage treatments, a subject that reached stage 2 could
use whatever remained of the endowment to buy balls on the stage-2 interaction. The
part of the endowment that a participant did not use to buy balls was added to the
payoffs for that round. Since the endowment was as high as the prize that could be won,
agents were not budget-constrained at any time. Experimental subjects were told that
the endowment could only be used in a given round, transfers across decision rounds
were not possible. Therefore, the strategic interaction was the same in each of the 30
decision rounds. Random matching in each round ensured that the same participants
did not interact repeatedly. Matching groups corresponded to the entire session. After
each decision round, participants were informed about their own decision, the decision(s)
of their immediate opponent(s), and about their own payoff. This setting allows for an
investigation of whether players learn when completing the task repeatedly. To avoid
income effects, however, the participants were told that only four decision rounds (out of
30) would be chosen randomly and paid out at the end of the experiment.

The protocol of an experimental session was as follows for all treatments: First, the
participants received some general information about the experimental session. Then,
they were given instructions for the respective main treatment (one-stage or two-stage
tournament) with four players, which is described above.26 After each participant con-
firmed that he/she had understood the instructions on the computer screen, subjects
were informed about their type, i.e., about their individual cost parameter (cS = 1.00 or
cW = 1.50); the assignment of types was random. Subsequently, participants had to answer
a set of control questions to ensure that they had fully understood the instructions. Only
once the control questions were answered correctly did the first decision round start. We
ran a total of 15 computerized sessions with 20 participants each: Two sessions for each
treatment of the static, and three sessions for each treatment of the dynamic tournament.
The experiments were implemented using the software z-Tree (Fischbacher, 2007). All 300
participants were students from the University of Innsbruck, which were recruited using
ORSEE (Greiner 2004). Each session lasted approximately 1.5 hours, and participants
earned between 10-20 Euros (approximately 15 Euros on average).27

4.3.3 Experimental Results

Table 4.2 provides session and first round means of total output for each of the six different
treatments. Before assessing the empirical validity of Hypotheses 1–4, we compare the
session means to the respective theoretical predictions, which are also shown in Table 4.2.

26A translated version of the instructions is provided in Appendix C. The orginal instructions (which
are in German) are available upon request.

27Each experimental sessions consisted of several parts. At the beginning of each session, subjects were
told that they would get 3 Euro show-up fee, and that that the experiment consists of three parts. Part
1 is the main treatment which is described above. Risk preferences were elicitated in part 2, and finally
distributional preferences in part 3. Subjects received instructions for each part only right before the
start of the respective part.
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Table 4.2: Total Output

Static Tournament

homogeneous heterogeneous

Treatment Data Theory Treatment Data Theory
session 1st round session 1st round

SSSS1 308.69 325.60 180 SSWW1 220.33 252.40 144
(41.35) (47.62) (26.49) (42.43)

WWWW1 215.73 190.50 120
(5.40) (22.03)

∅ 262.21 258.05 150 ∅ 220.33 252.40 144

Dynamic Tournament

homogeneous heterogeneous

Treatment Data Theory Treatment Data Theory
session 1st round session 1st round

SSSS2 304.51 406.93 180 SSWW2 303.75 381.13 152
(28.31) (29.88) (13.82) (24.59)

WWWW2 201.88 231.40 120
(21.22) (20.35)

∅ 253.20 319.17 150 ∅ 303.75 381.13 152

Note: The numbers in the column “Data” denote total average output observed in all rounds and the
first round of the experimental sessions, respectively. Total output is the sum of individuals outputs (in
experimental currency, Taler); standard errors in parantheses, based on 2 (10) independent observations
for session (1st round) means of the static tournament, and 3 (15) independent observations for session
(1st round) means of the dynamic tournament. The column “Theory” provides the theoretical equilibrium
prediction for total output production.
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This comparison reveals a high degree of over-provision of effort by experimental subjects:
Observed total output over all decision rounds is substantially higher than theory predicts.
Such substantial over-provision is, however, not uncommon in tournament experiments.
Sheremeta (2010) reports very similar degrees of over-provision for homogeneous one-
stage and two-stage tournaments in treatments which are almost identical to the ones
implemented here, and presents evidence that the size of the endowment, which is equal
to the prize in both his and our treatments, is responsible for this result.28 Note, however,
that both the endowment and the prize for the winner of the tournament are identical in
all treatments, such that differences between treatments, on which Hypotheses 1–4 rely,
cannot be attributed to the endowment.29

One potential reason for the over-provision of effort is that experimental subjects
might have difficulties in determining optimal or equilibrium effort levels. Hence, one
might conjecture that experimental subjects “learn” over time and reduce their effort pro-
vision correspondingly.30 Figure 4.3 shows that this is indeed the case. The degree of
over-provision is lower in later than in earlier decision periods, especially for the dynamic
tournaments. However, even in later decision rounds total output is substantially higher
than theory predicts. Therefore, it seems that learning reduces over-provision only partly.
Importantly, learning has virtually no influence on the qualitative relations between differ-
ent treatments, as suggested by a closer look at Figure 4.3 and the comparison of session
and first round means for total output in Table 4.2.

Hypothesis 1 suggests that total output should be higher if four strong workers compete
for a prize than if all workers are weak, independent of the tournament format. Table
4.2 reveals that the experimental results are qualitatively in line with this theoretical
prediction, no matter whether session averages or first round means of total output are
considered: In the static tournament, session (first round) averages of total output amount
to 308.69 (325.60) units if all workers are strong, as compared to 215.73 (190.50) units in
setting WWWW1. Similarly, the session (first round) average of total output in the dynamic
tournament equals 304.51 (406.93) units in setting SSSS2, while weak workers produce
201.88 (231.40) units on average. To determine the statistical significance of this result,
we use t-tests and separately consider session and first round means. We find that the
difference between total output levels is significantly different (greater) than zero in both
tournament formats; the respective p-values of a two-sided test are 0.152 (0.044) for session
and 0.002 (0.001) for first round means of the static (dynamic) tournament, respectively.31

28See also Sheremeta (2011). He shows that a reduction of the endowment causes a proportional
reduction of total effort as long as the endowment is not binding for equilibrium effort levels.

29This would only be an issue if the endowment is binding in some and not in other treatments.
However, the share of experimental subjects who spend their whole endowment does not systematically
differ between treatments. If we exclude all observations in which the endowment is binding, for example,
total output is somewhat lower in all treatments, but the qualitative findings remain unchanged. Details
available upon request.

30Bull, Schotter, and Weigelt (1987), for example, find that average effort in simple two-person tour-
naments converges to equilibrium predictions in homogeneous, but not in heterogeneous settings.

31We test and reject the null hypothesis H0: Total output WWWWi = Total output SSSSi for i = 1,2. We
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We summarize this finding as follows:

Result 4.1. Ability has a strictly positive effect on total output in both the static and
the dynamic tournament treatments with homogeneous participants. The strength of this
effect is consistent with the theoretical prediction in both tournament formats.

Hypothesis 2 makes different predictions for static and dynamic tournaments. Ac-
cording to this hypothesis, heterogeneity is expected to have a negative effect on total
output in the static tournament (Hypothesis 2a), compared to a positive effect in dy-
namic tournaments (Hypothesis 2b). Table 4.2 shows that we observe this pattern in
the experimental data: Total output is lower in the heterogeneous than in the homoge-
neous specifications for the static tournament, no matter whether session (220.33 versus
262.21) or first round means (252.40 and 258.05) are examined. The opposite holds for
the dynamic tournament model, where session averages of total output amount to 303.75

units in the heterogeneous, compared to 253.20 units in the homogeneous setting; the
corresponding values on the first decision round are 381.13 (heterogeneous) and 319.17

(homogeneous), respectively.
Even though we focus on aggregate outcomes rather than individual effort decisions

in this paper, it is interesting to note that strong participants are responsible for the
direction of the incentive effect of heterogeneity: In the dynamic tournament, production
by strong agents is increasing with heterogeneity, particularly in stage 1 (as theory sug-
gests); the opposite holds in the static tournament, where strong workers produce less in
the homogeneous than in the heterogeneous situation. Thus, the reaction of strong agents
to heterogeneity crucially depends on the tournament structure. Interestingly, this is not
the case for weak agents.32 Independent of the tournament format, both absolute and
relative over-provision by weak agents are higher in heterogeneous than in homogeneous
settings. This suggests that weak types try to compensate for their strategic disadvantage
in any case.33

To examine the statistical significance of both parts of Hypothesis 2, we employ a
three sample t-test.34 Testing indicates that the negative incentive effect of heterogeneity

use the parametric t-test rather than the non-parametric Mann-Whitney U-test throughout the paper for
consistency reasons. A non-parametric three sample mean test, which we would need to test Hypothesis
2 (see below), is not available. P-values of the Mann-Whitney U-Test for Hypothesis 1 and 3 are very
similar to p-values of the t-test, however, and available upon request.

32Further details on individual effort decisions are available upon request.
33Note that this response of weak agents to a strategic disadvantage has previously been documented

for static tournaments with heterogeneous participants (Bull, Schotter, and Weigelt 1987, van Dijk,
Sonnemans, and van Winden 2001, Harbring and Lünser 2008).

34Formally, we test the hypotheses µ(SSSS1) + µ(WWWW1) = 2µ(SSWW1) and µ(SSSS2) + µ(WWWW2) =

2µ(SSWW2), where µ(X) is the average total output in setting X ∈ {SSSSi,WWWWi,SSWWi}, i = 1,2. The
corresponding test statistic is

T =
µ(SSSSi) + µ(WWWWi) − 2µ(SSWW)i
√

σ(SSSSi)2
n(SSSSi) +

σ(WWWWi)2
n(WWWWi) + 4σ(SSWWi)

2

n(SSWWi)

with n(SSSSi) + n(WWWWi) + n(SSWWi) − 3 degrees of freedom.
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Figure 4.3: The Effect of Experience on Total Output

(a) Static Tournament

(b) Dynamic Tournament
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in the static tournament is insignificant (p-value > 0.10 both for session and first round
means), while the positive effect of heterogeneity on total output is significant in the
dynamic tournament; the corresponding p-values are 0.065 for session and 0.05 for first
round means. Therefore, even though the incentive effect of heterogeneity is insignificant
in static tournaments, it is fair to say that the experimental results are qualitatively in
line with the theoretical predictions. In summary, we view this evidence to be consistent
with Hypothesis 2.

Result 4.2. The direction of the incentive effect of heterogeneity is in line with the the-
oretical model. We find that heterogeneity has a

(a) negative effect on total output in the static tournament treatments.

(b) positive effect on total output in the dynamic tournament treatments.

The data only provide weak evidence for Hypothesis 3, which is on the relative strength
of the effect of heterogeneity and ability on total output. According to the theoretical
model, the effect of changes in the degree of heterogeneity on total output (be it positive
or negative) is always weaker than the corresponding effect of variations in the level of
average ability if the degree of heterogeneity and the average ability level are changed
jointly. That is, theory predicts for the static tournament that total output is higher
in treatment SSWW1 than in WWWW1, since the negative effect of heterogeneity on total
output is dominated by the positive effect of higher average ability. For the dynamic
tournament, total output in treatment SSSS2 is predicted to be higher than in SSWW2, since
the negative effect due to the reduction of average ability is more pronounced than the
positive effect of an increase of the degree of heterogeneity when moving from a situation
with only strong workers to a setting where equal shares are strong and weak. Figure
4.3 shows that the ability and the incentive effect of heterogeneity are equally strong
both for the static and the dynamic tournament, since there is hardly any difference
between the total output produced in treatments SSWW1 and WWWW1, or SSSS2 and SSWW2,
respectively. When considering the session means, we find that total output equals 215.73

units in treatment WWWW1 and 220.33 units in SSWW1, which is qualitatively in line with
the theoretical prediction. However, the difference is statistically insignificant (p-value >
0.10) and much lower than expected (2% rather than 20%).35 The pattern is almost the
same in the dynamic tournament treatments, where the session means of total output
amount to 304.51 units in setting SSSS2, compared to 303.75 units in SSWW2 (difference
equals 0.2% in the data, compared to 18% predicted by theory). Again, the differences
between treatments are insignificant for session and first round means (p-value > 0.10 in
both cases).36

35Even the difference of total output in the first decision round, which is somewhat higher, is statistically
insignificant. We test whether H0 ∶ Total output in SSWW1 - Total output in WWWW1 < 0. H0 cannot be
rejected.

36We test whether H0 ∶ Total output in SSSS2 - Total output in SSWW2 < 0. H0 cannot be rejected.
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These results indicate that either the effect of changes in the level of average ability
is much weaker, or that the effect of variations in the degree of heterogeneity is much
stronger than theory predicts. Experimental results suggest the latter explanation, since
the strength of the pure ability effect is in line with theory, while the incentive effect of
heterogeneity is much stronger than expected: Theory predicts that output should be
approximately 33% lower in treatment WWWWi than in treatment SSSSi, independent of the
tournament format (i = 1,2). In fact, session means of total output are 31% (33%) lower
in the static (dynamic) tournament with only weak workers than in the corresponding
treatment with only strong workers. The isolated incentive effect of heterogeneity, how-
ever, is much more pronounced than expected: While theory predicts that total output
decreases by 4% in the static tournament, the session means show a reduction of more
than 15%. Similarly, the session means of total output increase by almost 20% in the
dynamic tournament, while the increase should be slightly more than 1% according to
the theoretical model.37

Result 4.3. When the ability effect and the incentive effect of heterogeneity work in op-
posite directions, the effects are approximately equally strong and offset each other in both
the static and the dynamic tournament treatments; the incentive effect of heterogeneity is
stronger than predicted.

Finally, we briefly consider Hypothesis 4, which makes predictions about the relation
between static and dynamic tournaments: Total output should be the same if workers are
homogeneous, while this measure is predicted to differ across the two tournament formats
if workers are heterogeneous. This pattern emerges from the results in Table 4.2 when
considering session means: Total output is similar when only strong or only weak workers
compete with each other (308.69 vs. 304.51, and 215.73 vs. 201.88, respectively), while
the difference between the two tournament models is remarkable in the heterogeneous
settings (220.33 compared to 303.75). Based on two-sided t-tests, we cannot reject the
null hypothesis of equal means in either comparison of the homogeneous settings, SSSS1

and SSSS2, and WWWW1 and WWWW2, respectively. However, the null of equality of total
output being equal in settings SSWW1 and SSWW2 can be rejected with a p-value of 0.051.38

When comparing the first round rather than the session means of the heterogeneous
treatments, the results are qualitatively unchanged. Total output equals 252.40 units in
the static, compared to 381.13 units in the dynamic tournament. This difference is statis-
tically significant (p-value < 0.01). However, first round means of total output are much
higher in the homogeneous treatments of dynamic tournaments (325.60 vs. 406.93, and
190.50 vs. 231.40 for SSSSi and WWWWi (i = 1,2), respectively), even though the differences
are statistically insignificant (p-value > 0.10). While our findings for the homogeneous
treatments differ from previous results in the literature when considering session means, it

37Both for the static and the dynamic tournament, we compare both the theoretical precision and the
session means of SSWWi and mean(SSSSi,WWWWi) for i = 1,2, respectively.

38This p-value refers to a t-test of equality of session means for total output across the two settings.

81



is interesting to note that our results are comparable with previous findings if we use the
first decision period only. For instance, Sheremeta (2010) suggests that effort provision
is higher in the two-stage tournament with homogeneous participants due to joy of win-
ning. His experimental design allows for learning, but he uses a mixture of between and
within subject comparison, while we employ a between-subject design. Altmann, Falk,
and Wibral (2012) also find that effort provision is higher in dynamic tournaments when
considering one-shot interactions, and a between subject comparison. The remarkable
difference between session and first round means in dynamic tournaments (which we do
not observe for static tournaments), suggests that learning patterns may differ between
static and dynamic tournaments. This conjecture receives some support when consider-
ing Figure 4.3: There is a downward trend of total output in dynamic tournaments, i.e.,
experimental subjects seem to realize in later rounds that their inital effort provision was
too high. This is different in static tournaments, where total output starts at compara-
bly lower initial levels. Note that the differential learning trends in static and dynamic
tournaments are of no consequences for the our main results with respect to Hypotheses
1–3, since we compare different specifications of the same tournament format, and learn-
ing trends seem to be very similar for different treatments within a certain tournament
class.39

Result 4.4. Total output does not differ significantly between static and dynamic tourna-
ment treatments if participants are homogeneous. In line with the theoretical predictions,
however, there is a difference between the two tournament formats in the heterogeneous
treatments; this difference is more pronounced than predicted by theory.

Overall, Result 4 provides additional support for the theoretical results with respect to
the effects of ability and heterogeneity. The data match all qualitative relations not only
within, but even across different tournament formats, in particular when using session
means.

4.4 Conclusion

This paper analyzes the effect of variations in the degree of heterogeneity between work-
ers on their performance in corporate tournaments. The analysis considers the two most
prominent tournament formats in the Personnel Economics literature, namely static one-
shot tournaments, in which participants compete for a bonus payment, and dynamic
multi-stage tournaments, which are often used to model promotion tournaments in com-
panies with several hierarchy levels. The theoretical results show that the ability of
workers who participate in the tournament has a strong impact on the overall level of
effort provided, and therefore also on the total amount of output produced. The re-
sults also suggest that the common perception that heterogeneity between participants is

39The investigation of the dynamic patterns is an interesting topic for future work that directly com-
pares different tournament formats.
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detrimental for incentives and performance in tournaments is correct in static one-stage
tournaments. In dynamic multi-stage elimination tournaments, however, the effect of
heterogeneity on incentives for effort provision is strictly positive, i.e., incentives for effort
provision are higher in tournaments with heterogeneous participants than in tournaments
with homogeneous agents if the level of average ability is held constant. This is because
the negative incentive effect for weak workers is more than compensated for by a higher
value of promotions for strong workers, who anticipate that their chances for promotions
in the future are higher if there is a chance that they have to compete with a weak op-
ponent in later stages. This possibility strongly increases the value of a promotion today,
and consequently incentives to provide effort in early stages of the tournament. From the
theoretical analysis, it also follows that the effect of heterogeneity is rather weak in both
tournament models, and in particular much weaker than the effect of changes of the aver-
age ability level of tournament participants on performance, which is measured by output
throughout the paper. The second part of the paper presents evidence from laboratory
experiments that is largely consistent with the theoretical predictions. The experimental
findings suggest that ability of workers has a strong impact on the performance in both
tournament formats. Further, we find that incentives and consequently the overall perfor-
mance are lower in static tournaments with heterogeneous subjects than in comparable
treatments with homogeneous participants. The experimental results suggest, however,
that the negative effect of heterogeneity in static tournaments is stronger than predicted
by theory. The pattern is similar in our dynamic tournament treatments, where the di-
rection of the heterogeneity effect is in line with the theoretical prediction, but the effect
is again stronger than predicted. We find that heterogeneity is associated with a strongly
increased effort provision in dynamic tournaments. Concerning the relative strength of
ability and heterogeneity effects, we find that the empirical effects of heterogeneity and of
changes of the average ability level of tournament participants are of similar size, which
is in contrast to the theoretical prediction. However, this suggests that that the influence
of the tournament structure on incentives in case of heterogeneity might be much more
important in reality than it is in theory.

The results have important implications for both practical applications and future
research. The theoretical analysis and the experimental results show that the ability of
workers can be very important for performance, potentially more important than a homo-
geneous workforce, even if tournament compensation schemes are used for the provision of
incentives. Second, heterogeneity is not necessarily bad per se in a corporate tournament
setting. Whether or not corporations should assign similarly productive employees or
different types to the same tournament crucially depends on its structure. An important
topic for future research is the surprisingly strong effect of heterogeneity between partic-
ipants on behavior in the experimental treatments, both in the static tournament, where
the effect is negative, and in the dynamic tournament, where the effect is positive.
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Appendix

4.A Proofs

Proof of Proposition 1: In the static tournament model, we consider three different
specifications, namely SS, WW, and SW. Inspection of equation (4.13) immediately reveals
that the respective expressions are strictly increasing in the ability measure (aScS ), or (aWcW ),
or both, respectively, when keeping φ constant. The same holds for all three settings of
the dynamic tournament model, namely SSSS, WWWW, and SSWW, as inspection of equations
(4.14) and (4.15) immediately reveals.

Proof of Proposition 2: We separately consider parts (a) and (b) of the Proposition:

(a) From (4.13), total output in the heterogeneous specification SW is given by

Y (SW) = r (
aS
cS
+
aW
cW

)
φ

[1 + φ]
2P.

Recall that φ = (aScWaWcS
)r measures heterogeneity in terms of relative ability. Due to

the assumption that workers of type S have a higher productive ability and/or a
lower dis-utility of labor than these of type W, φ > 1 holds, which implies that the
degree of heterogeneity increases with φ. Next, we determine total output in a
homogeneous setting where workers have the same average ability level. Workers in
the heterogeneous setting have an average ability level of

ā

c̄
=

1

2
(
aS
cS
+
aW
cW

) .

Then, it follows from (4.13) that total output in a homogeneous tournament with
two workers with ability ā

c̄ amounts to

Ȳ (hom) = r (
ā

c̄
)

1

2
P = r (

aS
cS
+
aW
cW

)
1

4
P.

To prove that heterogeneity has a negative effect on total output, we have to show
that Ȳ (hom) > Y (SW) does always hold, i.e.

r (
aS
cS
+
aW
cW

)
1

4
P > r (

aS
cS
+
aW
cW

)
φ

[1 + φ]
2P

⇔
1

4
>

φ

[1 + φ]
2

⇔ φ2 + 2φ + 1 > 4φ

⇔ (φ − 1)2 > 0
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Since φ > 1 by construction, this relation is always satisfied. Moreover, the strength
of the detrimental effect of heterogeneity is increasing in φ, i.e., the higher φ, the
larger is the difference between the homogeneous and the heterogeneous setting.
Therefore, total output is decreasing in the degree of heterogeneity between workers,
which completes the proof.

(b) Total output in the heterogeneous specification Y (SSWW) is given by

Y (SSWW) = r [(
aS
cS

) ⋅
φ2 + (3 − r)φ

2[1 + φ]2
+ (

aW
cW

) ⋅
1 + (3 − r)φ

2[1 + φ]2
]P.

Recall that φ = (aScWaWcS
)r measures heterogeneity in terms of relative ability. Due to

the assumption that workers of type S have both a higher productive ability and a
lower dis-utility of labor than these of type W, φ > 1 holds. This implies that the
degree of heterogeneity increases with φ. Next, we have to determine total output in
a homogeneous setting where workers have the same average ability level. Workers
in the heterogeneous setting have an average ability level of

ā

c̄
=

1

2
(
aS
cS
+
aW
cW

) .

Then, it follows from (4.14) that total output in a homogeneous tournament with
four workers with ability ā

c̄ amounts to

Ȳ (hom) = r (
ā

c̄
)

4 − r

4
P = r (

aS
cS
+
aW
cW

)
4 − r

8
P.

To prove that heterogeneity has a positive effect on total output, the relation
Y (SSWW) > Ȳ (hom) has to hold, i.e.

r [(
aS
cS

) ⋅
φ2 + (3 − r)φ

2[1 + φ]2
+ (

aW
cW

) ⋅
1 + (3 − r)φ

2[1 + φ]2
]P > r (

aS
cS

+
aW
cW

)
4 − r

8
P

⇔ (
aS
cS

) (4φ2
+ (12 − 4r)φ) + (

aW
cW

) (4 + (12 − 4r)φ) > (
aS
cS

+
aW
cW

) (4 − r)[1 + φ]2

To simplify the subsequent analysis, we make some normalizing assumptions: We
assume that aW = cW = cS = 1, which is without loss of generality as long as aS > 1

does hold. Then, it follows from the definition of φ that φ = arS. This implies the
following relation:

aS(4a
2r
S + (12 − 4r)arS) + 4 + (12 − 4r)arS > (aS + 1)(4 − r)[1 + arS]

2

⇔ (arS − 1)(4aS − r − raS + a
r
S(r + raS − 4)) > 0

⇔ G(aS, r) ≡ r(a
r+1
S − 1) − (4 − r)(arS − aS) > 0

Note that G(aS, r) is equal to zero if aS = 1, while we are interested in the properties
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of G(aS, r) when aS > 1 does hold. Therefore, we proceed in two steps: First, we
will show that the slope of G(aS, r) is strictly positive when aS = 1. Second, we
will prove that the slope is strictly increasing, which implies that G(aS, r) is strictly
increasing if aS > 1. Since G(aS, r) is a continuous function, this will prove the claim
that G(aS, r) > 0 ∀ aS > 1.

(i) The first derivative of G(aS, r) with respect to aS reads

∂G(aS, r)

∂aS
= r(r + 1)arS − (4 − r)(rar−1

S − 1).

For aS = 1, this derivative simplifies to the term 2(r − 1)2, which is positive. Conse-
quently, the slope of G(aS, r) at the point aS = 1 is strictly positive.

(ii) The second derivative of G(aS, r) with respect to aS reads

∂2G(aS, r)

∂a2
S

= r(r − 4)(r − 1)ar−2
S + r2(1 + r)ar−1

S

= rar−2
S [r2 − 5r + 4 + (r2 + r)aS]

Note that this second derivative is strictly greater than zero since aS > 1.40 This
proves that output is always strictly larger in the heterogeneous than in the ho-
mogeneous setting, since the measure of the difference between the two settings is
always greater zero, i.e. G(aS, r) > 0 ∀ aS > 1. Further, since G(aS, r) is also strictly
in increasing in aS, the strength of the positive effect of increases in the degree of
heterogeneity.41 Therefore, we find that total output is strictly increasing in the
degree of heterogeneity between workers, which completes the proof.

Proof of Proposition 3: We start by proving the proposition for the static tournament
model in part (a) of this proof, and subsequently consider the dynamic tournament model
in part (b).

(a) Recall that total output in the heterogeneous setting, Y (SW) equals

Y (SW) = r (
aS
cS
+
aW
cW

)
φ

[1 + φ]
2P.

We know from Propositions 1 and 2 that increases in the ability level have a pos-
itive effect on total output, while a higher degree of heterogeneity has a negative
effect. To prove the claim that the effect on total output of a change in the average
ability level of workers dominates the corresponding effect of a change in the degree
of heterogeneity if both ability and heterogeneity are changed simultaneously, we

40If aS were equal to one, one would obtain the relation rar−2S [2(r − 1)2 + 2] > 0. When aS > 1, the
relation is even more positive.

41Note that higher values for aS immediately imply a higher degree of heterogeneity, since average
ability is held constant by construction.
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compare the heterogeneous setting with a homogeneous setting in which the average
level of ability is lower. Proposition 3 is proven if we can show that total output
is always higher in the heterogeneous setting than in the homogeneous setting with
a lower average ability. Therefore, we show that total output in the heterogeneous
setting SW is always higher than in a situation with weak workers only (WW). Recall
that total output in the latter case amounts to

Y (WW) = r (
aW
cW

)
1

2
P.

Consequently, we have to show that Y (SW) > Y (WW) for all aS
cS

> aW
cW
. To simplify

the subsequent analysis, we assume that aS = cW = cS = 1, which is without loss of
generality if the relation 0 < aW < 1 does hold. This gives

Y (SW) > Y (WW)

⇔ r(1 + aW)
φ

[1 + φ]2
P > r

aW
2
P

⇔ 2(1 + aW)
φ

[1 + φ]2
− aW > 0

Now, recall that φ = 1
arW

by definition. This gives K ≡ 2arW − a
2r+1
W − aW. To complete

the proof, we have to show that K > 0 for all 0 < aW < 1. We must take account of
one additional constraint, since the derived equilibrium solution is only valid under
Assumption 1. Therefore, we have to prove that

K = 2arW − a
2r+1
W − aW > 0

for all values of aW and r that satisfy

(i) 0 < aW < 1

(ii) r ≤ 1 + arW

We start by presenting a formal proof for the special case r = 1, which we use in our
experiments and which is prominent in the literature. For r = 1, constraint (ii) is
automatically satisfied. K simplifies to

K = 2aW − a
3
W − aW = aW (1 − a2

W)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

>0 due to (i)

> 0.

Since (ii) is satisfied by definition and K > 0 does hold, Y (SW) > Y (WW) does hold
for r = 1, independent of the degree of heterogeneity, which completes the proof.

An analytical proof for the general case with variable exponent r and the nonlinear
constraint (ii) is more involved. Therefore, we provide a graphical proof by ways of
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Figure 4.4: Range Plots

(a) Proof of Proposition 3(a) (b) Proof of Proposition 3(b)

a range plot in panel (a) of Figure 4.4 instead, which indicates for which values of aW
and r all conditions are simultaneously satisfied. Note that we can restrict attention
to the parameter space where 0 < aW < 1 due to (i) and 0 < r < 2 due to (ii). Figure
4 provides the plot. The relation K > 0 holds in both the light and the dark area,
but not in the white one. Therefore, the plot shows that K > 0 is not satisfied for
small aW and high values of r. Note, however, that condition (ii) excludes this area,
since the pure strategy equilibrium which we consider throughout the paper does
not exist for high values of r when heterogeneity is high: The dark area indicates
the range in which condition (ii) holds. Consequently, the condition K > 0 is less
restrictive than r ≤ 1 + arW, which proves the claim that Y (SW) > Y (WW) does hold
for all values of aW and r for which the pure strategy equilibrium we consider exists
(i.e., under Assumption 1).

(b) Recall that total output in the heterogeneous setting Y (SSWW) equals

Y (SSWW) = r [(
aS
cS

) ⋅
φ2 + (3 − r)φ

2[1 + φ]2
+ (

aW
cW

) ⋅
1 + (3 − r)φ

2[1 + φ]2
]P.

We know from Propositions 1 and 2 that increases in the ability level as well as
increases in the degree of heterogeneity have a positive on total output. To prove the
claim that the effect on total output of a change in the average ability level of workers
dominates the corresponding effect of a change in the degree of heterogeneity if both
ability and heterogeneity are changed simultaneously, we compare the heterogeneous
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setting with a homogeneous setting in which the average level of ability is higher.
Proposition 3 is proven if we can show that total output is always higher in the
homogeneous setting with a higher average ability than in the heterogeneous setting.
Therefore, we show that total output in the homogeneous setting SSSS is always
higher than total output in a situation with both strong and weak workers (SSWW).
Recall that total output in the former situation amounts to

Y (SSSS) = r (
aS
cS

)
4 − r

4
P.

Consequently, we have to show that Y (SSSS) > Y (SSWW) for all aScS >
aW
cW
. To simplify

the subsequent analysis, we assume that aS = cS = cW = 1, which is without loss of
generality if the relation 0 < aW < 1 does hold. Recall that φ = 1

arW
by definition. Using

these relations, we get

Y (SSSS) > Y (SSWW)

⇔ r
4 − r

4
P > r [

1 + (3 − r)arW
2[1 + arW]

2
+ aW

a2r
W + (3 − r)arW
2[1 + arW]

2
]P

⇔ (4 − r)[1 + arW]
2 > 2 [1 + (3 − r)arW + aW(a

2r
W + (3 − r)arW)]

We must take account of one additional constraint, since the equilibrium solution
derived is only valid under Assumption 1. Consequently, we have to prove that

M ≡ (4 − r)[1 + arW]
2 − 2 [1 + (3 − r)arW + aW(a

2r
W + (3 − r)arW)] > 0

for all values of aW and r that satisfy

(i) 0 < aW < 1

(ii) r ≤ 1 + arW

We start again by presenting a formal proof for the special case r = 1, which we use
in our experiments and which is prominent in the literature. For r = 1, constraint
(ii) is automatically satisfied and M simplifies to

M = 3(1 + aW)
2 − 2[1 + 2aW + aW(a

2
W + 2aW)] = (2aW + 1) (1 − a2

W)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

>0 due to (i)

> 0

Since (ii) is satisfied by definition and M > 0 does hold, this proves that Y (SSSS) >
Y (SSWW) does hold for r = 1, independent of the degree of heterogeneity.

An analytical proof for the general case with variable exponent r and the nonlinear
constraint (ii) is more involved. Therefore, we provide a graphical proof by ways of
a range plot in panel (b) of Figure 4.4 which indicates for which values of aW and
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r all conditions are satisfied. Note that we can restrict attention to the parameter
space where 0 < aW < 1 due to (i) and 0 < r < 2 due to (ii). Figure 5 provides the
plot. The relation M > 0 holds in both the light and the dark area. Therefore, the
plot shows that M > 0 is satisfied over the whole range of parameter values which
are allowed for the pure strategy equilibrium. The dark area indicates the range in
which condition (ii) holds. Condition M > 0 is thus less restrictive than r ≤ 1 + arW,
which proves the claim that Y (SSWW) > Y (WWWW) does hold for all values of aW and r
for which the pure strategy equilibrium we consider exists (i.e., under Assumption
1).
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4.B Static Tournament with more than two Workers

Assume that there are N participants in the tournament, where equal shares are strong
and weak, i.e., there are N

2 workers of each type, where N ≥ 2. If r = 1, an arbitrary player
s of the strong type faces the following optimization problem:

max
xs

Πs =
asxs

asxs + as∑i≠s xi + aw∑
N
2
j=1 xj

P − csxs, (4.16)

i.e., player s chooses his effort xs in such a way as to maximize his expected payoff Πs,
taking as given the effort choices of his opponents of both player types. Similarly, an
arbitrary weak player w chooses the optimal level of effort xw, and his maximization
problem reads:

max
xw

Πw =
awxw

awxw + as∑
N
2
i=1 xi + aw∑j≠w xj

P − cwxw. (4.17)

Taking derivatives with respect to xs and xw, respectively, gives the first order optimality
conditions for an interior Nash equilibrium in which all agents participate:

as(as∑i≠s xi + aw∑
N
2
j=1 xj)

(as∑
N
2
i=1 xi + aw∑

N
2
j=1 xj)

2

P − cs = 0 (4.18)

aw(as∑
N
2
i=1 xi + aw∑j≠m xj)

(as∑
N
2
i=1 xi + aw∑

N
2
j=1 xj)

2

P − cw = 0. (4.19)

Next, symmetry among participants of the same type is imposed, i.e. x∗i = x∗s ∀i = 1, ..., N2 ,
and x∗j = x∗w ∀j = 1, ..., N2 . Equalizing the remaining two first order conditions and using
the definition φ = awcs

ascw
gives the equilibrium ratio of efforts, which is characterized by the

following relation:

Φ ≡
asx∗s
awx∗w

=
1 + N

2 (φ − 1)

φ − N
2 (φ − 1)

.

Combining this relation with either of the first-order conditions above delivers equilibrium
efforts

x∗s = (
1

cs
)
(N2 − 1) +ΦN

2

[N2 +ΦN
2 ]2

P, and x∗w = (
1

cw
)

Φ2(N2 − 1) +ΦN
2

[N2 +ΦN
2 ]2

P. (4.20)

As a consequence, total output in this heterogeneous tournament amounts to

Y (
N

2
⋅ S,

N

2
⋅ W) = (

as
cs

)
(N2 − 1) +ΦN

2
N
2 [1 +Φ]2

P + (
aw
cw

)
Φ2(N2 − 1) +ΦN

2
N
2 [1 +Φ]2

P.
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From this, one can derive total output for a homogeneous specification with the same
average ability. By imposing the condition Φ = 1, we get

Y (hom) = (
as
cs

)
N − 1

2N
P + (

aw
cw

)
N − 1

2N
P.

To determine the relative strength of the heterogeneity effect on total output in percent,
one can compute the difference between output in the heterogeneous and the homogeneous
specification, and normalize, i.e.

Y (N2 ⋅ S, N2 ⋅ W) − Y (hom)
Y (hom)

.

Inserting the respective expression and simplifying gives

Q = −

⎡
⎢
⎢
⎢
⎢
⎣

(as
cs
) − (aw

cw
)

(as
cs
) + (aw

cw
)

⎤
⎥
⎥
⎥
⎥
⎦

2

.

Assume, for example, that as = aw = cs = 1, while cw = 1.5 as in the experimental treatment
in section 3 of the paper. Then, the above expression shows, that total output is 4%
lower in a heterogeneous setting where weak agents are 50% weaker than strong ones,
compared to a setting with homogeneous participants who have the same average ability
level. Obviously, Q is independent of N , i.e., heterogeneity has the same relative strength
when equal shares of both strong and weak types participate, independent of the overall
number of participants. In particular, this implies that theory predicts the same effects
for changes of the degree of heterogeneity in a tournament with two (as in section 2) or
four participants (as in the experimental part of the paper).
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4.C Experimental Instructions

4.C.1 General Instructions

WELCOME TO THIS EXPERIMENT AND THANK YOU FOR YOUR
PARTICIPATION

General Instructions:

You will participate in 3 different experiments today. Please stop talking to any other participant of
this experiment from now on until the end of this session. In each of the three experiments, you will
have to make certain decisions and may earn an appreciable amount of money. Your earnings will
depend upon several factors: on your decisions, on the decisions of other participants, and on random
components, i.e. chance. The following instructions explain how your earnings will be determined.

The experimental currency is denoted Taler. In addition to your Taler earnings in experiments 1 to 3,
you receive 3 EURO show up fee. You may increase your Taler earnings in experiments 1 to 3, where
2 Taler equal 1 Euro Cent, i.e.

200 Taler correspond to 1 Euro.

At the end of this experimental session your Taler earnings will be converted into Euro and paid to
you in cash.

Before the experimental session starts, you receive a card with your participant number. All your
decisions in this experiment will be entered in a mask on the computer, the same holds for all other
participants of the experiment. In addition, the computer will determine the random components
which are needed in some of the experiments. All data collected in this experiment will be matched to
your participant number, not to your name or student number. Your participant number will also be
used for payment of your earnings at the end of the experimental session. Therefore, your decisions
and the information provided in the experiments are completely anonymous; neither the experimenter
nor anybody else can match these data to your identity.

We will start with experiment 1, followed by experiments 2 and 3. The instructions for experiments 2
and 3 will only be distributed right before the respective experiment starts, i.e. subsequent to
experiments 1 and 2, respectively.

You will receive your earnings in cash at the end of the experimental session.
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4.C.2 One-stage Treatment

Experiment 1

Overall, there are 30 decision rounds in Experiment 1. The course of events is the same in each
decision round. You will be randomly and anonymously placed into a group of four participants in
each round, and the identity of participants in your group changes with each decision round.

Course of events in an arbitrary decision round
All four participants of your group receive an endowment of 240 Taler at the beginning of a decision
round. The endowment can be used to buy a certain amount of balls. The costs for the purchase of a
ball are not the same for all participants:
There are equal shares of high (H) and low (L) cost types in each group of four participants, i.e. there
are two participants of each type in a group of four. All experimental participants are informed about
their type at the beginning of the experiment. Types do not change with decision rounds, such that
you face either high or low costs in each of the 30 decision rounds.
Participants of type H have to pay 1.50 Taler for each ball they buy, i.e.

1 ball costs 1.50 Taler
2 balls cost 3.00 Taler

(and so on)

Participants of type L have to pay 1.00 Taler for each ball they buy, i.e.

1 ball costs 1.00 Taler
2 balls cost 2.00 Taler

(and so on)

Apart from differences in terms of costs per ball, there is no difference between participants of type H
(high cost) or type L (low costs).
When deciding how many balls you want to buy, you do not know the decision of other participants.
Also, your decision is not revealed to any other participant. All balls which were bought by four
participants of a group are placed into a ballot box. One ball is randomly drawn from the ballot box,
and each ball is drawn with the same probability. Assume, for example, that all balls which you
bought are green colored. Then, the probability that one of your balls is drawn satisfies

where # is short for number. The same probability rule does also hold for other participants in your
group. Consequently, the probability that one of your balls in drawn is higher

the more balls you purchased
the less balls the other participants in your group purchased.

The computer simulates the random draw of a ball. If all participant of a group of four choose to buy
zero balls, each participant wins with the same probability of 25%.

Only the participant whose ball is drawn from the ballot box receives a prize of
240 Taler

in a given decision round. The other participants do not receive any prize.

94



Your Payoff
Assume that you bought X balls in some decision round. There are two possibilities for your payoff:

1) one of your balls was drawn from the ballot box

2) none of your balls was drawn from the ballot box

Note that your cost/ball are 1.00 Taler (if you are of type L) or 1.50 Taler (if you are of type H),
respectively.
Therefore, your payoff is determined by the following components: by the number of balls you buy
(X); by your cost type (high or low); by a random draw (one of your balls is (not) drawn). The same
holds for any other participants of the experiment. Note, however, that costs per ball differ between
participants.

Information: You will learn your type before the first decision round starts. The information will be
provided on the computer screen. Your type (cost per ball) be same in all 30 decision rounds. At the
end of each decision round, you will learn whether or not one of your balls was randomly drawn and
how many balls the other participants in your group bought in total. In addition, you will be informed
about your payoff.

Decision: In each of the 30 decision rounds you have to decide how many balls you want to buy. You
have to enter this number into the respective field on the computer screen. When making this
decision, you do know your own type (high or low costs) and the type of the other participants in
your group. An example of the decision screen is shown below.
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Your Total Payoff: Four out of 30 decision rounds are paid. These rounds are randomly determined,
i.e. the probability that some decision round is paid is identical ex ante for all 30 decision rounds. You
will receive the sum of payoffs for the respective decision rounds at the end of the experiment.

Remember:
You receive an endowment of 240 Taler at the beginning of each decision round and have to decide
how many balls you want to buy. Overall, there are three additional participants in each group who
face the same problem. The identity of these participants is randomly determined in each decision
round. However, it always holds that equal shares of participants in a given group are of type L
(1.00 Taler per ball) and type H (1.50 Taler per ball), respectively.

If you have any questions, please raise your hand now!
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4.C.3 Two-stage Treatment

Experiment 1

Overall, there are 30 decision rounds with two stages each in Experiment 1. The course of events is the
same in each decision round. You will be randomly and anonymously placed into a group of four
participants in each round, and the identity of participants in your group changes with each decision
round.

Course of events in an arbitrary decision round
All four participants of each group receive an endowment of 240 Taler at the beginning of a decision
round. The endowment can be used to buy a certain amount of balls in two subsequent stages of a
decision round. It is important to note that you receive one endowment only which must suffice to
buy balls in both stages. The costs for the purchase of a ball are not the same for all participants:

There are equal shares of high (H) and low (L) cost types in each group of four participants, i.e. there
are two participants of each type in a group of four. All experimental participants are informed about
their type at the beginning of the experiment. Types do not change with decision rounds, such that
you are either a high or a low cost type in each of the 30 decision rounds. The same holds for all other
participants of the experiment.

Participants of type H have to pay 1.50 Taler for each ball they buy in stage 1 and stage 2, i.e.

1 ball costs 1.50 Taler
2 balls cost 3.00 Taler

(and so on)

Participants of type L have to pay 1.00 Taler for each ball they buy in stage 1 and stage 2, i.e.

1 ball costs 1.00 Taler
2 balls cost 2.00 Taler

(and so on)

Apart from differences in terms of costs per ball, there is no difference between participants of type H
(high cost) or type L (low costs).
When deciding how many balls you want to buy, you do not know the decision of other participants.
Also, your decision is not revealed to any other participant.

All interactions in the experiment are pairwise. Assume that you are in one group with participant A,
participant B, and participant C. Then, you interact with participant A in stage 1, while participants B
and C simultaneously meet each other in the second stage 1 interaction. If you reach stage 2, you will
interact either with participant B or C, depending on the outcome in the second stage 1 interaction. In
stage 1, there are two ballot boxes:

all balls bought by you or participant A are placed in ballot box 1
all balls bought by participants B and C are placed in ballot box 2

One ball is randomly drawn from each ballot box, and each ball drawn with the same probability. The
two participants whose balls are drawn from ballot box 1 and 2, respectively, reach stage 2; the
decision round is over for the other two participants (whose balls were not drawn), i.e. they drop out
from this decision round. Any participant has to pay the balls he or she bought in stage 1, whether or
not he/she reached stage 2. The respective amount is deducted from the endowment.
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The two participants who reached stage 2 do again buy a certain number of balls, using whatever
remains from the endowment they received after costs for balls in stage 1 were deducted. The balls are
then placed into ballot box 3. One ball is randomly drawn from ballot box 3. The participant whose
ball is drawn receives a prize of 240 Taler. The other participants do not receive any prize in this
decision round. Independent of whether or not a participant receives the prize, he/she does always
have to pay for the balls bought in stage 2.

Let s take a closer look at the random draw of balls from ballot boxes. Assume, for example, that all
balls which you bought are green colored, and that you interact with participant A in stage 1. Then,
the probability that one of your balls is drawn (such that you make it to stage 2) satisfies

where # is short for number. The same probability rule does also hold for other participants in your
group. Consequently, the probability that one of your balls in drawn is higher

the more balls you purchased
the less balls the other participant with whom you interact purchased.

The computer simulates the random draw of a ball. If all participant of a group of four choose to buy
zero balls, each participant wins with the same probability of 25%.
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Your Payoff
Assume that you bought X1 balls in stage 1, and that you buy X2 balls whenever you reach stage 2.
Then, there are three possibilities for your payoff:

1) None of your balls is drawn in stage 1

2) one of your balls is drawn from the ballot box in stage 1; in stage 2, none of your balls is drawn

3) one of your balls is drawn from the ballot box in stage 1; also, one of your balls is drawn in stage 2

Note that your cost/ball are 1.00 Taler (if you are of type L) or 1.50 Taler (if you are of type H),
respectively.
Therefore, your payoff is determined by the following components: by the number of balls you buy in
stage 1 ( X1 ); by the number of balls you buy in stage 2 ( X2 ) if you reach it; by your cost type (high
or low); by up to two random draws (one of your balls is drawn/not drawn in stage 1 and potentially
stage 2). The same holds for any other participants of the experiment. Note, however, that costs per
ball differ between participants.

Information: You will learn your type before the first decision round starts. The information will be
provided on the computer screen. Your type (cost per ball) will be same in all 30 decision rounds.

Before making the first decision in stage 1, you will learn the type of participant A whom you
meet in stage 1, i.e. you learn whether participant A has to pay 1.00 Taler (type L) or 1.50 Taler
(type H) for each ball he/she buys.
After you made your decision in stage 1, you are informed whether or not you can participate
in stage 2, i.e. whether or not one of your balls was drawn from ballot box 1.
If you did not reach stage 2, you are informed about how many balls participant A bought in
stage 1.
If you reach stage 2, you receive information about the remaining endowment (after costs for
the purchase in stage 1 are deducted), and about the type of the other participant whom you
meet in stage 2.
After you made your decision in stage 2, you learn whether or not one of your balls was
drawn from ballot box 3 and how many balls the participants who you met in stages 1 and 2,
respectively, bought. Further, you learn your payoff for the respective decision round.

Decision: In each of the 30 decision rounds you have to decide how many balls you want to buy in
stage 1. If you reach stage 2, you face a similar decision in stage 2. In both cases, you have to enter a
number into a field on the computer screen. An example of the decision screen in stage 1 is shown
below.
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Your Total Payoff: Four out of 30 decision rounds are paid. These rounds are randomly determined,
i.e., the probability that some decision round is paid is identical ex ante for all 30 decision rounds. You
will receive the sum of payoffs for the respective decision rounds.

Remember:
You receive an endowment of 240 Taler at the beginning of each decision round and have to decide
how many balls you want to buy in stage 1; if you reach stage 2, you have to decide again. Overall,
there are three additional participants in each group who face the same problem. The identity of these
participants is randomly determined in each decision round. However, it always holds that equal
shares of participants in a given group are of type L (1.00 Taler per ball) and type H (1.50 Taler per
ball), respectively.

If you have any questions, please raise your hand now!
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Chapter 5

Incentives versus Selection in
Promotion Tournaments: Is It Possible
to Kill Two Birds With One Stone?

This chapter is based on joint work with Wolfgang Höchtl from the Austrian National
Bank (OeNB), Rudolf Kerschbamer from the University of Innsbruck, and Uwe Sunde
from the University of St. Gallen (Höchtl, Kerschbamer, Stracke, and Sunde 2011).

5.1 Introduction

Most employment relationships are characterized by competition among employees for
promotion to a better paid, more attractive position. While these promotion tourna-
ments are sometimes just a by-product of a given hierarchical structure, they often are
an explicit instrument in the practice of human resource management (HRM) in profes-
sional occupations: Think of law firms or consulting firms, for example, where ‘up-or-out’
promotion policies are the norm and vacant manager or partner position are (almost en-
tirely) filled with insiders. Moreover, tournaments are often used to fill top management
positions. The most prominent example is certainly Jack Welch (2001), who designed
the competition for his CEO succession about six years before he actually left. Several
candidates from inside GE knew that they were competing against each other, and that
they would either become the next CEO, or would have to leave the firm.1 ‘Up-or-out’
promotion policies are also common in the competition between scientists for (rare) po-
sitions at universities: In each year, only the (relatively) best performing PhDs become
assistant professors, and only the best among the assistant professors receive a tenured po-
sition subsequently, while mediocre staff members have to leave. In all these applications,
tournaments are used as a means to achieve two goals: First, the prospect of moving up
the ladder to higher levels within the same institution is a strong motivator for employees

1See also Konrad (2010) for an extensive discussion of this example.
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to exert effort in their current job. Therefore, promotion tournaments help to incentivize
employees.2 Second, the selection of the most able candidate(s) is very important due to
the ‘up-or-out’ nature of the competition. It is quite obvious that institutions intend to
promote (and keep) productive employees, whereas the inferior candidates should leave.3

This raises the question whether promotion tournaments between heterogeneous employ-
ees can be designed in such a way that they perform optimally along both dimensions.
Can tournaments be used as a device to maximize the incentives for effort provision while
at the same time minimizing the probability that the “wrong” contestant wins? Or, in
other words, can promotion tournaments be designed in such a way that they kill two
birds with one stone?

This paper provides a systematic investigation of how the two criteria ’incentive pro-
vision’ and ’selection performance’ are related to each other. In particular, we investigate
how modifications of the tournament structure affect the two aforementioned goals. When
comparing a static one-shot and a dynamic two-stage pair-wise elimination structure, our
results indicate that the dynamic format performs better in terms of aggregate equilib-
rium efforts, while the static tournament dominates with respect to selection. Therefore,
it seems that an additional hierarchy level is beneficial for incentive provision, but detri-
mental for the selection performance of a promotion tournament. In addition, we com-
pare two different seeding variants of the dynamic pair-wise elimination structure, one in
which similar workers compete against each other on the first stage, and one in which
heterogeneous worker types compete on the first stage of the tournament. Again, one
structure (the former one) performs better in terms of aggregate equilibrium effort, while
the other one dominates with respect to selection. Overall, these results suggest that the
two goals incentive provision and selection are incompatible. While any tournament with
heterogeneous participants provides some incentives for effort and some sorting of types,
modifications which improve the performance in one will deteriorate the performance in
the other dimension.4 The reason is that the structural variations considered in this paper
have similar effects as strategic handicaps á la Lazear and Rosen (1981). Intuitively, tour-
nament structures which amplify the degree of heterogeneity between strong and weak
workers perform well in terms of selection, as heterogeneity discourages weak workers

2The tournament helps to solve a moral hazard problem. The seminal paper for this application is
Lazear and Rosen (1981). Alternatively, the tournament may serve as a commitment device for the
principal, see, e.g., Malcomson (1984), and Prendergast (1999) for a survey.

3That promotion tournaments provide employees with information about the ability of employees has
previously been addressed by Rosen (1986) and Waldman (1990), for example. According to Sherwin
Rosen, "the inherent logic [of promotion tournaments] is to determine the best contestants and to promote
survival of the fittest" (p.701). Surprisingly, however, Rosen’s seminal paper is all about optimal incentive
provision across different stages of the tournament.

4Even though we concentrate on personnel policies, and in particular on the promotion tournament
application throughout this paper, this finding is equally important in the context of rent-seeking contests.
Note, however, that the interpretation is different in this case: A conflict between incentive provision and
selection in a promotion context (where maximization of aggregate effort is a natural goal) translates into
compatibility between the objectives in a rent-seeking contest (where effort inputs are wasteful and the
usual objective is their minimization).
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relatively more than it induces strong workers to slack off. At the same time, the more a
tournament accommodates heterogeneity between types, the better is its performance in
the incentive dimension, since heterogeneity decreases the incentives for effort provision
for both strong and weak workers in absolute terms. Our results suggest that pooling of
types in a simultaneous interaction tends to increase the effective degree of heterogeneity
between types, since the one-stage tournament delivers the best selection performance.
In contrast, the separation of employees into pair-wise interactions, optimally according
to their type (similar rather than heterogeneous types compete in stage 1), reduces the
effective degree of heterogeneity between types, which then boosts incentives for effort
provision. From a policy perspective, this implies that multiple instruments should be
used whenever both goals are equally important, i.e., a promotion tournament alone can-
not serve both goals equally well. If the talent of employees is observable, HRM could
organize a promotion tournament which maximizes incentives for effort provision between
a preselected sample of equally talented employees, for example. Otherwise, some kind of
assessment center prior to the promotion competition may serve this function, potentially
a tournament that is optimized along its selection dimension.

The question whether promotion tournaments can provide both incentives and sorting
was already addressed by Baker, Jensen, and Murphy (1988). However, they interpreted
the sorting function in a different way. Baker et al. (1988) investigate in how far pro-
motion tournaments ensure that employees end up in those jobs for which they are best
suited, i.e., they assume that skill and human capital requirement differ qualitatively
across hierarchy levels.5 We consider situations where talents requirements are qualita-
tively identical across hierarchy levels: Skill requirements in law and consultancy firms,
for example, do not change by much with positions. Also, top managers and CEOs per-
form very similar tasks, and both assistant and tenured professors teach and do research.
However, the ability to perform the same task is assumed to differ across workers. There-
fore, our paper is more related to work by Tsoulouhas, Knoeber, and Agrawal (2007),
who study a one-stage promotion tournament where insiders and outsiders compete for a
CEO position. Assuming that both the quality of the promoted agent and the provision
of incentives matter for the designer, they find that the two goals are conflicting if the
ability of outsiders is higher than the ability of insiders. While this result has a similar
flavor as the one established in our paper, the focus of their study is different: They
analyze optimal handicapping in a setting where selection involves both insiders and out-
siders, but only effort provision by insiders is beneficial for the organization. In contrast,
we consider within firm competition in different promotion tournament structures. This
paper is also related to the contest design literature. Ryvkin and Ortmann (2008) address
the selection performance of different tournament structures, but in contrast to our paper

5In their words, ’...talents for the next level in the hierarchy are not perfectly correlated with talents
to be the best performer in the current job’ (p. 602). The best salesman, for example, can be a bad
manager, which leads to the so-called Peter Principle. See also Prendergast (1993) and Bernhardt (1995),
who also consider the matching performance of promotion tournaments.
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they discard the effect of this variation on incentives.6 Groh, Moldovanu, Sela, and Sunde
(2012) show that the design of dynamic tournaments can involve a trade-off between
incentive provision and selection performance, but they focus on different seedings in a
dynamic tournament, while we also investigate how dynamic tournaments relate to static
ones when participants are heterogeneous.7 So far, static and dynamic contests have only
been compared in the case of homogeneous participants, see, e.g., Gradstein and Konrad
(1999).

The remainder of this paper is structured as follows. The next section introduces the
formal model and compares the equilibrium measures for incentive provision and selection
performance of different tournament formats. Section 5.3 discusses the intuition for and
the implications of our results, and section 5.4 concludes.

5.2 The Model

5.2.1 A Promotion Tournament with Heterogeneous Workers

Consider an institution who uses a promotion tournament to fill some vacant higher-level
position that is of value P to employees from lower ranks.8 For simplicity, assume that four
risk neutral workers from the same company compete for the open position on the internal
labor market, i.e., while working on their actual position, they are evaluated relative to
their colleagues, and the employee with the best performance is promoted at the end of the
evaluation period. Workers know that they are being evaluated, and in particular, they
are perfectly informed about both their own productivity and the productivity of their
colleagues.9 To keep the theoretical analysis tractable, we assume that workers are of two
different types: Equal shares are highly productive (“strong”) and less productive (“weak”),
respectively. Each worker provides effort to increase his/her chances for a promotion. The
organizing entity of the promotion tournament, in short the principal, cannot directly
observe individual efforts, but receives a noisy ordinal performance signal instead. As a
result, the promotion probability pi for some arbitrary worker i in a tournament interaction

6Brown and Minor (2011) empirically test the selection performance of two-stage pairwise elimination
tournaments, which we analyze theoretically.

7Another (technical) difference is that they use a perfectly discriminating all-pay-auction framework,
while the analysis in this paper uses a standard Tullock contest success function instead.

8The value of being promoted may include both monetary components (promotions imply higher
wages) and non-monetary aspects (e.g., concerns for status or power). Higher wages may either be
chosen by the tournament designing organization, or they may be the result of a signalling value and
competition between organizations, i.e., our modelling approach is consistent both with the concept of
classic promotion tournaments á la Lazear and Rosen (1981) and market-based tournaments in the spirit
of Waldman (1984). For a recent comparison of these two concepts, see Waldman (2011).

9This assumption may be problematic in some settings, for example in assessment centers. Note,
however, that this paper focusses on within company promotion tournaments. In most professional
occupations, the first promotion possibility for new hires is after one or two years. Therefore, workers
who compete on the internal labor market for open positions usually know each other due to ongoing
interactions in the workplace. The promotion tournament for the succession of Jack Welch, for example,
which is presented in the Introduction, lasted six years.
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is given by the ratio of own effort xi over effort provided by the immediate competitor(s),
X. Formally, the probability is defined as

pi (xi,X) =

⎧⎪⎪
⎨
⎪⎪⎩

xi
xi+X if xi,X > 0

1
#N if xi,X = 0

, (5.1)

where #N is the number of workers participating in the tournament interaction. While
the promotion probability of a worker is clearly increasing in own effort provision, and
decreasing in the effort provided by the immediate opponent(s), the chosen formulation
implies that the worker with the highest effort does not always win, i.e., effort does not
translate directly into performance. The reason is that the performance signal is distorted
by random noise.10 The principal pursues the following two objectives:

1. Maximize aggregate effort by all workers (Incentive Provision).

2. Maximize the probability that a strong, productive worker wins (Selection).

Work effort by employees determines output and profits of corporations. Since effort is
often costly for the workers and non-contractible at the same time, explicit incentives for
effort provision are needed. Therefore, the provision of incentives is an important goal for
any corporation, and the prospect of being promoted to a better paid, more attractive
position can be used to motivate and incentive workers. Selection performance is usually
equally important, however, since the ’up or out’ character of the competition implies that
only promoted employees stay within the corporation. As able workers are certainly better
suited for positions with more responsibilities, institutions intend to promote (and keep)
productive employees. This does even hold if the losers of the promotion competition are
allowed to stay, since they are certainly discouraged, such that many of them will apply at
different companies, i.e., they will leave voluntarily. Thus, promoting the “wrong” worker
is costly, and avoiding this cost by implementing a tournament format with optimal
selection properties is a natural second objective.

The goal of our analysis is to find out whether the careful design of structural param-
eters by the principal can ensure that the promotion tournament performs well in both
performance dimensions. In particular, we make two comparisons. First, we compare
incentive and selection properties of a static (one-stage) tournament and a dynamic (two-
stage) pairwise elimination tournament, i.e., we determine the effect pair-wise sequential
rather than joint simultaneous performance evaluations by the principal on incentive pro-
vision and selection performance in the promotion tournament. The two different tourna-
ment formats are depicted in Figure 5.1, which also shows that two different constellations
are possible in the dynamic specification: Either a strong worker competes against an-
other strong worker (and a weak worker against another weak worker) in the parallel

10We use a so-called Tullock (1980) contest success function (CSF) with discriminatory power one,
which can be transformed into an all-pay auction contest success function with multiplicative noise that
follows the exponential distribution. See Konrad (2009) for details (p.52f).
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Figure 5.1: Design Options Available to the Tournament Designer

stage-1 interactions (setting SSWW); or both stage-1 interactions are mixed in terms of
the productivity of the competing workers (setting SWSW). In the comparison of the static
and the dynamic tournament format, we assume that workers’ types are not observable.
Therefore, the seeding in stage 1 is random if the principal decides in favor of the dy-
namic format; setting SSWW occurs with probability 1/3, setting SWSW with probability
2/3.11 Second, we compare the performance of settings SSWW and SWSW with respect to
incentives and selection. Even though the principal needs to know the worker’s types for
this structural variation, the selection performance of the promotion tournament is still
important, since tournaments have a commitment property. Therefore, the winner of a
tournament must be promoted, independent of his/her type. One might certainly argue
that a promotion tournament is not the optimal mechanism to assure incentive provision
and selection if types are known. However, our approach is positive rather than norma-
tive; it is a well known fact that promotion tournaments are widely used, even though
theory sometimes suggests other mechanisms.12 Alternatively, one may also argue that

11After the first worker has been chosen randomly from the pool of four workers, the probability that
the next worker drawn from the pool of the remaining three workers is of the same type is 1/3 (since
only one of the remaining workers is of the same type), while the probability that the next worker is of
the other type is 2/3 (because two of the three remaining workers are of the other type).

12See Baker, Jensen, and Murphy (1988), or Gibbs and Hendricks (2004), for example.

106



the principal’s belief about workers’ types is distorted, such that tournament outcomes
provide a signal to update this beliefs.

5.2.2 Equilibrium Behavior by Workers

Workers face a trade-off in the one-stage, as well as in each pair-wise interaction of the
two-stage tournament: Ceteris paribus, increasing own effort leads to higher costs as well
as to a higher probability of winning. In equilibrium, workers choose their efforts such
that the marginal cost of effort provision equals the expected marginal gain in terms
of a higher probability of being promoted. To introduce heterogeneity, the effort costs
of strong workers, cS, are assumed to be lower than the effort costs cW of weak workers
(cS ≤ cW). Intuitively, effort costs are used as an inverse measure for ability.13

5.2.2.1 One-Stage Tournament

The one-stage tournament model we consider, denoted I in the sequel, is a special case of
the model developed by (and extensively discussed in) Stein (2002). It is a simultaneous
move game, the natural solution concept is therefore Nash Equilibrium (NE). In a NE,
each worker i with constant marginal effort costs ci maximizes his expected payoff Πi(I)
by choosing optimal effort xi ≥ 0, taking the total effort of all other workers X as given.
Formally, the optimization problem of worker i reads as follows:

max
xi≥0

Πi(xi,X) =
xi

xi +X
P − cixi.

The formal expressions for individual equilibrium efforts of strong and weak workers,
x∗S(I) and x∗W(I), respectively, are provided in equation (5.11) in the Appendix. Equilib-
rium efforts determine both the incentive provision and the selection performance of the
promotion tournament. Our measure for the incentive provision performance in the one-
stage tournament, denoted E(I), is defined as the sum of individual equilibrium efforts.
Since two workers are strong and weak, respectively, we obtain

E(I) = 2x∗S + 2x∗W. (5.2)

While the incentive provision measure depends on the absolute value of equilibrium ef-
forts, winning probabilities depend on the ratio of x∗S(I) and x∗W(I). To determine the
selection performance S(I), i.e., the probability that a strong worker wins, the equilib-
rium winning probability of a strong worker must be multiplied by two, since two strong
workers participate in the promotion tournament. Thus,

S(I) =
2x∗S

x∗S + x
∗
W
. (5.3)

13Modeling heterogeneity in terms of effort cost is without loss of generality. Proofs are available from
the authors upon request.
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5.2.2.2 Two-Stage Tournament

Subgame Perfect Nash Equilibrium is the relevant solution concept for the two-stage tour-
nament, since this structure is a sequential game. Therefore, the equilibrium is obtained
through backward induction. First, all possible stage-2 interactions that occur in setting
SSWW or SWSW, respectively, must be solved. With four workers of two types, there are
three potential stage-2 games, namely SS (both workers are strong), WW (both workers
are weak), or SW (one strong and one weak worker). The formal optimization problem of
some worker i with effort cost ci who competes with worker j in stage 2 reads

max
xi2≥0

Πi2(xi2, xj2) =
xi2

xi2 + xj2
P − cixi2,

where xi2 and xj2 are individual efforts by workers i and j, respectively. A detailed solution
of all stage-2 games is provided in the Appendix. Note, however, that the equilibrium
effort of each worker depends both on his own and on the type of the opponent: x∗S2(SS)
is the equilibrium effort of a strong worker in interaction SS, x∗W2(WW) the optimal choice
of weak workers in interaction WW, while x∗S2(SW) and x∗W2(SW) are the equilibrium efforts
of strong and weak workers, respectively, in the mixed stage-2 configuration SW.14 Since
stage-2 equilibrium efforts solve the last stage of the game, we can move forward to stage
1.

Setting SSWW. The stage-1 interactions in setting SSWW ensure, as Figure 5.1 shows,
that one strong and one weak worker reach stage 2 with certainty.15 Consequently, SW is
the only possible constellation on stage 2. This implies that both strong workers know
that, conditional on reaching stage 2, a weak worker will be the opponent, while weak
workers anticipate that they will interact with a strong worker if they reach stage 2. The
only reward for winning stage 1 is the participation in stage 2, in which workers may
then receive the promotion of value P . Thus, the expected equilibrium payoffs of stage-2
interaction SW for strong and weak workers, Π∗

S2(SW) and Π∗
W2(SW), respectively, determine

the continuation values for which workers compete in stage 1. This becomes clear when
considering the optimization problem of some strong worker i, who competes with the
second strong worker j:

max
xi1≥0

Πi(SSWW) =
xi1

xi1 + xj1
Π∗

S2(SW) − cSxi1.

Worker i chooses stage-1 effort xi1 to increase the probability to participate in stage 2,
which is worth Π∗

S2(SW) in equilibrium. Similarly, the two weak workers compete for
participation in stage 2, which is worth Π∗

W2(SW) for them. Let x∗S1(SSWW) and x∗W1(SSWW)
be the stage-1 equilibrium efforts in setting SSWW by strong and weak workers, respectively,

14For formal expressions of equilibrium efforts, see equations (5.12), (5.14), and (5.16), respectively.
15Note that Stein and Rapoport (2004) considers a very similar model.
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which are determined in the Appendix.16 Then, the incentive measure in setting SSWW of
the two-stage tournament format, denoted E(SSWW), is defined as follows:

E(SSWW) = 2[x∗S1(SSWW) + x
∗
W1(SSWW)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
stage 1 effort

+x∗S2(SW) + x
∗
W2(SW)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
stage 2 effort

. (5.4)

Total effort provision E(SSWW) amounts to individual efforts by two strong and two weak
workers in stage 1, and one strong and one weak worker in stage 2. The selection measure,
i.e., the probability that a strong worker receives the promotion, is determined by relative
effort provision of the stage-2 participants. As mentioned previously, one strong and
one weak worker compete in stage 2, independent of stage-1 outcomes. Therefore, the
selection measure S(SSWW) depends on the ratio of stage-2 equilibrium efforts x∗S2(SW) and
x∗W2(SW):

S(SSWW) =
x∗S2(SW)

x∗S2(SW) + x
∗
W2(SW)

. (5.5)

Setting SWSW. Since both stage-1 interactions are mixed in setting SWSW, the type con-
figuration in stage 2 is uncertain; any one of the three stage-2 games SS, WW, and SW is
possible, as Figure 5.1 clearly shows. As a consequence, the solution of this setting is
complicated by the fact that stage-1 continuation values are endogenously determined.17

To illustrate this complication, assume that some strong worker i and an arbitrary weak
worker j compete for the right to participate in stage 2. Simultaneously, strong worker k
and weak worker l compete for the remaining stage-2 slot in the other stage-1 interaction.
Then, the formal optimization problems of workers i and j are as follows:

max
xi1≥0

Πi(SWSW) =
xi1

xi1 + xj1
[

xk1

xk1 + xl1
π∗S2(SS) +

xl1
xk1 + xl1

π∗S2(SW)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡Pi(xk1,xl1)

−cSxi1

max
xj1≥0

Πj(SWSW) =
xj1

xi1 + xj1
[

xk1

xk1 + xl1
π∗W2(SW) +

xl1
xk1 + xl1

π∗W2(WW)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡Pj(xk1,xl1)

−cWxj1 .

16Formal expressions for equilibrium efforts are provided in equations (5.19) and (5.20).
17In contrast to the one-stage tournament and setting SSWW, the analysis of setting SWSW is novel; a

closed-form solution of this model has not been presented in the existing literature. Note, however,
that Groh, Moldovanu, Sela, and Sunde (2012) derive a closed-form solution for this setting in an all-
pay auction framework, i.e., for the case of a perfectly discriminating contest-success function where the
ordinal signal which the principal receives is not distorted by random noise. Rosen (1986) considers exactly
the same specification as analyzed here, but provides only numerical simulations and then conjectures
(without analytical proof) that certain properties of numerical simulations should hold in general. Finally,
Harbaugh and Klumpp (2005) solve a very similar model, but make use of the simplifying assumption
that total effort by each participant over both stages of the contest is equal to some constant. In other
words, they derive optimal behavior when strong and weak participants face the same binding effort
endowment (which has no intrinsic value), and then discuss how the endowment is distributed across the
two stages; the effort choice is unrestricted in our model.
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Interestingly, the continuation values Pi(xk1, xl1) and Pj(xk1, xl1) of workers i and j,
respectively, depend on the behavior of workers k and l in the other stage-1 interaction.
The reason is that expected equilibrium payoffs for workers differ across the three potential
stage-2 interactions SS, WW, and SW.18 Intuitively, the same holds for the continuation values
Pk(xi1, xj1) and Pl(xi1, xj1) of workers k and l in the second stage-1 interaction. Thus,
the two heterogeneous stage-1 interactions are linked through endogenously determined
continuation values. This interesting technical complication is relegated to the Appendix,
which also provides closed-form solutions for stage-1 equilibrium efforts x∗S1(SWSW) and
x∗W1(SWSW) of strong and weak workers, respectively.19 Using individual equilibrium efforts,
we can compute aggregate effort provision, i.e., the incentive measure E(SWSW), as follows:

E(SWSW) =2{π2x∗S2(SS) + (1 − π)2x∗W2(WW) + π(1 − π)[x
∗
S2(SW) + x

∗
W2(SW)]}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
stage 2 effort

+2[x∗S1(SWSW) + x
∗
W1(SWSW)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
stage 1 effort

, (5.6)

where π =
x∗S1(⋅)

x∗S1(⋅)+x∗W1(⋅)
is the probability that a strong worker wins against the weak op-

ponent in stage 1; this probability determines the likelihood for a particular stage-2 con-
figuration: The stage-2 participants are both strong with probability π2, both weak with
probability (1 − π)2, or of different types with probability 2π(1 − π). The probability
π that a strong worker wins in stage 1 is also relevant for the selection performance of
setting SWSW, measured by S(SWSW). It is defined as

S(SWSW) = π2 + 2π(1 − π)
x∗S2(SW)

x∗W2(SW) + x
∗
S2(SW)

. (5.7)

Intuitively, a strong worker is promoted if either both strong workers win their stage-1
interactions, which happens with probability π2, or if only one strong worker wins in stage
1, and subsequently also in stage 2.

Random Seeding. If the principal decides in favor of the dynamic format and seeding
of types in stage 1 is random, setting SSWW occurs with probability 1/3; the probability
of the complementary event that setting SWSW realizes is 2/3. Consequently, the expected
incentive provision measure for the two-stage promotion tournament, denoted E(II), is a
weighted average of total effort provision in the two settings. Formally,

E(II) =
E(SSWW) + 2 ⋅ E(SWSW)

3
. (5.8)

18Conditional on reaching stage 2, workers of both types have a higher expected payoff from meeting
a weak rather than a strong opponent, since Π∗

W2(WW) > Π∗
W2(SW) and Π∗

S2(SW) > Π∗
S2(SS). Details are

provided in the Appendix.
19See (5.24) and (5.25) for details.
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Conceptually, the same holds for the selection measure S(II), which is a weighted average
of S(SSWW) and S(SWSW). Formally,

S(II) =
S(SSWW) + 2 ⋅ S(SWSW)

3
. (5.9)

5.2.3 Designing the Promotion Tournament

Using results on equilibrium behavior of workers in the different promotion tournament
specifications, we will now investigate how structural modifications by the principal affect
incentive provision and selection performance. We start with the comparison of one- and
two-stage tournaments (I versus II), before the two possible settings of the two-stage
tournament, SSWW and SWSW are compared.

One-Stage vs. Two-Stages. Incentive provision and selection performance are iden-
tical in the one-stage and the two-stage tournament if all workers are of the same type.
The equality in terms of selection performance follows automatically from the homogene-
ity assumption: Either, all workers are weak, and the probability that a strong worker
wins is always zero, or, all workers are strong, and the probability that a strong worker
wins must be one. That the tournament structure does not affect aggregate effort provi-
sion in the homogeneous case is less obvious. However, as Gradstein and Konrad (1999)
established, this holds for the specification we consider.20 Consequently, the comparison
of these two structures also allows us to investigate whether heterogeneity differently af-
fects workers’ behavior in one-stage and two-stage tournaments. A formal comparison
of the incentive measures E(I) and E(II), and the selection measures S(I) and S(II),
respectively, delivers the following Proposition:

Proposition 5.1 (I vs. II). When the cost of effort is strictly higher for weak than for
strong agents (cW > cS),

(a) aggregate effort is strictly higher in the two- than in one-stage tournament, i.e.,

E(I) < E(II) for all cW > cS.

(b) the probability that a strong agent receives the promotion is strictly higher in the
one- than in the two-stage tournament, i.e.,

S(I) > S(II) for all cW > cS.

Proof. See Appendix.

20An intuition for this result is provided by Amegashie (2000).
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Figure 5.2: Performance in One-Stage and Two-Stage Tournaments

(a) Incentive Provision

(b) Selection

Notes: Panel (a) plots expressions (5.2) and (5.8) with cS = 1 and P = 1; panel
(b) plots (5.5) and (5.7) under the same assumption.
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Panel (a) of Figure 5.2 plots the incentive measures of both tournament formats, E(I) and
E(II), as a function of the effort costs of weak workers, cW; effort costs for strong types
and the value of the promotion are normalized to one, i.e., cS = 1 and P = 1. The figure
shows that the dotted line for aggregate effort provision in the two-stage tournament is
always above the solid line for overall effort provision in the one-stage tournament, as
part (a) of Proposition 5.1 suggests. The difference is highest at the kink of the one-stage
incentive measure for cW = 2 (where weak workers drop-out voluntarily, see Appendix 5.4
for details), and decreases subsequently. For extremely high values of cW, aggregate effort
provision approaches 0.5 in both tournament formats.

The selection performance of both tournament formats is illustrated in panel (b) of
Figure 5.2, which plots S(I) and S(II), i.e., the probability that a strong worker wins.21

The figure shows that the one-stage dominates the two-stage tournament in terms of its
selection performance; the probability that a strong worker is promoted is strictly higher
in I than in II when workers are heterogeneous, i.e., if cW > 1, as suggested by part (b)
of Proposition 5.1. This difference is particularly pronounced for relatively low degrees
of heterogeneity, since the curve of S(I) is much steeper initially than the one for S(II).
Only after the kink of the one-stage selection measure at cW = 2 the difference is reduced.
However, even if the costs of effort are five times as high for weak than for strong workers,
the probability that a strong worker wins is still almost ten percentage points higher in
the one-stage than in the two-stage tournament; only when cW →∞, both S(I) and S(II)
approach one.22

Setting SSWW vs. Setting SWSW. As in the previous comparison, both the incentive
provision and the selection performance are identical in settings SSWW and SWSW if workers
are homogeneous. Intuitively, it does not matter how types are seeded if they are all
equally talented. We start with a formal comparison of the incentive measures E(SSWW)
and E(SWSW), and the selection measures S(SSWW) and S(SWSW), respectively. The results
are summarized in the following Proposition:

Proposition 5.2 (SSWW vs. SWSW). When the cost of effort is strictly higher for weak than
for strong agents (cW > cS),

(a) aggregate effort is strictly higher in setting SSWW than in setting SWSW, i.e.,

E(SSWW) > E(SWSW) for all cW > cS.

(b) the probability that a strong agent receives the promotion is strictly higher in setting
SWSW than in setting SSWW, i.e.,

S(SSWW) < S(SWSW) for all cW > cS.

21The dependent variable is again cW, and effort costs of strong workers are again normalized to one.
22Not visible in panel (b) of Figure 5.2, but easy to show formally. Details available upon request.
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Proof. See Appendix.

Panel (a) of Figure 5.3 graphically illustrates part (a) of Proposition 5.2 by plotting
aggregate (expected) effort, i.e., E(SSWW) and E(SWSW), as a function of the constant
marginal cost of effort for the weak workers, cW; the effort cost of the strong type and
the value of a promotion are normalized to one (cS = 1 and P = 1). The figure shows
that incentives for effort provision are strictly higher in setting SSWW than in setting SWSW.
Moreover, one can see that the difference between the two settings is most pronounced
for intermediate values of cW, since aggregate effort provision in both settings converges
towards that of a tournament with strong workers only if cW → cS, while both measures
approach 0.5 if cW → ∞. The selection measures S(SSWW) and S(SWSW) are plotted as a
function of cW in panel (b) Figure 5.3. As in previous figures, the effort cost of the strong
types are normalized to one. The promotion probability for strong workers is clearly
higher in setting SWSW than in setting SSWW, as established in part (b) of Proposition 5.2.
The difference between the two settings is sizable, both for low and for comparably high
degrees of heterogeneity. Only for the limiting case cW

cS
→∞, the selection performance of

both settings becomes identical and converges to one.23 This convergence is much faster
in setting SWSW than in SSWW, however.

5.3 Discussion of Results

The previous analysis has shown that no structure is optimal both with respect to incentive
provision and selection performance. Clearly, any tournament structure provides some
incentives for effort and some sorting of types. However, it was shown that modifications
which improve the performance in one deteriorate the performance in the other dimension:
The two-stage tournament with random seeding dominates the one-stage format in terms
of incentive provision, whereas the opposite holds for selection performance (Proposition
5.1). Similarly, the incentive provision properties of setting SSWW are better than they
are in setting SWSW; yet, setting SWSW dominates with respect to selection performance
(Proposition 5.2). Taken together, these results suggest that the two objectives incentive
provision and selection are incompatible. To explain this finding, one has to distinguish
absolute and relative incentives for effort provision. First, note that the ratio of the
workers’ efforts determines the selection performance: The lower equilibrium efforts of
weak workers are relative to equilibrium efforts of strong workers, the better is the selection
performance of a tournament. In other words, the selection performance is increasing in
the degree of heterogeneity between workers, which is also graphically illustrated in panel
(b) of Figures 5.2 and 5.3. The higher the effort costs of weak workers are relative to effort
costs of strong workers (which are normalized to one), the better does selection work
in any tournament format. Second, one should keep in mind that absolute incentives

23Details of the proof for this claim are available from the authors upon request.
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Figure 5.3: Performance in Two-Stage Tournaments by Setting

(a) Incentive Provision

(b) Selection

Notes: Panel (a) plots expressions (5.4) and (5.6), assuming that cS = 1 and
P = 1; panel (b) plots expressions (5.5) and (5.7) under the same assumption.
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for effort provision determine total effort. It is well known that heterogeneity reduces
the incentives for effort provision in tournaments; therefore, absolute incentives, i.e., the
sum of workers’ efforts, are decreasing in the degree of heterogeneity. In all tournament
formats considered in this paper, total effort provision is lower the higher heterogeneity
between types, i.e., the higher the effort costs of weak workers are relative to effort costs
of strong workers, as panel (a) of Figures 5.2 and 5.3, respectively, shows. Consequently,
tournament structures which amplify the degree of heterogeneity between strong and weak
workers perform well in terms of selection, as heterogeneity discourages weak workers
relatively more than it induces strong workers to slack off. At the same time, the more a
tournament accommodates heterogeneity between types, the better is its performance in
the incentive dimension, since heterogeneity decreases the incentives for effort provision
for both strong and weak workers in absolute terms.

Essentially, the formal analysis has shown that structural variations of tournaments
with heterogeneous workers have similar effects as strategic handicaps. Lazear and Rosen
(1981) showed that incentives for effort provision are maximized if strong participants
of a tournament are handicapped in such a way that equilibrium winning probabilities
are equalized across types. This result already indicated a conflict between the two goals
incentive provision and selection performance. This paper shows that structural variation
cannot solve this problem. If, for example, a one-stage rather than a two-stage tournament
is used to fill a vacancy, this modification works like an inverse handicap: Weak workers
are discouraged, since they now compete with two strong workers simultaneously, rather
than against one opponent at a time in pair-wise interaction of the two-stage structure;
this reduces total effort provision and improves selection. Alternatively, using setting
SSWW rather than SWSW essentially handicaps strong workers: Whereas it is fairly easy for
strong workers to reach stage 2 in setting SWSW due to the weak stage-1 opponent, it is
equally hard for workers of both types to reach stage-2 in setting SSWW. Thus, incentives
for effort provision are now higher, and selection performance is lower due to structural
handicapping of strong types.

Our results do also provide some guidance in situations where the principal is only
interested in one of the two objectives we consider: If selection is the only relevant per-
formance measure, all participants should be pooled in a simultaneous interaction.24 In
contrast, separation of tournament participants into pair-wise interactions seems optimal
if designers mainly care about incentives for effort provision.25 Interestingly, anecdotal
evidence is in line with these theoretical predictions: First, HRM frequently uses as-
sessment centers, for example, where all applicants interact simultaneously, to fill open
entry-level positions. Arguably, the uncertainty about types is particularly high among

24The claim that the selection performance is maximized in the one-stage tournament follows from
Proposition 5.1(b), which establishes that selection performance is better in the static than in the dynamic
tournament with random seeding. In addition, the proof of Proposition 5.1 (b) in the Appendix shows
that selection in the static tournament is better than in any one of the two design option SSWW and SWSW,
respectively, of the dynamic format.

25This follows directly from Propositions 5.1(a) and 5.2(a).
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graduates without professional experience, while effort provision during the application
process has no direct value for corporations; this makes the selection of productive types
highly important.26 Second, relative performance evaluations of employees, which may
matter for bonus payments or promotions and provide employees with long term incen-
tives, are often separated. For example, it is common that each manager announces who
is the relatively best performing employee from his team in meetings of the management
division. Subsequently, the available prizes are either shared among several employees,
or alternatively, the subsequent relative performance of employees from the preselected
sample of top performers is used to award prizes to the overall winner.

5.4 Concluding Remarks

We investigated whether the performance dimensions ’incentive provision’ and ’accuracy
in selection’ are compatible in tournaments with heterogeneous workers. Comparing static
one-stage and dynamic two-stage promotion tournaments, as well as two different seeding
variants of two-stage promotion tournaments, our results suggest that they are incompat-
ible. Even though any tournament with heterogeneous participants provides some incen-
tives for effort and some sorting of types, modifications which improve the performance
in one will deteriorate the performance in the other dimension, i.e., tournament formats
that perform better in terms of incentive provision do worse in terms of selecting the best
participant, and vice versa. The reason is that structural variations of tournaments with
heterogeneous workers have similar effects as strategic handicaps. Intuitively, tournament
structures which amplify the degree of heterogeneity between strong and weak workers
perform well in terms of selection, as heterogeneity discourages weak workers relatively
more than it induces strong workers to slack off. At the same time, the more a tour-
nament accommodates heterogeneity between types, the better is its performance in the
incentive dimension, since heterogeneity decreases the incentives for effort provision for
both strong and weak workers in absolute terms. Therefore, multiple instruments should
be used whenever two two goals are equally important, since a promotion tournament
cannot be designed in such a way that it is optimal along both dimensions.

Our results are also important for applications where tournaments between heteroge-
neous participants are solely used as a means for incentive provision. It is well known, for
example, that heterogeneity has detrimental effects on the incentive properties of tourna-
ments. Existing solutions to this problem, such as handicapping á la Lazear and Rosen
(1981), or wage discrimination á la Gürtler and Kräkel (2010), require that the principal
knows workers’ types, which is not always the case. Whenever this information is not
available, structural modifications of the tournament structure may be an attractive al-
ternative way of dealing with negative incentive effects of heterogeneity. Therefore, we

26In line with this reasoning, separate job interviews are much more common among applicants for
higher level positions, which require professional experience and references from previous employers.
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believe that the comparison of different tournament structures with heterogeneous par-
ticipants is a promising topic for future work; most of the existing literature on structural
variations of tournaments (or contests) either assumes that participants are homogeneous,
or that the ordinal monitoring technology is perfectly precise. Even in the latter case,
the effect of tournament structures on heterogeneity is often trivial, since less productive
types voluntarily drop-out from the competition.
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Appendix

5.A Solution of the One-Stage Tournament

Due to symmetry, it suffices to solve the optimization problem of one strong and one weak
worker. Without loss of generality, we consider the strong worker i and the weak worker
k and obtain

max
xi≥0

Πi(I) =
xi

xi +X
P − cSxi,

max
xk≥0

Πk(I) =
xk

xi +X
P − cWxk,

where X = xj + xk + xl as in the main text. This leads to the two first-order optimality
conditions

XP = cS(xi +X)2 and XP = cW(xi +X)2.

Combining these conditions with symmetry (implying X = 2xi + 2xk) reveals that the
relation

x∗W =
2cS − cW
2cW − cS

x∗S (5.10)

holds in an interior NE. Since the equilibrium efforts cannot be negative, a corner solution
(with x∗W = 0) applies for cW ≥ 2cS. In other words, weak workers drop out from the
competition voluntarily for large differences in productivity (for cW ≥ 2cS), leaving the two
strong workers as the only contenders for the prize.27 Taking these considerations into
account, the equilibrium efforts of strong and weak workers are given by

x∗S(I) =
⎧⎪⎪
⎨
⎪⎪⎩

3(2cW−cS)
4(cS+cW)2P if cW

cS
< 2

1
4cS
P if cW

cS
≥ 2

and x∗W(I) =
⎧⎪⎪
⎨
⎪⎪⎩

3(cW−2cS)
4(cS+cW)2P if cW

cS
< 2

0 if cW
cS
≥ 2

. (5.11)

5.B Solution of the Two-Stage Tournament

5.B.1 Solution for Stage 2

(1) SS: If two strong (type S) workers i and j compete against each other on stage 2,
they both face the same maximization problem. Without loss of generality, we consider
the optimization by worker i, who maximizes his stage-2 payoff πi2(SS) by choosing an
optimal level of effort xi2, while taking the effort of his opponent xj2 as given.28 Formally,

27See also Stein (2002) for details.
28Throughout the paper the first subscript of the variables π and x indicates the player, while the

second subscript indicates the stage. The particular tournament environment considered (that is, SS, SW,
WW, SSWW, or SWSW) is in parentheses – as in πi2(SS) – or is omitted when there is no risk of confusion.
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this maximization problem reads

max
xi2≥0

πi2(SS) =
xi2

xi2 + xj2
P − cSxi2 .

As shown by Cornes and Hartley (2005), any pairwise tournament has a unique interior
equilibrium when the lottery CSF is used. Consequently, it suffices to consider first-order
conditions which are both necessary and sufficient. Using the first-order condition for
worker i (xj2P − cS(xi2 +xj2)2 = 0) and invoking symmetry (x∗i2 = x∗j2) delivers equilibrium
efforts

x∗S2(SS) = x
∗
i2(SS) = x

∗
j2(SS) =

P

4cS
. (5.12)

Inserting optimal actions in the objective function gives the payoff that a strong worker
can expect in equilibrium if he meets another strong worker on stage 2. Since the expected
payoff is the same for workers i and j, the indices can be replaced by S (indicating strong
workers). Equilibrium payoffs then read

π∗S2(SS) =
P

4
. (5.13)

(2) WW: Suppose now that two weak (type W) workers k and l compete with each other
on stage 2. Without loss of generality, we consider the optimization problem of worker k:
maxxk2≥0 πk2(WW) = xk2

xk2+xl2P − cWxk2. The same steps as in the solution of interaction SS
deliver equilibrium efforts

x∗W2(WW) = x
∗
k2(WW) = x

∗
l2(WW) =

P

4cW
. (5.14)

When inserting these efforts in the objective function, the expected equilibrium payoff for
a weak worker in a stage 2 interaction WW is given by

π∗W2(WW) =
P

4
. (5.15)

(3) SW: Finally, consider the situation where a strong worker S meets a weak worker W on
stage 2. The optimization problems are as follows:

max
xS2≥0

πS2(SW) =
xS2

xS2 + xW2

P − cSxS2 ,

max
xW2≥0

πW2(SW) =
xW2

xS2 + xW2

P − cWxW2 .

First order conditions are necessary as well as sufficient in heterogeneous pairwise in-
teractions (see Nti, 1999, or Cornes and Hartley, 2005). The combination of first-order
conditions implies equilibrium efforts

x∗S2(SW) =
cW

(cS + cW)2
P and x∗W2(SW) =

cS
(cS + cW)2

P, (5.16)
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respectively. Inserting optimal actions in the two objective functions gives the expected
payoffs for strong and weak workers in a stage 2 interaction SW:

π∗S2(SW) =
c2
W

(cS + cW)2
P , (5.17)

π∗W2(SW) =
c2
S

(cS + cW)2
P . (5.18)

5.B.2 Solution for Stage 1

Setting SSWW. Due to symmetry of the optimization problems, it suffices to solve the
optimization problem of one strong worker (i or k), and one weak worker (j or l). Without
loss of generality, we consider the maximization problems of workers i and j,

max
xi1≥0

Πi(SSWW) =
xi1

xi1 + xj1
π∗S2(SW) − cSxi1 ,

max
xk1≥0

Πk(SSWW) =
xk1

xk1 + xl1
π∗W2(SW) − cWxk1 .

Note that the optimization problem for strong workers is identical to the one considered
in stage-2 interaction SS, the only difference is the expected prize, which now amounts to
π∗S2(SW) rather than P . Analogously, weak workers face the same situation as in stage-2
interaction WW with a different prize (π∗W2(SW) instead of P ). Consequently, first-order and
symmetry conditions deliver stage 1 equilibrium efforts

x∗S1(SSWW) ≡ x
∗
i1(SSWW) = x

∗
j1(SSWW) =

c2
W

4cS(cS + cW)2
P (5.19)

x∗W1(SSWW) ≡ x
∗
k1(SSWW) = x

∗
l1(SSWW) =

c2
S

4cW(cS + cW)2
P . (5.20)

Setting SWSW. We assume (without loss of generality) that workers i and k are strong,
whereas workers j and l are weak, and that the two pairwise stage-1 interactions are be-
tween workers i and j, and between workers k and l, respectively. We start by considering
the decision problem of strong worker i and weak worker j. Both workers choose their
optimal stage-1 effort, given equilibrium behavior in any potential stage-2 interaction.
The optimization problems are

max
xi1≥0

Πi(SWSW) =
xi1

xi1 + xj1
[

xk1

xk1 + xl1
π∗S2(SS) +

xl1
xk1 + xl1

π∗S2(SW)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡Pi(xk1,xl1)

−cSxi1

max
xj1≥0

Πj(SWSW) =
xj1

xi1 + xj1
[

xk1

xk1 + xl1
π∗W2(SW) +

xl1
xk1 + xl1

π∗W2(WW)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡Pj(xk1,xl1)

−cWxj1 .

The continuation values Pi(xk1, xl1) and Pj(xk1, xl1) of workers i and j, respectively,
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depend on the behavior of workers k and l in the other stage-1 interaction. Similarly, the
continuation values Pk(xi1, xj1) and Pl(xi1, xj1) of workers k and l depend on the behavior
of workers i and j, as their formal optimization problems show:

max
xk1≥0

Πk(SWSW) =
xk1

xk1 + xl1
[

xi1
xi1 + xj1

π∗S2(SS) +
xj1

xi1 + xj1
π∗S2(SW)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡Pk(xi1,xj1)

−cSxk1,

max
xl1≥0

Πl(SWSW) =
xl1

xk1 + xl1
[

xi1
xi1 + xj1

π∗W2(SW) +
xj1

xi1 + xj1
π∗W2(WW)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡Pl(xi1,xj1)

−cWxl1.

Therefore, the two stage-1 interactions are linked through endogenously determined con-
tinuation values. The reason is that expected equilibrium payoffs for workers differ across
the three potential stage-2 interactions SS, WW, and SW. Conditional on reaching stage 2,
workers of both types have a higher expected payoff from meeting a weak rather than a
strong opponent, since π∗W2(WW) > π

∗
W2(SW) and π∗S2(SW) > π

∗
S2(SS). However, each worker

takes the probability that the opponent is of a certain type as given, since it is determined
in the parallel stage-1 interaction. The first-order conditions for the interaction between
workers i and j read

xj1Pi(xk1, xl1) − cS(xi1 + xj1)
2 = 0 and xi1Pk(xk1, xl1) − cW(xi1 + xj1)

2 = 0.

The respective conditions for the other stage-1 interaction between workers k and l are

xl1Pj(xi1, xj1) − cS(xk1 + xl1)
2 = 0 and xk1Pl(xi1, xj1) − cW(xk1 + xl1)

2 = 0 .

Combining the four conditions, we obtain two expressions that define a relation between
equilibrium effort choices of workers within each interaction, namely

xi1
xj1

=
cW
cS

Pi(xk1, xl1)

Pj(xk1, xl1)
and

xk1

xl1
=
cW
cS

Pk(xi1, xj1)

Pl(xi1, xj1)
, (5.21)

respectively. These expressions show that each stage-1 interaction is a tournament be-
tween workers with different costs and endogenously different valuations of winning. While
the costs of effort differ by construction, the difference of the value for winning is a result
of the tournament structure: Reaching stage 2 is more valuable for strong than for weak
workers.

We proceed now to the solution of the problem, which comprises two heterogeneous
participants with regard to their effort costs and their valuation. As mentioned previously,
any tournament with two heterogeneous participants has a unique, interior equilibrium for
the chosen contest success function (Cornes and Hartley 2005, Nti 1999). Consequently,
each of the two pairwise stage-1 interactions has a unique equilibrium for each pair of
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continuation values. What remains to be shown is that the two expressions in (5.21)
can be satisfied jointly such that both stage-1 interactions are satisfied simultaneously in
equilibrium. Inserting the expressions for the continuation values in (5.21) and simplifying
gives

xi1
xj1

=
cW
cS

(cS + cW)2 xk1
xl1

+ 4c2
W

4c2
S
xk1
xl1

+ (cS + cW)2
and

xk1

xl1
=
cW
cS

(cS + cW)2 xi1
xj1

+ 4c2
W

4c2
S
xi1
xj1

+ (cS + cW)2
. (5.22)

System (5.22) consists of two equations in the two unknowns x∗i1
x∗j1

and x∗k1
x∗
l1
, respectively.

Note that both equations are symmetric, since the two workers in each of the two stage-
1 interactions face identical optimization problems. This implies that the conditions
x∗S1 ≡ x

∗
i1 = x

∗
k1 and x∗W1 ≡ x

∗
j1 = x

∗
l1 do hold in the symmetric equilibrium.29 Imposing this

condition on (5.22) gives a quadratic equation in x∗S1 and x∗W1:

x∗S1

x∗W1

=
cW
cS

(cS + cW)2 x
∗

S1
x∗W1

+ 4c2
W

4c2
S
x∗S1
x∗W1

+ (cS + cW)2

⇔ 0 = 4c2
S [
x∗S1

x∗W1

]

2

+ (1 −
cW
cS

) (cS + cW)
2 [
x∗S1

x∗W1

] − 4
c3
W

cS

⇔
x∗S1

x∗W1

= F ∗(cS, cW),

where

F ∗(cS, cW) =
(cW − cS)(cS + cW)2 +

√
64c3

Wc
3
S + (cS − cW)2(cS + cW)4

8c3
S

. (5.23)

F ∗(cS, cW) is the ratio of stage-1 efforts of the two worker types, which is directly pro-
portional to heterogeneity in costs and continuation values, as equation (5.21) shows.
Therefore, F ∗(cS, cW) can be interpreted as a measure for both the exogenous heterogene-
ity in effort costs between strong and weak workers and the endogenous heterogeneity
between types that is due to different continuation values in stage 1.

The expression F ∗(cS, cW) allows us to disentangle and solve analytically the two in-
terdependent stage-1 interactions. We start by considering the continuation values which
satisfy

Pi(x
∗
S1, x

∗
W1) = Pk(x

∗
S1, x

∗
W1) =

(cS + cW)2F ∗(cW, cS) + 4c2
W

4(cS + cW)2[1 + F ∗(cS, cW)]
P ,

Pj(x
∗
S1, x

∗
W1) = Pl(x

∗
S1, x

∗
W1) =

(cS + cW)2 + 4c2
SF

∗(cW, cS)

4(cS + cW)2[1 + F ∗(cS, cW)]
P.

29The symmetric equilibrium exists for any degree of heterogeneity and is unique. Intuitively, one must
show that the graphs of the two relations in (5.22) have a unique intersection in the domain defined by
x∗j1
x∗i1

∈ [0,1] and x∗l1
x∗
k1

∈ [0,1]. It suffices to consider this domain, since the assumption of lower costs of
effort and the resulting higher value of winning of strong workers imply that x∗i1 ≥ x∗j1 and x∗k1 ≥ x∗l1,
respectively. This follows from (5.21). See Stracke (2012a) for details and a complete formal proof.
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Note that Pi(x∗S1, x
∗
W1) = Pk(x∗S1, x

∗
W1) and Pj(x∗S1, x

∗
W1) = Pl(x∗S1, x

∗
W1) due to symmetry.

Given these continuation values, stage 1 equilibrium efforts can be determined as

x∗S1(SWSW) ≡ x
∗
i1(SWSW) = x

∗
k1(SWSW) =

(cS + cW)
2F ∗(cW, cS)2 + 4c2

WF
∗(cW, cS)

4cS(cS + cW)2[1 + F ∗(cS, cW)]3
P (5.24)

x∗W1(SWSW) ≡ x
∗
j1(SWSW) = x

∗
l1(SWSW) =

(cS + cW)
2F ∗(cW, cS) + 4c2

SF
∗(cW, cS)2

4cW(cS + cW)2[1 + F ∗(cS, cW)]3
P . (5.25)

5.C Proofs

Lemma 5.1. Assume without loss of generality that cW ≥ cS = 1 and define f(cW) =
5c3W+2c2W+cW
c2W+2cW+5

. Then, the relation F ∗(1, cW) > f(cW) does hold for all cW > 1, where F ∗(1, cW)

is defined as in (5.23). Furthermore, for cW = 1 it holds that F ∗(1, cW) = f(cW).

Proof. From equation (5.21), we know that xi1
xk1

= cW
cS

Pi(xj1,xl1)
Pk(xj1,xl1) . Further, equation (5.23)

tells us that x∗i1
x∗
k1
= F ∗(cS, cW). Consequently, using the assumption that cW ≥ cS = 1, it must

hold that

F ∗(1, cW) = cW
Pi(xj1, xl1)

Pk(xj1, xl1)
=

4c3
W + cW(1 + cW)

2 ×
xj1
xl1

(1 + cW)2 + 4 ×
xj1
xl1

.

Note that
∂F ∗(1, cW)

∂
xj1
xl1

=
(1 + cW)4 − 16c2

W

[(1 + cW)2 + 4 ×
xj1
xl1

]2
> 0

if cW > 1. Further, recall that player l has both higher cost (cW > 1) and a lower continuation
value (Pj > Pl), such that xj1 > xl1 does hold. Therefore, assuming xj1 = xl1 underestimates
F ∗(1, cW). Since

f(cW) =
5c3

W + 2c2
W + cW

c2
W + 2cW + 5

is the expression we derive from F ∗(1, cW) under this assumption, we have proven
F ∗(1, cW) > f(cW). If we assume cW = 1, all players are perfectly symmetric, such that
xj1 = xl1 does hold. Consequently, the relation F ∗(1, cW) = f(cW) does hold for cW = 1.

Lemma 5.2. Assume without loss of generality that cW ≥ cS = 1 and define flow(cW) = 2cW−1.
Then, the relation F ∗(1, cW) < flow(cW) does hold for all cW > 1. Furthermore, for cW = 1, it
holds that f(cW) = flow(cW).

Proof. We start with the relation that we want to prove, namely:

f(cW) > flow(cW)

⇔ 5c3
W + 2c2

W + cW > (2cW − 1)(c2
W + 2cW + 5)

⇔ 3c3
W − c

2
W − 7cW + 5 > 0

We now have to prove that φ(cW) ≡ 3c3
W − c

2
W − 7cW + 5 > 0 does always hold for cW > 1. To

see this, note that φ(⋅) is a cubic function that has a local minimum at cW = 1, and a
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local maximum at cW = −7/9. Furthermore, φ(1) = 0, which implies that φ(cW) > 0 for all
cW > 1.

Lemma 5.3. Assume without loss of generality that cW ≥ cS = 1 and define fhigh(cW) =
c3W+2c2W+cW

4 . Then, the relation F ∗(1, cW) < fhigh(cW) does hold for all cW > 1. Furthermore, for
cW = 1, it holds that F ∗(1, cW) = fhigh(cW).

Proof. From equation (5.21), we know that xi1
xk1

= cW
cS

Pi(xj1,xl1)
Pk(xj1,xl1) . Further, equation (5.23)

tells us that x∗i1
x∗
k1
= F ∗(cS, cW). Consequently, using the assumption that cW ≥ cS = 1, it must

hold that

F ∗(1, cW) = cW
Pi(xj1, xl1)

Pk(xj1, xl1)
=

4c3
W ×

xl1
xj1

+ cW(1 + cW)2

(1 + cW)2 ×
xl1
xj1

+ 4
.

Note that
∂F ∗(1, cW)

∂ xl1xj1

= −
(cW − 1)2cW(c2

W + 6cW + 1)

[(1 + cW)2 ×
xl1
xj1

+ 4]2
< 0

if cW > 1. Further, recall from the main text that player l will never drop out in a pairwise
competition for any finite degree of heterogeneity in terms of costs and continuation
value, such that xl1 > 0 does hold. Therefore, assuming xl1 = 0 (which implies xl1

xj1
= 0)

overestimates F ∗(1, cW), since this expression is decreasing in xl1
xj1

. Since

fhigh(cW) =
c3
W + 2c2

W + cW
4

is the expression we derive from F ∗(1, cW) under this assumption, we have proven
F ∗(1, cW) < fhigh(cW). If we assume cW = 1, all players are perfectly symmetric, such that
xl1 = xj1 does hold. When inserting this relation in F ∗(1, cW), we see that the relation
F ∗(1, cW) = f(cW) does hold for cW = 1.

Proposition 5.1: When the cost of effort is strictly higher for weak than for strong agents
(cW > cS),

(a) aggregate effort is strictly higher in the two- than in one-stage tournament, i.e.,

E(I) < E(II) for all cW > cS.

(b) the probability that a strong agent receives the promotion is higher in the one- than
in the two-stage tournament, i.e.,

S(I) > S(II) for all cW > cS.

Proof. We will separately prove parts (a) and (b) of Proposition 5.1, starting with (a).
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(a): To prove the relation E(II) > E(I) for all cW > cS, we assume without loss of
generality that cW > cS = 1. Recall from (5.2) that E(I) is defined stepwise, i.e.,
E(I) = max{ 3

2+2cw
P, 1

2P}. First, we will consider the range 1 < cW ≤ 2, where E(I) = 3
2+2cw

P .
In the second part of this proof, we will devote attention to cW > 2 and E(I) = 1

2P .

(i) We consider the range 1 < cW ≤ 2 and want to prove that

E(I) < E(II)

⇔ E(I) <
2

3
E(SWSW) +

1

3
E(SSWW).

Recall from the proof of Proposition 1 that the formal expression for E(SWSW) is fairly
complicated, in particular due to the F ∗(1, cW)-function. To simplify the subsequent
analysis, we will therefore make use again of Lemmata 1/2 and replace F ∗(1, cW) by
flow(cW) = 2cW − 1. This is without loss of generality, since E(SWSW) is strictly increasing in
F ∗(1, cW):

∂E(SWSW)
∂F ∗(1, cW)

=
(2c3

W − c
2
W − 4cW + 7)F ∗(1, cW) + 3c2

W + 2cW − 1

2cW(1 + cW)2(1 + F ∗(1, cW))3
> 0.

Note that the denominator is always greater than zero, since we know from Lemma 1 that
(a) ∂F ∗(1,cW)

∂cW
> 0 and (b) F ∗(1) = 1; this implies that the sign of the derivative is determined

by the numerator, which is also greater than zero for all 1 < cW ≤ 2. Consequently, effort
E(SWSW) is underestimated through the replacement of F ∗(1, cW) by flow(cW). Inserting
flow(cW) and simplifying leaves us with the sufficient condition

Q(cW) ≡
(cW − 1)2(6c3

W + 2c2
W − 9cW + 4)

12c3
W(1 + cW)

2
=

(cW − 1)2q(cW)

12c3
W(1 + cW)

2
> 0.

In the relevant range 1 < cW ≤ 2, the expression (cW − 1)2 in the numerator as well as the
denominator 12c3

W(1 + cW)
2 are always greater than zero, such that the sign of Q(cW) is

determined by the expression q(cW) ≡ 6c3
W + 2c2

W − 9cW + 4. Note that q(1) = 3 and q(2) = 42.
Since

∂q(cW)

∂cW
= 18c2

W + 4cW − 9 > 0

for all cW > 1, it holds that q(cW) > 0 for all 1 < cW ≤ 2, which immediately implies that
Q(cW) > 0. This completes the first part of the proof.

(ii) When cW > 2, it holds that E(I) = 1
2P . We have to prove that the relation E(II) > E(I)

is satisfied. Inserting the respective expressions for E(II) and E(I) gives the condition:

(3c3
W + 6c2

W + 4cW + 9)F ∗(1, cW)2 + (2c3
W + 14c2

W + 16cW + 4)F ∗(1, cW) + c3
W + 4c2

W + 6cW + 3

3cW(cW + 1)2(1 + F ∗(1, cW))2
> 1

⇔ B(F ∗
(1, cW), cW) ≡ (cW + 9)F ∗

(1, cW)
2
− (4c3

W − 2c2
W − 10cW − 4)F ∗

(1, cW) − (2c2
W − 3)(cW + 1) > 0
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Note that B(⋅) is minimized for F ∗(1, cW)min =
2c3W−c2W−5cW−2

9+cW , since

∂B(⋅)

∂F ∗(1, cW)
= (18 + 2cW)F

∗(1, cW) − 4c3
W + 2c2

W + 10cW + 4 and
∂2B(⋅)

∂[F ∗(1, cW)]2
= 18 + 2cW > 0.

Moreover, note that F ∗(1, cW)min > 0 for all cW > 2, which implies that B(⋅) is increasing
in F ∗(1, cW) in the range which is relevant for this proof. Consequently, when solving the
relation B(⋅) > 0 for F ∗(1, cW), we know that F ∗(1, cW) must not be in the range between
the two roots, as B(⋅) is negative here. We obtain

B(F ∗(1, cW), cW) > 0

⇔ F ∗(1, cW)
2 −

(4c3
W − 2c2

W − 10cW − 4)

(cW + 9)
F ∗(1, cW) −

(2c2
W − 3)(cW + 1)

(cW + 9)
> 0

⇔ F ∗(1, cW) <
2c3

W − c
2
W − 5cW − 2 −

√
K(cW)

9 + cW
∨ F ∗(1, cW) >

2c3
W − c

2
W − 5cW − 2 +

√
K(cW)

9 + cW
,

where
K(cW) = 4c6

W − 4c5
W − 17c4

W + 22c3
W + 44c2

W − 10cW − 23.

We do only have to consider the second relation, since the first one is always below one
for cW > 2, while F ∗(1, cW) ≥ 1 for all cW ≥ 1.30 To complete the proof, we have to show that

F ∗(1, cW) >
2c3

W − c
2
W − 5cW − 2 +

√
K(cW)

9 + cW

for all cW > 2. Inserting the equilibrium relation F ∗(1, cW) from (5.23) gives:

(cW − 1)(1 + cW)
2 +

√
64c3

W + (1 − cW)2(1 + cW)4

8
>

2c3
W − c

2
W − 5cW − 2 +

√
K(cW)

9 + cW
,

which is equivalent to

(cW − 1)(1 + cW)
2
(9 + cW) + (9 + cW)

√

64c3
W + (1 − cW)2(1 + cW)4 > 16c3

W − 8c2
W − 40cW − 16 + 8

√
K(cW).

Rearranging and simplifying gives the condition

H(cW) ≡ c
4
W − 6c3

W + 16c2
W + 30cW − 7

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
µ(cW)

+ (9 + cW)
√

64c3
W + (1 − cW)2(1 + cW)4

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
γ(cW)

−8
√
K(cW)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ζ(cW)

> 0.

H(cW) consists of three parts µ(cW), γ(cW), and ζ(cW). Close inspection of µ(cW) reveals
that µ(cW) is strictly increasing and greater than zero for all cW > 2.31 Consequently, it is

30F ∗(1,1) = 1; also, we know from Lemma 1 that ∂F ∗(1,cW)
∂cW

> 0. Therefore, F ∗(1, cW) ≥ 1 for all cW ≥ 1.
31µ(2) = 85, and µ′(cW) = 4c3W − 18c2W + 32cW + 30.
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a sufficient condition for H(cW) > 0 to show that γ(cW) > ζ(cW) in the range cW > 2:

(9 + cW)
√

64c3
W + (1 − cW)2(1 + cW)4 > 8

√
K(cW)

⇔ (9 + cW)
2[64c3

W + (1 − cW)
2(1 + cW)

4] > 64K(cW)

⇔ c8
W + 20c7

W − 140c6
W + 460c5

W + 2086c4
W + 3436c3

W − 2860c2
W + 820cW + 1553 > 0

A sufficient condition for the above relation to hold is

20c7
W − 140c6

W + 460c5
W + 2086c4

W + 3436c3
W − 2860c2

W > 0

⇔ c2
W[20c5

W − 140c4
W + 460c3

W + 2086c2
W − 2860] > 0.

Since cW > 2 by assumption, we are left with

20c5
W − 140c4

W + 460c3
W + 2086c2

W − 2860 > 0.

For cW > 2, it must hold that 2086c2
W−2860 > 0, such that we can drop those two expressions

without loss of generality. We get

20c5
W − 140c4

W + 460c3
W > 0

⇔ c3
W[20c2

W − 140cW + 460] > 0

⇔ c2
W − 7cW + 23 > 0,

which is greater than zero for all cW > 2. This completes part (a) of the proof.

(b): Recall from part (b) of Proposition 5.2 that selection in setting SSWW is always
dominated by selection in SSWW. Consequently, it is sufficient to show that S(I) > S(SWSW)
to prove part (b) of Proposition 5.1, since S(II) is a composite measure of S(SWSW) and
S(SSWW). We start with the relation which we want to prove:

S(I) > S(SWSW)

⇔min{
2cW − cS
cS + cW

,1} >
(cS + cW)F ∗(1, cW)2 + 2cWF ∗(1, cW)

(cS + cW)[1 + F ∗(1, cW)]2

Since S(I) is defined stepwise, we have to proceed in two steps. First, we start with the
case where 1 < cW ≤ 2 such that S(I) = 2cW−cS

cS+cW , before we consider cW > 2 and S(I) = 1.

(i) We assume without loss of generality that cS = 1 and consider the range 1 < cW ≤ 2.
Then, we get

S(I) > S(SWSW)

⇔
2cW − 1

1 + cW
>

(1 + cW)F ∗(1, cW)2 + 2cWF ∗(1, cW)

(1 + cW)[1 + F ∗(1, cW)]2

⇔ (2cW − 1)[1 + F ∗(1, cW)]
2 > (1 + cW)F

∗(1, cW)
2 + 2cWF

∗(1, cW)
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Rearranging gives the condition

N(cW) = (cW − 2)[F ∗(1, cW)]
2 + 2(cW − 1)F ∗(1, cW) + 2cW − 1 > 0

Recall from equation (5.23) that the expression for F ∗(1, cW) is fairly complicated. To
simplify the subsequent analysis, we make use of Lemma 3, where we established that
F ∗(1, cW) < fhigh(cW) for all cW > 1. Since S(SWSW) is strictly increasing in F ∗(1, cW), it is
sufficient for the proof if we use the much simpler expression fhigh(cW), as this tends to
reduce the difference between the one-stage and the two-stage tournament in terms of
selection:

∂S(SWSW)
∂F ∗(1, cW)

=
2(cW + F ∗(1, cW)

(1 + cW)[1 + F ∗(1, cW)]3
> 0.

This leaves us with

N̄(cW) = (cW − 2) [
c3
W + 2c2

W + cW
4

]

2

+ 2(cW − 1)
c3
W + 2c2

W + cW
4

+ 2cW − 1

=
(cW − 2) [c3

W + 2c2
W + cW]

2
+ 8(cW − 1)(c3

W + 2c2
W + cW) + 32cW − 16

16

=
(cW − 1)[(cW − 1)(cW + 2)(cW(cW − 1)2 + 4)cW + 16]

16
.

Recall that we must show that N̄(cW) > 0 holds for all 1 < cW ≤ 2. Note that N̄(1) = 0

and N̄(2) = 12. Therefore, the proof is complete if we can show that N̄(cW) is strictly
increasing in the relevant range. Since cW > 1, the factor (cW − 1) in the expression of
N̄(cW) is always positive and can be disregarded in the subsequent analysis of the slope.
Subsequently, we use the simpler expression

N̂(cW) =
(cW − 1)(cW + 2)(cW(cW − 1)2 + 4)cW + 16

16
.

When computing the first derivative of N̄(cW) with respect to cW, we obtain

∂N̂(cW)

∂cW
=

6c5
W + 15c4

W + 4c3
W + 3c2

W + 4cW − 8

16
,

which is clearly positive for all values in the range 1 < cW ≤ 2. This proves the first part of
the Proposition.

(ii) We assume without loss of generality that cS = 1. Then, a comparison of S(I) and
S(SWSW) in the range cW > 2 gives

S(I) > S(SWSW)

⇔ 1 >
(1 + cW)F ∗(1, cW)2 + 2cWF ∗(1, cW)

(1 + cW)[1 + F ∗(1, cW)]2

⇔ (1 + cW)[1 + F
∗(1, cW)]

2 > (1 + cW)F
∗(1, cW)

2 + 2cWF
∗(1, cW)
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Rearranging gives the condition

M(cW) = 2F ∗(1, cW) + cW + 1 > 0.

As in the first part of this proof, we substitute fhigh(cW) for F ∗(1, cW), which gives

M̄(cW) = 2
c3
W + 2c2

W + cW
4

+ cW + 1

=
c3
W + 2c2

W + 3cW + 2

2
.

M̄(cW) is clearly positive for all cW > 2, which proves the second part of the Proposition.

Proposition 5.2: When the cost of effort is strictly higher for weak than for strong agents
(cW > cS),

(a) aggregate effort is strictly higher in setting SSWW than in setting SWSW, i.e.,

E(SSWW) > E(SWSW) for all cW > cS.

(b) the probability that a strong agent receives the promotion is strictly higher in setting
SWSW than in setting SSWW, i.e.,

S(SSWW) < S(SWSW) for all cW > cS.

Proof. We will separately prove parts (a) and (b) of Proposition 5.2. We start with part
(a) below.

(a): To prove the relation E(SSWW) > E(SWSW) for all cW > cS, we assume without loss of
generality that cW > cS = 1. In the proof, we will proceed in two steps. First, we derive
a necessary and sufficient condition in terms of the function F ∗(1, cW) for the relation
E(SSWW) > E(SWSW) to hold. Second, we prove that the equilibrium function F ∗(1, cW),
which was derived in (5.23), indeed satisfies this condition. We start with the relation
which we want to prove:

E(SSWW) > E(SWSW)

⇔
c3
W + 2cW(1 + cW) + 1

2cW(1 + cW)2
>

(1 + cW)
2[1 + [1 + F ∗(1, cW)]cWF ∗(1, cW)] + 4cW[c

2
W + (1 + cW)F

∗(1, cW)]

2cW(1 + cW)2[1 + F ∗(1, cW)]2

Multiplying both sides by 2cW(1 + cW)2[1 + F ∗(1, cW)]2 and rearranging gives

F ∗(1, cW)
2 +

c3
W − 2c2

W − cW + 2

cW + 1
F ∗(1, cW) −

3c3
W − c

2
W

cW + 1
> 0

Solving for F ∗(1, cW) gives us two conditions:

F ∗
(1, cW) <

−c3
W + 2c2

W + cW − 2 −R(cW)

2cW + 2
∨ F ∗

(1, cW) > Z(cW) ≡
−c3

W + 2c2
W + cW − 2 +R(cW)

2cW + 2
,
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where
R(cW) =

√
c6
W − 4c5

W + 14c4
W + 16c3

W − 11c2
W − 4cW + 4.

We do only have to consider the second relation, since the first one is below one for some
values of cW, while F ∗(1, cW) ≥ 1 for all cW ≥ 1.32 This completes the first part of the proof.
We now have to prove that

F ∗(1, cW) > Z(cW) ≡
−c3

W + 2c2
W + cW − 2 +R(cW)

2cW + 2
(5.26)

for all cW > 1. From Lemmata 1 and 2 we know that F ∗(1, cW) > flow(cW). Consequently,
a sufficient condition for (5.26) is given by flow(cW) > Z(cW). Rearranging this condition
gives

c3
W + 2c2

W + cW > R(cW).

Squaring both sides leaves us with33

2c5
W − 2c4

W − 3c3
W + 3c2

W + cW − 1 > 0

⇔ 2(cW − 1)2(cW + 1)(cW −
1

√
2
)(cW +

1
√

2
) > 0.

This relation is always satisfied if cW > 1, which completes part (a) of this proof.

(b): In part (b) of this proof, we first derive a necessary and sufficient condition which
assures that the relation S(SSWW) < S(SWSW) does hold in terms of the function F ∗(1, cW).
Then, we prove that F ∗(1, cW) satisfies this condition.

(i) As previously, we assume that cW > cS = 1 does hold without loss of generality. Conse-
quently, we can use the expressions in equations (5.5) and (5.7) in what follows. We start
with the relation which we want to prove:

S(SWSW) > S(SSWW)

⇔ (1 + cW)F
∗(1, cW)

2 + 2cWF
∗(1, cW) > cWF

∗(1, cW)
2 + 2cWF

∗(1, cW) + cW

⇔ F ∗(1, cW)
2 > cW

⇔ F ∗(1, cW) < −
√
cW ∨ F ∗(1, cW) >

√
cW

Note that it is sufficient to show that F ∗(1, cW) > cW, since cW >
√
cW for cW > 1.

(ii) From Lemma 1, we know that F ∗(1, cW) > f(cW). We will now prove that f(cW) > cW
for cW > 1 to complete the proof. f(cW) > cW implies that

5c3
W + 2c2

W + cW
c2
W + 2cW + 5

> cW

32F ∗(1,1) = 1; also, we know from Lemma 1 that ∂F ∗(1,cW)
∂cW

> 0. Therefore, F ∗(1, cW) ≥ 1 for all cW ≥ 1.
33Squaring is without loss of generality here, since we are only interested in solutions for cW > 1.
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does hold. Rearranging gives

5c3
W + 2c2

W + cW > c3
W + 2c2

W + 5cW

⇔ cW(c
2
W − 1) > 0

⇔ cW > 1 ∨ −1 < cW < 0

This proves the claim S(SWSW) > S(SSWW) for all cW > 1.
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Chapter 6

Optimal Prizes in Dynamic Elimination
Contests: An Experimental Analysis

This chapter is based on joint work with Wolfgang Höchtl from the Austrian National
Bank (OeNB), Rudolf Kerschbamer from the University of Innsbruck, and Uwe Sunde
from the University of St. Gallen (Stracke, Höchtl, Kerschbamer, and Sunde 2012).

6.1 Introduction

Contests are situations in which agents compete by expending valuable resources to win
a prize. Such situations appear in many different areas of economics – including election
campaigns, R&D competitions, military conflicts, or the competition for bonus payments
and promotions on internal labor markets. Given the multiplicity of applications, contests
may vary in several dimensions, for example, with respect to the number of participants,
the number of prizes, or with respect to their structure. The effect of different modeling
choices in these dimensions on behavior of contest participants has been studied exten-
sively in theoretical work, which typically determines the optimal contest design with
respect to a given optimality criterion.1 Two criteria are particularly prominent in the
literature on optimal prizes in dynamic contests, namely the maximization of aggregate
incentives (operationalized as the sum of efforts provided by all agents across all stages
of the contest), and the maintenance of incentives across stages of the contest (oper-
ationalized as constant individual efforts over stages). A common motivation for both
objectives is that effort provision by contestants is valuable for the entity organizing the
contest, henceforth called the contest designer. The maximization of aggregate incentives
is a natural objective of the contest designer, in particular when efforts across stages are
additively separable, see Sisak (2009) for an excellent survey of the literature addressing
this criterion. Alternatively, complementarities between the efforts at different stages can
imply that incentive maintenance across stages is the relevant criterion for the contest

1See Konrad (2009) for a literature review.
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designer. The classical reference for this case is Rosen (1986), who argued that incen-
tive maintenance is particularly important in corporate tournaments in which workers are
incentivized by wage increases that are associated with promotions to higher hierarchy
levels within the same organization.

In this paper, we study the optimal design of a two-stage elimination contest with four
homogeneous participants. Assuming that the overall prize money is fixed, our analysis
first replicates the result of Fu and Lu (2012) that a “winner-takes-all" structure with a
single prize for the winner of the final round maximizes total effort under the standard
assumption of rational and risk-neutral contestants.2 Then, we derive the prize structure
that ensures incentive maintenance across stages in the sense of Rosen (1986). This
structure turns out to be a format with multiple prizes, where the winner of the final
receives most of the prize money, while a smaller part is assigned to the runner-up prize.
Thus, the theoretical analysis shows that there is a trade-off between the two optimality
criteria ‘maximization of aggregate efforts’ and ‘incentive maintenance across stages’ in
the standard benchmark of a pair-wise elimination contest:3 The single-prize format
(abbreviated as SP in the sequel) maximizes aggregate efforts, while themultiple-prizes
format (abbreviated as MP) delivers constant effort across stages.

We test these predictions in lab experiments. In line with the theoretical model, we
find that total effort is higher in SP than inMP. However, the observed difference between
treatments is smaller than predicted and statistically insignificant at conventional levels.
On the other hand, incentive maintenance across stages in MP holds almost exactly as
predicted by theory. A closer look at the disaggregate data reveals that risk-aversion of
experimental subjects can account for the departure from the theoretical prediction in
the total effort dimension. Specifically, we find that total effort provision by risk-averse
subjects is higher (and not lower) in theMP than in SP format, while the behavior of risk-
neutral and risk-loving subjects is in line with the theoretical prediction. Intuitively, the
MP format is more attractive for risk-averse subjects, since the runner-up prize provides
insurance against situations where costly effort is provided but no prize is won, while
such insurance is not important for risk-neutral participants. Overall, the results of this
paper suggest that there is a trade-off between the two goals ‘total effort provision’ and
‘constant effort across stages’ under the standard assumption of risk-neutral contestants,
but this trade-off might be mitigated if contestants are sufficiently risk-averse. In such
a case, a format that awards multiple prizes might well be the dominant option in both
performance dimensions.

Our results contribute to the recent literature on the behavior in contests. So far, the
2To be precise, we consider a pair-wise elimination rather than pyramid contest. However, the result

by Fu and Lu (2012) carries over to this format, since the underlying economic intuition is exactly the
same.

3This trade-off exists if effort provision by contest participants is costly. As shown by Matros (2005),
a “winner-takes-all" structure maximizes aggregate incentives and ensures incentive maintenance if con-
testants receive an endowment (which cannot be cashed out) and are then asked to allocate it across
different stages of a contest.
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experimental literature has mainly focused on static contests.4 Exceptions are the studies
of Altmann, Falk, and Wibral (2012) and Sheremeta (2010), which both compare static
(one-shot) and dynamic (two-stage) contests. The paper by Altmann et al. (2012) consid-
ers a prize structure which predicts incentive maintenance across stages in the theoretical
benchmark, and one of their main findings in the experiments is that effort provision by
subjects in the first stage is much higher than in the second stage. Sheremeta (2010), on
the other hand, investigates a single-prize two-stage contest format and compares it to
an analogous one-stage contest interaction. Our paper combines the two approaches and
analyzes a systematic variation of the prize structure in dynamic contests. Moreover, our
paper is the first experimental test of the result by Fu and Lu (2012) that a "winner-takes-
all" prize structure maximizes total effort in dynamic Tullock contests with homogeneous
participants. Finally, this paper is also related to recent work by Delfgaauw, Dur, Non,
and Verbeke (2012), who investigate whether a more convex prize spread affects relative
effort exertion across different stages of a dynamic contest. Using data from a field ex-
periment, they find that the effect of the prize structure on relative effort provision across
stages is rather weak. The same effect appears to be much stronger in our experimental
data. A likely explanation for this difference in magnitude could be that our prize spread
variation is more extreme, since we compare a “winner-takes-all” structure with a multi-
ple prizes setting, while Delfgaauw et al. (2011) investigate the effects of a more modest
variation of prizes in a setting with multiple prizes.

The remainder of this paper is organized as follows: Section 6.2 derives the theoretical
benchmark for a simple dynamic contest model. Section 6.3 outlines the experimental
design and derives our main hypotheses. The experimental results are presented and
discussed in Section 6.4. Section 6.5 concludes.

6.2 A Simple Dynamic Contest Model

Set-up. We consider a simple two-stage pair-wise elimination contest where four identi-
cal agents compete for two prizes. In the first stage, there are two pair-wise interactions,
and in the second stage, the winners of the two stage-1 interactions compete against each
other. Figure 6.1 illustrates the sequence of events: In stage 1, two pairs of agents compete
simultaneously for the right to move on to stage 2. Participation in stage 2 is valuable,
since two prizes are awarded to the participants of this stage: The loser of the stage-2
interaction receives the prize PL, while PH is awarded to the winner, where PH > PL ≥ 0.
In each of the three interactions of this contest model, two risk-neutral agents indepen-
dently choose their effort level to maximize their expected payoffs. The effort of agent i
in stage s ∈ {1,2} is denoted xsi. For each invested unit, agents incur constant marginal
costs of one. The benefit of effort provision is that the probability to win an interaction
is increasing in the amount invested into the contest. Thus, agents face a trade-off. For

4See, for example, Harbring and Irlenbusch (2003), Harbring and Lünser (2008), or Sheremeta (2011).
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Figure 6.1: Structure of the Dynamic Contest

simplicity, we assume that the probability to win is given by a lottery contest success
function á la Tullock (1980).5 That is, given investments xsi and xsj by agents i and j in
stage s, the probability that agent i wins in stage s equals

psi(xsi, xsj) =

⎧⎪⎪
⎨
⎪⎪⎩

xsi
xsi+xsj if xsi, xsj > 0

1
2 if xsi, xsj = 0

.

Equilibrium. Due to the dynamic structure of the contest, the equilibrium concept is
Subgame Perfect Nash. The equilibrium is determined by applying backward induction.
Since all agents are identical, the identity of the agents who compete in stage 2 does not
affect the solution. Therefore, without loss of generality, it is assumed that agents i and
j interact in stage 2. The formal optimization problem for agent i reads

max
x2i

Π2i(x2i, x2j) =
x2i

x2i + x2j

PH + (1 −
x2i

x2i + x2j

)PL − x2i

=
x2i

x2i + x2j

(PH − PL) + PL − x2i,

and delivers the first-order condition6

∂Π2i(x2i, x2j)

∂x2i

=
x2j

(x2i + x2j)
2
(PH − PL) − 1 = 0.

5For an axiomatization of this technology, see Skaperdas (1996).
6The first-order condition is necessary and sufficient – see Perez-Castrillo and Verdier (1992) for details.
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Using symmetry leads to equilibrium efforts

x∗2 ≡ x
∗
2i = x

∗
2j = (PH − PL)/4. (6.1)

Inserting equilibrium efforts in the objective functions gives the expected stage-2 equilib-
rium payoff

Π∗
2 ≡ Π2i(x

∗
2i, x

∗
2j) = Π2j(x

∗
2i, x

∗
2j) = (PH + 3PL)/4. (6.2)

Consequently, reaching stage 2 has value Π∗
2 for an agent participating in stage 1. Agent

k will take this value into account when choosing his stage-1 effort x1k. As in stage 2, the
identity of agents does not matter in stage 1, since all agents are identical by assumption.
Without loss of generality, consider the interaction between agents k and l. Agent k faces
the optimization problem

max
x1k

Π1k(x1k, x1l) =
x1k

x1k + x1l

Π∗
2 − x1k

=
x1k

x1k + x1l

(
PH + 3PL

4
) − x1k.

As in the solution of stage 2 above, the first-order condition together with symmetry
yields the equilibrium efforts on stage 1 as

x∗1 ≡ x
∗
1k = x

∗
1l = (PH + 3PL) /16. (6.3)

Optimal Prize Structures. Assuming that the overall prize money is fixed, we con-
sider two goals of the contest designer: maximization of aggregate incentives, and main-
tenance of incentives across stages. Assuming that P units are available as total prize
money, it holds that PH = P −PL. Inserting this expression into (6.1) and (6.3), we obtain
as stage-1 and stage-2 equilibrium efforts

x∗1 =
P + 2PL

16
and x∗2 =

P − 2PL

4
, (6.4)

respectively. Since four agents provide effort in stage 1, while only two of them reach
stage 2, total effort E amounts to

E =
3P − 2PL

4
. (6.5)

This expression confirms that that total effort is maximized in a “winner-takes-all” contest,
i.e., if PL = 0 and PH = P (since E is strictly decreasing in PL).7 With respect to the
criterion of incentive maintenance across stages, equalizing the expressions for stage-1

7One can easily show that this result does not hinge on the number of stages and/or the specific
lottery contest success function considered here. In fact, a “winner-takes-all” contest maximizes total
effort in any Tullock contest with pair-wise elimination, provided the equilibrium is in pure strategies,
which exists if the contest success function involves sufficient noise in terms of low discriminatory power.
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Table 6.1: Parametrization and Theoretical Predictions

Single Prize Multiple Prizes

(SP) (MP)

Total Effort (E) 180 144

Stage-1 Effort (x∗1) 15 24

Stage-2 Effort (x∗2) 60 24

Prizes (P,PL, PH) (240,0,240) (240,72,168)

and stage-2 effort given in (6.4) implies a runner-up prize of PL = 3P /10, and a winner
prize PH = 7P /10. Thus, there is a trade-off between the two goals: While total effort
is maximal with a single prize equal to the total prize money for the winner of the final,
incentive maintenance across stages requires two prizes: One equal to 30% of the prize
money for the loser of the final, and one equal to the rest for the winner of the final.

6.3 Design of the Experiments

Experimental Parameters and Treatments. We consider two treatments with dif-
ferent prize structures. Independent of the treatment, the total prize money available,
P , amounts to 240 units, which implies that PH + PL = 240 must hold. As shown above,
total effort is predicted to be maximized in a “winner-takes-all” contest, i.e., by setting
PL = 0 and PH = 240. This prize structure is implemented in the single prize treatment
SP. With respect to the “incentive maintenance across stages” criterion, our results above
imply a runner-up prize of PL = 72, and a winner prize PH = 168. We implement this
prize structure in the multiple-prizes treatment MP.

Testable Hypotheses. Table 6.1 shows the theoretical predictions for both treatments
with respect to total effort and individual effort provision in each stage. As derived above,
total effort is higher in SP than in MP. Therefore, the comparison of total effort in
treatments SP and MP allows us to test the hypothesis:

Hypothesis 6.1 (Total Effort Maximization). Total effort provided by all four par-
ticipants in both stages is higher in SP than in MP:

ESP > EMP

Apart from information on total effort provision, Table 6.1 provides the individual equi-
librium effort levels in each stage of both treatments. First, individual effort provision by
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participants in the MP treatment is predicted to be the same in both stages, which leads
to Hypothesis 2.

Hypothesis 6.2 (Incentive Maintenance). Individual efforts are identical across
stages in MP:

xMP
1 = xMP

2

Second, individual effort in stage 1 is higher in treatment MP than in SP, while the
opposite holds for stage-2 effort. The formal expressions in (6.4) show why this is the
case: Stage-1 effort is strictly increasing in the runner-up prize PL, since a high runner-up
prize makes participation in stage 2 more valuable. Stage-2 effort is, however, decreasing
in PL. The reason is that each participant of stage 2 has the runner-up prize for sure,
such that the two participants compete only for the residual prize PH −PL. We call this
mechanism the “Runner-up Prize Effect” and test it in Hypothesis 3:

Hypothesis 6.3 (Runner-up Prize Effect). In stage 1, individual effort provision is
higher in MP than in SP, while the opposite holds for stage-2 effort:

(a) xMP
1 > xSP1

(b) xMP
2 < xSP2 .

Note that the strength of the “Runner-up Prize Effect” is at the heart of the result that a
“winner-takes-all” prize structure maximizes total effort. Intuitively, we consider a setting
where the higher effort exertion in early stages cannot compensate for the lower effort
exertion in later stages, even though the number of participants is higher in early stages.
As shown by Fu and Lu (2012) and Krishna and Morgan (1998), this relation holds
whenever the contest technology is sufficiently noisy.8

Implementation. We adopt a between-subject design; that is, our experimental sub-
jects encountered either the MP or the SP treatment. The protocol of an experimental
session was the same for both treatments: First, participants received some general infor-
mation about the experimental session. Then, instructions for the respective treatment
(either SP or MP) were distributed.9 After each participant confirmed that he/she had
read and understood the instructions, participants had to correctly answer a set of control
questions. Only then did the first decision round start. Overall, each subject participated
in 30 decision rounds with different opponents. After the main treatment, we first elicited
risk preferences using a standard incentivized procedure, and then asked participants to

8Fu and Lu (2012) show that a “winner-takes-all” prize structure maximizes total effort in any dynamic
(pyramid) contest with risk-neutral and homogeneous participants as long as the impact function is not
too convex (see their Proposition 4 for details). Krishna and Morgan (1998) consider a difference (rather
than ratio) contest success function with additive noise and find that multiple prizes maximize total effort
in sequential elimination contests only if the noise parameter has very narrow bounds.

9A translated version of the instructions is provided in the Appendix. The original instructions, which
are in German, are available from the authors upon request.
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fill out a questionnaire (voluntary and non-incentivized). Only thereafter participants
were informed about their payoff in the experimental session. We ran a total of 8 com-
puterized sessions with 20 participants each. The experiment was programmed in z-Tree
(Fischbacher 2007). All 160 participants were students from the University of Innsbruck,
which were recruited using ORSEE (Greiner 2004). Each session lasted approximately
70 minutes in total (including the distribution of instructions at the beginning and the
payment at the end), and participants earned between 9-13 Euro (approximately 11 Euro
on average).10

Treatments. Each participant played the same contest game 30 times, knowing that
the identities of his/her opponents are randomly determined in each decision round. We
used the experimental currency “Taler”, where 200 Taler corresponded to 1.00 Euro. The
only variation across the two treatments SP and MP concerned the prize structure;
everything else was kept constant. The role of investments into the contest (effort) was
explained to subjects using an analogy between the chosen contest success function and
a lottery. Participants were told that they could buy a discrete number of balls in each
interaction.11 The balls purchased by the subjects as well as those purchased by their
respective opponents were then said to be placed in the same ballot box, out of which
one ball would be randomly drawn subsequently. This replicates the ratio contest success
function Ãă la Tullock (1980) from the theoretical set-up. Players had to buy (and pay
for) their desired number of balls before they knew whether or not they won a pair-wise
interaction in the contest. For this purpose, each participant received an endowment of
240 Taler in each round. This endowment could be used to buy balls on both stages, i.e.,
a subject that reached stage 2 could use whatever remained of his/her endowment to buy
balls in the stage-2 interaction. The part of the endowment that a participant did not use
to buy balls was added to the payoffs for that round. Since the endowment was as high as
the total prize money P , agents were not budget-constrained at any time.12 Experimental
subjects were told that the endowment could only be used in a given round, that is, that
transfers across decision rounds were not possible. Therefore, the strategic interaction
is the same in each of the 30 decision rounds. Random matching in each round ensured
that the same participants did not interact repeatedly; matching groups corresponded to
the entire session. After each decision round, participants were informed about their own
decision, the decision(s) of their immediate opponent(s), and about their own payoff. This
allows for an investigation of whether players learn when completing the task repeatedly.

10In two out of three sessions of the SP treatments, an additional experiment was conducted after the
risk-elicitation part. This experiment was entirely unrelated to the tournament experiment and subjects
were not informed about what to expect in this second experiment. All they knew is that the session
also included a third part, rather than only two parts. These sessions where approximately 15 minutes
longer, and payoffs in this additional experiment amounted to approximately 2.50 Euros on average.

11The chosen prizes ensured that equilibrium investments in both stages of both contest specifications
were positive integers, which implies that the discrete grid had no consequences for the equilibrium
strategies; the equilibrium in pure strategies is unique in both treatments.

12This is also confirmed by the experimental data on effort.
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In order to minimize the potential impact of income effects, participants were told that
only four decision rounds (out of 30) would be randomly chosen and paid out at the end
of the experiment.

Elicitation of Risk Attitudes. We used a choice list similar to the one employed by
Dohmen, Falk, Huffman, and Sunde (2010) to elicit risk attitudes.13 Specifically, each
subject was exposed to a series of 21 binary choices between a cash gamble and a safe
payoff. While the cash gamble remained the same in all 21 binary choices – it always gave
either 400 Taler or 0 Taler, each with 50 percent probability – the safe payoff increased in
steps of 20 Taler from 0 Taler in the first choice to 400 Taler in the last choice. Given this
design, a decision maker whose preferences satisfy ordering (completeness and transitivity)
and strict monotonicity switches exactly once from the cash gamble to the safe payoff.
For subjects who switch exactly once we use the first choice scenario in which the subject
decides in favor of the save payoff as our measure of risk attitude (we do not classify
subjects with multiple switching points).

6.4 Experimental Results

Our main experimental results are summarized in Table 6.2. The table displays the
theoretical predictions from Section 6.2 as well as observed means for stage-1, stage-2,
and total effort provision in both treatments. The data match all qualitative relations
that were predicted, even though the empirically observed efforts exceed their theoretical
counterparts quite substantially in quantitative terms. This finding of quantitative over-
provision is in line with much of the existing experimental literature and will be discussed
at the end of this section.

6.4.1 Baseline Results Regarding the Hypotheses

We proceed in the same order as in Section 6.3, starting with the comparison of total
effort between treatments. In line with the theoretical prediction, total effort is higher in
SP than in MP (304.513 compared to 277.861, see Table 6.2 for details). However, the
difference is smaller than predicted in relative terms (total output in MP is only 10%
lower than in SP, while theory predicts that it is 25% lower) and the difference is not
statistically significant at conventional levels. Indeed, the p-value for a test of the null
of equality of session means is above 0.10 both for the parametric t-test and the non-

13In the Dohmen, Falk, Huffman, and Sunde (2010) procedure, each subject is exposed to a series of
choices between a safe payment (which is systematically varied) and a binary lottery (which remains
constant across choices). This is cognitively simpler than the procedure employed by Holt and Laury
(2002), where a subject is confronted with a series of choices between two binary lotteries that are
both varied systematically. The instructions which experimental subjects received right before the risk-
elicitation part are provided in the Appendix.

141



Table 6.2: Experimental Results

SP MP

N Data Theory N Data Theory

Total Effort (E) 3 304.513 180 5 277.861 144
(28.314) (6.796)

Stage-1 Effort (x∗1) 60 33.660 15 100 45.238 24
(2.911) (2.957)

Stage-2 Effort (x∗2) 60 85.134 60 100 45.976 24
(4.658) (2.614)

Note: The numbers in the columns “Data” denote averages over all rounds of the exper-
imental sessions. Total effort is the sum of individual efforts over subjects and stages,
and stage-1 (stage-2) effort is individual effort in that stage (in experimental currency,
Taler). Standard errors in parentheses. The column “Theory” provides the theoretical
equilibrium prediction for the respective effort measure.

parametric Mann-Whitney-U-test (MWU-test).14 Figure 6.2 plots the evolution of total
effort over time from round 1 to 30 and shows two things: First, we observe that total
effort is decreasing over time in both treatments. It seems that participants realize after
a few rounds that they initially provided too much effort, even though total effort in later
decision rounds is still well above the risk-neutral benchmark in both treatments. Second,
total effort in both treatments becomes very similar in later rounds of the experiment, i.e.,
even the small initial difference in total effort across treatments disappears in later rounds
of the experiment. We summarize our findings with respect to total effort provision as
follows:

Result 6.1 (Total Effort Maximization). Total effort over all contestants and both
stages of the contest is higher in SP than in MP, in line with the theoretical prediction.
However, the difference is smaller than predicted and not significantly different from zero.

Hypothesis 2 is concerned with the maintenance of incentives across stages and states
that individual efforts in MP are not expected to differ across stages. According to Table
6.2, this is exactly what we observe in the experiment: Subjects invest approximately
45 units of effort in both stages, and we cannot reject the null of equality of individual
session means (p < 0.001). Figure 6.3 plots the stage-1 and stage-2 effort choices in
treatment MP over the different rounds of the experiment and might help to explain
why we observe incentive maintenance, while Altmann, Falk, and Wibral (2012) do not.
Altmann et al. employ an experimental design where participants interact only once. In

14The p-values are 0.2825 (t-test) and 0.4561 (MWU-test). In the following, we only report p-values
for the non-parametric MWU-test unless noted otherwise.
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Figure 6.2: Total Effort by Decision Round and Treatment

contrast, in our experiment the same contest is repeated 30 times with random matching.15

If we only consider the first decision round, the data replicate the pattern observed by
Altmann, Falk, and Wibral (2012): In this round, subjects choose, on average, an effort of
65.75 in stage 1, compared to 59.16 in stage 2 in treatment MP.16 However, this pattern
disappears and is even reversed in later rounds, as Figure 6.3 shows. In fact, the equality
of stage-1 and stage-2 efforts can be rejected in some of the first seven decision rounds,
while equality cannot be rejected in any subsequent round. Finally, Figure 6.3 illustrates
that both stage-1 and stage-2 efforts are decreasing with experience in the experiment,
but remain well above the theoretical benchmark even in the last decision round. This
gives our second result:

Result 6.2 (Incentive Maintenance). Efforts are approximately identical across stages
in MP when considering session means. In the initial decision rounds, however, effort
provision is somewhat higher in stage 1 than in stage 2.

Our third and last hypothesis addresses the effect of the runner-up prize. Theory predicts
that a runner-up prize increases individual effort in stage 1, while at the same time
decreasing stage-2 effort. Table 6.2 shows that this pattern is present in the experimental
data: Effort provision by experimental subjects in stage 1 is higher in MP than in SP
(45.238 vs. 33.660), and equality of mean effort can be rejected at the 1% level. In
contrast, stage-2 effort is higher in SP than in MP (85.134 vs. 45.976), and again the
difference is highly significant (p< 0.01). Figure 6.4 illustrates that this pattern is present
in each single decision round when comparing individual session means; only in the very
first rounds, stage-1 efforts are rather similar across treatments. In addition, Figure 6.4
shows that individual efforts in the last decision rounds are much closer to the theoretical

15Another difference of their experimental design is that they use a ’difference’ contest success function
rather than the ’ratio’ technology we employ. For a theoretical comparison of these technologies, see
Hirshleifer (1989).

16This difference is significantly different from zero at the 5%-level.
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Figure 6.3: Individual Effort in Treatment MP by Decision Round

prediction in SP than in MP; this holds both in stage 1 and in stage 2.17 Summing up,
our findings are well in line with Hypothesis 3:

Result 6.3 (Runner-up Prize Effect). The comparison of efforts in a given stage
across treatments shows that the introduction of a runner-up prize has the predicted effect:
Stage-1 effort is higher in MP than in SP, while stage-2 effort is higher in SP than in
MP.

6.4.2 Discussion and Additional Results

Risk Preferences. Overall, the choices of 138 participants exhibit a unique switching
point in the risk-preference elicitation procedure, while 9 (13) subjects in treatment SP
(MP) have multiple switching points. Considering only subjects with a unique switch-
ing point, Table 6.3 disaggregates the data into two classes of risk preferences, namely
risk-averse subjects and risk-neutral or risk-loving subjects.18 We find that incentive main-
tenance across stages holds for both risk classes. Moreover, when comparing efforts in a
given stage across treatments, Table 6.3 shows that the runner-up prize increases stage-1
effort but decreases stage-2 effort, independent of risk-attitudes. Interestingly, however,
the relation of total effort provision across treatments differs between risk-averse subjects
on the one hand and risk-neutral or risk-loving subjects on the other hand: In line with
the theoretical benchmark, risk-neutral (and risk-loving) subjects provide more effort in
SP than in MP on average.19 However, total effort provision by risk-averse subjects is

17In stage 1 of the SP (MP) treatment, effort approaches 20 (40) in the experiment, compared to a
theoretical prediction of 15 (24). Similarly, in stage 2, effort approaches 65 (45) in treatment SP (MP),
compared to a prediction of 60 (24).

18Risk-loving and risk-neutral subjects are pooled, since less than 20% of all subjects are risk-loving.
Moreover, risk-neutral and risk-loving subjects show fairly similar behavior, such that this pooling does
not affect the results. Details are available from the authors upon request.

19In fact, the difference across treatments for the class of risk-neutral and risk-loving subjects amounts
to 20%, which is relatively close to the 25% difference predicted by theory.
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Figure 6.4: Individual Effort by Stage, Decision Round, and Treatment

(a) Stage-1 Effort (b) Stage-2 Effort

higher in MP than in SP (304.344 versus 291.764). This suggests that risk-attitudes are
a potential explanation for the result that the difference in total effort provision across
treatments is insignificant in the aggregate. It seems that risk-averse subjects value the
insurance provided by the runner-up prize in MP higher than risk-neutral and risk-loving
subjects, while the higher prize for the overall winner in SP is especially attractive for
risk-neutral and risk-loving subjects. Figure 6.5(a) shows how this effect evolves over the
rounds in the two treatments: Initially, total effort provision by risk-averse subjects is
higher in SP than in MP. Subsequently, total effort provision declines much faster in SP
than in MP, however, and in the second half of the experimental sessions, total effort is
always higher in the MP treatment. Figure 6.5(b) shows that the pattern is more stable
for the class of risk-neutral and risk-loving subjects, who consistently provide more effort
in the single-prize than in the multiple-prizes treatment.

Over-provision of Effort. As mentioned at the beginning of this section, we observe
a substantial amount of effort over-provision relative to the theoretical prediction, with
total effort in the experimental session being between 70% and 90% higher than predicted.
This finding complements earlier evidence on over-provision in contest experiments – see
Davis and Reilly (1998), Gneezy and Smorodinsky (2006), or Sheremeta (2010), for in-
stance.20 Several explanations have been put forward in the literature to explain this
phenomenon. First, the endowment that experimental subjects receive at the beginning
of each decision round may lead to over-provision if subjects perceive the endowment as
‘play money’ (Thaler and Johnson 1990). In this case, subjects provide more effort due
to this perception than they would without an endowment. In line with this argument,
observed effort choices in experiments without endowments are often much closer to the

20Sheremeta (2010), for example, reports similar degrees of over-provision. In his single-prize treatment
with two stages, which is almost identical to our SP treatment, total effort is on average almost 90%
higher than theory predicts.
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Table 6.3: Results by Risk Attitude

risk-averse risk-neutral/loving

SP MP SP MP

Stage-1 Effort (x∗1) 33.649 51.710 27.330 39.830
(4.391) (7.355) (3.223) (2.747)

Stage-2 Effort (x∗2) 78.584 48.752 89.226 42.078
(7.449) (4.641) (4.391) (3.505)

Total Effort (E) 291.764 304.344 287.772 243.476

Note: The numbers for stage-1 and stage-2 effort denote session averages by risk
averse or risk neutral/loving participants. In SP, 21 (30) subjects are risk-averse
(-neutral/loving), compared to 31 risk-averse and 56 risk-neutral/loving subjects
in MP. Total effort is the sum of individual efforts (in experimental currency,
Taler). Standard errors in parentheses.

theoretical prediction.21 In our experiments, we explicitly decided to use endowments to
avoid negative payoffs for the losers of a contest and the associated problem of limited
liability. Arguably, we could also have solved this issue through additional prizes for the
losers, as in Altmann, Falk, and Wibral (2012). Then, however, the contrast between a
single- and a multiple-prizes treatment, which is central for our research question, would
be less clear. A second explanation for over-provision is that subjects experience a ‘joy of
winning’ in strategic interactions, which amplifies the valuation of prizes awarded in con-
tests. Since individual efforts are strictly increasing in the prizes at stake, non-monetary
values of winning can rationalize over-provision of effort. Sheremeta (2011) experimen-
tally elicits a measure for the ‘joy of winning’ and finds that it is highly correlated with
the amount of effort provided by individual subjects. This supports the hypothesis that
the ‘joy of winning’ is at least partly responsible for over-provision relative to the bench-
mark. According to Potters, de Vries, and van Winden (1998), a third explanation for
over-provision might be that experimental subjects are prone to make mistakes in exper-
imental settings. If this is the case, a higher endowment increases the chance to make
mistake. Sheremeta (2010) varies the endowment and finds evidence that is in line with
this argument.22

It is important to note that none of these potential explanations for over-provision
predicts a systematic difference between the two treatments contrasted here, since the
’joy of winning’ is unlikely to differ systematically across treatments, and both the en-

21See Altmann, Falk, and Wibral (2012), for example.
22Sheremeta (2010) uses the concept of a Quantal Response Equilibrium (QRE) by McKelvey and

Palfrey (1995), which allows for mistakes of decision makers. He finds that a reduction of the endowment
causes a proportional reduction of total effort, even if the endowment is not binding for equilibrium effort
levels. Low (though non-binding) endowments even lead to under-provision of effort.
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Figure 6.5: Total Effort by Risk Attitude, Decision Round, and Treatment

(a) Risk-Averse (b) Risk-Neutral (or -Loving)

dowment and the overall amount available for prizes are identical in the two treatments
we consider.23

6.5 Conclusion

This paper has tested the impact of variations in the prize structure on effort decisions in
dynamic contests. Specifically, we have compared two prize-structures: A “winner-takes-
all” setting that is predicted to maximize total effort, and a structure with multiple prizes
which is predicted to ensure incentive maintenance across stages. We have tested (i)
whether total effort is indeed higher in the single-prize treatment; (ii) whether incentive
maintenance is observed in the multiple-prizes treatment; and (iii) whether a runner-up
prize increases stage-1 and decreases stage-2 efforts as theory predicts. We found strong
evidence in support of (ii) and (iii). The evidence for (i) – that total effort is higher in the
single-prize treatment – is mixed at best: Even though total effort is somewhat higher in
the single-prize than in the multiple-prizes treatment, the difference across treatments is
less pronounced than predicted by theory and statistically insignificant. When controlling
for risk-attitudes of experimental subjects, our evidence suggests that risk-averse subjects
value the insurance effect of the runner-up prize in the multiple-prizes treatment and
consequently provide more effort in that environment than in a contest with a single prize.
At the same time, the behavior of risk-neutral and risk-loving subjects is qualitatively in
line with the theoretical prediction, which explains the mixed findings in this dimension
in the aggregate. Overall, our results indicate that the format with multiple prizes does
not perform substantially worse in the total effort dimension, and significantly better

23The explanation based on errors would only be an issue if, e.g., the endowment were to bind more
often in one than in the other treatment. However, the share of experimental subjects who spend their
entire endowment is very low and does not systematically differ between the two treatments. If we
exclude, for instance, all observations in which the endowment is binding, total output is somewhat lower
in both treatments, but the qualitative findings remain unchanged. Details are available upon request.
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in terms of eliciting constant effort across different stages of the contest. Our findings
also suggest a more systematic investigation of the role of risk attitudes for behavior in
dynamic contests as a fruitful direction for future research.
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Appendix

6.A Experimental Instructions

The experimental instructions consist of three parts: First, experimental subjects receive
some general information about the experimental session. Then, they are informed about
the main treatment (Experiment 1), which is either the SP or the MP specification
(both versions are provided). Finally, subjects receive instructions for the elicitation of
risk attitudes (Experiment 2).

WELCOME TO THIS EXPERIMENT AND THANK YOU FOR YOUR
PARTICIPATION

General Instructions:

You will participate in 2 different experiments today. Please stop talking to any other participant of
this experiment from now on until the end of this session. In each of the two experiments, you will
have to make certain decisions and may earn an appreciable amount of money. Your earnings will
depend upon several factors: on your decisions, on the decisions of other participants, and on random
components, i.e. chance. The following instructions explain how your earnings will be determined.

The experimental currency is denoted Taler. In addition to your Taler earnings in experiments 1 and
2, you receive 3 EURO show up fee. You may increase your Taler earnings in experiments 1 and 2,
where 2 Taler equal 1 Euro Cent, i.e.

200 Taler correspond to 1 Euro.

At the end of this experimental session your Taler earnings will be converted into Euro and paid to
you in cash.

Before the experimental session starts, you receive a card with your participant number. All your
decisions in this experiment will be entered in a mask on the computer, the same holds for all other
participants of the experiment. In addition, the computer will determine the random components
which are needed in some of the experiments. All data collected in this experiment will be matched to
your participant number, not to your name or student number. Your participant number will also be
used for payment of your earnings at the end of the experimental session. Therefore, your decisions
and the information provided in the experiments are completely anonymous; neither the experimenter
nor anybody else can match these data to your identity.

We will start with experiment 1, followed by experiment 2. The instructions for experiment 2 will only
be distributed right before this experiment starts, i.e. subsequent to experiment 1.

You will receive your earnings in cash at the end of the experimental session.
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Experiment 1
 

   [SP Treatment] 

Overall, there are 30 decision rounds with two stages each in Experiment 1. The course of events is the 
same in each decision round. You will be randomly and anonymously placed into a group of four 
participants in each round, and the identity of participants in your group changes with each decision 
round.  
 

Course of events in an arbitrary decision round 
All four participants of each group receive an endowment of 240 Taler at the beginning of a decision 
round. The endowment can be used to buy a certain amount of balls in two subsequent stages of a 
decision round. It is important to note that you receive one endowment only which must suffice to 
buy balls in both stages. The costs for the purchase of a ball are the same for all participants: 
Participants have to pay 1.00 Taler for each ball they buy in stage 1 or stage 2, i.e. 
 

1 ball    costs  1.00 Taler 
2 balls  cost    2.00 Taler 

               (and so on) 
 

When deciding how many balls you want to buy, you do not know the decision of other participants. 
Also, your decision is not revealed to any other participant.  
 

All interactions in the experiment are pair-wise. Assume that you are in one group with participant A, 
participant B, and participant C. Then, you interact with participant A in stage 1, while participants B 
and C simultaneously meet each other in the second stage 1 interaction. If you reach stage 2, you will 
interact either with participant B or C, depending on the outcome in the second stage 1 interaction. In 
stage 1, there are two ballot boxes: 
 

all balls bought by you or participant A are placed in ballot box 1 
all balls bought by participants B and C are placed in ballot box 2 

 

One ball is randomly drawn from each ballot box, and each ball drawn with the same probability. The 
two participants whose balls are drawn from ballot box 1 and 2, respectively, reach stage 2; the 
decision round is over for the other two participants (whose balls were not drawn), i.e. they drop out 
from this decision round. Any participant has to pay the balls he or she bought in stage 1, whether or 
not he/she reached stage 2. The respective amount is deducted from the endowment.  
 

The two participants who reached stage 2 do again buy a certain number of balls, using whatever 
remains from the endowment they received after costs for balls in stage 1 were deducted. The balls are 
then placed into ballot box 3. One ball is randomly drawn from ballot box 3. The participant whose 
ball is drawn receives a prize of 240 Taler. The other participants do not receive any prize in this 
decision round. Independent of whether or not a participant receives the prize, he/she does always 
have to pay for the balls bought in stage 2. 
 

Let's take a closer look at the random draw of balls from ballot boxes. Assume, for example, that all 
balls which you bought are green colored, and that you interact with participant A in stage 1. Then, 
the probability that one of your balls is drawn (such that you make it to stage 2) satisfies 
 (    ) = #  #  + #     

 

where # is short for number. The same probability rule does also hold for other participants in your 
group. Consequently, the probability that one of your balls in drawn is higher 

the more balls you purchased 
the less balls the other participant with whom you interact purchased. 

 

The random draw is simulated by the computer according to the procedures outlined above. If both 
participants of a pairing choose to buy zero balls, each participant wins with a probability of 50%.  
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Your Payoff 
Assume that you bought "X1" balls in stage 1, and that you buy "X2" balls whenever you reach stage 2. 
Then, there are three possibilities for your payoff: 
 

1) None of your balls is drawn in stage 1 

        =                                                   =                       
 

2) one of your balls is drawn from the ballot box in stage 1; in stage 2, none of your balls is drawn 
        =                                                        =                          

 
3) one of your balls is drawn from the ballot box in stage 1; also, one of your balls is drawn in stage 2 
        =               +                                          =                      +   
 

Therefore, your payoff is determined by the following components: by the number of balls you buy in 
stage 1 ("X1"); by the number of balls you buy in stage 2 ("X2") if you reach it; by up to two random 
draws (one of your balls is drawn/not drawn in stage 1 and potentially stage 2). The same holds for 
any other participants of the experiment.  
 
Information:  
 

After you made your decision in stage 1, you are informed whether or not you can participate 
in stage 2, i.e. whether or not one of your balls was drawn from ballot box 1. 
If you did not reach stage 2, you are informed about how many balls participant A bought in 
stage 1.  
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If you reach stage 2, you receive information about the remaining endowment (after costs for 
the purchase in stage 1 are deducted. 
After you made your decision in stage 2, you learn whether or not one of your balls was 
drawn from ballot box 3 and how many balls the participants who you met in stages 1 and 2, 
respectively, bought. Further, you learn your payoff for the respective decision round. 

 
Decision: In each of the 30 decision rounds you have to decide how many balls you want to buy in 
stage 1. If you reach stage 2, you face a similar decision in stage 2. In both cases, you have to enter a 
number into a field on the computer screen. An example of the decision screen in stage 1 is shown 
below.  
 

 
 

Your Total Payoff: Four out of 30 decision rounds are paid. These rounds are randomly determined, 
i.e., the probability that some decision round is paid is identical ex-ante for all 30 decision rounds. You 
will receive the sum of payoffs for the respective decision rounds. 
 
Remember: 
You receive an endowment of 240 Taler at the beginning of each decision round and have to decide 
how many balls you want to buy in stage 1; if you reach stage 2, you have to decide again. Overall, 
there are three additional participants in each group who face the same problem. The identity of these 
participants is randomly determined in each decision round. Every participant has to pay 1.00 Taler 
for each ball he/she buys in stage 1 or stage 2. 
 
 
If you have any questions, please raise your hand now! 
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Experiment 1
 

   [MP Treatment]  

Overall, there are 30 decision rounds with two stages each in Experiment 1. The course of events is the 
same in each decision round. You will be randomly and anonymously placed into a group of four 
participants in each round, and the identity of participants in your group changes with each decision 
round.  
 

Course of events in an arbitrary decision round 
All four participants of each group receive an endowment of 240 Taler at the beginning of a decision 
round. The endowment can be used to buy a certain amount of balls in two subsequent stages of a 
decision round. It is important to note that you receive one endowment only which must suffice to 
buy balls in both stages. The costs for the purchase of a ball are the same for all participants: 
Participants have to pay 1.00 Taler for each ball they buy in stage 1 or stage 2, i.e. 
 

1 ball    costs  1.00 Taler 
2 balls  cost    2.00 Taler 

               (and so on) 
 

When deciding how many balls you want to buy, you do not know the decision of other participants. 
Also, your decision is not revealed to any other participant.  
 

All interactions in the experiment are pair-wise. Assume that you are in one group with participant A, 
participant B, and participant C. Then, you interact with participant A in stage 1, while participants B 
and C simultaneously meet each other in the second stage 1 interaction. If you reach stage 2, you will 
interact either with participant B or C, depending on the outcome in the second stage 1 interaction. In 
stage 1, there are two ballot boxes: 
 

all balls bought by you or participant A are placed in ballot box 1 
all balls bought by participants B and C are placed in ballot box 2 

 

One ball is randomly drawn from each ballot box, and each ball drawn with the same probability. The 
two participants whose balls are drawn from ballot box 1 and 2, respectively, reach stage 2; the 
decision round is over for the other two participants (whose balls were not drawn), i.e. they drop out 
from this decision round. Any participant has to pay the balls he or she bought in stage 1, whether or 
not he/she reached stage 2. The respective amount is deducted from the endowment.  
 

The two participants who reached stage 2 do again buy a certain number of balls, using whatever 
remains from the endowment they received after costs for balls in stage 1 were deducted. The balls are 
then placed into ballot box 3. One ball is randomly drawn from ballot box 3. The participant whose 
ball is drawn receives the main prize of 168 Taler. The other participant of stage 2, whose ball is not 
drawn from ballot box 3, receives a runner-up prize of 72 Taler. Independent of the prize which a 
stage 2 participant receives, he/she does always have to pay for the balls bought in stage 2. 
Participants who did not reach stage 2 do not receive any prize. 
 

Let's take a closer look at the random draw of balls from ballot boxes. Assume, for example, that all 
balls which you bought are green colored, and that you interact with participant A in stage 1. Then, 
the probability that one of your balls is drawn (such that you make it to stage 2) satisfies 
 (    ) = #  #  + #     

 

where # is short for number. The same probability rule does also hold for other participants in your 
group. Consequently, the probability that one of your balls in drawn is higher 

the more balls you purchased 
the less balls the other participant with whom you interact purchased. 

 
The random draw is simulated by the computer according to the procedures outlined above. If both 
participants of a pairing choose to buy zero balls, each participant wins with a probability of 50%.  
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Your Payoff 
Assume that you bought "X1" balls in stage 1, and that you buy "X2" balls whenever you reach stage 2. 
Then, there are three possibilities for your payoff: 
 

1) None of your balls is drawn in stage 1 

        =                                                   =                       
 

2) one of your balls is drawn from the ballot box in stage 1; in stage 2, none of your balls is drawn 
        =               +                                            =                     +           

 
3) one of your balls is drawn from the ballot box in stage 1; also, one of your balls is drawn in stage 2 
        =                +                                               =                      +         
 

Therefore, your payoff is determined by the following components: by the number of balls you buy in 
stage 1 ("X1"); by the number of balls you buy in stage 2 ("X2") if you reach it; by up to two random 
draws (one of your balls is drawn/not drawn in stage 1 and potentially stage 2). The same holds for 
any other participants of the experiment.  
 
Information:  
 

After you made your decision in stage 1, you are informed whether or not you can participate 
in stage 2, i.e. whether or not one of your balls was drawn from ballot box 1. 
If you did not reach stage 2, you are informed about how many balls participant A bought in 
stage 1.  
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If you reach stage 2, you receive information about the remaining endowment (after costs for 
the purchase in stage 1 are deducted. 
After you made your decision in stage 2, you learn whether or not one of your balls was 
drawn from ballot box 3 and how many balls the participants who you met in stages 1 and 2, 
respectively, bought. Further, you learn your payoff for the respective decision round. 

 
Decision: In each of the 30 decision rounds you have to decide how many balls you want to buy in 
stage 1. If you reach stage 2, you face a similar decision in stage 2. In both cases, you have to enter a 
number into a field on the computer screen. An example of the decision screen in stage 1 is shown 
below.  
 

 
 

Your Total Payoff: Four out of 30 decision rounds are paid. These rounds are randomly determined, 
i.e., the probability that some decision round is paid is identical ex-ante for all 30 decision rounds. You 
will receive the sum of payoffs for the respective decision rounds. 
 
Remember: 
You receive an endowment of 240 Taler at the beginning of each decision round and have to decide 
how many balls you want to buy in stage 1; if you reach stage 2, you have to decide again. Overall, 
there are three additional participants in each group who face the same problem. The identity of these 
participants is randomly determined in each decision round. Every participant has to pay 1.00 Taler 
for each ball he/she buys in stage 1 or stage 2. Two prizes are awarded: the main prize of 168 Taler for 
the participant whose ball is drawn in stage 2, and the runner-up prize of 72 Taler for the other 
participant of the stage 2 interaction. 
 
If you have any questions, please raise your hand now! 

155



Experiment 2

In Experiment 2, you will face 21 decisions. Each decision is a choice between option 1 and option 2.
Each choice affects you own payoff, but not the payoff of any other participant of the experiment.
When choosing option 1, your payoff is affected by chance, while option 2 implies a certain payment.
You may be asked, for example, whether you prefer option 1, in which you receive either 400 Taler or
0 Taler with a 50% chance, or if you rather like option 2, which implies a sure payoff of c Taler. In the
experiment, you will have to choose the option you prefer. This decision problem would be presented
to you as follows:

Option 1 Option 2 Your Choice

with 50% probability 400 Taler
with 50% probability 0 Taler

with certainty c Taler Option 1 Option 2

As previously mentioned, you will encounter 21 decision problems of this kind. Your payoff from
Experiment 2 is determined as follows:
At the end of all experiments, one of the 21 decision problems will be randomly chosen for each expe
rimental participant. The option you chose in this decision problem determines your payoff. Assume,
for example, that the previous example is chosen for you, and that you preferred option 1 over op
tion 2. Then, you would receive 400 Taler or 0 Taler, each with a probability of 50%. Whether you re
ceive 400 Taler or 0 Taler is determined by a simulated random draw of the computer.
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Chapter 7

Timing Effects in Dynamic Elimination
Contests: Immediate versus Delayed
Rewards

This chapter is based on joint work with Rudolf Kerschbamer from the University of
Innsbruck and Uwe Sunde from the University of St. Gallen (Stracke, Kerschbamer, and
Sunde 2012).

7.1 Introduction

Strategic decisions of economic agents are often made in a contest environment – think of
spending choices for R&D or advertising by firms, of election campaigns in politics, or even
of employees’ effort choices in consulting firms. In all these situations, agents compete
by expending valuable resources to win a reward, such as a patent, market shares, a
promotion, and so forth. Abstracting from the particularities of applications and focusing
on the strategic decision, contest theory has extensively studied the effect of different
modelling choices with respect to the number of participants, the number of rewards, or
the structure of the competition, for example, on equilibrium behavior of contestants.
These theoretical investigations help to better understand observed behavior by decision
makers, and to structure contests in such a way that they serve the designer’s objective,
which is often the maximization (or the minimization) of overall contest investments by
participants. Many theoretical predictions were recently tested empirically, using both
data from the lab and from the field.

In this paper, we use experimental methods to study which effect the timing of rewards
has on the behavior of agents in two-stage pair-wise elimination contests. Comparing a
treatment where agents receive an immediate reward for winning stage 1 (IR) with a spec-
ification where the reward for winning stage 1 is only awarded after the stage-2 interaction
is completed (DR), we find that stage-1 effort choices by experimental subjects are higher
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in the delayed than in the immediate reward treatment, while effort provision in stage 2
does not differ between treatments. Contest theory predicts that the two treatments are
strategically identical in both stages if agents are risk neutral, or if agents jointly evaluate
the payoff of both interactions. Therefore, it comes as a surprise that average differences
of stage-1 effort choices between treatments are fully explained by risk attitudes: While
the stage-1 effort choices of risk averse subjects in the delayed are much higher than in
the immediate reward treatment, there is no difference across treatments for risk neutral
subjects. This pattern can only be rationalized if experimental subjects separately eval-
uate the payoff of each stage. In this case, delayed rewards provide an insurance for risk
averse decision makers, such that the effort choice in stage 1 should indeed differ across
treatments for risk averse, but not for risk neutral decision makers. Generally speaking,
our findings suggest that the presence of risk in future periods generates an effect that
works against standard discounting due to impatience. Consequently, time and risk pref-
erences jointly determine optimal behavior in inter-temporal, risky environments. This
finding implies that it will often be hard to disentangle the two components outside the
lab.

The paper contributes to the empirical literature on behavior in dynamic contests.
While much of the traditional experimental literature concentrates on the simplest case
with two contestants (Bull, Schotter, and Weigelt 1987, Harbring and Lünser 2008), recent
work by Sheremeta (2010) and Altmann, Falk, and Wibral (2012) considers the two-stage
contest with four participants. Yet, both papers keep the structure of rewards fixed across
treatments and compare strategically equivalent static and dynamic contests instead. The
only experimental paper which systematically varies rewards in a dynamic contest is our
companion paper Stracke, Höchtl, Kerschbamer, and Sunde (2012), in which we compare
a winner-takes-all contest and a treatment with runner-up prize. Using data from the
field, a similar question was previously addressed by Delfgaauw, Dur, Non, and Verbeke
(2012).1 This treatment variation, however, changes the amounts that subjects receive
for certain outcomes, while the present paper leaves total amounts unaffected. Instead,
we investigate whether or not it matters for subjects that their reward is delayed.

The remainder of this paper is organized as follows: Section 7.2 derives the theoretical
benchmark for a simple dynamic contest model. Section 7.3 outlines the experimental
design and derives our main hypotheses. The experimental results are presented and
discussed in Section 7.4. Section 7.5 concludes.

1To be precise, Delfgaauw, Dur, Non, and Verbeke (2012) consider two multiple prizes treatments
with different runner-up prizes, rather than one treatment with multiple prizes and one winner-takes-all
contest.
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7.2 A Simple Dynamic Elimination Contest

We consider a simple two-stage pair-wise elimination contest with four identical agents.
There are two pair-wise interactions in the first stage of this contest, and one additional
interaction between the two winners of stage 1 in the second stage. In each of these
three interactions, two risk-neutral agents independently choose the optimal level of effort
provision such that their expected payoff is maximized. The effort provided by agent
i ∈ {1,2,3,4} in stage s ∈ {1,2} is denoted xsi. For each unit of effort provided, agents incur
constant marginal costs of one. The benefit is that the probability to win an interaction
is increasing in own effort provision. Thus, agents face a trade-off. For simplicity, we
assume that the probability to win is given by a lottery contest success function á la
Tullock (1980). That is, given individual efforts xsi and xsj by agents i and j in stage s,
the probability that agent i wins in stage s equals

pi(xsi, xsj) =

⎧⎪⎪
⎨
⎪⎪⎩

xsi
xsi+xsj if xsi + xsj > 0

1
2 if xsi = xsj = 0

.

The formal expression shows that the probability to win is increasing in own effort and
decreasing in the effort provided by the opponent.

We compare two variants of the two-stage elimination contest, which are both displayed
in Figure 7.1: In stage 1 of the specification depicted in Panel (a), agents 1 and 2 as
well as agents 3 and 4 compete for a prize P1 and for the right to move on to stage 2.
Participation in stage 2 is valuable, since the winner of the overall contest receives the
prize P2 in addition to P1. Since winning stage 1 is immediately rewarded with the prize
P1, this is the “Immediate Reward” (IR) specification. Panel (b) illustrates the details
of the second setting we consider, the so-called “Delayed Reward” (DR) specification.
In this case, there is no immediate reward for winning stage 1; instead, the loser of the
stage-2 interaction receives the prize PL

2 , while PH
2 is awarded to the overall winner of the

contest. Since both stage-2 participants won their stage-1 interaction, and any participant
of stage 2 knows for sure that he/she will at least receive PL

2 , this prize can be understood
as a delayed compensation for winning stage 1. In the remainder of this section, we will
derive equilibrium efforts for agents in the IR and theDR specification, respectively. The
equilibrium concept is subgame perfect Nash in both cases, since the contest is inherently
dynamic. Therefore, we will start by solving the stage-2 interaction, before considering
the parallel stage-1 pairings.

Solving Stage 2. Since all agents are identical by assumption, the identity of the agents
who participate in stage 2 does not affect the solution. Therefore, it is assumed that agents
i and j interact in stage 2 without loss of generality. The formal optimization problem
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Figure 7.1: Structure of the Dynamic Contest

(a) Immediate Reward (IR) (b) Delayed Reward (DR)

for agent i in the IR specification reads

max
x2i≥0

Π2i(x2i, x2j) =
x2i

x2i + x2j

P2 − x2i

and leads to the first-order condition x2jP2 − (x2i + x2j)
2 = 0. This condition is neces-

sary and sufficient for the unique interior equilibrium.2 Using symmetry leads to stage-2
equilibrium effort

x∗2(IR) ≡ x2i = x2j =
P2

4
. (7.1)

In stage 2 of the DR specification, agent i faces the optimization problem

max
x2i≥0

Π2i(x2i, x2j) =
x2i

x2i + x2j

PH
2 + (1 −

x2i

x2i + x2j

)PL
2 − x2i

=
x2i

x2i + x2j

[PH
2 − PL

2 ] + PL
2 − x2i.

When combining the first-order optimality and the symmetry condition, we obtain the
stage-2 equilibrium effort

x∗2(DR) ≡ x2i = x2j =
PH

2 − PL
2

4
. (7.2)

Finally, inserting equilibrium efforts in the respective objective functions gives expected
stage-2 equilibrium payoffs for both specifications. We obtain

Π∗
2(IR) =

P2

4
and Π∗

2(DR) =
PH

2 + 3PL
2

4
,

respectively, where Π∗
2 ≡ Π∗

2i(x
∗
2i, x

∗
2j) = Π∗

2j(x
∗
2i, x

∗
2j) and Ψ∗

2 ≡ Ψ∗
2i(x

∗
2i, x

∗
2j) = Ψ∗

2j(x
∗
2i, x

∗
2j).

Under the assumption that future payoffs are not discounted, participation in stage 2
2See Perez-Castrillo and Verdier (1992) for details.
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is worth Π∗
2 in IR and Ψ∗

2 in DR for agents who interact in stage 1 of the respective
specification. Agents will take the value of a participation in stage 2 into account when
choosing stage-1 effort x1i.

Solving Stage 1. The identity of agents does not matter for the stage-1 solution, since
all agents are identical by assumption. Therefore, it is without loss of generality to
consider the interaction between agents k and l. Agent k in specification IR faces the
optimization problem

max
x1k≥0

Π1k(x1k, x1l) =
x1k

x1k + x1l

[P1 +Π∗
2(IR)] − x1k.

As previously mentioned, stage-1 winners in IR are immediately rewarded with the prize
P1. Moreover, they take the value of a participation in stage 2, Π∗

2, into account. There-
fore, the overall value of winning stage 1 amounts to the sum P1+Π∗

2(IR). The first-order
and the symmetry condition x∗1k = x

∗
1l jointly determine stage-1 equilibrium effort; insert-

ing the formal expression for Π∗
2(IR) gives

x∗1(IR) ≡ x∗1k = x
∗
1l =

4P1 + P2

16
. (7.3)

The optimization problem in specification DR is slightly different, since stage-1 winners
are not immediately rewarded. Instead, the only prize for winning stage 1 is the right to
participate in stage 2. Consequently, the formal optimization problem of agent k reads

max
x1k≥0

Π1k(x1k, x1l) =
x1k

x1k + x1l

Π∗
2(DR) − x1k.

In equilibrium, participants of this specification will choose stage-1 effort

x∗1(DR) ≡ x∗1k = x
∗
1l =

(PH
2 + 3PL

2 )

16
. (7.4)

7.3 Design of the Experiments

Treatment Design. The two specifications IR and DR of the dynamic pair-wise elim-
ination contest constitute our experimental treatments. It is assumed that 240 units of
prize money are available in both treatments, i.e., P2 + 2P1 = 240 holds in the IR spec-
ification, while PH

2 + PL
2 = 240 must be satisfied in the DR treatment. We use these

conditions to substitute for P2 and PH
2 , respectively, in the formal expressions for stage-2

effort, which are provided in (7.1) and (7.2), respectively. As a result, we obtain stage-2
equilibrium efforts

x∗2(IR) =
240 − 2P1

4
and x∗2(DR) =

240 − 2PL
2

4
.
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Interestingly, stage-2 efforts are identical across treatments under the assumption P1 = PL
2 .

This finding makes sense intuitively, as the two panels in Figure 7.1 and the subsequent
discussion illustrate: In the IR specification, each of the two stage-1 winners already
received the prize P1 prior to the interaction in stage 2, which leaves the amount 240−2P1

for the prize P2. Equilibrium effort provision amounts to a quarter of the gain for winning
stage 2, P2. Note that the gain for winning stage 2 is not equal to the prize PH

2 in the
DR specification. The prize PH

2 amounts to PH
2 = 240 − PL

2 . Yet, both participants of
stage 2 know that they have the amount PL

2 for sure, such that they only compete for
the difference PH

2 −PL
2 . The prize for winning stage 2 is 240 − 2PL

2 units higher than the
prize of losing, and in equilibrium, contest participants choose a quarter of this gain as
their stage-2 effort.

When inserting the assumption that 240 units of prize money are available in each
treatment into the formal expressions for stage-1 equilibrium effort, provided in (7.3) and
(7.4), respectively, we obtain

x∗1(IR) =
240 + 2P1

16
and x∗1(DR) =

240 + 2PL
2

16
.

As for stage-1 efforts, we find that stage-2 efforts are also identical across treatments under
the assumption P1 = PL

2 . Intuitively, participants in the IR specification know that they
have P1 for sure when winning stage 1; they may gain P2 in addition if they win stage 2.
Similarly, the DR specification ensures that every stage-2 participant will at least receive
PL

2 , while winning stage-2 delivers the additional gain PH
2 − PL

2 .
In addition to individual stage-1 and stage-2 efforts, we consider one additional in-

centive measure, namely total effort provision by all participants in both stages of the
contest (denoted E). When adding individual stage-1 effort by four agents and stage-2
effort provision by two agents, we obtain

E∗(IR) =
720 − 2P1

4
and E∗(DR) =

720 − 2PL
2

4
.

Since stage-1 and stage-2 efforts are identical across treatments for P1 = PL
2 , it comes as

no surprise that the same holds for the aggregate measures E∗(IR) and E∗(DR) under
this assumption.

In the experimental treatments, we assume that P1 = PL
2 = 72. Table 7.1 shows the

resulting equilibrium predictions for this parametrization, which form the basis for the
set of hypotheses which we will test in the remainder of this paper. First of all, the
theoretical model predicts that total effort E should be the same in both treatments,
which gives Hypothesis 7.1:

Hypothesis 7.1 (Total Effort Equality). Total effort provision by all four participants

162



Table 7.1: Theoretical Prediction and Parametrization

Immediate Reward (IR) Delayed Reward (DR)

Total Effort (E∗) 144 144

Stage-1 Effort (x∗1) 24 24

Stage-2 Effort (x∗2) 24 24

Rewards P1=72, P2=96 PL
2 =72, PH

2 =168

in both stages is identical across treatments:

E(IR) = E(DR).

Even though total effort is a common measure of interest in contests, the comparison of
this measure across treatments will not allow us to determine the reason for potential
differences. Therefore, we do also consider individual efforts in both stages. Recall from
the previous analysis that stage-1 and stage-2 effort are identical across treatments under
the assumption P1 = PL

2 , which is satisfied in the parametrization we consider (see Table
7.1):

Hypothesis 7.2 (Individual Effort Equality). Individual effort provision is identical
across treatments in both stages:

(a) x1(IR) = x1(DR)

(b) x2(IR) = x2(DR).

Finally, the chosen parametrization allows us to test one additional hypothesis. As Table
7.1 shows, incentives for effort provision are maintained across stages, such that individual
effort provision is identical across stages in each treatment. While Hypotheses 7.1 and 7.2
hold whenever P1 = PL

2 , incentive maintenance can be observed only if 30% of the overall
prize money are allocated to prizes P1 and PL

2 , respectively. In fact, this is the reason
why we choose P1 = PL

2 = 72. Consequently, our last hypothesis is as follows:

Hypothesis 7.3 (Incentive Maintenance). Individual effort provision is identical across
stages within each treatment:

(a) x1(IR) = x2(IR)

(b) x1(DR) = x2(DR).

Experimental Implementation. We ran a total of 10 computerized sessions with
20 participants each using the software z-Tree (Fischbacher 2007). All 200 partici-
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pants were students from the university of Innsbruck, which were recruited with ORSEE
(Greiner 2004). Each session lasted approximately 70 minutes (including distribution of
instructions and payment at the end), and participants earned between 9-13 Euro (ap-
proximately 11 Euro on average).

We adopted a between-subject design, such that experimental subjects encountered
either the “Immediate Reward” (IR) or the “Delayed Reward” treatment (DR). Each
subject encountered the same contest game 30 times. We use the experimental currency
“Taler”, where 200 Taler equal 1.00 Euro. Effort provision was modeled by using an
analogy between the chosen contest success function and a lottery: Participants were told
that they could buy a discrete number of balls in each interaction.3 The balls purchased
by the subject as well as those purchased by their respective opponents were then said to
be placed in the same ballot box, out of which one ball was randomly drawn subsequently.
This setting reflects the experimental implementation of the ratio contest success function
á la Tullock (1980) from the theoretical set-up. Players had to buy (and pay for) their
desired number of balls before they knew whether or not they won a pair-wise interaction
in the contest. Therefore, each participant received an ex-ante endowment of 240 Taler in
each round to avoid limited liability problems. This endowment could be used to buy balls
in both stages, i.e., a subject that reached stage 2 could use whatever remained of the
endowment (after the costs for the desired number of balls in stage 1 were deducted) to buy
balls in the stage-2 interaction. Subjects knew that the share of the endowment which they
did not use to buy balls was added to the payoffs of that round. Therefore, purchasing
balls implies real monetary costs. Since the endowment was as high as the sum of all
prizes that were awarded in the contest, agents were not budget-constrained at any time.
Experimental subjects were told that the endowment could only be used in a given round,
such that the strategic interaction was the same in each (of all 30) decision round. Random
matching ensured that the same participants did not interact repeatedly; matching groups
corresponded to the entire session. After each decision round, participants were informed
about their own decision, the decision of their immediate opponent in stage 1 and stage
2 (if applicable), and about their own payoff. This setting allows for an investigation of
whether experimental subjects learn when completing the same task repeatedly. To avoid
income effects, however, the participants were told that only four decision rounds (out of
30) would be chosen randomly and paid out at the end of the experiment.

The procedures in an experimental session were as follows for all treatments: First, the
participants received some general information about the experimental session. Then, in-
structions for our main treatment, the two-stage contest with four agents described above,
were distributed. After each participant confirmed that he/she had read the instructions
on the computer screen, subjects had to answer a set of control questions correctly to
ensure that they had fully understood the instructions. Only then did the first decision

3The chosen prizes ensured that equilibrium investments in all stages and both contests are positive
integers, which implies that the discrete grid has no consequences for the equilibrium strategies; the
equilibrium in pure strategies is unique in both treatments.
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round start. Overall, each subject participated in 30 decision rounds which were identical.
After the main treatment, we used a choice list similar to the one employed by Dohmen,
Falk, Huffman, and Sunde (2010) to elicit risk attitudes.4 Specifically, each subject was
exposed to a series of 21 binary choices between a cash gamble and a safe payoff. While
the cash gamble remained the same in all 21 binary choices – it always gave either 400
Taler or 0 Taler, each with 50 percent probability – the safe payoff increased in steps of
20 Taler from 0 Taler in the first choice to 400 Taler in the last choice. Given this design,
a decision maker whose preferences satisfy ordering (completeness and transitivity) and
strict monotonicity switches exactly once from the cash gamble to the safe payoff. For
subjects who switch exactly once we use the first choice scenario in which the subject
decides in favor of the save payoff as our measure of risk attitude (we do not classify
subjects with multiple switching points). Finally, individual information with respect to
certain socio-economic characteristics was collected in a questionnaire (non incentivized,
voluntary participation). Only thereafter were participants informed about their payoff
in the experimental session.

7.4 Results

Main Results. The main results of the experimental sessions are summarized in Table
7.2, which provides the average of (five independent) session means for total effort in
each treatment, as well as means for stage-1 and stage-2 effort on the individual level. In
addition, theoretical predictions from the model in section 7.2 are given. When compar-
ing the experimental observations with the theoretical benchmark, we find that subjects
provide much more effort than predicted by theory in both treatments, i.e., we observe
a high degree of over-provision. Such substantial over-provision in contests is, however,
not uncommon in experimental settings – see Stracke, Höchtl, Kerschbamer, and Sunde
(2012) for an overview of potential explanations for this phenomenon.

The first important result is that total effort differs across treatments: In treatment
IR, agents invest slightly more than 231 Taler (experimental currency units) on average in
both stages of the contest, compared to almost 278 Taler in treatment DR. The difference
between treatments is significantly different from zero, such that Hypothesis 7.1 can be
rejected; the respective p-values are 0.029 for a t-test and 0.047 for a non-parametric
’Mann-Whitney-U’-test (MWU-test). Figure 7.2 plots a local polynomial smooth of total
effort provision over the course of an experimental session in both treatments.5 The figure
shows two things: First, total effort provision is much lower in later than in early decision

4In the Dohmen, Falk, Huffman, and Sunde (2010) procedure, each subject is exposed to a series of
choices between a safe payment (which is systematically varied) and a binary lottery (which remains
constant across choices). This is cognitively simpler than the procedure employed by Holt and Laury
(2002), where a subject is confronted with a series of choices between two binary lotteries that are
both varied systematically. The instructions which experimental subjects received right before the risk-
elicitation part are provided in the Appendix.

5We use an Epanechnikov kernel function, and a “rule-of-thumb” (ROT) bandwidth estimation.

165



Table 7.2: Experimental Results

IR DR

N Data Theory N Data Theory

Total Effort (E∗) 5 231.879 144 5 277.861 144
(15.989) (6.796)

Stage 1 Effort (x∗1) 100 35.494 24 100 45.238 24
(1.874) (2.957)

Stage 2 Effort (x∗2) 100 43.589 24 100 45.976 24
(1.852) (2.614)

Note: The numbers in the columns “Data” denote (total) average effort observed in all
rounds of the experimental sessions. Total effort is the sum of individuals efforts (in
experimental currency, Taler). Standard errors in parentheses. The column “Theory”
provides the theoretical equilibrium prediction for the respective effort measure.

rounds. With respect to the issue of over-provision previously discussed, this suggests that
experimental participants learn that their initial effort choices where too high. However,
even though over-provision is reduced, total effort is still way higher than theory predicts
even in the very last decision round; the theoretical prediction is 144, and we observe more
than 200. Second, Figure 7.2 shows that the difference across treatments is particularly
strong in early decision rounds, decreasing until decision round 25, and then increasing
again in the last few rounds. It is important to emphasize, however, that total effort
provision is significant higher in the DR than in the IR in all decision rounds except for
one, as the 95% confidence bounds show which the figure provides. This implies that the
difference between the two treatments with respect to total effort is decreasing over time,
but present in all decision rounds. Summing up, we find the following with respect to
Hypothesis 7.1:

Result 7.1 (Total Effort Equality). The equality of total effort provision across treatments
can be rejected; total effort provision is significantly higher in treatment DR than in
treatment IR.

This result immediately raises the question whether the difference across treatments
in terms of observed total effort provision is due to unequal behavior in stage 1, in stage
2, or in both stages. The results in Table 7.2 clearly suggest that differences in stage 1
are the driving force of Result 7.1: While effort provision in stage 2 is very similar across
treatments (45.976 in treatment DR as compared to 43.589 in treatment IR), stage-1 ef-
fort is much lower in the IR than in DR treatment. Formal testing confirms the relevance
of the observed pattern: We can reject the equality of stage-1 efforts across treatments
(p-value 0.006 both for the t-test and the MWU-test), while the small difference between
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Figure 7.2: Total Effort by Decision Round

investments in stage 2 is insignificant (p-value 0.460 for the t-test, and 0.9698 for the
MWU-test). Figure 7.3 confirms that the observed pattern is not only present in means
over all decision rounds of the experimental treatment, but that the pattern is stable over
the course of an experimental session: As panel (a) shows, the difference between stage-1
efforts is somewhat higher in early than in later decision rounds, but it can be observed
in all periods. Panel (b) indicates that there is no systematic difference between stage-
2 efforts across treatments; if anything, stage-2 efforts in treatment DR are marginally
higher at the beginning, but even this small difference disappears over time. In addition,
Figure 7.3 shows that all effort measures are decreasing over the course of an experimental
session. This effect is stronger in the DR treatment, particularly in stage 1.

Summing-up, we reject Hypothesis 7.2 (a), while experimental evidence is well in line
with Hypothesis 7.2 (b):

Result 7.2 (Individual Effort Equality). Individual effort equality across treatments can
be rejected in stage 1, but not for stage 2. Average individual efforts are

(a) significantly higher in stage 1 of the DR than in stage 1 of the IR treatment.

(b) practically identical in stage 2 of treatments IR and DR.

Interestingly, stage-1 effort is lower in the treatment with an immediate reward for
winning stage 1 than in the setting where the reward is delayed. This suggests that we
certainly do not observe discounting of future rewards. Rather, it seems that subjects
prefer late over immediate rewards, which contradicts standard economic intuition.

Next, consider Hypothesis 7.3, according to which efforts are predicted to be the
same across stages within each treatment. Table 7.2 shows that stage-1 and stage-2 effort
choices differ substantially in treatment IR (35.494 vs. 43.589), while there is no difference
in treatment DR (45.238 vs. 45.976). Testing shows that mean equality across stages can

167



Figure 7.3: Individual Effort by Stage and Decision Round

(a) Stage 1 Effort (b) Stage 2 Effort

be rejected for treatment IR (p-value 0.002 for the t-test and 0.000 for the MWU-test),
but not for treatment DR. Figure 7.4 shows that this pattern is comparably stable over
the course of an experimental session. Panel (a) plots observed stage-1 and stage-2 effort
for the IR treatment, and shows that average effort provision in stage 2 is higher than
(average) effort provision in stage 1 in every decision round; the difference is particularly
pronounced at the beginning of an experimental session. Similarly, panel (b) shows that
stage-1 effort is slightly higher than stage-2 effort in treatment DR in early decision
rounds, but in this case the order is reversed over the course of the experiment, such that
stage-2 effort is marginally higher than stage-1 effort after decision round 7. Figure 7.4
also provides the prediction of the theoretical model for stage-1 and stage-2 equilibrium
effort. When comparing theoretical predictions and observed effort choices, it becomes
clear that observed effort choices are well above their equilibrium prediction in all decision
rounds, event though stage-1 and stage-2 effort choices are decreasing over the course of an
experimental session in both treatments. This suggests that experimental subjects realize
that their initial effort choices are too high, but choices do still not converge towards
equilibrium predictions as, for example, in Bull, Schotter, and Weigelt (1987). Overall,
our findings with respect to the incentive maintenance Hypothesis are as follows:

Result 7.3 (Incentive Maintenance). We can reject incentive maintenance across stages
in treatment IR, but not in treatment DR. Average individual efforts are

(a) significantly lower in stage 1 than in stage 2 of treatment DR.

(b) almost identical in both stages of treatment IR.

It should be mentioned that the incentive maintenance hypothesis in a two-stage contest
has already been examined by Altmann, Falk, and Wibral (2012) in a delayed reward
framework. However, they consider an experimental design where participants interact
only once, while we repeat the same contest 30 times with random matching. If we
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Figure 7.4: Individual Effort by Treatment and Decision Round

(a) Immediate Reward (IR) (b) Delayed Reward (DR)

consider the first decision round only, we can replicate the pattern they observe: In this
decision round, subjects choose the effort 65.75 in stage 1 of the DR treatment, compared
to 59.16 in stage 2 of this treatment.6 However, this pattern disappears over time and
is even reversed in later decision rounds, as previously discussed and depicted in Panel
(b) of Figure 7.4.7 Overall, it seems that the number of repetitions, as well as the timing
of rewards for winning stage 1 determines whether or not incentive maintenance across
stages can be observed in experimental treatments; our findings with respect to individual
and total effort equality across treatments are, however, relatively stable over the course
of the experimental session(s).

Behavioral Differences in Stage 1. As established in Result 7.2 (a), the effort choice
of experimental subjects in stage 1 differs across treatments. To be precise, effort choices in
the IR treatment are lower than in theDR treatment on average. This finding is contrary
to standard economic intuition, which suggests that, if there is any difference at all, future
rewards should be discounted, such that stage-1 effort choices are higher in the delayed
reward than in the immediate reward case. Subsequently, we will investigate whether
individual characteristics help to explain differential stage-1 choices across treatments.

As mentioned in the discussion of the experimental design, we elicit risk attitudes and
ask subjects to fill out a questionnaire at the end of an experimental session.8 Moreover,
we count the number of mistakes when subjects answer a set of control questions prior
to the first decision round.9 Table 7.3 provides information on gender, field of study, the
last math grade in school, risk attitudes and the number of mistakes when answering the

6This difference is significantly different from zero at the 5%-level.
7For details, see also our companion paper Stracke, Höchtl, Kerschbamer, and Sunde (2012), where

we compare the DR treatment with a ”winner-takes-all“ treatment.
8Filling out the questionnaire was voluntary and non incentivized.
9The translated version of all control questions is provided in section B of the Appendix; the original

German version is available from the authors upon request.
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Table 7.3: Individual Characteristics by Treatment

IR DR

N mean S.D. N mean S.D.

Econ Department 100 0.47 0.502 100 0.46 0.501

Gender (male=1) 100 0.59 0.494 100 0.49 0.502

Math Grade 96 2.427 1.129 98 2.360 1.115

Risk Attitude 90 10.289 4.453 87 10.126 4.220

Control Questions 100 1.030 1.087 100 1.200 1.287

control questions for each treatment.10 The table indicates that there are slightly more
male students in the IR than in the DR treatment; yet, the difference across treatments
is insignificant.11 Risk attitudes, the share of students from the econ department, the
average math grade, and the number of incorrectly answered control questions are almost
identical in both treatments. The absolute values suggest that subjects are weakly risk-
averse, fairly good in mathematics, often from the econ department, and able to correctly
answer the control questions.12

In a first step, we investigate whether the observed difference of stage-1 efforts is due
to unclear instructions. Recall that control questions were used to ensure that each sub-
ject correctly understands the strategic situation. Therefore, we employ the number of
incorrectly answered control questions to address this potential issue. Table 7.4 provides
the means of stage-1 effort in both treatments for different sub-samples. However, ex-
cluding subjects who have problems with the control questions leaves the main result
unaffected; stage-1 effort choices by experimental subjects are significantly higher in the
delayed reward treatment even if only subjects who answer all questions correctly are
considered.

Next, we investigate whether gender, risk attitudes, math grades or the field of study
systematically affect the behavior of experimental subjects. To address this question, a
regression analysis is performed; average stage-1 effort choices by experimental subjects
over the course of an experimental session are regressed on the respective individual
characteristic, on a treatment dummy, and on an interaction between the two. The

10In the questionnaire, we also collect information on nationality and the “Abitur”-grade. The nation-
ality of students does not affect their decision; since the Abitur-grade is highly correlated with the math
grade, we omit this information in the subsequent analysis. Details are available from the authors upon
request.

11The p-value of a Mann-Whitney-U test is 0.1502.
12A switching point at 11 is optimal for risk-neutral individuals; therefore, values below (above) 11

indicate that a subject is risk averse (loving). Grades in mathematics are on a scale from 1 to 6, where
1 is the best grade.
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Table 7.4: Stage-1 Effort by Treatment

IR DR p-value

N mean N mean MWU-test

all observations 100 35.494 100 45.238 0.006

# mistakes ≤ 3 99 35.391 93 44.096 0.013

# mistakes ≤ 2 96 35.478 90 41.517 0.018

# mistakes ≤ 1 73 32.894 70 41.450 0.024

# mistakes = 0 33 28.510 32 44.000 0.004

results are provided in Table 7.5: Specification (1) considers the effect of being a student
from the econ department on stage-1 behavior. The variable econ equals one if a student
is enrolled in the Econ Department, and zero otherwise. Interestingly, the level effect of
econ is insignificant, whereas both the treatment dummy DR and the interaction term
econ*DR are highly significant; the fact that both coefficients have opposing signs and
are approximately of the same size suggests that the stage-1 difference across treatments
can almost completely be explained by the field of study of experimental subjects. Figure
7.5 illustrate this finding graphically and show that the pattern is present in any decision
round: There is hardly any observable difference across treatments IR andDR among the
group of students from the econ department after the initial periods of a session, as panel
(a) clearly shows. In contrast, panel (b) indicates that subjects from other departments
choose much higher stage-1 effort levels in any decision round.

When considering the math score in specification (2) or the gender effect in specifi-
cation (3) in Table 7.5, the estimated coefficients have the same pattern as for the econ
dummy:13 The treatment dummy DR is positive (i.e., subjects in the delayed reward treat-
ment choose higher stage-1 efforts on average), while the interaction effects mathsc*DR
and male*DR, respectively, have a negative sign, which implies that the difference across
treatments is lower for male subjects and for subjects with a high math score, i.e., for
students who are good in math.14 Even though the effects are fairly stable across all
decision rounds of an experimental session, as panels (c) to (f) in Figure 7.5 show, they
are much less significant than when considering the field of study, however.15

Specification (4) in Table 7.5 investigates whether risk attitudes of experimental sub-
jects differentially affect stage-1 efforts in the two treatments. The employed risk measure

13Note that mathsc measures the math score rather than the math grade. The math score is defined as
6− last math grade. We employ this normalization to make coefficients comparable across specifications.

14The coefficient estimate is higher for the dummy variable male than for mathsc which allows for
values between five and zero.

15For the graphical illustration of the math score, we split the sample at the mean. We refer to subjects
above the mean as being good or better in math, while those below the mean are satisfactory or worse.
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Figure 7.5: Stage-1 Effort by Decision Round

(a) Econ Department (b) Other Department

(c) Math good or better (d) Math satisfactory or worse

(e) Male (f) Female

(g) Risk neutral or loving (h) Risk averse
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Figure 7.6: Stage-2 Effort by Decision Round

(a) Econ Department (b) Other Department

(c) Math good or better (d) Math satisfactory or worse

(e) Male (f) Female

(g) Risk neutral or loving (h) Risk averse
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Table 7.5: Individual Characteristics and Treatment Differences

Dependent Variable: Individual Stage-1 Effort

(1) (2) (3) (4) (5) (6)

econ 3.711 - - - 4.664 4.664
(0.452) (0.381) (0.378)

mathsc - -0.166 - - -0.249 -0.249
(0.942) (0.308) (0.304)

male - - -3.720 - -5.639 -5.639
(0.450) (0.308) (0.304)

risk - - - 0.383 0.506 0.506
(0.510) (0.401) (0.398)

DR 16.155∗∗∗ 21.784∗ 15.424∗∗∗ 31.529∗∗∗ 47.822∗∗∗ 77.421∗∗∗

(0.001) (0.074) (0.003) (0.001) (0.003) (0.006)

econ*DR −13.858∗∗ - - - -7.008 -55.571
(0.048) (0.362) (0.705)

mathsc*DR - -3.201 - - -2.260 -7.106
(0.320) (0.440) (0.355)

male*DR - - −12.351∗ - -8.498 -10.948
(0.075) (0.275) (0.737)

risk*DR - - - −2.192∗∗ −2.102∗∗ −5.577∗∗

(0.017) (0.017) (0.019)

Fully int. Yes Yes Yes Yes No Yes
# Obs. 200 194 200 171 171 171

Note: p-values are provided in parentheses.

risk is the switching point where students with consistent risk-preferences decide in favor
of the save payment for the first time; low (high) values of risk indicate that a subject
is risk-averse (-loving). As for all individual characteristics previously considered, risk
attitudes have no (significant) level effect per se. The treatment dummy DR and the
interaction term risk*DR have very strong and highly significant effects, however. The
coefficient signs suggest that risk-averse (rather than risk-neutral) subjects are responsi-
ble for the treatment effect we observe in stage 1. Panels (g) and (h) of Figure 7.5 show
that this is indeed the case. When separately considering risk-averse and risk-neutral (or
-loving) subjects, we find that there is no difference across treatments after the initial
decision rounds for risk-neutral subjects. In contrast, there is a pronounced difference
with respect to stage-1 effort choices across treatments for risk-averse students.

Overall, the regression analysis suggests that all observable characteristics, and in par-
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ticular the field of study and risk attitudes, affect the behavior of experimental subjects
in stage 1. To ensure that we do not simply pickup effects which generally hold across
the two treatments to explain the difference in stage 1, Figure 7.6 plots the same charac-
teristics for stage 2 which were presented for stage 1 in Figure 7.5. Interestingly, we do
not find differences across types and treatments in stage 2 which are comparable to those
present in stage 1.16 This suggests that at least some of the previously considered observ-
able characteristics are responsible for differential behavior in stage 1. Specifications (5)
in Table 7.5, which jointly estimates all interaction coefficients, shows that the effect is
mainly driven by risk attitudes. While the effect of the treatment dummy is still highly
significant and all other interaction coefficients do have the expected negative sign, the
interaction term risk*IR is the only one with a significant coefficient. Specification (6)
shows that this does not change when estimating the fully interacted model.17

This raises the question why risk attitudes differentially affect behavior across treat-
ments in stage 1. At first sight, this seems to be unreasonable, since the overall outcomes
do not differ across treatments: The overall winner in the delayed reward treatment re-
ceives 168 Taler, compared to 72 + 96 = 168 Taler in the immediate reward specification.
Similarly, participants have 72 Taler for sure when reaching stage 2 – either because they
received this reward after winning stage 1 (IR), or because they receive this reward in
the worst possible stage-2 outcome (DR). Panels (a) and (b) of Figure 7.7 illustrate the
decision for decision makers with an arbitrary (potentially non-linear) utility function,
and the outcomes are clearly the same across treatments. Note, however, that this rep-
resentation assume that decision makers jointly evaluate stage-1 and stage-2 outcomes.
Panels (c) and (d) depict the situation when each stage is separately evaluated. While
the utility when losing stage 1 is the same in both treatments for some arbitrary agent
i, winning stage 1 is worth Ui(72 +CVIR − xi1) in the immediate reward, compared to
Ui(CVDR − xi1) in the delayed reward specification. Since contest theory predicts that
efforts are increasing in the reward, our experimental results suggest that the value of
winning stage 1 is lower in the IR than in the DR treatment for concave utility func-
tions, while the respective values are the same for linear utility functions. In fact, this is
exactly what we find: The value of winning in treatment IR equals 72+CVIR, compared
to CVDR in treatment DR. The continuation value terms correspond to the certainty
equivalent of the respective stage-2 lottery. For simplicity, assume that all agents in a
particular treatment choose the same stage-2 effort xi2, such that each of the two potential
states in stage 2 realizes with probability 1

2 . Then, we have to show that the relation

U−1 (
1

2
[U(X) +U(Y )])

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=CVIR

+72 ≤ U−1 (
1

2
[U(X + 72) +U(Y + 72)])

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=CVDR

,

16When using regression analysis, all treatment dummy and interaction term coefficients are insignifi-
cant. Details available from the authors upon request.

17The coefficients of the additional interaction terms are not reported. Note, however, that they are
all insignificant. Details are available from the authors upon request
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Figure 7.7: Decision Problem for Arbitrary Utility Functions

(a) Joint Evaluation of Stages: Immediate Reward (IR)

(b) Joint Evaluation of Stages: Delayed Reward (DR)

(c) Separate Evaluation of Stages: Immediate Reward (IR)

(d) Separate Evaluation of Stages: Delayed Reward (DR)
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where X = 240 + 96 − xi2 and X = 240 − xi2, respectively, holds with equality for linear,
and with strict inequality for concave utility functions. The first part is obvious, since
the utility function vanishes in the linear case, such that rearranging of terms delivers
equality. It is somewhat harder to show that strict inequality holds for concave utility
functions. For illustrative purposes, consider the case where ui(x) = ln(x). This gives

e
1
2
(ln[X+72]+ln[Y +72]) > e

1
2
(ln[X]+ln[Y ]) + eln[72]

⇔
√
X + 72

√
Y + 72 >

√
X

√
Y + 72

⇔
√
XY + (X + Y )72 + 5184 >

√
X

√
Y +

√
5184

Squaring both sides, which is without loss of generality, sinceX and Y are strictly positive,
delivers:

XY + (X + Y )72 + 5184 > XY + 2
√
X

√
Y 72 + 5184

⇔X − 2
√
X

√
Y + Y > 0

⇔ (
√
X −

√
Y )

2
> 0.

Clearly, this relation is always satisfied. Intuitively, the result is driven by the curvature
of the utility function: If the 72 Taler reward is added in both potential stage-2 states
(winning or losing), as in treatment DR, this effectively reduces the risk in stage 2.
The reason is that both states, winning and losing, are shifted upwards into a range of
the utility function that is flatter than in the IR treatment, where the utility values of
losing and winning are lower. Therefore, shifting the 72 Taler reward to stage 2, as in
the delayed reward treatment, provides valuable insurance to risk averse decision makers.
Consequently, the value of winning stage 1 is higher in the delayed than in the immediate
reward treatment, which implies that theory predicts higher stage-1 effort in the former
than in the latter specification, i.e., theory predicts the pattern which we observe in the
experimental data.

Summing up, our results indicate that experimental subjects separately evaluate each
of the two stages. While they clearly take continuation values into account, it is the
payoff in each of the two stages which delivers utility, and not the aggregate payoff in
both stages. In other words, winning or losing a given stage matters, not only the overall
payoff subjects finally obtain.

7.5 Conclusion

This paper has analyzed which effect the timing of rewards has on the behavior of agents
in two-stage pair-wise elimination contests. Comparing a treatment where agents receive
an immediate reward for winning stage 1 (IR) with a specification where the reward
for winning stage 1 is only awarded after the stage-2 interaction is completed (DR),
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we find that stage-1 effort choices by experimental subjects are higher in the delayed
than in the immediate reward treatment, while effort provision in stage 2 does not differ
between treatments. Theory predicts that the two treatments are strategically identical
in both stages if agents are risk neutral, or if agents jointly evaluate the payoff of both
interactions. Therefore, the suggestion of the empirical analysis that the treatment effect is
due to risk preferences of experimental subjects seems counterintuitive at first. However,
average differences of stage-1 effort choices between treatments are fully explained by
choices of risk averse subjects; while their stage-1 effort choices in the delayed are much
higher than in the immediate reward treatment, there is no difference across treatments
for risk neutral subjects. This pattern is consistent with theoretical predictions only if
experimental subjects separately evaluate the payoff of each stage. We show that delayed
rewards provide an insurance for risk averse decision makers in this case, such that stage-
1 effort choices should indeed differ across treatments for risk averse, but not for risk
neutral decision makers. Generally speaking, this finding suggests that the presence of
risk in the future generates an effect that works against standard discounting due to
impatience. Consequently, time and risk preferences jointly determine optimal behavior
in inter-temporal, risky environments. This finding implies that it will often be hard to
disentangle the two components outside the lab.

It would be an interesting topic for future research to investigate whether the insurance
effect of delayed rewards is influenced by the presence of strategic risk with respect to the
effort choice of the opponent. To address this question, one could simply analyze whether
the shifting of rewards across stages affects the value which subjects attach simple payoff
equivalent lotteries with several stages and without strategic risk.
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Appendix

7.A Experimental Instructions

The experimental instructions consist of three parts: First, experimental subjects receive
some general information about the experimental session. Then, they are informed about
the main treatment (Experiment 1), which is either the IR or the DR specification (both
versions are provided). Finally, subjects receive instructions for the elicitation of risk
attitudes (Experiment 2).

WELCOME TO THIS EXPERIMENT AND THANK YOU FOR YOUR
PARTICIPATION

General Instructions:

You will participate in 2 different experiments today. Please stop talking to any other participant of
this experiment from now on until the end of this session. In each of the two experiments, you will
have to make certain decisions and may earn an appreciable amount of money. Your earnings will
depend upon several factors: on your decisions, on the decisions of other participants, and on random
components, i.e. chance. The following instructions explain how your earnings will be determined.

The experimental currency is denoted Taler. In addition to your Taler earnings in experiments 1 and
2, you receive 3 EURO show up fee. You may increase your Taler earnings in experiments 1 and 2,
where 2 Taler equal 1 Euro Cent, i.e.

200 Taler correspond to 1 Euro.

At the end of this experimental session your Taler earnings will be converted into Euro and paid to
you in cash.

Before the experimental session starts, you receive a card with your participant number. All your
decisions in this experiment will be entered in a mask on the computer, the same holds for all other
participants of the experiment. In addition, the computer will determine the random components
which are needed in some of the experiments. All data collected in this experiment will be matched to
your participant number, not to your name or student number. Your participant number will also be
used for payment of your earnings at the end of the experimental session. Therefore, your decisions
and the information provided in the experiments are completely anonymous; neither the experimenter
nor anybody else can match these data to your identity.

We will start with experiment 1, followed by experiment 2. The instructions for experiment 2 will only
be distributed right before this experiment starts, i.e. subsequent to experiment 1.

You will receive your earnings in cash at the end of the experimental session.
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Experiment 1

Overall, there are 30 decision rounds with two stages each in Experiment 1. The course of events is the
same in each decision round. You will be randomly and anonymously placed into a group of four
participants in each round, and the identity of participants in your group changes with each decision
round.

Course of events in an arbitrary decision round
All four participants of each group receive an endowment of 240 Taler at the beginning of a decision
round. The endowment can be used to buy a certain amount of balls in two subsequent stages of a
decision round. It is important to note that you receive one endowment only which must suffice to
buy balls in both stages. The costs for the purchase of a ball are the same for all participants:
Participants have to pay 1.00 Taler for each ball they buy in stage 1 or stage 2, i.e.

1 ball costs 1.00 Taler
2 balls cost 2.00 Taler

(and so on)

When deciding how many balls you want to buy, you do not know the decision of other participants.
Also, your decision is not revealed to any other participant.

All interactions in the experiment are pairwise. Assume that you are in one group with participant A,
participant B, and participant C. Then, you interact with participant A in stage 1, while participants B
and C simultaneously meet each other in the second stage 1 interaction. If you reach stage 2, you will
interact either with participant B or C, depending on the outcome in the second stage 1 interaction. In
stage 1, there are two ballot boxes:

all balls bought by you or participant A are placed in ballot box 1
all balls bought by participants B and C are placed in ballot box 2

One ball is randomly drawn from each ballot box, and each ball drawn with the same probability. The
two participants whose balls are drawn from ballot box 1 and 2, respectively, receive an intermediate
prize of 72 Taler and reach stage 2; the decision round is over for the other two participants (whose
balls were not drawn), i.e. they drop out from this decision round and receive no prize. Any
participant has to pay the balls he or she bought in stage 1, whether or not he/she reached stage 2. The
respective amount is deducted from the endowment.

The two participants who reached stage 2 do again buy a certain number of balls, using whatever
remains from the endowment they received after costs for balls in stage 1 were deducted. This implies
that the intermediate prize which stage 2 participants received at the end of stage 1 cannot be used to
purchase balls. All purchased balls are placed into ballot box 3. One ball is randomly drawn from
ballot box 3. The participant whose ball is drawn receives the main prize of 96 Taler. Independent of
whether or not a participant receives the main prize, he/she does always have to pay for the balls
bought in stage 2.

Let s take a closer look at the random draw of balls from ballot boxes. Assume, for example, that all
balls which you bought are green colored, and that you interact with participant A in stage 1. Then,
the probability that one of your balls is drawn (such that you make it to stage 2) satisfies

where # is short for number. The same probability rule does also hold for other participants in your
group. Consequently, the probability that one of your balls in drawn is higher

the more balls you purchased
the less balls the other participant with whom you interact purchased.

The computer simulates the random draw of a ball. If all participant of a group of four choose to buy
zero balls, each participant wins with the same probability of 25%.
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Your Payoff
Assume that you bought X1 balls in stage 1, and that you buy X2 balls whenever you reach stage 2.
Then, there are three possibilities for your payoff:

1) None of your balls is drawn in stage 1

If you did not reach stage 2, you are informed about how many balls participant A bought in
stage 1.

2) one of your balls is drawn from the ballot box in stage 1; in stage 2, none of your balls is drawn

3) one of your balls is drawn from the ballot box in stage 1; also, one of your balls is drawn in stage 2

Therefore, your payoff is determined by the following components: by the number of balls you buy in
stage 1 ( X1 ); by the number of balls you buy in stage 2 ( X2 ) if you reach it; by up to two random
draws (one of your balls is drawn/not drawn in stage 1 and potentially stage 2). The same holds for
any other participants of the experiment.

Information:

After you made your decision in stage 1, you are informed whether or not you can participate
in stage 2, i.e. whether or not one of your balls was drawn from ballot box 1.
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If you reach stage 2, you receive information about the remaining endowment (after costs for
the purchase in stage 1 are deducted.

ny balls the participants who you met in stages 1 and 2,

buy in
tage 1. If you reach stage 2, you face a similar decision in stage 2. In both cases, you have to enter a

Your Total Payoff: Four out of 30 decision rounds are paid. These rounds are randomly determined,
i.e., the probability that some decision round is pai is identical ex ante for all 30 decision rounds. You

ou receive an endowment of 240 Taler at the beginning of each decision round and have to decide
alls you want to buy in stage 1; if you reach stage 2, you have to decide again. Overall,

ise your hand now!

After you made your decision in stage 2, you learn whether or not one of your balls was
drawn from ballot box 3 and how ma
respectively, bought. Further, you learn your payoff for the respective decision round.

Decision: In each of the 30 decision rounds you have to decide how many balls you want to
s
number into a field on the computer screen. An example of the decision screen in stage 1 is shown
below.

d
will receive the sum of payoffs for the respective decision rounds.

Remember:
Y
how many b
there are three additional participants in each group who face the same problem. The identity of these
participants is randomly determined in each decision round. Every participants has to pay 1.00 Taler
for each ball he/she buys in stage 1 or stage 2. If one of your balls is drawn in stage 1, you receive an
intermediate prize of 72 Taler. If, in addition, one of your balls is drawn in stage 2, you additionally
receive the main prize of 96 Taler.

If you have any questions, please ra
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Experiment 1

Overall, there are 30 decision rounds with two stages each in Experiment 1. The course of events is the
same in each decision round. You will be randomly and anonymously placed into a group of four
participants in each round, and the identity of participants in your group changes with each decision
round.

Course of events in an arbitrary decision round
All four participants of each group receive an endowment of 240 Taler at the beginning of a decision
round. The endowment can be used to buy a certain amount of balls in two subsequent stages of a
decision round. It is important to note that you receive one endowment only which must suffice to
buy balls in both stages. The costs for the purchase of a ball are the same for all participants:
Participants have to pay 1.00 Taler for each ball they buy in stage 1 or stage 2, i.e.

1 ball costs 1.00 Taler
2 balls cost 2.00 Taler

(and so on)

When deciding how many balls you want to buy, you do not know the decision of other participants.
Also, your decision is not revealed to any other participant.

All interactions in the experiment are pairwise. Assume that you are in one group with participant A,
participant B, and participant C. Then, you interact with participant A in stage 1, while participants B
and C simultaneously meet each other in the second stage 1 interaction. If you reach stage 2, you will
interact either with participant B or C, depending on the outcome in the second stage 1 interaction. In
stage 1, there are two ballot boxes:

all balls bought by you or participant A are placed in ballot box 1
all balls bought by participants B and C are placed in ballot box 2

One ball is randomly drawn from each ballot box, and each ball drawn with the same probability. The
two participants whose balls are drawn from ballot box 1 and 2, respectively, reach stage 2; the
decision round is over for the other two participants (whose balls were not drawn), i.e. they drop out
from this decision round. Any participant has to pay the balls he or she bought in stage 1, whether or
not he/she reached stage 2. The respective amount is deducted from the endowment.

The two participants who reached stage 2 do again buy a certain number of balls, using whatever
remains from the endowment they received after costs for balls in stage 1 were deducted. The balls are
then placed into ballot box 3. One ball is randomly drawn from ballot box 3. The participant whose
ball is drawn receives the main prize of 168 Taler. The other participant of stage 2, whose ball is not
drawn from ballot box 3, receives a runner up prize of 72 Taler. Independent of the prize which a
stage 2 participant receives, he/she does always have to pay for the balls bought in stage 2.
Participants who did not reach stage 2 do not receive any prize.

Let s take a closer look at the random draw of balls from ballot boxes. Assume, for example, that all
balls which you bought are green colored, and that you interact with participant A in stage 1. Then,
the probability that one of your balls is drawn (such that you make it to stage 2) satisfies

where # is short for number. The same probability rule does also hold for other participants in your
group. Consequently, the probability that one of your balls in drawn is higher

the more balls you purchased
the less balls the other participant with whom you interact purchased.

The computer simulates the random draw of a ball. If all participant of a group of four choose to buy
zero balls, each participant wins with the same probability of 25%.
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Your Payoff
Assume that you bought X1 balls in stage 1, and that you buy X2 balls whenever you reach stage 2.
Then, there are three possibilities for your payoff:

1) None of your balls is drawn in stage 1

If you did not reach stage 2, you are informed about how many balls participant A bought in
stage 1.

2) one of your balls is drawn from the ballot box in stage 1; in stage 2, none of your balls is drawn

3) one of your balls is drawn from the ballot box in stage 1; also, one of your balls is drawn in stage 2

Therefore, your payoff is determined by the following components: by the number of balls you buy in
stage 1 ( X1 ); by the number of balls you buy in stage 2 ( X2 ) if you reach it; by up to two random
draws (one of your balls is drawn/not drawn in stage 1 and potentially stage 2). The same holds for
any other participants of the experiment.

Information:

After you made your decision in stage 1, you are informed whether or not you can participate
in stage 2, i.e. whether or not one of your balls was drawn from ballot box 1.

184



If you reach stage 2, you receive information about the remaining endowment (after costs for
the purchase in stage 1 are deducted.

ny balls the participants who you met in stages 1 and 2,

buy in
tage 1. If you reach stage 2, you face a similar decision in stage 2. In both cases, you have to enter a

Your Total Payoff: Four out of 30 decision rounds are paid. These rounds are randomly determined,
i.e., the probability that some decision round is pai is identical ex ante for all 30 decision rounds. You

ou receive an endowment of 240 Taler at the beginning of each decision round and have to decide
alls you want to buy in stage 1; if you reach stage 2, you have to decide again. Overall,

your hand now!

After you made your decision in stage 2, you learn whether or not one of your balls was
drawn from ballot box 3 and how ma
respectively, bought. Further, you learn your payoff for the respective decision round.

Decision: In each of the 30 decision rounds you have to decide how many balls you want to
s
number into a field on the computer screen. An example of the decision screen in stage 1 is shown
below.

d
will receive the sum of payoffs for the respective decision rounds.

Remember:
Y
how many b
there are three additional participants in each group who face the same problem. The identity of these
participants is randomly determined in each decision round. Every participants has to pay 1.00 Taler
for each ball he/she buys in stage 1 or stage 2. Two prizes are awarded: the main prize of 168 Taler for
the participant whose ball is drawn in stage 2, and the runner up prize of 72 Taler for the other
participant of the stage 2 interaction.

If you have any questions, please raise
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Experiment 2

In Experiment 2, you will face 21 decisions. Each decision is a choice between option 1 and option 2.
Each choice affects you own payoff, but not the payoff of any other participant of the experiment.
When choosing option 1, your payoff is affected by chance, while option 2 implies a certain payment.
You may be asked, for example, whether you prefer option 1, in which you receive either 400 Taler or
0 Taler with a 50% chance, or if you rather like option 2, which implies a sure payoff of c Taler. In the
experiment, you will have to choose the option you prefer. This decision problem would be presented
to you as follows:

Option 1 Option 2 Your Choice

with 50% probability 400 Taler
with 50% probability 0 Taler

with certainty c Taler Option 1 Option 2

As previously mentioned, you will encounter 21 decision problems of this kind. Your payoff from
Experiment 2 is determined as follows:
At the end of all experiments, one of the 21 decision problems will be randomly chosen for each expe
rimental participant. The option you chose in this decision problem determines your payoff. Assume,
for example, that the previous example is chosen for you, and that you preferred option 1 over op
tion 2. Then, you would receive 400 Taler or 0 Taler, each with a probability of 50%. Whether you re
ceive 400 Taler or 0 Taler is determined by a simulated random draw of the computer.
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7.B Control Questions

Overall, participants of the experimental sessions where asked to answer seven control
questions. Each control questions provided participants with three alternative answers,
only one of which is correct. Five questions where identical across treatment, two were
different. We start with the questions which were identical in both treatments:

1. How many other experimental participants do you meet in each stage-1 interaction?

• 1 other participant.

• 2 other participant.

• 3 other participant.

2. How many Taler does it cost you to buy 10 balls?

• 7.50 Taler.

• 10.00 Taler.

• 15.00 Taler .

3. Assume that you bought 100 balls in stage 1. Then, what is the maximal number
of balls that you can still buy in stage 2?

• 140 balls.

• 160 balls.

• 200 balls.

4. What is the probability that one of your balls is drawn in stage 1 if all participants
of the experiment bought 20 balls in stage 1?

• 25%.

• 50%.

• 55%.

5. What is your payoff in some decision round if you bought 30 balls in stage 1 and 50
balls in stage 2, and one of your balls is drawn in stage 1 and in stage 2?

• 328 Taler.

• 362 Taler.

• 408 Taler.
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The two remaining questions in treatment IR are:

6. In which case do you receive the 72 Taler prize? If

• you buy at least 80 balls in stage 1.

• you buy more balls in stage 1 than anybody else.

• one of your balls is drawn from your stage-1 ballot box.

7. In which case do you additionally receive the main prize of 96 Taler? If

• you reach stage 2.

• you buy more balls in both stages than anybody else.

• one of your balls is drawn from the stage-2 ballot box.

The two remaining questions in treatment DR are:

6. In which case do you receive the runner-up prize of 72 Taler? If

• you buy at least 80 balls in stage 1.

• you reach stage 2 and a ball from the other stage-2 participant is drawn.

• one of your balls is drawn from the stage-2 ballot box.

7. In which case do you receive the main prize of 168 Taler? If

• you reach stage 2.

• you buy more balls in both stages than anybody else.

• one of your balls is drawn from the stage-2 ballot box.

188



Bibliography

Abrevaya, J. (2002): “Ladder Tournaments and Underdogs: Lessons from Professional

Bowling,” Journal of Economic Behavior and Organization, 47, 87–101.

Allard, R. J. (1998): “Rent-Seeking with Non-Identical Players,” Public Choice, 57(1),

3–14.

Altmann, S., A. Falk, and M. Wibral (2012): “Promotions and Incentives: The

Case of Multi-Stage Elimination Tournaments,” Journal of Labor Economics, 30(1),

149–174.

Amegashie, J., C. B. Cadsby, and Y. Song (2007): “Competitive Burnout: Theory

and Experimental Evidence,” Games and Economic Behavior, 59, 213–239.

Amegashie, J. A. (1999): “The Design of Rent-Seeking Competitions: Committees,

Premliminary and Final Contests,” Public Choice, 99, 63–76.

(2000): “Some Results on Rent-Seeking Contests with Shortlisting,” Public

Choice, 105(3/4), 245–253.

Amman, E., and W. Leininger (1996): “Asymmetric All-Pay Auctions with Incomplete

Information: The Two-Player Case,” Games and Economic Behavior, 59, 213–239.

Baik, K. (1994): “Effort Levels in Contests with Two Asymmetric Players,” Southern

Economic Journal, 61, 367–378.

Baker, G. P., M. C. Jensen, and K. J. Murphy (1988): “Compensation and Incen-

tives: Practice vs. Theory,” Journal of Finance, 43(3), 593–616.

Baye, M., D. Kovenock, and C. de Vries (1996): “The All-Pay Auction with Com-

plete Information,” Economic Theory, 8, 291–305.

189



Baye, M. R., D. Kovenock, and C. G. de Vries (1994): “The Solution to the Tul-

lock Rent-Seeking Game when R>2: Mixed-Strategy Equilibria and Mean Dissipation

Rates,” Public Choice, 81, 363–380.

Bernhardt, D. (1995): “Strategic Promotion and Compensation,” Review of Economic

Studies, 62(2), 315–339.

Bhattacharya, S., and J. L. Guasch (1988): “Heterogeneity, Tournaments, and Hi-

erarchies,” Journal of Political Economy, 96(4), 867–881.

Brown, J. (2011): “Quitters Never Win: The (Adverse) Incentive Effects of Competing

with Superstars,” Journal of Political Economy, 119(5), 982–1013.

Brown, J., and D. Minor (2011): “Selecting the Best: Spillover and Shadows in

Elimination Tournaments,” NBER Working Paper No. 17639.

Bull, C., A. Schotter, and K. Weigelt (1987): “Tournaments and Piece Rates: An

Experimental Study,” Journal of Political Economy, 95(1), 1–33.

Clark, D. J., and C. Riis (1996): “A Multi-Winner Nested Rent-Seeking Contest,”

Public Choice, 87(1/2), 177–184.

(1998a): “Competition over More than One Prize,” American Economic Review,

88(1), 276–289.

(1998b): “Contest Success Functions: An Extension,” Economic Theory, 11,

201–204.

(1998c): “Influence and the Discretionary Allocation of Several Prizes,” European

Journal of Political Economy, 14, 605–625.

Cornes, R., and R. Hartley (2005): “Asymmetric Contests with General Technolo-

gies,” Economic Theory, 26, 923–946.

Davis, D., and R. Reilly (1998): “Do Many Cooks Always Spoil the Stew? An Exper-

imental Analysis of Rent-Seeking and the Role of a Strategic Buyer,” Public Choice,

95, 89–115.

Delfgaauw, J., R. Dur, A. Non, and W. Verbeke (2012): “The Effects of Prize

Spread and Noise in Elimination Tournaments: A Natural Field Experiment,” IZA

Discussion paper No. 6480.

190



Dohmen, T., A. Falk, D. Huffman, and U. Sunde (2010): “Are Risk Aversion

and Impatience Related to Cognitive Ability?,” American Economic Review, 100(3),

1238–1260.

Eriksson, T. (1999): “Executive Compensation and Tournament Theory: Empirical

Tests on Danish Data,” Journal of Labor Economics, 17(2), 262–280.

Fischbacher, U. (2007): “Z-Tree, Zurich Toolbox for Readymade Economic Experi-

ments,” Experimental Economics, 10, 171–178.

Fu, Q., and J. Lu (2012): “The Optimal Multi-Stage Contest,” Economic Theory,

forthcoming.

Gibbs, M., and W. Hendricks (2004): “Do Formal Salary Systems Really Matter?,”

Industrial and Labor Relations Review, 58(1), 71–93.

Gneezy, U., and R. Smorodinsky (2006): “All-Pay Auctions - An Experimental

Study,” Journal of Economic Behavior and Organization, 61, 255–275.

Gradstein, M., and K. A. Konrad (1999): “Orchestrating Rent Seeking Contests,”

Economic Journal, 109(458), 536–545.

Greiner, B. (2004): “An Online Recruitment Sysmte for Economic Experiments,” in

Forschung und wissenschaftliches Rechnen 2003, pp. 79–93. GWDDG Bericht der 63.

Gesellschaft für Wissenschaftliche Datenverarbeitung, Göttingen, K. Kremer and V.

Macho (eds.).

Groh, C., B. Moldovanu, A. Sela, and U. Sunde (2012): “Optimal Seedings in

Elimination Tournaments,” Economic Theory, 49(1), 59–80.

Gürtler, O., and M. Kräkel (2010): “Optimal Tournament Contracts for Heteroge-

neous Workers,” Journal of Economic Behavior and Organization, 75, 180 – 191.

(2011): “On the Virtues of Hiring Lemons,” mimeo, University of Bonn.

Harbaugh, R., and T. Klumpp (2005): “Early Round Upsets and Championship

Blowouts,” Economic Inquiry, 43(2), 316–329.

Harbring, C., and B. Irlenbusch (2003): “An Experimental Study on Tournament

Design,” Labour Economics, 10(4), 443–464.

191



Harbring, C., and G. K. Lünser (2008): “On the Competition of Asymmetric

Agents,” German Economic Review, 9, 373–395.

Hirshleifer, J. (1989): “Conflict and Rent-Seeking Success Functions: Ratio vs. Dif-

ference Models of Relative Success,” Pubic Choice, 63, 101–112.

Höchtl, W., R. Kerschbamer, R. Stracke, and U. Sunde (2011): “Incentives

vs. Selection in Promotion Tournaments: Can a Designer Kill Two Birds with One

Stone?,” IZA Discussion paper No. 5755.

Holt, C. A., and S. K. Laury (2002): “Risk Aversion and Incentive Effects,” American

Economic Review, 92, 1644–1655.

Horen, J., and R. Riezman (1985): “Comparing Draws for Single Elimination Tour-

naments,” Operations Research, 33(2), 249–262.

Hwang, F. K. (1982): “New Concepts in Seeding Knockout Tournaments,” American

Mathematical Monthly, 89(4), 235–239.

Klumpp, T., and M. K. Polborn (2006): “Primaries and the New Hampshire Effect,”

Journal of Public Economics, 90(6-7), 1073–1114.

Knoeber, C. R., and W. N. Thurman (1994): “Testing the Theory of Tournaments:

An Empirical Analysis of Broiler Production,” Journal of Labor Economics, 12, 155–

179.

Konrad, K. (2009): Strategy and Dynamics in Contests. Oxford University Press.

(2010): “Dynamic Contests,” WZB Discussion Paper SP II 2010 -10.

Krishna, V., and J. Morgan (1998): “The Winner-Take-All Principle in Small Tour-

naments,” Advances in Applied Microeconomics, 7, 61–74.

Lazear, E. P., and S. Rosen (1981): “Rank-Order Tournaments as Optimal Labor

Contracts,” Journal of Political Economy, 89(5), 841–864.

Malcomson, J. M. (1984): “Work Incentives, Hierarchy, and Internal Labor Markets,”

Journal of Political Economy, 92, 486–507.

Matros, A. (2005): “Elimination Tournaments where Players Have Fixed Resources,”

Working Paper, University of Pittsburg.

192



McKelvey, R., and T. Palfrey (1995): “Quantal Response Equilibria for Normal

Form Games,” Games and Economic Behavior, 10, 6–38.

McLaughlin, K. J. (1988): “Aspects of Tournament Models: A Survey,” Research in

Labor Economics, 9, 225–256.

Moldovanu, B., and A. Sela (2001): “The Optimal Allocation of Prizes in Contests,”

American Economic Review, 91(3), 542–558.

(2006): “Contest Architecture,” Journal of Economic Theory, 126, 70–96.

Nti, K. O. (1999): “Rent-Seeking with Asymmetric Valuations,” Public Choice, 98, 415–

430.

O’Keeffe, M., W. K. Viscusi, and R. J. Zeckhauser (1984): “Economic Contests:

Comparative Reward Schemes,” Journal of Labor Economics, 2(1), 27–56.

Orrison, A., A. Schotter, and K. Weigelt (2004): “Multiperson Tournaments: An

Experimental Examination,” Management Science, 50(2), 268–279.

Parco, J. E., A. Rapoport, and W. Amaldoss (2005): “Two-Stage Contests with

Budget Constraints: An Experimental Study,” Journal of Mathematical Psychology,

49, 320–338.

Perez-Castrillo, J. D., and T. Verdier (1992): “A General Analysis of Rent-Seeking

Games,” Public Choice, 73, 335–350.

Potters, J., C. G. de Vries, and F. van Winden (1998): “An Experimental Exami-

nation of Rational Rent-Seeking,” European Journal of Political Economy, 14, 783–800.

Prendergast, C. (1993): “The Role of Promotion in Inducing Specific Human Capital

Aquisition,” Quarterly Journal of Economics, 108(2), 523–534.

(1999): “The Provision of Incentives in Firms,” Journal of Economic Literature,

37(1), 7–63.

Rai, B. K., and R. Sarin (2009): “Generalized Contest Success Functions,” Economic

Theory, 40, 139–149.

Rosen, S. (1986): “Prizes and Incentives in Elimination Tournaments,” American Eco-

nomic Review, 76(4), 701–715.

193



Ryvkin, D., and A. Ortmann (2008): “The Predictive Power of Three Prominent

Tournament Formats,” Management Science, 54(3), 492–504.

Schwenk, A. J. (2000): “What Is the Correct Way to Seed a Knockout Tournament,”

American Mathematical Monthly, 107(2), 140–150.

Sheremeta, R. M. (2010): “Experimental Comparison of Multi-Stage and One-Stage

Contests,” Games and Economic Behavior, 68, 731–747.

(2011): “Contest Design: An Experimental Investigation,” Economic Inquiry,

49, 573–590.

Sisak, D. (2009): “Multiple Prize Contests - The Optimal Allocation of Prizes,” Journal

of Economic Surveys, 23(1), 82–114.

Skaperdas, S. (1996): “Contest Success Functions,” Economic Theory, 7(2), 283–290.

Stein, W. E. (2002): “Asymmetric Rent-Seeking with More than Two Contestants,”

Public Choice, 113, 325–336.

Stein, W. E., and A. Rapoport (2004): “Asymmetric Two-Stage Group Rent-Seeking:

Comparison of Two Contest Structures,” Public Choice, 124, 309–328.

(2005): “Symmetric Two-Stage Contests with Budget Contraints,” Public Choice,

124, 309–328.

Stracke, R. (2012a): “Multi-Stage Pair-Wise Elimination Contests with Heterogeneous

Agents,” University of St. Gallen, mimeo.

(2012b): “Orchestrating Rent-Seeking Contests with Heterogeneous Agents,”

University of St. Gallen, mimeo.

Stracke, R., W. Höchtl, R. Kerschbamer, and U. Sunde (2012): “Optimal Prizes

in Dynamic Elimination Contests: An Experimental Analysis,” Discussion Paper DP-

1208, University of St. Gallen.

Stracke, R., R. Kerschbamer, and U. Sunde (2012): “Timing Effects in Dynamic

Elimination Contests: Immediate vs. Delayed Rewards,” University of St. Gallen,

mimeo.

194



Stracke, R., and U. Sunde (2012): “Ability Matters, and Heterogeneity Can be Good:

The Effect of Heterogeneity on the Performance of Tournament Participants,” Univer-

sity of St. Gallen, mimeo.

Sunde, U. (2009): “Heterogeneity and Performance in Tournaments: A Test for Incentive

Effects using Professional Tennis Data,” Applied Economics, 41, 3199–3208.

Thaler, R. H., and E. C. Johnson (1990): “Gambling with the House Money and

Trying to Break Even: The Effects of Prior Outcomes on Risky Choice,” Management

Science, 36(6), 643–660.

Tsoulouhas, T., C. R. Knoeber, and A. Agrawal (2007): “Contests to Become

CEO: Incentives, Selection and Handicaps,” Economic Theory, 30, 195–221.

Tullock, G. (1980): “Efficient Rent-Seeking,” in Toward a Theory of the Rent-Seeking

Society. J.M. Buchanan and R.D. Tollison and G. Tullock (Eds.). Texas A&M Press,

College Station, p. 97-112.

van Dijk, F., J. Sonnemans, and F. van Winden (2001): “Incentive Systems in a

Real Effort Experiment,” European Economic Review, 45, 187–214.

Waldman, M. (1984): “Job Assignments, Signalling, and Efficiency,” Rand Journal of

Economics, 15, 255–267.

(1990): “Up-or-Out Contracts: A Signaling Perspective,” Journal of Labor Eco-

nomics, 8, 230–250.

(2011): “Classic Promotion Tournaments versus Market-Based Tournaments,”

Working Paper, Cornell University.

Welch, J. (2001): Jack: Straight From the Gut. Warner Books, New York.

195



Curriculum Vitae

Born March 7, 1983 in Cologne (Germany); one child

Education
02/2008 – Ph.D. in Economics and Finance (PEF)

University of St.Gallen, Switzerland
01/2009 – 12/2009 Swiss Programm for Beginning Doctoral Students in Economics,

Study Center Gerzensee, Switzerland
08/2005 – 12/2005 Bachelor/Master Courses (Exchange Semester), Economics,

University of Northern British Columbia, Canada
10/2002 – 08/2007 Diploma, Economics,

University of Bonn, Germany

Working Experience
04/2012 – Reseach Assistant, Seminar for Population Economics,

University of Munich, Germany
02/2008 – 03/2012 Research Assistant, SEW-HSG,

University of St.Gallen, Switzerland
09/2007 – 12/2012 Intern, Ernst & Young Consulting,

Cologne, Germany
02/2007 – 04/2007 Intern, Kiel Institute for the World Economy,

Kiel, Germany
05/2006 – 01/2007 Student Assistant, Chair of Economic Theory,

University of Bonn, Germany

Conference and Seminar Presentations
2012 European Meeting of the Econometric Society (ESEM 2012), Malaga, Spain

Society of Labor Economics (Annual Conference 2012), Chicago, USA
Thurgau Experimental Economics Meeting 2012, Kreuzlingen, Switzerland

2011 Royal Economic Society (Annual Conference 2011), London, UK
Contests and Relative Performance Evaluations, Raleigh, USA
4th RGS Doctoral Conference in Economics, Dortmund, Germany

2010 Experimental Economics Seminar, University of Bonn, Germany
Brown Bag Seminar, University of Innsbruck, Austria
Brown Bag Series, University of St.Gallen, Switzerland

196


	General Introduction
	Multi-Stage Elimination Contests with Heterogeneous Agents
	Introduction
	Modeling Multi-Stage Elimination Contests
	A Two-Stage Tullock Contest with Discriminatory Power r
	A Two-Stage Tullock Contest for the Lottery CSF
	More Than Two Stages

	Discussion and Additional Results
	Comparative Statics
	Seedings
	Optimal Prizes

	Conclusion
	Appendix

	Orchestrating Rent-Seeking Contests with Heterogeneous Agents
	Introduction
	Theoretical Model
	A Generic Contest Design Problem
	Equilibrium Behavior by Contestants
	Static Contest (S)
	Dynamic Contest (D)

	Rent Dissipation Rates

	Optimal Contest Design
	Comparison by Configuration
	Solution of the Contest Design Problem

	Discussion of Results
	Concluding Remarks
	Appendix

	Ability Matters and Heterogeneity Can Be Good: The Effect of Heterogeneity on the Performance of Tournament Participants
	Introduction
	Theoretical Analysis
	Static and Dynamic Tournament Models
	Optimal Tournament Design: The Principal's Perspective
	Discussion

	Experimental Evidence
	Experimental Design
	Experimental Implementation
	Experimental Results

	Conclusion
	Appendix

	Incentives versus Selection in Promotion Tournaments: Is It Possible to Kill Two Birds With One Stone?
	Introduction
	The Model
	A Promotion Tournament with Heterogeneous Workers
	Equilibrium Behavior by Workers
	One-Stage Tournament
	Two-Stage Tournament

	Designing the Promotion Tournament

	Discussion of Results
	Concluding Remarks
	Appendix

	Optimal Prizes in Dynamic Elimination Contests: An Experimental Analysis
	Introduction
	A Simple Dynamic Contest Model
	Design of the Experiments
	Experimental Results
	Baseline Results Regarding the Hypotheses
	Discussion and Additional Results

	Conclusion
	Appendix

	Timing Effects in Dynamic Elimination Contests: Immediate versus Delayed Rewards
	Introduction
	A Simple Dynamic Elimination Contest
	Design of the Experiments
	Results
	Conclusion
	Appendix

	Bibliography
	Curriculum Vitae

