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Summary

The first paper investigates the dynamics of realized volatility. Recent notable advances
that perform well include the heterogeneous autoregressive (HAR) model which is eco-
nomically interpretable but still easy to estimate. It also features good out-of-sample per-
formance and has been extremely well received by the research community. We present
a data driven approach based on the absolute shrinkage and selection operator which
should identify the aforementioned model. We prove that the lasso indeed recovers the
HAR model asymptotically if it is the true model, and we present Monte Carlo evidence
in finite sample.

The second paper investigates the role of volatility spillovers, macroeconomic news, intra-
week seasonality and the leverage effect for realized volatility models. To understand the
role of news existing models, augmented by this new combined information set, are
revisited. The least absolute shrinkage and selection operator is employed in a vector
autoregressive setting to assess the relevance of volatility spillovers to modeling the S&P
500’s realized volatility. A combined model is then proposed which features a data-driven
selection of regressors to include in a model of realized volatility. These models are
compared in a strict out-of-sample prediction comparison together with a value-at-risk
application. A superior performance of models augmented with this new information set
is witnessed in the prediction comparison. Compared to existing models, a considerably
shorter lag structure delivers already good forecasting performance.

The third paper investigates forecast combination in the field of macroeconomics. While
macroeconomic survey forecasts are widely available at the level of individual experts, it
is not clear how to optimally combine a set of forecasts to a “consensus” prediction. This
is mainly due to the characteristics of the data, such as the large-dimensional predictor
space, many missing values, and potential individual and aggregate level biases of the
survey forecasts. We argue that regression trees are very well adapted to these features
and propose to use them as a novel forecast combination device. Our empirical analysis of
data from the Philadelphia Fed’s Survey of Professional Forecasters demonstrates that in
combination with bagging, tree-based forecast combination outperforms equally weighted
combination for the majority of time series and forecast horizons.
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Zusammenfassung

Der erste Aufsatz der vorliegenden Dissertation untersucht die Dynamik der realisierten
Volatilität. Ein erfolgreiches Modell in diesem Bereich ist das sogenannte heterogene auto-
regressive Modell (HAR), das konzeptionell einfach und gut für Vorhersagen geeignet ist.
Eine neue Herangehensweise basierend auf dem Operator der kleinsten absoluten Schrump-
fung und Auswahl ermöglicht es, das HAR Modell von einem Modellwahl Standpunkt
her zu betrachten. Es wird gezeigt, dass die Modellwahl asymptotisch das wahre Modell
identifizieren könnte. Zusätzlich werden simulierte Resultate im nicht-asymptotischen
Bereich präsentiert, welche die Modellwahlgüte unterstreichen. Zusammenfassend kann
gesagt werden, dass das HAR Model wohl nicht als wahres Modell identifiziert wird, das
gewählte Model aber nicht vom HAR Modell zu unterscheiden ist, falls Vorhersagegüte
als Vergleichskriterium herangezogen wird.

Der zweite Aufsatz untersucht den Einfluss von externen Faktoren auf die Dynamik von
Modellen für die realisierte Volatilität. Diese externen Faktoren umfassen Volatilitätsüber-
tragung zwischen Märkten, die Bekanntgabe von makroökonomischen Kenngrössen, den
Hebeleffekt sowie innerwöchentliche Saisonalitäten. Um die Rolle der einzelnen Faktoren
besser zu verstehen wird wiederum der Operator der kleinsten absoluten Schrumpfung
und Auswahl herangezogen. Zusätzlich werden diese Resultate mit existierenden Mo-
dellen verglichen, um die Relevanz der genannten Faktoren auf die Modellierung der
realisierten Volatilität des S&P 500 Index abzuschätzen. Es kann festgehalten werden,
dass ein um diese Informationen erweitertes Modell tatsächlich bessere Vorhersagen für
die realisierte Volatilität liefert.

Der dritte Aufsatz untersucht die Kombination von Expertenprognosen für makroöko-
nomische Daten. Obwohl individuelle Expertenprognosen sehr verbreitet sind ist es a
priori nicht klar, wie diese zu einer aggregierten Vorhersage kombiniert werden können.
Dies ist hauptsächlich speziellen Eigenschaften der Daten, wie z.B. hoch-dimensionale
Prädiktorräume und fehlende Werte, geschuldet. Wir kommen zum Schluss, dass Re-
gressionsbäume wohlgeeignet sind um diese Eigenschaften der Daten auszunutzen und
eine aggregierte Prognose zu erhalten. Die empirische Untersuchung fusst auf Daten der
Zentralbank von Philadelphia und deren Umfrage unter professionellen Prognostikern.
In dieser zeigt sich, dass Regressionsbäume sowie deren robustifizierte Variante in der
Tat in der Lage sind, aggregierte Prognosen zu liefern, die in vielen Fällen dem einfachen
Mittelwert überlegen sind.
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PREFACE 1

Preface

“Essays in Computational Statistics with Applications to Volatility Forecasting and Fore-

cast Combination” presents research at the intersection of computational statistics and

(financial) econometrics. The field of computational statistics has seen an ever increasing

popularity in recent decades. The advent of data and affordable computing power helped

to spread techniques developed in this field. Most methods originating from computa-

tional statistics do indeed require substantial computational efforts when compared to

more traditional approaches. In recent years, many of these techniques have also found

applications in (financial) econometrics and have enlarged the set of tools to approach

relevant research questions. Many methods originating from the field of computational

statistics are indeed able to better capture properties of a certain problem; the simplic-

ity and transparency of traditional approaches however, some of them dating back to

Legendre and Gauß (Legendre 1805, Gauß 1887), cannot always be maintained. While

some scholars summarize these methods as machine learning or statistical learning, others

doubt that anything can be learned by simply crunching more data with more computing

power.

An often voiced critique in this regard goes by the name of “data snooping” or “data

mining”. To answer this critique all three essays strictly maintain the fundamental idea of

separating the in-sample data (exploring the data) from the out-of-sample data (testing the

conclusion drawn in-sample on previously unseen data). With this approach, I consider

the application of techniques from the field of computational statistics to problems in
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(financial) econometrics truly helpful to gain a deeper understanding of a problem. An

often heard quote, which is attributed to William E. Deming (Hastie, Tibshirani & Friedman

2009), is “In God we trust, all others bring data”. The uncovering of this innate message

of observed data complemented with antecedent research, established concepts in the

respective field, and due care in the interpretation of the results makes these techniques

valuable means to gain new insights. Consequently, it is possible to learn something about

the problem and thus potentially push the research frontier by a small amount.

The three essays constituting this dissertation all share that they feature an application of

a particular approach in computational statistics to (financial) econometrics. The use of

these tools is guided by the ideas outlined above.

The first two chapters deal with the idea of volatility. As opposed to financial returns,

which, under common assumptions, do not allow for a consistent estimation of the ex-

pected return in finite time, volatility can be estimated consistently if there are enough

observations. This property underlies the analysis of realized volatility. Realized volatility,

drawing on the plethora of data from financial markets, exploits this feature to construct a

measure for volatility based on intraday data. With a series of realized volatility measures

at hand, the problem of modeling its dynamics can be approached.

The first chapter, coauthored with Francesco Audrino, exploits and extends recent ad-

vancements in model selection to the realm of realized volatility modeling. While model

selection is computationally costly with traditional means, the least absolute and selection

operator (lasso), a recent contribution in the field of computational statistics, which is

increasingly used in econometrics as well, considerably lowers the computational burden

and provides model selection in this setting. With this tool at hand we can approach the

problem of verifying whether a popular model, the heterogeneous autoregressive model

(HAR) for realized volatility, can actually be the true model. This chapter concludes that

this model may not be the true model. Nonetheless it captures a linear footprint of the

true volatility dynamics, as does the lasso, which also allows modelling realized volatility

series.
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The second chapter extends ideas developed in the first chapter along different lines.

Again, realized volatility is studied using the lasso. However, the focus is different: In

contrast to the first chapter, where the ultimate goal is model selection, the paper is led by

the goal of volatility forecasting. Drawing on existing research, which looks into factors

affecting the volatility series such as spillovers or the arrival of news, I employ the lasso

in a multivariate as well as univariate setting to devise a model which extends again

the HAR model. This newly proposed model, which features volatility observations from

geographically preceding markets, the arrival of macroeconomic news, weekly seasonality,

and a leverage effect, does fare well in an out-of-sample comparison. Hence, I conclude

that indeed augmenting the HAR model with these factors is beneficial to realized volatility

forecasting.

The last chapter deviates from the path outset by the first two chapters. However, the par-

ticularities of the data and the problem investigated in Chapter 3 requires again methods

from computational statistics. As opposed to the first two chapters, where data is available

in abundance, I investigate together with Fabian Krüger, the benefit of employing non-

parametric methods in macroeconomic forecast combination. Recently, Alex Tabarrok, a

scholar in macroenomics, let the world know “Ultimately, the problem with macro eco-

nomics is simple: small data.” via social media (Tabarrok 2013). Although, this statement

is of much broader nature, we also face this problem in our study. Combining quarterly

forecasts in a non-parametric way is usually impeded by, amongst other problems, the

curse of dimensionality. To address the specificities of this data, we employ regression

trees as combination device and study the effects of individual level data and bias correc-

tion. We contrast our results with well-established combination schemes and conclude

in summary that robustified regression trees may help to improve the forecasts of certain

macroeconomic data by mitigating the bias inherent to expert predictions whereof other

combination schemes suffer.



4 PREFACE



Chapter 1

Lassoing the HAR Model: A Model

Selection Perspective on Realized Volatility

Dynamics

Francesco Audrino

Simon D. Knaus



6 CHAPTER 1. LASSOING THE HAR MODEL

Abstract

Realized volatility computed from high-frequency data is an important mea-

sure for many applications in finance. However, its dynamics are not well

understood to date. Recent notable advances that perform well include

the heterogeneous autoregressive (HAR) model which is economically in-

terpretable and but still easy to estimate. It also features good out-of-sample

performance and has been extremely well received by the research commu-

nity.

We present a data driven approach based on the absolute shrinkage and

selection operator (lasso) which should identify the aforementioned model.

We prove that the lasso indeed recovers the HAR model asymptotically if it

is the true model, and we present Monte Carlo evidence in finite sample.

The HAR model is not recovered by the lasso on real data. This, together

with an empirical out-of-sample analysis that shows equal performance of

the HAR model and the lasso approach, leads to the conclusion that the

HAR model may not be the true model but it captures a linear footprint of

the volatility dynamics.

JEL: C58, C63, C49

Keywords: Realized Volatility, Heterogeneous Autoregressive Model, Lasso,

Model Selection
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1.1 Introduction

Volatility of financial assets is of great importance to many applications in finance. Reli-

able estimates and forecasts are key for risk management and asset allocation. As opposed

to returns series, financial volatility is predictable and has received great attention in the

financial econometrics research community. The seminal paper of Bollerslev (1986) intro-

ducing the generalized autoregressive conditional heteroscedasticity (GARCH) model for

conditional volatility has thus sparked an even greater interest in volatility modeling. The

GARCH model has become extremely popular and despite various extensions and modifi-

cations the basic GARCH(1,1) fares well as a prediction device for conditional volatility in

an out-of-sample forecast comparison (Hansen & Lunde 2005). While Bollerslev’s (1986)

GARCH model is able to capture stylized facts of volatility series (e.g., volatility cluster-

ing), its estimation still relies on daily observations and thus potentially discards intraday

information. The advent of high-frequency data (with frequencies as high as tick-by-tick)

has ignited a new line of research pioneered by Andersen, Bollerslev, Diebold & Labys

(2001) and Barndorff-Nielsen & Shephard (2002b) among others. The results of their work

has rendered the thus far unobservable daily volatility observable by means of asymptotic

arguments:

Suppose that an asset’s log price obeys the dynamics dXt = μtdt + σtdWt where Wt is

a Brownian motion, σt the instantaneous volatility and μt the instantaneous drift term.

One can then show that plimδ→0

∑
ti
(Xti+1 − Xti )

2 =
∫ T

0
σ2

t dt where δ = sup{ti+1 − ti}, i.e.,

the sum of squared returns converges to the integrated variance (over a day) as the

sampling frequency increases.1 An estimator of
∫ T

0
σ2

s ds is thus given by
∑N

i=1(Xti+1 −
Xti )

2 where t1, . . . , tN is an appropriate sampling frequency and is denoted RVt, where t

refers to the day. RVt is called realized variance, and its squareroot
√

RVt is referred to

as realized volatility. An overview of variants of the aforementioned estimator and their

corresponding assumptions is collected in McAleer & Medeiros’s (2008) review on realized

volatility.

1It is known that this naive estimator of
∫ T

0 σ
2
t dt is biased under e.g., microstructure noise (the observable

return process Yti = Xti + εti is contaminated with noise) or if the log price process is a jump-diffusion (dXt =
μtdt + σtdWt + dJt where Jt is a finite activity jump process).



8 CHAPTER 1. LASSOING THE HAR MODEL

Since the goal of this work is to investigate the dynamics of the realized variance and not

the estimation itself we can thus – with daily realized variance at hand – approach the

problem of modeling realized variance.

It has been observed that the time series {RVt}1≤t≤T exhibits some distinct features such as

a near log-normal unconditional distribution as well as a slowly decaying autocorrelation

function which is often termed “long memory”: These findings appear to be robust across

different asset classes and evidence has been reported for exchange rates (Andersen,

Bollerslev, Diebold & Labys 2001), index futures (Areal & Taylor 2002, Thomakos &

Wang 2003), as well as for individual stocks (Andersen, Bollerslev, Diebold & Ebens 2001).

To address these characteristics of the realized variance time series, different approaches

have been put forward, most prominently fractionally integrated ARMA models (ARFIMA)

and the heterogeneous autoregressive (HAR) model for realized volatility introduced by

Corsi (2009). The HAR model not only allows for an economic interpretation of the pro-

posed dynamics, but also allows for an easy estimation and is thus highly appreciated

and widely used within the research community.

The contribution of this paper is to shed more light on the underlying dynamics as

advocated by Corsi’s (2009) HAR model which in essence claims tomorrow’s realized

variance to be a sum of daily, weekly, and monthly averages of realized variances that

can each be attributed to specific investment behaviors. The question we are aiming to

answer relates to how much these frequencies (daily, weekly, monthly) are really inherent

to the data and if we can identify them from a model selection perspective.

Model selection plays a crucial role in determining a model for forecasting. Oftentimes

model selection can be extremely costly from a computational perspective and may al-

ready become infeasible within the class of linear models (an exhaustive search over

p lags already requires 2p comparisons and thus grows exponentially). An important

contribution in terms of model selection within the class of linear models was made in

Tibshirani (1996) where the Least Absolute Shrinkage and Selection Operator (lasso) was

introduced. The lasso, a shrunk regression, performs shrinkage and selection at a time
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and is yet computationally affordable. Although originally the lasso was mostly noticed

by the computational statistics community, researchers in econometrics are increasingly

using it. Most recently, conditions under which the lasso gives consistent results have also

been established in time series econometrics (Nardi & Rinaldo 2011), and applications of

the lasso are also found in Park & Sakaori (2013).

Despite the great popularity and appreciation of the HAR model there has been little work

investigating the validity of the structure as proposed by the HAR model. Although most

work is done in the direction of extending the HAR model (see the recent review of Corsi,

Audrino & Renò (2012)) there is a notable exception: Craioveanu & Hillebrand (2010)

investigate the structure of the HAR model and find no benefit in allowing for a more

flexible structure of lag selection. However, their result is based on an exhaustive search

over HAR-like models but varying aggregation frequencies.

It is along these lines that this paper adds to the literature. We present a methodologically

sound way of recovering the HAR model. We show that under the assumption that HAR

model is the true model, we can apply the lasso and should recover the structure as

implied by the HAR model. To this end we investigate how far Nardi & Rinaldo’s (2011)

result can be extended for the special case of the HAR model. Moreover, we investigate

if the lasso can be used for forecasting realized variance from a purely statistical point of

view as well as measuring outperformance from a more economically relevant point of

view via a risk management application. We find no substantial superiority of either the

HAR model or the lasso when it comes to out-of-sample forecasting.

In summary, we have reason to believe that the HAR model might not be the true model.

However, it captures a linear footprint of the true underlying variance dynamics which

appear to change over time, thus casting some doubt on the appropriateness of the HAR

as a global model for realized variance.

The rest of the paper is structured as follows: Section 1 introduces the HAR model in more

detail, relates it to the autoregressive class of time series models and shows how the lasso

can be used in this context. Section 2 features an empirical application of the proposed
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model selection approach, a Monte Carlo study, as well as an out-of-sample comparison

of the HAR versus the lasso. Section 3 discusses the results and further research and then

concludes.

1.2 Theoretical Foundation

1.2.1 The HAR Model

The HAR model as introduced in Corsi (2009) enjoys great popularity: It allows for an

economic interpretation, has good forecasting performance, and is still easy to estimate.

There are numerous variants and modifications of the HAR model (Corsi et al. 2012),

however we restrict our attention to the original model to keep a clear focus on the actual

volatility dynamics. We thus intentionally ignore other transient effects (such as the

leverage effect) that may be embedded in a HAR framework as well.

Let for this purpose RV(d)
t be an estimate of daily realized variance. Then, the HAR model

postulates that

log RV(d)
t+1 = c + β(d) log RV(d)

t + β
(w) log RV(w)

t + β
(m) log RV(m)

t + ωt+1, (1.1)

where (with a slight abuse of notation) log RV(w)
t = 1

5

∑5
i=1 log RV(d)

t−i+1 and log RV(m)
t =

1
22

∑22
i=1 log RV(d)

t−i+1 are the weekly and monthly averages of daily log realized variances,

and ωt+1 is an innovation. Once these average log-variances are known, the model can be

consistently estimated by traditional least squares to obtain estimates for c, β(d), β(w), and

β(m).

In other words, the conditional expectation of tomorrow’s log-realized variance is the

weighted sum (plus an intercept) of daily, weekly, and monthly log-realized volatilities.2

For the remainder of the paper we assume the HAR model to be causal as well as β(d),

β(w), β(m) to be positive. These assumptions are by no means restrictive: First they comply

2We comment further on the use of log-realized volatilities in Section 1.3.1.
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with the view put forward in the original work as outlined below, second, if estimating

the HAR on empirical data, the coefficients are always found to be positive.

The different aggregation frequency can then be seen as a heterogeneous agent model

where heterogeneity is induced by the different time horizons and can be casted into an

information cascade view. Hence, the weighted average perspective appears reasonable

and positiveness of the coefficients follows.

Clearly, the HAR model is simply a constrained AR(22) model, as it has already been

noted by Corsi (2009), i.e., we can write

log RV(d)
t+1 = φ

HAR +

22∑
i=1

φHAR
i log RV(d)

t−i+1 + ωt+1 (1.2)

where the restrictions as imposed by (1.1) require

φHAR
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
β(d) + 1

5β
(w) + 1

22β
(m) for i = 1

1
5β

(w) + 1
22β

(m) for i = 2, . . . , 5

1
22β

(m) for i = 6, . . . , 22.

(1.3)

A direct specification test is obviously testing the restrictions as collected by (1.3). Given

the high number of restrictions a rejection of these is not surprising. However, in the

original work Corsi argues that this can well be attributed to specific properties of the

time series. However, there is already some preliminary indication that indeed the HAR

model may fail to fully capture the effects present in the data.

1.2.2 The lasso as model selection device

The lasso was introduced in Tibshirani (1996) and is frequently used in the field of com-

putational statistics and machine learning. In recent years, the lasso in general as well as

the lasso as model selection device has also been found in Econometrics (Kock 2012, Leeb

& Pötscher 2005). The lasso is computationally very efficient and renders model selec-



12 CHAPTER 1. LASSOING THE HAR MODEL

tion with a high number of predictors feasible. As opposed to the 2p comparisons that

are required in an exhaustive search over p predictors, the lasso employs a highly effi-

cient algorithm which provides estimates and model selection jointly (Friedman, Hastie

& Tibshirani 2010) at affordable computational costs.

The lasso as originally introduced by Tibshirani covered the cross-sectional case: Let

xi = (xi1, . . . , xip)′ be predictor variables and yi responses. Under the assumption that the

predictors are standardized, the lasso estimator of the model

yi = α + φ
′ · xi + εi (1.4)

is obtained as

(α̂lasso, φ̂lasso) = arg min
α,φ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝yi − α −
p∑

j=1

φ jxij

⎞⎟⎟⎟⎟⎟⎟⎠
2⎫⎪⎪⎪⎬⎪⎪⎪⎭

subject to
p∑

j=1

|φ j| ≤ t (1.5)

where t is a tuning parameter. Since α̂ is independent of t it will always be equal to ȳ and

it is thus generally assumed that ȳ = 0 and α is dropped from the minimization. It can be

seen (Tibshirani 1996) that (1.5) is equivalent to the Lagrangian form given as

φ̂lasso = arg min
φ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝yi −
p∑

j=1

φ jxij

⎞⎟⎟⎟⎟⎟⎟⎠
2

+ λ

p∑
j=1

|φ j|
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (1.6)

with a one-to-one correspondence between λ in (1.6) and t in (1.5). The powerful feature of

the lasso is now induced by the L1-norm of the penalty. The lasso solution will be sparse,

since someφ js will be set exactly to zero (as opposed to for instance ridge regularization in

Hastie et al. (2009) where sparsity of the solution is lost due to the L2-geometry of ridge).

A question of utmost importance is how reliable is the lasso in the sense that it sets the true

zero coefficients to zero. Typically, this is what is captured by model selection consistency.

The following definition adopts the view of Nardi & Rinaldo (2011). For an overview and

weaker form of this, the reader is referred to Bühlmann & Van De Geer (2011).
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Definition 1. Let yi = φ′ · xi + εi with φ0 = [φ0
1, . . . , φ

0
p]′, sgn : R→ {−1, 0, 1} and define

sgn(φ) = (sgn(φ1), . . . , sgn(φp))′. Then an estimator φ̂n is said to be model selection consistent

if

P(sgn(φ̂n) = sgn(φ0))→ 1 for n→∞. (1.7)

The above model selection consistency definition meets our requirement that if there is an

estimator producing φ̂n which is model selection consistent it will eventually only retain the

true non-zero coefficients suppφ0.

An extension of the lasso as well as proof for which conditions the lasso is model selection

consistent is given in Zou (2006). Zou introduces the adaptive lasso which allows for a

more flexible penalization, i.e.,

β̂ = arg min
β

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝yi −
p∑

j=1

φ jxij

⎞⎟⎟⎟⎟⎟⎟⎠
2

+ λ

p∑
j=1

λ j|φ j|
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (1.8)

where λ j are adaptive weights. It can be shown (Zou 2006, Bühlmann & Van De Geer 2011)

that in fact the adaptive lasso relaxes the assumptions for the model selection consistency

of the lasso.

An important extension of this strand of literature has been made by Nardi & Rinaldo

(2011): Nardi & Rinaldo show that properties already well-established in the cross sec-

tional case carry over to the time series case of an AR(p) process.3 More precisely, they

establish that under some assumptions, a version of the adaptive lasso is model selection

consistent. Suppose that Xt is a causal Gaussian AR(p) process, i.e.,

Xt =

p∑
j=1

φ jXt− j + εt

where εt is i.i. N(0, σ2)-distributed. Define S = { j, φ j � 0} ⊂ {1, . . . , p} the active set,

Sc = {1, . . . , p} \ S the non-active set, and ΓXY = Cov(X,Y) the covariance matrix of a vector

X and Y. Consequently, ΓSS is the square covariance matrix of the active predictors and

3Note that Definition 1 is by no means limited to the cross-sectional case and translates directly to the time series
regression variant.
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ΓScS is the covariance matrix of the predictors in the non-active set (given as {Xt− j, j ∈ Sc})
with the predictors in the active set (given as {Xt− j, j ∈ S}). They then proceed and prove

the following theorem (Nardi & Rinaldo 2011, Theorem 3.1):

Theorem 1. Consider the AR(p) settings described above. Assume that

(i) there exists a finite positive constant Cmax such that ‖Γ−1
SS‖∞ ≤ Cmax;

(ii) there exists a δ ∈ (0, 1] such that ‖ΓScSΓ
−1
SS‖∞ ≤ 1 − δ.

Further assume that the asymptotic properties for λn and λn, j as given in Nardi & Rinaldo (2011,

Theorem 3.1) hold.

Then, the lasso estimator is model selection consistent in the sense of Definition 1.

Condition (ii) of the above theorem is found throughout the model consistency literature

for the lasso. Typically this condition is called the irrepresentable condition as introduced

in Zhao & Yu (2006). Nardi & Rinaldo show that a causal Gaussian process satisfies the

assumptions of Theorem 1 and the lasso is thus model selection consistent for this class of

models.

1.2.3 Lassoing the HAR model

Theorem 1 states that the lasso is indeed model selection consistent for causal AR(p)

processes with Gaussian innovations. If we assume that εt in (1.1) is Gaussian we can

readily use the lasso to try to recover the HAR model embedded in an AR(p) process

with p > 22. The lasso should then detect4 S = {1, 2, . . . , 22} and Sc = {23, 24, . . . , p} since

any other lagged value should be irrelevant if the HAR model is the true data generating

process (DGP).

4In the sense of setting the non-active coefficients to zero.
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The assumption of Gaussianity of the error may appear strong at first sight. However,

the HAR model is usually estimated using quasi-likelihood which in turn also assumes

Gaussianity. An even stronger argument is given below and proved in the appendix.

Under the assumption that the HAR model is the true DGP, we precisely know the

dynamics and can prove (ii) of Theorem 1 directly without relying on Gaussianity. This

can then be used in Zhao & Yu’s (2006) result which relaxes the assumptions of Gaussianity

of the innovations. The relaxation on the distribution of the error term comes at the price

of keeping S and Sc fixed; the lasso literature generally differentiates between a p = |S|
growing with n or p fixed. Theorem 1 above addresses the case where p is allowed to

grow, our contribution below however requires p to be fix:

Theorem 2. Under the assumptions that the DGP is as given in (1.1) is causal and the innovation

has a finite fourth moment, Sc is held fixed, then lasso is model selection consistent in the sense of

Definition 1.

The complete argument and proof is given in Appendix A.1.

1.3 Empirical Application

In this section we illustrate our approach of identifying the HAR model via the lasso

using nine assets traded on the New York Stock Exchange. For each of these stocks

we compute a realized variance measure using Zhang, Mykland & Aït-Sahalia’s (2005)

two-time scales estimator (using a frequency of 10 minutes) to obtain a series of daily

realized variance measures.5 These measures are then used to estimate the HAR model

in-sample and contrast it with estimates as obtained by the lasso procedure described in

Section 1.2. We also compare the lasso’s forecasting performance to the performance of

the HAR out-of-sample. To rule out any doubt that these findings are dependent on a

specific realized variance estimator we also report a summary of results using Andersen,

Dobrev & Schaumburg’s (2010) MedRV estimator in Appendix A.3. The key descriptive

properties of the data are summarized in Fig. 1.1 and Tab. 1.1.

5We adhere to the suggestion put forward in Corsi (2009) and use annualized returns in percentage points.
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Note that we obviously only forecast one day ahead realized variance since our argument

is based on the original specification of the HAR model. One could of course address

the question whether the lasso is also well suited to forecast realized variance at longer

horizons (weekly, monthly); this however would be a purely empirical exercise and is

beyond the scope of this paper.

1.3.1 Data Description

We use intraday data of Alcoa, Inc. (AA), Citigroup, Inc. (C), Hasbro Inc. (HAS), The

Home Depot, Inc. (HDI), Intel Corporation (INTC), Microsoft Corporation (MSFT), Nike

Inc. (NKE), Pfizer Inc. (PFE), and Exxon Mobil Corporation (XOM) from Jan 2, 2001

to Nov 15, 2010. These intraday data are then used to compute an estimator of daily

realized variance using Zhang et al.’s (2005) two-time scales estimator. In total we have

2483 observations of realized variance measures.

Figure 1.1: Autocorrelation function for log RVt series.

Figure 1.1 (a) Figure 1.1 (b)

Panel (a) shows the autocorrelation function for the 9 log RVt series. Panel (b) shows a violin
plot (Hintze & Nelson 1998) of the unconditional log RVt
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Although using the log to transform the realized variance is standard in the literature, we

briefly comment explicitly on this in Appendix A.2 for the HAR model. In what follows

we always assume the use of log realized variance when speaking of realized variance

unless otherwise stated.

Consistent with the existing literature we witness slowly decaying autocorrelation func-

tions in Fig. 1.1 (a) for all assets. This is most pronounced for Citigroup, Inc. The same

stock also exhibits particularities in the unconditional distribution of log RVt as can be

seen from Tab. 1.1 and Fig. 1.1 (b): While all other stocks show excess kurtosis, Citigroup

Inc. only has a kurtosis of 2.61. We suspect the market turmoil of the financial crisis to

be the root of this abnormal picture. Following this train of thought, we also report the

actual returns in Fig. A.5 in the appendix where an extremely high excess kurtosis for the

log returns of Citigroup Inc. can be observed.

1.3.2 In-sample Evaluation

To address the question whether the HAR model is identified by the lasso procedure we

define Sc = {xt−23, . . . , xt−100}.6 Since λ in (1.6) is a tuning parameter and the results of

Theorem 1 only hold asymptotically we proceed as suggested in the literature (Nardi &

6The choice of S running up to 100 is arbitrary. However, the results are not sensitive to the choice of the maximal
lag, as for instance the results remain almost identical for a maximal lag of 50
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Rinaldo 2011, Section 4.1.) and choose λ j = 1 for all j and λ =
√

log n log p
n and can thus

expect Ŝ as obtained by φ̂lasso to be sparse in {1, . . . , 100}.

Two important points should be noted here: First, the lasso does not recover all of the

coefficients implied to be non-zero by the HAR as can be inferred from Tab. 1.2. Although

near lags are recovered for most assets, lags beyond xt−6 rarely get selected by the lasso.

Note at this point that a comparison of coefficients in magnitude of the lasso estimates

to the HAR estimates cannot be made since the lasso, as a penalized estimator, is biased.

Second, sometimes lags far beyond xt−22 are selected in the active set as can be seen in

Fig. 1.2. Clearly, these lags are zero under the assumption that the HAR model is true.

At this stage it is alaredy apparent that the lasso does not fully recover the HAR model,

i.e. Ŝ � {1, . . . , 22}. To provide further evidence supporting this statement, we conduct

analyses which attempt to answer the following two questions: 1. How reliable is the

lasso as a model selection device in this specific finite sample setting? 2. How stable are

these regressors over time? A thorough answer to these questions is provided in the two

subsequent paragraphs.
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Monte Carlo Study

To assess the model selection consistency of the lasso in the case of the HAR model in

finite sample we include a Monte Carlo simulation in this section. Since the lasso’s model

selection results depend on the signal-to-noise ratio (Bühlmann & Van De Geer 2011),

it is important to have a comparable setting to assess the finite sample performance of

the lasso as a model selection device. We conducted the Monte Carlo study under the

assumption that the HAR model was true, in order to answer the question how effective

the lasso would be if the HAR model were true. To this end, we proceeded as follows in a

parametric bootstrap manner:

1. For asset j = 1, . . . , 9 estimate the HAR model on the full sample of 2483 data points,

which includes

(a) Obtain c, β̂(d), β̂(m), β̂(w) and compute V̂ar(εt) as well as the derived estimates

φ̂(HAR)
1 , . . . , φ̂(HAR)

22 via (1.3).

(b) Compute the unconditional mean μ̂ (as γ̂0/(1−∑22
i=1 φ̂i)) and the unconditional

variance σ̂ (as V̂ar(εt)/(1 −∑22
i=1 φ̂iγ̂i) where γ̂i is the autocovariance at lag i, see

Brockwell & Davis (1986))

2. Resample the HAR model.

(a) Sample x1, . . . , x22 from the stationary distributionN(μ̂, σ̂)

(b) Compute x23, . . . , x2483 recursively based on (1.3).

(c) Apply the lasso as specified in Section 1.3.2 and record the lasso estimates

Step 2 is repeated 1,000 times and the results are reported in Tab. 1.3.The results clearly

indicate that the HAR structure is well recovered by the lasso in this synthetic HAR setting.

Although small coefficients (the monthly coefficients) are selected less often, the daily and

weekly coefficients are almost always estimated to be non-zero and thus considered active.
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Figure 1.2: HAR versus lasso coefficients with all predictors
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Note at this point that there is indeed some contradiction with what has been reported in

Tab. 1.2: The lasso does not select γ1, . . . , γ5 for all assets and selection of lags beyond 22

is rare.7

We thus conclude from this Monte-Carlo application that indeed the lasso does recover

the HAR model reasonably well if it is the true model, i.e., if we simulate from this DGP.

Rolling Window

To address the question whether all of the observed in-sample selected regressors are

constant over time we apply the lasso procedure in a rolling window manner. We stack

our data for each asset as follows

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x101 x100 . . . x1

x102 x101 . . . x2

...
...

...

xn xn−1 . . . xn−100

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We then estimate the lasso on the first 1,000 rows of X and roll this window of length 1,000

down to the last row of X. Pursuing this procedure we obtain 1,384 lasso estimates and

record them. Fig. 1.3 contains this analysis for Citigroup, Inc. The abscissa reports the last

date of the current window (the first window thus corresponds to the date of x1000 which

in this case is May 19, 2005 and continues through Nov 15, 2010), the ordinate indicates

whether or not a regressor was selected (estimated to be different from zero).

7Based on the percentage of times recovered we may conclude that for instance lag xt−15 is non-active across all
nine assets (as found in Tab. 1.2) has a chance of occurring of 6.7% based on the occurrences in Tab. 1.3.
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Figure 1.3: Stability of selected regressors for HDI

Stability of lasso selected regressors for Home Depot, Inc. Diagonal gray lines have slope 1, i.e.,
if a regressor moves along these lines then its effect is lagged by one day as the rolling window
proceeds by one row (1 day)

Groups of regressors moving along the diagonal lines are likely to be noise (they are one-

off events that move through the sampling window). It is also apparent from Fig. 1.3 that

there is a clear break in structure during the financial crisis. The only lag which is selected
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Figure 1.4: Stability of Lasso selected regressors for all assets

during the crisis is the xt−1 indicating that the variance process prevailing in the data is

actually an AR(1)-process.

Fig. 1.4 draws the same picture for the remaining eight assets. Although there are minor

differences among assets we observe a clear pattern of a “dependence breakdown” during

the financial crisis. Most assets indeed also have components that can be explained by

one-off events, however, we also find for HAS, HDI, and C lags that constantly get selected

and remain (beyond the training window length of 1,000 observations). This may be an

indication of longer-range dependence that warrants further research. As can clearly be

inferred from Fig. 1.4 the dependence breakdown during the financial crisis is for some

assets even more pronounced than it is for Citigroup, Inc. For these, the optimal lag

structure as chosen by the lasso, sometimes reduces to a constant (e.g., HDF in Fig. 1.4).

Also, there are assets that exhibit a dependence structure (i.e., by lags beyond xt−22) which

is not accounted for by the HAR model.
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1.3.3 Out-of-sample prediction

So far we have only considered the lasso results in-sample. But the HAR has also garnered

praise for its out-of-sample prediction. In a next step we thus compare the HAR’s and the

lasso’s out-of-sample performance. We estimate the HAR model with data up to time t

and compute an estimate for t + 1 which is labeled ̂log RV
(HAR)

t+1|t . We do the same for the

lasso to obtain ̂log RV
(lasso)

t+1|t . We proceed again in a rolling window manner but also vary the

training window length (the length on which we estimate the lasso and the HAR model).

To render the results comparable we report the out-of-sample prediction for different

training window length but the same evaluation window (from May 12, 2009 to Nov 15,

2010 as implied by the longest training window length and resulting in 383 observations)

in Tab. 1.4. To have an objective comparison we also include the random walk in our

analysis. Although there is theoretical guidance for choosing λ in (1.6) we pursue a

different approach. The theoretical guidance is optimal in the sense of asymptotic model

selection consistency; however, this is not necessarily the best penalty for prediction. Thus,

we employ the common approach of estimating the expected prediction error using cross

validation.

Cross-validation in the cross sectional case is a statistically sound way of estimating

the expected out-of-sample prediction error and thus determining the optimal penalty

parameter (Arlot & Celisse 2010, Hastie et al. 2009). Although cross-validation (typically

K-fold) is often used in practice to determine the optimal penalty parameter in a penalized

regression setting (for instance in Nardi & Rinaldo (2011) and Park & Sakaori (2013))

we adopt the view of Bergmeir & Benítez (2012) and use blocked cross validation8 to

account for the time series nature of the data. When comparing the estimates of λ̂opt

obtained by using the regular K-fold cross validation (λ̂(R)
opt) to the estimates obtained used

a K-fold blocked cross-validation (λ̂(B)
opt), we observed that λ̂(R)

opt < λ̂
(B)
opt. From a conceptual

point of view, this observation is in accordance with the result that for kernel regression

the bandwidth is smaller for positively correlated errors when compared to uncorrelated

errors (Hart & Wehrly 1986). Even if kernel regression and the lasso may at first appear

8Instead of building K blocks by randomly assigning any number in {1, . . . ,K} to each observation and collecting
the observations having the same number we use blocks with contiguous observations, such that the blocks are
{1, . . . ,K}, {K + 1, . . . , 2K}, . . . , {(
n/K� − 1)K + 1, . . . ,n}
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as different approaches they can be related, exploiting the linearity of both approaches,

by looking at the trace of their smoother matrix (the generalized cross-validation, GCV)

which again is an estimate of the prediction error (Hastie et al. 2009).

Summarizing, we use blocked cross validation for both, empirically and theoretically

founded reasons, to obtain an optimal λ in our out-of-sample procedure. We use 10 blocks

to find an estimate of the optimal λ.

Table 1.4: Out-of-sample comparison

200 400 1,000 2,000

Asset RW HAR lasso RW HAR lasso RW HAR lasso RW HAR lasso

AA 0.160 0.129 0.142 0.160 0.126 0.126 0.160 0.125 0.123 0.160 0.124 0.121
C 0.132 0.115 0.127 0.132 0.115 0.120 0.132 0.115 0.119 0.132 0.116 0.116
HAS 0.240 0.201 0.219 0.240 0.197 0.204 0.240 0.193 0.197 0.240 0.197 0.200
HDI 0.231 0.184 0.207 0.231 0.181 0.186 0.231 0.179 0.181 0.231 0.179 0.178
INTC 0.113 0.094 0.100 0.113 0.091 0.091 0.113 0.089 0.088 0.113 0.089 0.087
MSFT 0.153 0.128 0.137 0.153 0.125 0.127 0.153 0.123 0.124 0.153 0.123 0.121
NKE 0.176 0.144 0.158 0.176 0.142 0.146 0.176 0.139 0.140 0.176 0.138 0.140
PFE 0.130 0.107 0.112 0.130 0.104 0.105 0.130 0.102 0.101 0.130 0.102 0.099
XOM 0.221 0.182 0.192 0.221 0.179 0.179 0.221 0.178 0.175 0.221 0.176 0.174

MSPE for all nine assets across training window length of 200, 400, 1,000, and 2,000 observations
(rolling window). In addition to the lasso and the HAR the random walk (RW) is included.

We measure the out-of-sample performance using the mean squared prediction error

(MSPE) which is computed as MSPE = 1
n

∑n
t=1( ̂log RVt+1|t − log RVt+1)2 where ̂log RVt+1|t is

the prediction obtained by either the HAR model or the lasso and n is the total number of

out-of-sample predictions. Tab. 1.4 shows two points: First, both the lasso and the HAR

need a certain window length to attain reasonably low mean squared prediction errors

(MSPEs), although the HAR model is markedly better for small training window sizes.

Second, for longer training windows, the lasso and the HAR are almost equal in terms of

MSPE.

To better understand these results we further report the evaluation over different out-of-

sample periods: Pre-crisis, post-crisis, and full sample. The date for the beginning of the

financial crisis was set to Sep 1, 2007. For the relevant training window lengths (i.e., 1,000

days and 2,000 days) we kept the maximal out-of-sample period which, unlike Tab. 1.4,
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results in evaluation windows of different lengths. The difference in MSPE is then tested

using the Diebold-Mariano test (Diebold & Mariano 1995). These results are reported in

Tab. 1.5.

Table 1.5: Diebold-Mariano (Diebold & Mariano 1995) tests of equal predictive ability

AA C HAS HDI INTC MSFT NKE PFE XOM

1,
00

0

Total Mean Diff. 0.002 -0.001 0.001 -0.003 -0.001 -0.002 -0.006 -0.007 -0.001
(n=1’383) p-value 0.38 0.86 0.85 0.34 0.49 0.35 0.18 0.00 0.48
PreCrisis Mean Diff. 0.002 0.000 0.002 -0.006 0.001 -0.001 -0.012 -0.008 0.000
(n=575) p-value 0.57 1.00 0.78 0.22 0.50 0.55 0.17 0.01 1.00
PostCrisis Mean Diff. 0.002 -0.001 0.000 0.000 -0.003 -0.003 -0.001 -0.006 -0.003
(n=808) p-value 0.49 0.84 0.96 0.94 0.26 0.44 0.69 0.05 0.39

2,
00

0

Total Mean Diff. 0.002 0.000 -0.003 0.001 0.002 0.001 -0.002 0.003 0.002
(n=383) p-value 0.38 0.92 0.44 0.72 0.09 0.62 0.30 0.18 0.33
PreCrisis Mean Diff. — — — — — — — — —

p-value — — — — — — — — —
PostCrisis Mean Diff. 0.002 0.000 -0.003 0.001 0.002 0.001 -0.002 0.003 0.002
(n=383) p-value 0.38 0.91 0.44 0.72 0.09 0.62 0.29 0.18 0.33

Difference in MSPE (MSPEHAR −MSPElasso) are reported together with p-values from the Diebold-
Mariano (Newey-West (Newey & West 1987) adjusted). The differences and p-values are reported for
different training windows (1,000, 2,000) and before/after the financial crisis. Differences significant
at 0.1 are typeset in boldface

Although there are a small number of rejections of the null we find no consistent pattern,

neither in favor of the HAR nor in favor of the lasso. Investigating the predictions
̂log RV

(lasso)

t+1|t and ̂log RV
(HAR)

t+1|t in the sense of Mincer & Zarnowitz (1969) we find no evidence

of either of the models (reported in Appendix A.5) being more often unbiased.

To be retained at this stage is that there is no clear evidence that either of the two models

is genuinely better suited to forecast realized variance out-of-sample.

1.3.4 Risk Management Application

To test the predictions obtained from the lasso and the HAR model from a different angle,

we include a risk management application. The value-at-risk of an asset to the level α is

given as

VaRt
α = − inf{x ∈ R|P(Xt ≤ x) ≥ 1 − α} (1.9)
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where Xt is the daily log-return of an asset.9 Under the assumption, which also underlies

the computation of realized variance, that an asset’s return Xt is given as10

Xt = μt + σt · Zt

we can readily compute (assuming a scale-location family with continuous distribution

function) as

VaRα(X) = μt + σtq1−α (1.10)

where q1−α is the 1 − α quantile of the standardized distribution Zt, μt the conditional

mean, and σt the conditional volatility of X.

As the distribution for Zt we use the standard normal distribution as well as the empirical

distribution after (quasi-)standardizing Xt with μt and estimates of σt as obtained by the

RVt estimates. Since we are aiming for a realistic benchmark we do not employ backtesting

for the value-at-risk but conduct an out-of-sample analysis and predict

VaRt+1|t
α = μt + σt+1|tq1−α (1.11)

where σt+1|t is again obtained based on RVt+1|t estimates by either the lasso or the HAR

model.

To do so, we estimate both models on window lengths of n = 200, 400, 1, 000, 2, 000

observations to obtain a forecast ̂log RVt+1|t. To get an optimal forecast (in the sense of

Proietti & Lütkepohl (2013) and Appendix A.2) of the actual volatility we compute σ̂t+1|t
as

σ̂t+1|t =

√
exp( ̂log RVt+1|t +

σ̃2

2
) (1.12)

where σ̃2 is the variance of ̂log RVt+1|t. The hit ratios are then defined as

HRM (D)
α =

#{xt+1 < −VaRt+1|t
α }

n
(1.13)

9We define the value-at-risk compliant to the risk management literature: Instead of working with the usual
distribution, we premultipliy with −1 such that losses are positive resulting in the mnemonic that a greater VaR
means greater risk.

10Strictly speaking the assumptions of computing realized variance also allow for jumps (depending on the
estimator) to contribute to the return Xt. For reasons of simplicity, we exclude this component.
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where ‘M’ can either be ‘HAR’ or ‘lasso’ depending on how σt+1|t of (1.12) is computed

(either by the HAR-model or our lasso approach), and ‘D’ is either ‘Norm’ or ‘Emp’ de-

pending on how q1−α in (1.11) is computed (quantiles of aN(0, 1) distribution or quantiles

of the standardized empirical distribution). In all cases we compute the conditional mean

as μt =
1
n

∑n
i=1 rt−n+i.

To contrast these estimates we also implement a naive estimator of the value-at-risk by

simply taking the empirical α-quantile of the distribution of the log-returns, i.e.

HREmp
α =

#{xt+1 < q̂1−α}
n

,

where q̂1−α is the empirical 1 − α quantile of {xt−n+1, . . . , xt}.

Figure 1.5: Actual hit ratios.

The columns show the different estimators of HRα, the rows show the levels of α = 99, 97.5%.
The horizontal lines are the theoretical levels (1 − α) of the VaR. The color indicates the p value
of Kupiec’s (1995) test against the theoretical level.
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Fig. 1.5 clearly shows that there is again no systematic difference between the HRHAR D
α

and HRlasso D
α . Both are too aggressive (producing a VaR which is too low and thus is

violated more often than theoretically specified) when the emprical distribution is used

for the standardized innovations, and less so when theN(0, 1)-distribution is used for the

standardized innovations. What becomes apparent from Fig. 1.5 is that the influence of

the assumption on the distribution as well as the asset in question is much more crucial

than the model used to forecast volatility. Compared to the simple model of estimating

the VaR by simply taking the empirical quantiles the results are disappointing: There is

no apparent outperformance of computing the VaR with volatility forecasts obtained by

either the HAR or the lasso over the simple (but rather effective) historical quantiles over

short training periods. This is all the more so, when looking at the rejections ofH0 under

Kupiec’s (1995) test (assuming the correct level for the VaR). It is less often rejected for the

‘Emp’ than for any realized variance model at both the 5% and 10% level of Kupiec’s test.

The particularly poor performance of all VaR forecasts for Citigroup, Inc. is related to the

turbulent times the stock went through during the financial crisis resulting in pronounced

non-normality of the log RVt as reported in Fig. 1.1 (b) as well as non-normality of the

log-returns reported in Fig. A.5.

1.4 Conclusions and Further Research

We conclude that the lasso does not recover the HAR model. We consider this as evidence

against the presumption that HAR model is the true DGP since, first, we have theoretically

founded reason to believe that the lasso should detect the HAR model, and, second, we

provided empirical evidence on synthetic data that the lasso does recover the HAR model

if the data stem from this DGP.

In addition, the lasso and the HAR model appear to be indistinguishable from an out-of-

sample performance point of view: Neither the HAR nor the lasso excels in an out-of-

sample prediction exercise. When we look at a more economically meaningful comparison



32 CHAPTER 1. LASSOING THE HAR MODEL

using value-at-risk prediction, both models fare equally poorly with no noticeable differ-

ences in favor of either of the two.

The argument above and the selection of only near-lags (in the whole sample, and even

more pronouncedly during the crisis) leads us to the hypothesis that in fact the realized

variance dynamics are much better explained by shorter horizon models. Our results are in

line with empirical evidence shown in Chen, Härdle & Pigorsch (2010), eventually hinting

at the possibility that the seemingly long-memory dynamics of the realized variance time

series are in fact spurious. Arguments against this view are the lags which are selected and

persist: This actually indicates that there might be some long range dependence which

warrants further research.

We thus conclude that the HAR model may not be the true model. However, it captures

– as does the lasso – a linear footprint of the possibly non-linear volatility dynamics that

can be used for volatility forecasting. Given the equal out-of-sample performance of the

two approaches we see potential for further research in this domain: Although adding

additional predictors other than the lagged values of the realized volatilities themselves

expels us from the thorough theoretical model selection framework established in this

paper, we anticipate further insights with regard to e.g., volatility spillovers (including

other assets, markets, etc. as predictors) or calendar effects (adding day-of-week dummies

to the lasso regression).
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Table 1.3: Percentage of HAR coefficients recovered

Lag AA C HAS HDI INTC MSFT NKE PFE XOM

xt−1 100 100 100 100 100 100 100 100 100

xt−2 100 100 100 100 100 100 100 97 100
xt−3 100 100 100 100 100 100 100 98 100
xt−4 100 100 100 100 100 100 100 97 100
xt−5 100 100 100 100 99 99 100 96 100

xt−6 42 43 61 54 18 21 52 23 12
xt−7 37 39 59 53 17 18 50 21 9
xt−8 36 37 61 54 15 16 50 20 6
xt−9 32 32 54 49 9 10 44 15 2
xt−10 34 34 56 50 9 10 45 16 1
xt−11 31 31 54 45 7 9 42 14 1
xt−12 28 30 56 48 7 9 44 15 1
xt−13 27 28 55 47 5 7 43 14 1
xt−14 28 29 58 51 6 7 46 13 0
xt−15 25 24 55 46 4 4 42 10 0
xt−16 25 25 53 44 4 5 40 12 0
xt−17 19 20 51 42 2 2 36 8 0
xt−18 20 20 51 43 2 2 38 8 0
xt−19 16 17 46 36 1 2 31 6 0
xt−20 12 12 42 31 1 1 27 3 0
xt−21 10 12 41 29 0 0 25 3 0
xt−22 8 9 34 25 0 0 20 2 0

xt−23 3 6 13 8 0 0 6 1 0
xt−24 2 4 8 6 0 0 4 0 0
xt−25 1 4 8 5 0 0 3 0 0
xt−26 1 3 5 4 0 0 3 0 0
xt−27 0 2 4 2 0 0 2 0 0
xt−28 0 2 4 3 0 0 1 0 0
xt−29 1 2 4 2 0 0 2 0 0
xt−30 0 1 3 2 0 0 1 0 0
xt−31 0 2 3 2 0 0 1 0 0
xt−32 0 1 3 1 0 0 1 0 0
xt−33 0 1 2 1 0 0 1 0 0
xt−34 0 1 2 1 0 0 0 0 0
xt−35 0 1 1 0 0 0 0 0 0
xt−36 0 1 2 1 0 0 1 0 0
xt−37 0 1 2 1 0 0 1 0 0
xt−38 0 1 2 1 0 0 0 0 0
xt−39 0 1 1 0 0 0 0 0 0
xt−40 0 0 1 0 0 0 0 0 0
xt−41 0 0 1 0 0 0 0 0 0
xt−42 0 0 1 0 0 0 0 0 0
xt−43 0 0 1 0 0 0 0 0 0
xt−44 0 1 1 0 0 0 0 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
xt−100 0 0 0 0 0 0 0 0 0

Number of times (out 1,000 replications) a lag has been selected (estimated as
non-zero) by the lasso in percent. Omitted rows contain zero only.
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Abstract

This paper investigates the role of volatility spillovers, macroeconomic

news, intra-week seasonality and the leverage effect for realized volatility

models. To understand the role of news existing models, augmented by this

new combined information set, are revisited. The least absolute shrinkage

and selection operator is employed in a vector autoregressive setting to

assess the relevance of volatility spillovers to modeling the S&P 500’s

realized volatility. A combined model is then proposed which features a

data-driven selection of regressors to include in a model of realized volatility.

These models are compared in a strict out-of-sample prediction comparison

together with a value-at-risk application. A superior performance of models

augmented with this new information set is witnessed in the prediction

comparison. Compared to existing models, a considerably shorter lag

structure delivers already good forecasting performance.

JEL: C58, C63, C49

Keywords: Realized Volatility, Heterogeneous Autoregressive Model, Lasso,

Spillover, VAR
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2.1 Introduction

Contrary to asset returns, it is widely accepted that the volatility of asset returns is indeed

predictable to a certain extent. Apart from scientific interest per se in this topic, accurate

forecasts of volatility are also paramount in many applications in finance ranging from

asset allocation to risk management.

The introduction of the autoregressive conditional heteroscedastic (ARCH) model by En-

gle (1982) and the extension to the generalized ARCH (GARCH) model by Bollerslev

(1986) constitute seminal contributions to the realm of volatility modeling. The GARCH

model provides a framework in which to model conditional daily volatility and is able

to replicate empirically observed facts such as volatility clustering. Countless extensions

of the GARCH model have found their way to the literature. These extensions feature

asymmetries, spillovers, and similar phenomena. While all these models help the under-

standing of volatility, volatility as such is still unobserved and model-dependent.

A considerable advancement in this field resulted from the advent of high-frequency data

with frequencies as high as tick-by-tick in recent years. This abundance of data led to a

new strand of research addressing the actual estimation of daily volatility using intra-day

observations of asset returns. This line of research renders thus far unobservable volatility

observable by asymptotic arguments. Much of it is indebted to seminal contributions

of Bollerslev & Wright (2001), Barndorff-Nielsen & Shephard (2002a), and Andersen,

Bollerslev, Diebold & Labys (2003), among others. Hence, one can obtain a value of the

daily volatility which – until then – could only be estimated from daily data with a specific

model.

This estimate of daily volatility starts from the assumption that the log price process pt

is a (jump-) diffusion, i.e., pt = μtdt + σtdW where μt and σt are the instantaneous mean

and volatility, and Wt a Brownian motion. The daily log return (with a day normalized

to 1) is given as rt = pt − pt−1 which can be shown to be N(
∫ t

t−1
μsds,

∫ t

t−1
σ2

s ds) distributed

(McAleer & Medeiros 2008). The term
∫ t

t−1
σ2

s ds is referred to as integrated variance (IVt)

and can be estimated by summing the squared intra-day returns. Realized volatility,
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RVt =
∑N

j=1(ptj − ptj−1 )2, converges uniformly in probability to IVt as the grid becomes finer

(a more rigorous discussion is provided in the appendix). This measure RVt of return

variability is commonly called, by slight abuse of language, realized volatility. Its square

root is thus an estimate of daily volatility.

With a series of daily realized volatilities at hand, the question of modeling can be ap-

proached. The series of realized volatilities inherits many stylized facts also found in

earlier works on conditional volatility time series. A well-documented empirical fact

is the pronounced long-range dependence and near log-normality of the unconditional

distribution. These observations have led to two fundamental classes of models: first, a

fractionally integrated autoregressive moving average model (ARFIMA) pioneered by An-

dersen et al. (2003), and, second, a heterogeneous autoregressive model (HAR) advocated

by Corsi (2009). While the latter class of models is not able to reproduce long-memory

time series formally, it still enjoys great popularity, mostly due to its good empirical per-

formance, ease of implementation, and economic interpretability. More recent research is

embarking on new ideas to address the specificities of the realized volatility time series

which tries to explain the long memory behavior in terms of multiple regimes that may

only prevail over a certain time (Scharth & Medeiros 2009, Chen et al. 2010). Most of these

models still have an autoregressive (AR) component and thus to a certain extent favor the

(H)AR view.

A natural next step is to investigate these models and their ability to incorporate well-

documented facts already known from the earlier GARCH period: among these are,

the leverage effect which postulates that negative returns entail a greater volatility, the

effect of news, intra-week seasonality, and volatility spillovers. The benefit of including

macroeconomic news has for instance been addressed by Martens, van Dijk & de Pooter

(2009) and is also employed by Scharth & Medeiros (2009). A recent study addressing the

question of volatility spillovers for realized volatilities is found in Dimpfl & Jung’s (2012)

work.

This paper contributes to these lines of research. Combining both, volatility spillovers

and news (in the wide sense, including intra-week seasonality, macroeconomic news, and
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leverage effect), the role of each of these components is investigated. Based on these

results, the out-of-sample performance, the overarching goal, is analyzed to understand

the benefits of this augmented information set. To achieve this, a novel way to assess

the importance of volatility spillovers, using the least absolute selection and shrinkage

operator (lasso) in a vector autoregressive (VAR) context, is proposed. To address the

relevance of the information set augmented by news, existing models are revisited. The

lasso is also employed in univariate volatility modeling to corroborate the findings of

earlier models. Hence, the present work also touches on the question of whether volatility

can be modeled in a self-sufficient way or whether the inclusion of exogenous factors is re-

quired. To address the question of the results’ robustness with regard to the measurement

of realized volatility, all the analyses are conducted with different estimators for realized

volatility. The entire paper primarily uses the bipower variation (Barndorff-Nielsen &

Shephard 2004), however, the same analyses are also carried out using the naive estimator

for the realized volatility as introduced earlier. These results are deferred to the appendix

together with a complete discussion of the estimators and data used. To assess the final

models’ performance realistically, I adhere to a strict separation of the in-sample period

(training period) and the out-of-sample period (evaluation period). Hence, explorative

investigations are only carried out using the training period while the final models are

tested on the evaluation period.

The rest of the paper is structured as follows: The first section revisits the idea of Dimpfl

& Jung (2012) and casts it in a lasso framework. The second section reviews the role of

news, including the day-of-the-week and the leverage effect, on volatility modeling and

adds a model selection perspective extending Audrino & Knaus (2012). The third section,

collecting the findings from the previous two sections, proposes several models which

are then assessed in an out-of-sample forecasting comparison featuring pure volatility

forecasts as well as more practically oriented value-at-risk forecasts. The last section

discusses the results and concludes. A detailed description of the data can be found in the

appendix.
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2.2 Volatility Spillovers

2.2.1 Overview

The effect of one asset on another asset’s return and volatility is a widely studied subject.

This research dates back at least to Hamao, Masulis & Ng (1990), and earlier to Hilliard

(1979) who focuses on asset prices. Although the subject has been studied for quite

some time there is no – to my knowledge – commonly accepted taxonomy: “spillover”,

“contagion”, “comovement”, or simply dependence are often used interchangeably to

capture the fact that there may be an effect of one asset’s volatility on another asset’s

volatility.

I adopt the view that the ultimate goal of volatility models is prediction. Spillover can

then be seen in the sense of Granger’s idea of causality: “We say that Yt is causing Xt

if we are better able to predict Xt using all available information than if the information

apart from Yt had been used” Granger (1969, Definition 1). In the present paper I use the

term spillover in the above sense, i.e., there is spillover, if one is better able to predict one

variable by including another variable.

The research on volatility spillover is ample. A very recent overview of spillover analyses

in Asian markets is provided in Engle, Gallo & Velucchi (2012). An approach measuring

spillovers is developed in Diebold & Yilmaz (2009) and extended in Diebold & Yilmaz

(2012). Other recent studies that investigate volatility spillovers include: Savva, Osborn

& Gill (2009), who consider the integration of the German and the French market before

and after the introduction of the Euro; Gębka & Serwa (2007), who look at intra- and

inter-regional spillovers in emerging markets; Golosnoy, Gribisch & Liesenfeld (2012),

who propose a three-phase intraday model to analyze spillover between the US and the

German market; Jiang, Konstantinidi & Skiadopoulos (2012), who consider the effect of

news announcements and the subsequent volatility spillovers by investigating option

volatility.
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Clearly, volatility spillover constitute a very active research field. However, most work

focuses on daily data. The most influential paper on this essays’ view is Dimpfl & Jung

(2012), which uses intraday data to compute realized volatility. Dimpfl & Jung study the

effects of volatility transmission with a multivariate model measuring realized volatility

itself univariately. Their view on volatility spillover modeling is captured by a VAR

process that attempts to explain the volatility series using a daily, a weekly and a semi-

annual component. This choice of components is inspired by Corsi’s (2009) heterogeneous

autoregressive model (HAR) which originally suggested the use of daily, weekly, and

monthly linear components to model realized volatility univariately.

Extending the work of Dimpfl & Jung (2012), I relax the assumptions on the compo-

nent structure. To this end, realized volatility is computed univariately and the specific

temporal structure is exploited in a structural VAR setting.

With the goal of modeling the S&P 500’s volatility, the current work limits the attention

to three major stock markets represented by the most important cash indices: the S&P

500 in New York (SP), the FTSE 100 in London (FT), and the Nikkei 225 in Japan (NE).

A complete description of the data is available in the appendix. The trading hours and

geographical situation of these indices are presented in Fig. 2.1.
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Figure 2.1: Index trading hours

Schematic illustration of time zones and market opening. The three markets have the following
opening hours: Nikkei from 9.00 a.m. to 3.00 p.m (0h00 to 06h00 UTC), FTSE from 8.00 a.m. to 4.30
p.m (08h00 to 16h30 UTC), and S&P 500 from 9.30 a.m. to 4.00 p.m (14h30 to 21h00 UTC). Note that
London and New York have daylight saving time such that the opening hours are 07h00 to 15h30
UTC+1 and 13h30 to 20h00 UTC+1 respectively during the summer time. The situation illustrated in
Fig. 2.1 shows the situation during daylight saving time.

As can be observed, there is no temporal overlap between Tokyo and London, whereas

London and New York have concurrent trading from 14h30 to 16h30 UTC. Since the

ultimate goal is to devise a model for the SP’s realized volatility1, I follow the common

approach of truncating the observations of the FT to the opening of the SP. This is also

referred to as pseudo closing time (Savva et al. 2009, Dimpfl & Jung 2012). Following this

argument, one can model the realized volatility analogously to Dimpfl & Jung (2012) as

described in more detail in the next paragraph.

1The current approach is by no means limited to modeling the SP’s realized volatility. Instead of following a
calendar date definition of a day, one might as well work with fictitious days such that the FT and SP precede the
NE and the NE’s realized volatility is the ultimate goal of prediction.
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2.2.2 Theoretical Set-Up

Let yi,t be the log realized volatility, observed for market i = 1 (NE), i = 2 (FT), and i = 3 (SP)

where the realized volatility is computed as outlined in the appendix, i.e., yi,t = log RVi,t.

The realized volatility of the FT is only computed up to the opening time of the SP.2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
y1,t

y2,t

y3,t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1

a2

a3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

b21,0 0 0

b31,0 b32,0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
y1,t

y2,t

y3,t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

p∑
l=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b11,l b12,l b13,l

b21,l b22,l b23,l

b31,l b32,l b33,l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
y1,t−l

y2,t−l

y3,t−l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u1,t

u2,t

u3,t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
or, more compactly,

yt = a + B0 yt +

p∑
l=1

Bl yt−l + ut. (2.1)

The specific form of (2.1) follows from the temporal structure shown in Fig. 2.1 and is

identical to that of Dimpfl & Jung (2012). Dimpfl & Jung use restrictions of the form

Bl =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
C(d)

l +
1
5 C(w)

l +
1

120 C(sa)
l for l = 1

1
5 C(w)

l +
1

120 C(sa)
l for l = 2, . . . , 5

1
120 C(sa)

l for l = 6, . . . , 120

such that the model is an autoregression on lagged daily, average weekly, and average

semi-annual volatility. Unlike Dimpfl & Jung (2012), I do not restrict the autoregressive

parameters to be specific aggregation frequencies. I will determine these from the data as

will be discussed in the following paragraph.

2For an illustration showing the relation between the pseudo-closing realized volatility versus the all day realized
volatility refer to Fig. B.3
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Note at this stage that if yt is a demeaned series (ai = 0 ∀i) and C = (I−B0)−1 one can write

(2.1) as

yt =

p∑
l=1

CBl yt−l + Cut =

p∑
l=1

B̃l yt−l + ũt. (2.2)

Given the specific form of B0, the structural VAR is just identified (Hamilton 1994), hence

one can estimate (2.2) by means of OLS. In the subsequent paragraph I follow Kock & Callot

(2012a) in the exposition of the adaptive lasso and its applications to vector autoregressive

processes as given in (2.2).

2.2.3 Lasso in the VAR Structure

The least absolute shrinkage and selection operator (lasso) was originally introduced by

Tibshirani (1996) to address regression-linked problems in the cross-sectional case. The

lasso is not only a robust regression device (by using shrinkage, collinear or near-collinear

predictors can still be used in a linear framework) but also a model selection operator. The

original lasso can be used to tackle cross-sectional models of the form yi =
∑p

j=1 βixj,i + εi,

or more compactly, y = Xβ + ε where X is the matrix of predictors, β the (true) p × 1

parameter vector (with potentially some βi = 0) and ε the error term. Typically it is

assumed that the regressors as well as the response variable are standardized; otherwise

prior normalization with respect to the Mahalanobis distance is required.

The lasso estimator of β, β̂lasso,λ then minimizes

L(β) = ‖y − Xβ‖22 + λ
p∑

i=1

|βi|.

for each λ such that a β̂lasso,λ sequence is produced. The combination of the L2 (the

objective) and the L1 (the penalty) norm makes the lasso a computationally efficient model

selection device (Hastie et al. 2009). It can be shown that the lasso recovers the true active

parametersA = {i|βi � 0}with probability 1 asymptotically for an appropriate choice of λ

(Bühlmann & Van De Geer 2011).
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An important extension of the lasso was contributed by Zou (2006) who proposes the

adaptive lasso estimator which minimizes

L(β) = ‖y − Xβ‖22 + λ
p∑

i=1

ξi|βi|

where ξi are specific weights penalizing the regressors more or less severely. A large ξi

weighs a specific coefficient βi down whereas a small ξi puts a smaller penalty on βi. The

standard lasso is thus a special case of the adaptive lasso with ξi = 1 for all i = 1, . . . , p. The

adaptive variant of the lasso has the advantage that it relaxes the conditions under which

the correct sparsity pattern A is identified (Bühlmann & Van De Geer 2011) and thus

enjoys great popularity since it is easy to implement, remains computationally efficient,

and renders model selection (within the class of linear models) feasible on a theoretically

grounded footing.

Building on this strand of literature, the lasso has recently also been extended to time

series regression, namely, to autoregressive processes. An important contribution in this

field has been made by Nardi & Rinaldo (2011), who establish that the lasso is also able

to recover the true lag structure of a univariate AR process. An even more important

contribution is the extension of the adaptive lasso to vector autoregressions (Kock &

Callot 2012a, Kock & Callot 2012b).

It is the results of Kock & Callot (2012a) that will be of integral importance to the current

application. Hence, in the following I adopt the notation and terminology of Kock &

Callot in the exposition of the problem.

Observe that (2.2) can be written as

y = Xβ + ũ (2.3)

where Zt = (y′t−1, . . . , y
′
t−p), Z = (ZT, . . . ,Z1)′, X = IN ⊗ Z, and y = (y′1, . . . , yN)′ such that

β contains the N2p parameters of B̃l, l = 1, . . . , p and ũ = (ũ′1, . . . , ũ
′
N)′. The parameters B̃l
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can be recovered by the identity β = vec((B̃1, . . . , B̃p)′) where vec is the usual columnwise

vectorization operator.

The adaptive lasso estimator for (2.3) minimizes

LT(β) = ‖y − Xβ‖22 + λT

N2p∑
i=1

ξi|βi| (2.4)

where ξi are weights that are commonly chosen as ξi = |β̂OLS,i|−γ where β̂OLS is an OLS

estimate for β in (2.3) and γ is commonly assumed to be 1.

Kock & Callot (2012a) then proceed and show that if (2.2) is a stationary VAR with

(i) ũi,t have a finite fourth moments for all i = 1, . . . ,N and that ũt is zero mean i.i.d.

distributed random vectors with covariance matrix Σ.

(ii) E( 1
T Z′Z) is positive definite

then the adaptive lasso is oracle efficient if λT/
√

T → 0 and λTT−1/2+γ/2 → ∞ additionally

holds. The use of assumption (i) is standard and ensures convergence to the limiting

distribution and assumption (ii) rules out collinearity of the lagged variables. For more

details see Kock & Callot (2012a).

Oracle efficiency is captured by the following three points (Kock & Callot 2012a, Theorem

1):

(i) ‖√T(β̂ − β)‖22 ∈ OP(1),

(ii) P(β̂Ac = 0)→ 1,

(iii)
√

T(β̂A − βA) is multivariately normally distributed with mean zero.

A is again the set of active coefficients, and Ac is the set of inactive coefficients (Ac =

{1, . . . ,N2p} \ A).
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The result of Kock & Callot (2012a) thus enables one to use the lasso in the VAR setting.

Asymptotically the true sparsity pattern will be detected by the lasso and consequently,

some entries in B̃i for i = 1, . . . , p will be set to zero. In other words, the true non-active

predictors in (2.3) will be set to zero as the number of observations increases. Although

this only holds asymptotically, there is evidence that the adaptive lasso applied to the

VAR model also delivers the expected results in finite sample. Kock & Callot (2012b)

provide Monte Carlo evidence for the detection of the correct sparsity pattern as well

as a real-world application in Kock & Callot (2012a) whereby the adaptive VAR lasso is

successfully employed to forecast macroeconomic time series.

Once (2.2) is estimated by the lasso in the spirit of (2.3) one can proceed to recover the

structural parameters of (2.1).3 Hence, the theoretical framework required to determine

the predictors and their relevant lags of (2.1) in a data-driven manner is established.

Adhering to the convention of standardized variables, the magnitude of the coefficients

can then be seen as importance to reduce the L2 loss in (2.4). By the inversely monotonic

relationship of the coefficient of determination to the L2 loss, this can thus also be seen as

the importance to increase R2.

3 If the usual assumption

E(utu′t+ j) =
{

D if j = 0
0 otherwise.

holds for (2.1) with a diagonal matrix D we have for ũt of (2.2)

E(ũtũ′t+ j) =
{

CDC′ if j = 0
0 otherwise.

Since the system is just identified, the matrix C (Hamilton 1994, 11.6) can be recovered using the the unique
triangular factorization of any positive definite matrix Ω into LΔ̃L′ where L is a lower triangular matrix with ones
on the diagonal and Δ̃ a diagonal matrix. This unique LΔ̃L′ decomposition follows from the Cholesky decomposition
of Ω into UU′ with a unique upper triangular matrix U. Let U = [uij]{1≤i, j≤p} and Δ = [δi j]{1≤i, j≤p} with δ j j = ujj and
δi j = 0 for i � j. Then L = U′Δ−1 and Ω = LΔ2L′ = LΔ̃L′.

Since C is precisely a lower triangular matrix with 1 on the diagonal one can recover B0 as follows: WithΩ = CDC′
and Ω = UU′ its Cholesky decomposition, one finds that C = U′ diag(diag(U))−1 and

B0 = −
((

U′ diag(diag(U))
)−1 − I

)
.

The operator diag is employed to extract the diagonal elements of a square matrix as well as to construct a diagonal
matrix from a vector.
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2.2.4 Empirical Application

I present the approach detailed above for the initial example, namely, a vector autore-

gression in the spirit of Dimpfl & Jung (2012) in which the lag structure is determined as

described in the previous section. To this end, one computes the realized volatility for all

three markets for the in-sample period. In the next step, the adaptive lasso is employed

as outlined above. For the adaptive weights ξi, I use the inverse of the magnitude of the

OLS estimates, i.e., ξi = |βi,OLS|−1. This is a common choice and satisfies the conditions for

the weights as required for the asymptotic result to hold.

Unlike in the standard univariate applications, whereλT is determined by cross-validation,

I determine λT using the Bayesian Information Criterion due to the lack of a reliable

resampling scheme to justify cross-validation as is suggested by Kock & Callot (2012b).

The maximal lag is set to p = 10 and p = 20 to assess the sensitivity of the procedure with

regard to the maximal lag-length specification.

In summary, I estimate a model in the sense of (2.4) where β is a 90× 1 (180× 1) parameter

vector. I employ the log of realized volatility which is commonly done in the realized

volatility literature.4 I then proceed to standardize the observations such that the mag-

nitude of the coefficients can be interpreted. Recall that the purpose of this section is of

pure in-sample (or exploratory) nature. At a later stage, I use the information gained at

this stage to motivate the final model.

4For a justification beyond the usual log-normality argument of realized volatility in the case of linear models
one can consult Audrino & Knaus (2012).
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The first important observation from Tab. 2.1 is that the estimates5 do not change substan-

tially when moving the maximal lag p from 10 to 20.

With this in mind, it is worthwhile looking at the magnitude of the coefficients at different

lags: the reduced form parameters B̃i of Tab. 2.1 show a relatively rapid decline in size

in which most of the off-diagonal entries are set to zero after the first lag. The structural

parameters of Tab. 2.1 exhibit several remarkable facts. Since all the log RVi,t are standard-

ized, the (contemporaneous) impact of the FT on the SP, as measured by the size of the

coefficient, is far larger than the Nikkei’s impact on the S&P 500. This observation is in

accordance with the actual provenance of the data, in the sense that the FT is temporally

closer to the SP. The contemporaneous effect of the FT on the SP (b0,32) is almost as large

as the lagged value of the SP (b1,33), while the lagged values both of the NE and of the FT

are negligible when compared with the lagged values of the respective indices. Although

the goal is to devise a model for the realized volatility of the SP, it is worth considering the

rows different from the last one: the lagged influence of the SP on the FT (b1,23) exceeds the

influence of the NE on the FT (b1,21), and the same holds true when reversing the roles of

FT and NE. Additionally, the reduced parameters in B̃1, clearly show the prominent role

5The omission of standard errors or p values is on purpose: Standard errors for-lasso based procedure are
generally difficult if not impossible to obtain (Bühlmann & Van De Geer 2011) since the lasso provides biased
estimates such the only viable way to obtain reasonable p-values would be – for the lack of an expression for the
bias – to bootstrap. Since standard bootstrap schemes fail for the lasso (Chatterjee & Lahiri 2011) I refrain from
providing standard errors or p values.
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of the SP: elements of the third column (SP) is least often set to zero (for recent lags). This

may be seen as evidence for the SP being the dominating market.6

Taken together, I consider this evidence to include the pseudo-closing realized volatility

observation of the FT as an additional predictor for the realized volatility of the SP in the

final model, in a sense to be specified more precisely in Section 2.4.1.

2.3 News Arrival

The impact of news on volatility has been studied from different angles: a pioneering

work from the perspective of measuring news as perceived by returns is that of Engle

& Ng (1993). The study of how returns affect news provides a deeper understanding

of how returns and volatility are interlinked. This line of research, the “news impact

curve” is extended to intraday data by Chen & Ghysels who find that “both very good

news (unusual high intra-daily positive returns) and bad news (negative returns) increase

volatility” (Chen & Ghysels 2011).

A different line of research addresses the impact of news in the sense of macroeconomic

announcements and calendar day effects: this has already been documented for instance

by Andersen, Bollerslev, Diebold & Vega (2007) for macroeconomic news, and calendar

day effects for instance by Baillie & Bollerslev (1989). While most existing research looks

at these effects from a GARCH-inspired perspective (using daily returns), Martens et al.

(2009) extend this strand of research by suggesting a model, that features all of these

effects in a realized volatility context. They devise a model for realized volatility that can

accommodate leverage effects, macroeconomic announcements, weekly seasonality and

level shifts in the volatility process.

In their contribution, Martens et al. (2009) assess different classes of models, ranging from

a fractionally integrated AR process to an unrestricted AR model augmented with the

6As can be see in Tab. 2.1 some elements of the first column feature non-zero entries also at far legs. Given the
magnitude of these coefficients and the lack of standard errors I consider these as noise.
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aforementioned information. They conclude that despite the parsimonious and stringent

specification of a fractionally integrated model, a flexible AR structure is superior. They

also infer that the inclusion of this additional information is indeed beneficial except for

level shifts.

Earlier works in this field find a high integration of stock markets around the globe

by means of investigating the impact of U.S. macroeconomic news around the globe

(Nikkinen, Omran, Sahlström & Äijö 2006). As a by-product they also find an effect of

U.S. macroeconomic news on volatility using an extended GARCH model.

Building on Martens et al.’s (2009) results, I present two novel classes of models that

feature the same augmented information set.

2.3.1 Existing Models

I consider Martens et al.’s (2009) specification as a yardstick with wich to compare the

suggested classes. For this purpose, a variant of their model is revisited. To address the

question of whether the incorporation of news, weekday and leverage effects is beneficial

across model classes and whether this information can also be used in a simpler class of

models, I present two extensions: the first extension is inspired by Corsi’s (2009) HAR

model, the second extension follows ideas presented in Audrino & Knaus (2012).

The first class of models (C1), a conditional mean specification, is put forward by Martens

et al. (2009) who postulate the following dynamics

yt = μt + β
(d)(yt−1 − μt−1) + β(w)(y(w)

t−1 − μ(w)
t−1) + β(m)(y(m)

t−1 − μ(m)
t−1) + εt (2.5)

with x(κ)
t and μ(κ)

t being aggregated frequencies as indicated by κ, which are either daily,

weekly, or monthly. More precisely, x(κ)
t−1 =

1
nκ

∑nκ
t=1 xt−t where nκ is 1 (daily, κ = d), 5

(weekly, κ = 5), or 22 (monthly, κ = m). μ(κ)
t−1 is defined analogously. The contribution of
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Martens et al. is not only the specification of a conditional mean model as such but also

an elaborate specification of the process μt which is defined as follows:

μt = c +
nω∑
i=1

ωi wi,t +

nη∑
i=1

ηi ni,t + λr+t−1 (2.6)

wi,t is a dummy for the weekday of day t, ni,t is a dummy for a news arrival of type i on

day t, and r+t−1 = max(0,−rt−1) to account for the widely documented leverage effect.

Although Martens et al. (2009) also include fractionally integrated models and unrestricted

models in their analysis, I second their conclusion that the benefit of modeling a fractionally

integrated process does not produce a better description of the data. Also, an unrestricted

AR(p) model included in their work performs no better than the parametrically imposed

structure of (2.5) and (2.6).7

The second class (C2), HAR-augmented models, is an extension of the model pioneered by

Corsi (2009). Corsi’s (2009) model suggests dynamics for the realized volatility, which is

a weighted sum of the daily, weekly, and monthly volatility. These temporal components

are augmented with the same exogenous factors as already found in the previous model,

i.e.,

yt = c + βd y(d)
t−1 + β

w y(w)
t−1 + β

m y(m)
t−1 +

nω∑
i=1

ωi wi,t +

nη∑
i=1

ηi ni,t + λr+t−1 + εt

where the variables are as defined for the first class of models. The coefficients are different

across these models whereas the actual values of the additional regressors are identical.

The third class (C3), an agnostic approach, is inspired by a different application of the

lasso (as already found in Audrino & Knaus (2012)) applied to time series modeling. To

this end, I employ the lasso procedure in the univariate time series case with a specific set

7In the methodological part of their work they also suggest a non-parametric estimate for c in (2.6), making it time
dependent c(t). The approach proposed is to model c(t) non-parametrically, however, results for non-parametric
c(t) are not included in the paper which I attribute to the potentially poor identification of c(t).
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of predictors P that correspond to the predictors introduced for the two previous models,

i.e.,

P = {{wi,t}1≤i≤nω , {ni,t}1≤i≤nη , r
+
t−1, {yt−i}1≤i≤20}8.

Unlike for the lasso as introduced in Section 2.2.3 or for the lasso as employed in Audrino

& Knaus (2012), there is no theoretical framework that establishes model selection consis-

tency in this context with exogenous regressors. Despite the lack of theoretical framework,

this idea has already been successfully applied by Park & Sakaori (2013).

The selection of the shrinkage parameter uses a blocked cross-validation with a block

length of 25 as suggested in Bergmeir & Benítez (2012).

To gauge the performance and appropriateness of the above specifications, I include an

in-sample analysis that contrasts these three families in the same in-sample period. Again,

this empirical application is meant to be exploratory and will later be used in Section 2.4.1.

2.3.2 In-sample Estimates

Unlike in the original work of Martens et al. (2009) I do not use centered dummies since the

ultimate goal is to assess these models in terms of forecasting such that a reparametrization

is irrelevant. Hence, one has for i = 1, 2, 3, 4

wi,t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if weekday of date t is day i + 1

0 otherwise

where day 2 is Tuesday, 3 is Wednesday, 4 is Thursday, and 5 is Friday.

Following Martens et al. (2009) I use a dummy for macroeconomic news announcement

for the GDP (Bureau of Economic Analysis, final GDP), unemployment figures (Bureau

8The lasso is employed in its usual cross-sectional variant to the equation yt =
∑

x∈P βxx + εt.
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of Labor Statistics, unemployment rate), inflation (Bureau of Labor Statistics, CPI), and

federal fund rates (Federal Reserve).9.

The in-sample estimates of these three models are collected in Tab. 2.2.

9In light of the non-standard actions taken by the FED in recent times, other announcements by the FOMC where
included as additional predictors in an earlier version; these were not found significant and are thus excluded for
the sake of consistency with earlier works in this version
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What can be observed from Tab. 2.2 is as follows: the autoregressive coefficients on the

daily, weekly, and monthly components are of the expected magnitude, even for the con-

ditional mean model. Moreover, the effect of weekdays is significant at the individual

day level (as also reported by Martens et al. (2009)). However, the effect of news arrival

is ambivalent: while higher volatility on federal fund rate and employment figure an-

nouncement days is common across models, the remaining news (inflation, GDP) are not

found to be significant across both models. When it comes to intra-weekly seasonality,

there is a slight difference across the two models: all weekday dummies are found to be

significant in C1, whereas the Friday-effect is not found to be significant in C2.

These findings are also confirmed by C3 in which the only predictors that are selected

(beyond the leverage effect and the lagged observations) are the federal fund rate and

employment figures and the weekday dummies (excluding Friday).

These results are in line with what is reported in the online appendix of Martens et al.

(2009) for fractionally integrated models, with the exception that they find that the release

of inflation data as measured by the CPI dummy is significant as well. However, I attribute

this difference to either the sample or – more importantly – to the different nature of the

models.

With these in-sample estimates at hand I reach the following conclusions: there is a clear

indication that a model featuring leverage effects and intra-week seasonality is worthwhile
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considering and the performance difference between C1 and C2 is not substantial from

an in-sample point of view. The role of macroeconomic news appears relevant only

for employment and federal fund rate announcements. Given the results found herein

combined with the conclusion of Martens et al. (2009) these results will be used to construct

the final set of models found in 2.4.1.

2.4 Augmented Linear Models

In view of what has been addressed in Section 2.2 and Section 2.3 of this paper I now

consider the question if and to what extent volatility spillovers and news (in the wide

sense) are beneficial to volatility forecasting. Reviewing the in-sample results and the

models introduced I propose three classes of models and assess their performance in an

out-of-sample comparison.

I impose further restrictions to understand the benefit of each component with regard

to volatility forecasting. The choice and specification of the models is guided by the

knowledge gained in the preceding sections of the current paper. All the information

collected in this in-sample period is taken to the forecasting comparison outlined in the

next section.

2.4.1 Competing Models

I use the models of Class 1 to 3 introduced in Section 2.3 but augment Class 2 and Class 3

by the volatility of other markets as introduced in Section 2.2. Since the conditional mean

specification does not allow for a natural inclusion of lagged volatilities of other markets

I refrain from doing so in Class 1.

In summary, I include the following models in the out-of-sample prediction exercise.
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Class 1: As specified in (2.5) with μt

μt = c + δ1

nω∑
i=1

ωi wi,t + δ2

nη∑
i=1

ηi ni,t + δ3λr+t−1. (2.7)

δk takes values in {0, 1} for k = 1, . . . , 3. This ensures that only a specific group of additional

information is included in the model. However, I impose that
∑3

k=1 δk > 0: otherwise, for

δk = 0 for all k = 1, 2, 3, the model collapses to the usual HAR model. Hence, there is a

total of 7 models for Class 1.

Class 2:

yt = c + βd y(d)
t−1 + β

w y(w)
t−1 + β

m y(m)
t−1 + δ1

nω∑
i=1

ωi wi,t (2.8)

+ δ2

nη∑
i=1

ηi ni,t + δ3λr+t−1 + δ4

l∑
i=1

φi y
i,(ai)
t−hi
+ εt

yi,(ai)
t−hi

is the volatility of market mi, lagged by hi and aggregated into ai. In light of the

results of Section 2.2 the sum is limited to l = 1 with m1 = 2 (the FT), h1 = 0 and a1 = 1

such that (2.8) only includes the realized volatility of the FT of the current day. Similar

to class 1, δk takes values in {0, 1} for k = 1, . . . , 4 such that Class 2 yields a total of 16 models.

Class 3: Again the lasso procedure is employed with

{{wi,t}1≤i≤4, {ni,t}1≤i≤5, r+t−1, {yt−i}1≤i≤10, y
2,(1)
t }

as available predictors, i.e., the weekdays, macroeconomic news, leverage indicator, as

well as lagged volatilities of the last 10 days.

Models 1 to 3 are summarized by C1,δ1δ2δ3δ4 , C2,δ1δ2δ3 and C3. Lastly, I also include what

has been laid out in Section 2.2 as a class of its own, Class 4. The vector autoregression

by means of the lasso introduced in Section 2.2.3 can straightforwardly be extended to

out-of-sample forecasting and is denoted as C4.
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Macroeconomic news is for all the models limited to announcements of the employment

rate and the federal fund rate; in line with the results of Section 2.3. The same argument

applies to the maximal lag of past volatilities for C3 and C4 which is set to p = 10 as well

as to only including the FT as a predictor (as found in Section 2.2 and 2.3).

2.4.2 Out-of-sample Evaluation

Compliant with the ultimate goal of daily volatility forecasting, I present a volatility fore-

casting study in the two subsequent paragraphs. To maintain strictly the idea of training

and test data (Hastie et al. 2009), none of the data on which the models are evaluated, have

been used in the preceding sections. Hence, the results presented hereafter are realistic

estimates of the performance of these models in a real-world application.

The out-of-sample evaluation starts on January 3, 2011 and ends September 25, 2012,

resulting in 437 out-of-sample evaluation points. For a more detailed description the

reader is again referred to the appendix.

The volatility forecasting evaluation looks at two aspects: first a comparison in the sense of

simple out-of-sample forecasting is presented, and, second, a more practical value-at-risk

forecasting evaluation is conducted.

Forecasting Comparison

Since there is no prior assumption on which model will fare best, I resort to the model

confidence set approach put forward by Hansen, Lunde & Nason (2011). The model

confidence set (MCS) – to a certain extent similar to a confidence interval for a parameter

estimate – contains the best model with a certain probability 1 − α: the estimated model

confidence set at level 1 − α, M̂∗
1−α contains the true best models with a probability of

at least 1 − α. Hence, the smaller α the more elements are contained in the final model

confidence set. An important feature of the MCS approach is that it accounts for the
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source of the data and potentially delivers a large set if the data is uninformative. More

precisely, suppose that there is loss function L that assigns a loss to the prediction ŷt,i of a

model i with regard to the realization yt, i.e., Li,t = L(yt, ŷi,t). Define μi j = E(Li,t − Lj,t) as

the expected relative performance of model i over model j. The set of superior models is

defined as

M∗ = {i ∈ M0 : μi j ≤ 0 ∀ j ∈ M0}

where M0 is the initial set of models. To obtain an estimate of M̂∗
1−α, i.e., the set that

contains the true superior set with probability 1 − α while controlling the nominal level

in this multiple comparison setting, Hansen et al. suggest (among others) an approach

based on the procedure of testing for equal predictive ability H0 : μi j = 0 ∀i, j ∈ M.

The procedure starts off with M = M0 and iteratively eliminates a model from M; this

procedure is reiterated until μi j = 0 cannot be rejected. The test and elimination rules are

based on

Tmax,M = max
i∈M

ti· with ti· =
d̄i·√
̂Var(d̄i·)

where d̄i· = 1
#M

∑
j∈M 1

n

∑n
t=1 Li,t − Lj,t. To find the distribution of Tmax,M Hansen et al.

suggest a bootstrap procedure based on the block bootstrap. I follow this suggestion and

use the block bootstrap with a block length of 25 and 20′000 replications. Concerning

the loss function, the analysis is primarily based on the squared predictive error, i.e.

L(yt, ŷi,t) = (yt − ŷi,t)2 as well as the absolute predictive error L(yt, ŷi,t) = |yt − ŷi,t| such

that the mean squared predictive error (MSPE) and the mean absolute predictive error

(MAPE) can be reported for the whole evaluation sample. 10 Tab. 2.3 thus reports the

MSPE and MAPE together with the corresponding MCS p-values as well as the p-values

of the Mincer-Zarnowitz regression of the null hypothesis of unbiasedness (Mincer &

Zarnowitz 1969) of the forecast (both encoded with stars).

The first remark concerns the robustness of the results presented in Tab. 2.3. The model

confidence sets agree to a great extent for the two loss functions, moreover, the results

do not change dramatically when replacing the estimate of RVt with the naive estimator

as shown in Tab. B.4. In addition, the sample size is of minor importance for the relative
10There is research identifying loss functions (Patton 2011) that are robust if the true realization of volatility is

observed with errors. This cannot be applied in the present case since the modeled quantity is the log volatility,
consequently, I restrict the analysis to the two loss function introduced earlier.
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Table 2.3: Out-of-sample results

δ1 δ2 δ3 δ4 MSPE Var Bias MAPE R2

C1

1 0 0 - 0.281 0.281 −0.016% 0.422 0.670
0 1 0 - 0.285 0.285 −0.018% 0.423 0.665
1 1 0 - 0.274 0.274 −0.014% 0.416 0.678
0 0 1 - 0.278 0.278 −0.017% 0.419 0.673
1 0 1 - 0.270 0.270 −0.013% 0.416 0.682
0 1 1 - 0.275 0.275 −0.015% 0.416 0.676
1 1 1 - 0.264 0.265 −0.011% 0.410 0.688

C2

0 0 0 0 0.290 0.291 −0.052% 0.426 0.658
1 0 0 0 0.281 0.282 −0.024% 0.423 0.669
0 1 0 0 0.264 0.264 0.020% 0.411 0.689
1 1 0 0 0.231∗∗∗ 0.229 0.343% 0.381∗∗∗ 0.732∗∗
0 0 1 0 0.273 0.273 −0.004% 0.416 0.678
1 0 1 0 0.239∗∗ 0.237 0.332% 0.386∗∗ 0.722∗∗
0 1 1 0 0.281 0.281 −0.043% 0.419 0.670
1 1 1 0 0.255 0.255 0.023% 0.403 0.699
0 0 0 1 0.247 0.245 0.343% 0.392 0.714∗∗
1 0 0 1 0.239∗∗ 0.236 0.353% 0.388∗ 0.724∗∗∗
0 1 0 1 0.232∗∗∗ 0.230 0.348% 0.379∗∗∗ 0.732∗∗∗
1 1 0 1 0.265 0.265 0.003% 0.409 0.688
0 0 1 1 0.239∗∗ 0.237 0.343% 0.383∗∗∗ 0.724∗∗∗
1 0 1 1 0.271 0.271 −0.018% 0.414 0.682
0 1 1 1 0.232∗∗∗ 0.230 0.334% 0.378∗∗∗ 0.731∗∗
1 1 1 1 0.225∗∗∗ 0.223 0.339% 0.373∗∗∗ 0.739∗∗

C3 - - - - 0.232∗∗∗ 0.229 0.391% 0.380∗∗∗ 0.732∗∗∗

C4 - - - - 0.248 0.247 0.239% 0.398 0.710∗∗

The stars of MSPE and MAPE are MCS p-values. Models with one star are in M̂∗0.95,

with two stars in M̂∗0.9, with three stars in M̂∗0.75. Note that M̂∗0.75 ⊂ M̂∗0.9 ⊂ M̂∗0.95. The
stars superscripted with R2 are the p-value of the Mincer-Zarnowitz regression, where
∗ ∗ ∗ corresponds to 0.01, ∗∗ to 0.05, and ∗ and 0.1.

results: while the model confidence sets obtained in Tab. B.3 are larger for smaller window

sizes (due to the lack of power of the MCS procedure induced by the high variance of the

forecast error), the relative results are stable across training window sizes. Looking at the

absolute value of the MSPE (MAPE) across training window sizes, I consider a training
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window size of 1000 observations to be a reasonable size, which is also often found in

comparable studies.

With this in mind, a closer look at the results is warranted. When examining the models in

the smallest model confidence set, M̂∗
0.75, the model with the lowest MSPE (MAPE) is in-

deed the saturated model of class C2, i.e., C2,1111, however, the model C2,1100 is a close second

hinting (only MSPE) at the possibility that weekly seasonality and macro announcements

are sufficient to attain reasonably low MSPEs, however, the models C2,0101, C2,0111 and C3

are also found to be in this set. The interpretation of the remaining results is even less

trivial: when considering models that are only augmented by one group of predictors

(i.e., δk = 0 except for one k) the model featuring the FT as predictor (C2,0001) performs best.

A next interesting observation is that C2,1001 and C2,0101, models with weekday and macro

news augmented with the FT, deliver good results. These observations taken together

may indicate that the role of the FT is that of a panacea, or, bluntly speaking, a “catch-all”

variable (also in the sense that it may capture the leverage effect through past returns of

the SP affecting the FT and thus again the SP). The same argument applies to C2,0011 in

which the potential role of intra-week seasonality and macro news effects is taken over by

the role of the FT (δ4). It can thus be argued that only C2,1111 (or alternatively C3) are able

to capture the net effect of the inclusion of the FT.

A further observation, worth highlighting is the result for C3 and C4: although they do

not feature the lowest MSPE, they fare considerably well. Most importantly, they both

outperform the basic HAR model (C2,0000) significantly with t-statisics of −4.364 (C3) and

−3.235 (C4) in a test of equal predictive power (Diebold & Mariano 1995) with HAC robust

standard errors (Newey & West 1987, Newey & West 1994). This is particularly noteworthy

since both have a maximal lag of p = 10 whereas the HAR model has an implicit maximal

lag of p = 22 to accommodate the apparent near long-memory features of the time series.

The last remark concerns the absolute value of the coefficient-of-determination: although

comparing the R2 across different studies (using different data, sample sizes, etc.) cannot

be considered a reliable benchmark, I still deem it worthwile mentioning that the highest

R2 reported by Chen et al. (2010), comparing several models at the one day horizon for
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log RV, is 0.718, while the HAR model’s R2 in the aforementioned study is found to be

0.691, thus hinting at the possibility that a saturated model (R2 = 0.739) is indeed beneficial

to forecasting daily realized volatility, even when compared with larger set of competitors.

When examining the MSPE in terms of bias and variance, it becomes apparent that all the

models of class C1 have a considerably lower bias as opposed to models in C2, C3, and C4:

this is not unexpected given the specification of the model in terms of a conditional mean

which comes at the price of higher variance of the forecast error. Also, all the models in

M̂∗
0.75 have a considerably lower variance which comes at the price of higher bias.

Looking at the bias also leads to the most perplexing result of this out-of-sample compari-

son. While the results in the model confidence set approach appear robust across different

loss functions (MSPE, MAPE), the test for unbiasedness is often rejected for models in-

cluded in the model confidence set. Although, this seems perplexing at first glance it can

be explained by the null hypotheses of the respective procedure: The model confidence set

delivers a set of best models (in relative terms to competing models), Mincer & Zarnowitz’s

(1969) approach tests for unbiasedness (in absolute terms, ignoring competing models).

Thus, the relatively high variance and low bias for models of class C2 are not rejected in

terms of unbiasedness, whereas other models get rejected in Mincer & Zarnowitz’s (1969)

test for reasons of high bias and low variance.

In summary, it can be stated that the joint inclusion of supplemental information lowers

the MSPE regardless of the class of models, additionally, much shorter lags (as found

in C3 and C4) are sufficient to attain reasonably low prediction errors. Another relevant

point at this stage is that only with the inclusion of macroeconomic news and intra-weekly

seasonality one already has a lower MSPE highlighting the role of exogenous effects in

volatility models.

The question of whether bias or variance is the more important constituent of the MSPE

depends of course on the application in question. To answer this question in part I consider

a value-at-risk application in the next section.
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Value-at-risk Application

To assess the performance of the volatility forecasts from a more practical perspective I

compute strict out-of-sample value-at-risk estimates for the same out-of-sample period

for different levels of the value-at-risk. As in the preceding paragraph, I limit the forecasts

to daily value-at-risk forecasts, first, because of the reasons mentioned earlier, and second,

more importantly, because of the currently prevailing value-at-risk regulations that require

a daily value-at-risk computation.11 The one-period ahead value-at-risk at the level α is

defined as

VaRαt+1 = inf
ξ
{ξ ∈ R | P(rt+1 ≤ ξ|Ft) ≥ α}. (2.9)

In this case Ft is the σ-algebra containing all the information up to date t (including the

partial day volatility of the FT). Actually, to predict P(rt+1 ≤ ξ|Ft) one needs an assumption

on the distribution of rt+1 conditional on Ft. In the present case the assumption that

rt/
√

RVt is normally distributed is employed. The results presented in Fig. 2.2 show no

evidence of this assumption being violated in the data at hand. 12

11Most recent literature compares daily value-at-risk forecast (Halbleib & Pohlmeier 2012). To extend the coverage
period of the value-at-risk, the daily forecast is scaled with the square root of the time horizon.

12For the sake of in- and out-of-sample analysis I report these separately in Fig. 2.2 for both sample periods along
with p values of of the Shapiro-Wilk and Jarque-Bera test for normality (Shapiro & Wilk 1965, Jarque & Bera 1980).
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As can be seen from Fig. 2.2 the raw log returns (scaled) feature the usual skewness and

excess kurtosis, while the log returns standardized by the realized volatility (scaled) look

fairly Gaussian; this is confirmed by the p-values of the normality tests.13 Since there is

no ex-ante reason to reject the assumption of normality I maintain this assumption and

proceed to compute the value-at-risk as outlined in (2.9).14

A further problem that becomes apparent when attempting to forecast value-at-risk with

realized volatility is the fact that realized volatility is modeled as its logarithm. While

any model introduced in 2.4.1 produces a forecast for Et(yt+1) (with yt+1 being log realized

volatility), a forecast of the transformed series exp(yt+1) is required. Since the logarithm

is a special case of the Box-Cox transform (Box & Cox 1964) one can draw on the research

of Proietti & Lütkepohl (2013) (and the earlier work of Guerrero (1993) and Pankratz &

Dudley (1987)) who establish that the bias induced by the transformation can be accounted

for if one is willing to make the assumption that the transformed series is normally

distributed. Despite the fact that a formal test rejects the normality assumption, this

assumption is still maintained: first, the deviation from normality is not too pronounced

as shown in Fig. B.1, and, second, this allows for an explicit computation of the bias

13This finding is stable across different assets, for instance for foreign exchange returns (Andersen, Bollerslev,
Diebold & Labys 2000) and returns of the FTSE 100 futures (Areal & Taylor 2002).

14While this result is not surprising if one assumes the classical diffusion for the asset price, it is in fact surprising
to hold for the bipower variation. To reconcile this result with existing research, I hypothesize that while jumps are
present at the intra-day level, their impact on daily log-returns appears negligible (Barndorff-Nielsen & Shephard
2004).
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correction.15 The conditional expectation (which minimizes the MSPE by construction) of

exp yt+1 can then be computed as follows

Et(exp(yt+1)) = ̂exp yt+1 = exp(ŷt+1) exp(σ2
t+1/2).

where σ2
t+1 is the variance of the forecast error.

Hence, one can compute the value-at-risk based on a forecast of model M as

VaR1−α
M,t+1 = Φ

−1(1 − α)
√

exp(ŷM,t+1) exp(σ2
M,t+1/2)) + μt (2.10)

where ŷM,t+1 is the forecast of the log realized volatility produced by model M, σ2
M,t+1 its

associated forecast error variance, and μt = Et(rt+1) the conditional expectation of the

returns. Both σ2
M,t+1 and μt are assumed to be constant over time such that these can be

estimated over the training window.16 Φ−1 is the quantile function of a standard normal

distribution.

To evaluate the value-at-risk forecasts produced by the different models, the number of

violations (hit ratio, HR) of a specific model M is computed, i.e.

HR1−α
M = #{rt+1 < VaR1−α

M,t+1}/n

where n is the total number of out-of-sample evaluations. If the model is well specified one

should obviously find HR1−α
M � 1 − α. In accordance with the existing literature (Kuester,

Mittnik & Paolella 2006, Martens et al. 2009, Halbleib & Pohlmeier 2012) I employ a test

of correct unconditional coverage (Kupiec 1995) as well as an extension of Kupiec’s (1995)

test to assess the conditional coverage probability developed by Christoffersen (1998). The

former simply tests whether the unconditional hit ratio is violated with a likelihood ratio

test, whereas the latter tests the joint hypothesis of independence (against a first-order
15As already mentioned earlier, the use of logarithm to transform realized volatility is arbitrary. A more thorough

approach may be to use the Box-Cox transform and determine the transformation parameter in data-driven way
(see for instance Proietti & Lütkepohl (2013). Preliminary results show that for λ � −0.2 in the Box-Cox transform,
Normality of the unconditional distribution cannot be rejected. In order to make these results comparable to
existing research I nonetheless adopt the log transform, while I am inclined to believe that the use of a proper power
transform to model realized volatility bears great potential (see for istance Gonc̨alves & Meddahi (2011))

16This approach has already been followed by Giot & Laurent (2004), however, without the context of the Box-Cox
transform. The assumption of constant forecast error variance is already found in Giot & Laurent (2004) and Proietti
& Lütkepohl (2013)
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Markovian dependence) and correct unconditional coverage, yielding a likelihood ratio

test for the correct conditional coverage (LRUC). In more detail,

LRUC = 2 · (logL1 − logL0)

where L0 = αk(1 − α)n−k, L1 = α̂k(1 − α̂)n−k with k = #{rt+1 < VaR1−α
M,t+1} and α̂ = k/n. LRUC

can be shown to follow a χ1-distribution (Kupiec 1995). Testing against first order Markov

dependence can be performed in the following way with

LRIND = 2 · (logLD − logL0)

where L0 is as defined above and LD = (1 − πne,e)kne,neπkne,e
ne,e (1 − πe,e)ke,neπke,e

e,e where k·,· is

the number of observations where an exceedance (non-exceedance) is followed by an

exceedance (non-exceedance) with exceedance codified as e and non-exceedance codified

as ne. The relevant transition probabilities are straightforwardly estimated as πne,e =

kne,e

kne,e+kne,ne and πe,e =
ke,e

ke,ne+ke,e . LRIND, the likelihood ratio test against dependence, is again

distributed as χ1. Lastly, when conditioning on the first observation one finds that the

likelihood ratio test of the joint hypothesis, the correct conditional coverage (LRCC), is

given as LRCC = LRUC +LRIND which is χ2 distributed (Christoffersen 1998).

The extension of Christoffersen is crucial: while the unconditional correct coverage is

interesting, a correctly specified model should indeed yield value-at-risk forecasts that are

correct and independent, thus, the conditional correct coverage should examined. With

these tests at hand I now turn to the out-of-sample evaluation of the value-at-risk forecasts.

The out-of-sample results for all the models introduced in 2.4.1 are collected in Tab. 2.4 for

α = 1%, 2.5%.17 Along with the hit ratios, I report the p-values of the correct unconditional

coverage (UC), independence (IND), and correct conditional coverage (CC) test in Tab. 2.4.

To contrast the estimates produced using the (log) realized volatility models I include a

naive static forecast which simply uses the empirical 1 − α quantile over the training

window width.

17An earlier version also included α = 5%, 10%. The conclusions drawn in that setting did not differ from the
conclusions drawn with the current nominal levels of α = 1%, 2.5% which I deem more appropriate from a risk
management perspective.
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Table 2.4: Out-of-sample value-at-risk forecasts

VaR 1% VaR 2.5%

δ1 δ2 δ3 δ4 Hit Ratio UC IND CC Hit Ratio UC IND CC

C1

1 0 0 - 3.43% 0.00 0.30 0.00 4.81% 0.01 0.15 0.01
0 1 0 - 3.43% 0.00 0.30 0.00 4.81% 0.01 0.15 0.01
1 1 0 - 3.43% 0.00 0.30 0.00 4.35% 0.02 0.19 0.03
0 0 1 - 3.66% 0.00 0.27 0.00 4.58% 0.01 0.17 0.02
1 0 1 - 3.66% 0.00 0.27 0.00 4.58% 0.01 0.17 0.02
0 1 1 - 3.43% 0.00 0.30 0.00 4.81% 0.01 0.15 0.01
1 1 1 - 3.43% 0.00 0.30 0.00 4.35% 0.02 0.19 0.03

C2

0 0 0 0 3.66% 0.00 0.27 0.00 4.81% 0.01 0.15 0.01
1 0 0 0 3.66% 0.00 0.27 0.00 4.81% 0.01 0.15 0.01
0 1 0 0 3.66% 0.00 0.27 0.00 4.58% 0.01 0.17 0.02
1 1 0 0 3.43% 0.00 0.30 0.00 4.35% 0.02 0.19 0.03
0 0 1 0 3.66% 0.00 0.27 0.00 4.58% 0.01 0.17 0.02
1 0 1 0 3.43% 0.00 0.30 0.00 4.58% 0.01 0.17 0.02
0 1 1 0 3.43% 0.00 0.30 0.00 4.81% 0.01 0.15 0.01
1 1 1 0 3.43% 0.00 0.30 0.00 4.35% 0.02 0.19 0.03
0 0 0 1 3.43% 0.00 0.30 0.00 4.58% 0.01 0.17 0.02
1 0 0 1 3.43% 0.00 0.30 0.00 4.12% 0.05 0.21 0.06
0 1 0 1 3.20% 0.00 0.34 0.00 4.58% 0.01 0.17 0.02
1 1 0 1 3.43% 0.00 0.30 0.00 4.81% 0.01 0.15 0.01
0 0 1 1 3.43% 0.00 0.30 0.00 4.58% 0.01 0.17 0.02
1 0 1 1 3.43% 0.00 0.30 0.00 4.81% 0.01 0.15 0.01
0 1 1 1 3.43% 0.00 0.30 0.00 4.58% 0.01 0.17 0.02
1 1 1 1 3.20% 0.00 0.34 0.00 4.35% 0.02 0.19 0.03

C3 - - - - 2.97% 0.00 0.37 0.00 4.35% 0.02 0.19 0.03

C4 - - - - 3.43% 0.00 0.30 0.00 4.12% 0.05 0.21 0.06

Static - - - - 0.23% 0.05 0.92 0.15 0.69% 0.00 0.81 0.02

The hit ratio (HR) together with the p-values of tests of correct unconditional coverage
probability (UC), independence (IND), and conditional coverage probability (CC) are
shown. Non-rejection at the 0.1 (0.05) level is highlighted in boldface (italics). Models are
encoded as introduced in 2.4.1, the last column is the naive value-at-risk estimator using
the empirical quantiles.

When drawing conclusions from these results it is important also to consider the results

reported in Tab. B.6 which are equivalent to Tab. 2.4 with the difference that the entire

analysis has been carried out using the naive estimator instead of the bipower variation.18

The conclusions that can be drawn from the out-of-sample value-at-risk predictions re-

ported in Tab. 2.4 and Tab. B.6 are not evident: clearly, using the naive estimator (Tab. B.6)

one finds generally more accurate value-at-risk forecasts and hit ratios that are closer to

18This is crucial as the value-at-risk quintessentially depends on P(rt+1 ≤ α|Ft), i.e., the distribution of rt. Although
the deviation of rt/

√
RVt from Gaussianity is not rejected (as shown in Fig. 2.2), the deviation from the straight

line in a quantile-quantile plot when standardizing with the naive estimator for RVt is even less pronounced (see
Fig. B.4)
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the nominal level, thus resulting in higher p-values. Reassuring across all the models

and levels is the non-rejection of the independence assumption: there appears to be no

dependence in the value-at-risk violations.

A comparison among the models is even less evident since the comparison hinges on a

few observations. Nonetheless, it can be ascertained from Tab. B.6, that the models for

VaR 1% featuring the highest p-values in the correct conditional coverage test all contain

FT as an additional predictor. When looking at the models that have an empirical hit ratio

closest to the nominal level of 2.5%, two of these (C2,1001, C4) also contain FT as predictor,

however, also C1,001 achieves the same level.

These observations warrant some further inspection: first, the observation that most

hit ratios using the naive estimator are closer to the nominal hit ratio, is likely to be

attributed to the fact that returns, standardized by the naive estimator instead of the

bipower variation, deviate less from a straight line in a quantile-quantile plot (see Fig. 2.2

and Fig. B.4). Second, the benefit of including the FT can potentially be explained by

looking at the distribution of returns standardized by the forecasted volatility. Fig. B.5

collects these quantile-quantile plots for a selection of models (again using the naive

estimator). What can be observed from Fig. B.5 is a kink at the lower left end which

corresponds to volatility that is estimated too low on days with low returns. This kink

can partly be “straightened” when including the FT as a predictor. Additionally, C2,1100,

which fared well in the pure forecasting exercise, displays returns that are much closer to

the normal distribution than for instance C2,0000. This again hints at the possibility that the

FT takes the role of a panacea, which may indeed be beneficial when forecasting volatility

on low return days.

Hence, it appears worthwhile to include additional predictors if the ultimate goal is

value-at-risk forecasting. Put differently, the non-normality (partly induced by the under-

estimation of volatility on low return days) of returns standardized by forecasted volatility

can be reduced.

While the relative performance of the value-at-risk forecasts compared with each other
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cannot be assessed in a statistically rigorous way19 it can be retained that, including the FT

as an additional predictor may be beneficial (particularly if compared with the standard

HAR model, C2,0000) to value-at-risk forecasts. This again fits well (King & Wadhwani 1990)

with the observation that negative news tend to affect markets jointly more severely.

The answer to the question raised in Kuester et al. (2006) of whether value-at-risk forecasts

based on realized volatility deliver any benefit over models using daily data is beyond

the scope of this paper. In light of the results above which suggest that there is an indeed

an improvement in terms of value-at-risk when using augmented volatility models this

may need to be reinvestigated. Further refinements of this procedure (e.g., using filtered

historical simulation to approximate the return density) are left for future research.

2.5 Discussion and Conclusion

Revisiting a simple and parsimonious VAR model with the lasso leads to the conclusion

that the inclusion of foreign markets is beneficial for volatility forecasting. An inspection of

the lags of this lasso VAR regression adds evidence for the SP being the dominant market.

Further, I have provided evidence in this paper that the inclusion of macroeconomic

news formalized as a dummy for the announcement days has a robust impact across

different models; these are also found to be relevant from a model selection perspective

using the lasso. Taking these two findings together in a model that features both news

(macroeconomic announcement, leverage effects, intra-week seasonality) and spillovers I

find a superior out-of-sample performance of this model. The role of spillover is however

less clear in this combined setting. Given the potentially dominant role of the S&P

500 index over other indices, the inclusion of the FTSE 100 may well be a panacea for

effects (reaction to news, leverage effects, seasonality) present in the S&P time series.

Nonetheless, a saturated model performs best in an out-of-sample setting and evidence

of good performance of models with a considerably shorter lag structure than the HAR

model is witnessed.

19A procedure like the model confidence set produces uninformative results due to the lack of power induced by
the small value of α · n.
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The question of whether it is sufficient to model realized volatility in an autarkic manner

(Chen et al. 2010, Asai, McAleer & Medeiros 2012, Corsi & Renò 2012, Audrino & Knaus

2012) or whether the inclusion of additional predictors is required (Martens et al. 2009,

Scharth & Medeiros 2009) cannot be ultimately answered in this paper. Nonetheless, I find

strong evidence that within the classes revisited in the present study, the inclusion indeed

appears beneficial. The last question, only tangentially relevant to this paper, which

appears intriguing, is the question of power transforming realized volatility series and

its impact on forecasting and derived applications (e.g., value-at-risk). Valuable future

research would thus include an assessment of these models on the same footing together

with a thorough investigation of the impact of the power transformation of the realized

volatility series.
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Abstract

While macroeconomic survey forecasts are widely available at the level of

individual experts, it is not clear how to optimally combine a set of forecasts

to a “consensus” prediction. This is mainly due to the characteristics of

the data, such as the large-dimensional predictor space, many missing

values, and potential individual and aggregate level biases of the survey

forecasts. We argue that regression trees are very well adapted to these

features and propose to use them as a novel forecast combination device.

Our empirical analysis of data from the Philadelphia Fed’s Survey of

Professional Forecasters demonstrates that in combination with bagging,

tree-based forecast combination outperforms equally weighted combination

for the majority of time series and forecast horizons.

JEL: C14, C23, C43, C53

Keywords: Macroeconomic Survey Data, Survey of Professional Forecasters,

Bagging, Regression Trees, Real-time Data
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3.1 Introduction

The combination of point forecasts has been an econometric success story initiated already

by Bates & Granger (1969). Ex ante, a researcher who does not know which individual

forecast model will perform well in the future is most often well advised to use combination

strategies which provide a hedge against idiosyncratic model failure. See Clemen (1989)

and Timmermann (2006) for reviews of the literature.

While the literature on forecast combination is extensive, the vast majority of contribu-

tions focuses on the case where a set of econometric model forecasts is considered for

combination. This case is “well-behaved” in the sense that the individual models are

controlled by the econometrician. Hence, it can be ensured that the models’ forecast-

generating processes are understood and forecasts from each model are available in each

period. In sharp contrast to this setting, users of individual-level expert forecasts collected

in surveys typically do not know how these forecasts were obtained, and must deal with

a large fraction of missing values. Nevertheless, surveys such as the Survey of Profes-

sional Forecasters, the Livingston Survey, and several commercial sources, have recently

received much attention in the forecasting literature. This attention has been reinforced

by promising results on the accuracy of survey forecasts of inflation, as compared with a

large set of time series models (Ang, Bekaert & Wei 2007, Faust & Wright 2011).1

Users of surveys face the question of how to aggregate the set of available expert forecasts

into a single number, often called the “consensus forecast”. Forecast combination in

surveys poses some specific challenges, due to the frequent entry and exit of participants

and the large cross-sectional dimension of the relevant data sets. A simple response to these

challenges is to use a summary statistic from the cross-section of forecasters at a given point

in time, such as the mean or median, as a consensus forecast. These summary statistics are

parameter-free and have a proven track record in general; see e.g. Smith & Wallis (2009).

On the negative side, they neglect information at the level of individual forecasters: they

are invariant under permutations of “who says what”. Most existing alternatives which

1Independently of the question whether survey forecasts are accurate or not, survey data can naturally be used
to test hypotheses about expectations formation. See Pesaran & Weale (2006) for a review of this literature.
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tackle this shortcoming (Capistrán & Timmermann 2009, Poncela, Rodríguez, Sánchez-

Mangas & Senra 2011) use imputation techniques to solve the missing data problem, and

then work with the preprocessed data. This approach is problematic for two reasons:

First, little theoretical or empirical guidance is available for performing imputation in

this context. Second, imputation in practice inevitably leads to a reduction in the cross-

sectional variance of individual-level forecasts, which is at odds with the major motivation

for looking at individual-level information in the first place: its heterogeneity.

In contrast, this paper seeks to overcome these problems by exploring the use of regression

trees (Breiman, Friedman, Olshen & Stone 1984) for forecast combination in surveys.

Trees are very popular in the statistical learning literature but largely unexplored by the

econometric community. They are very well adapted to the characteristics of survey data,

for three reasons: First, by using so-called “surrogate splits” they can deal with the missing

data problem without performing explicit imputation. If a particular expert forecast is

unavailable, the pool of available forecasters is “screened to find a surrogate” that mimics

the historical predictions of the missing expert as closely as possible. Second, by means

of a built-in variable selection they can deal with the large dimension of the predictor

space spanned by the individual survey participants. Third, trees can account for the

(potentially) complicated biases of survey forecasts at the individual and aggregate level.

Trees are particularly promising in conjunction with some robustification device which

remedies the sensitivity of the base variant to small changes in the data. We use bagging

(Breiman 1996) for this purpose. Bagging is based on the idea of re-estimating a model

for several bootstrap resamples of the training data and then considering the average of

the resulting set of predictions.

Few of the combination approaches considered in the literature are able to handle missing

values in a natural way. One of these approaches is analyzed by Capistrán & Timmermann

(2009). The authors consider a selection scheme which picks the best forecaster in the

training sample.2 Including this scheme in our analysis helps to disentangle the potential

benefits of individual-level data per se and the benefits of trees as a method. Similarly to

trees, however, the base variant of this scheme is unstable since the selection of a particular

2Since each forecaster’s performance is evaluated only on the basis of the available training-sample observations
of this forecaster, this scheme can also be used in the presence of missing values.
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forecaster may be due to a small number of training observations. We show that bagging

leads to large improvements in the performance of this scheme, rendering it a viable

alternative to existing combination methods considered in the literature.

It is important to note that designing sophisticated combinations of individual-level survey

forecasts is futile unless there is informative heterogeneity in the forecasts. The literature

on expectations formation suggests a number of sources for “structural”, and thus in-

formative, heterogeneity. Assuming that experts solve a well-defined decision problem

(i.e., minimizing expected loss) when deciding on their forecast, disagreement may arise

if forecasters have different loss functions, different information sets, or different beliefs

given a particular information set. See Pesaran & Weale (2006, Section 2) for an instruc-

tive discussion and Patton & Timmermann (2010) for a structural model of forecaster

disagreement.

To illustrate forecast heterogeneity in the data, the two upper panels of Fig. 3.1 show

forecasts of the US unemployment rate, a nowcast (left panel) and four quarters (right

panel) into the future. The graphs illustrate that especially at longer horizons, there is

substantial disagreement among forecasters. The lower panel of Fig. 3.1 takes another look

at unemployment forecasts.3 The camouflage-type look of the graph illustrates substantial

forecast heterogeneity at any given point in time. Furthermore, the large number of white

spots on the panel illustrates the quantitative importance of the missing-data problem.

The remainder of this paper is organized as follows. Section 2 describes trees and bagging.

Section 3 describes the strict real-time procedure we use in order to realistically estimate

and evaluate all models. Section 4 presents our empirical results, and Section 5 concludes.

Additional results and technical details are available in the Appendix.

3In contrast to the upper panel, the lower panel of Fig. 3.1 refers to forecasted changes of the unemployment rate.
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Figure 3.1: Unemployment forecasts

Unemployment Forecasts. The top left (top right) panel shows the zero quarter (four quarters) ahead
forecast of the unemployment rate as one gray line per forecaster with the true ex post value in bold
red. The lower panel shows one quarter ahead forecasts of quarterly changes in the unemployment
rate. Each row is a forecaster (i), each column is a date (t). The color, as coded by the scale at the
right hand side, at the intersection (i, t) corresponds to the forecast of i submitted at t. Non-colored
dots (white) are missing values.
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3.2 Methods

To accommodate the particularities of survey data that warrant particular attention we

employ two combinations schemes: regression trees and a simple selection scheme. Both

methods are fragile in their base variant but will be robustified by bootstrap aggregating.

We introduce all these methods in the following.

3.2.1 Regression Trees

Regression trees have a long history: They were first mentioned in Morgan & Sonquist

(1963) to uncover masking and cope with interaction in classical surveys, e.g., wage sur-

veys. The influential work of Breiman et al. (1984) contained the first unified presentation

of classification and regression trees. Trees have enjoyed great popularity in computa-

tional statistics (Hastie et al. 2009) and in the machine learning community (Ripley 2008)

and have been extended along various directions. Some statistical properties of regression

trees have been established in Breiman et al.’s (1984) original work and later in Gey &

Nedelec (2005). Trees have been successfully applied to various problems, e.g., GARCH

modeling (Audrino & Bühlmann 2001), the shape of the risk-return premium (Rossi &

Timmermann 2010), structural break detection (Rea, Reale, Cappelli & Brown 2010), and

volatility surfaces (Audrino & Colangelo 2010).

The basic mechanism of a regression tree follows from its name: it is a regression (an

estimate of a conditional expectation) by means of binary recursive partition (which can

be illustrated by an abstract picture of a tree). A tree is best thought of as a set of locally

constant predictions. Let Xt be a p-dimensional vector of predictors inRp, Yt the dependent
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variable in R, and P1, . . . ,Pm a partition4 of the predictor space Rp. The tree’s prediction

t̂r(Xt) is given as the average over all values of Y in one particular set Pk, i.e.,

t̂r(Xt) =
1

|{Xj : Xj ∈ Pk}|
∑

j:Xj∈Pk

Yj where Xt ∈ Pk.

The apparent pivotal part is the partition P since the prediction of a tree crucially depends

on how Rp is split into cells Pk. The partition P is determined in a binary recursive

way: binary since each split determines two cells and recursive as the next splits are

determined within the two previous cells. The splits can thus occur at any value of any

variable (X1, . . . ,Xp)′ ∈ Rp and are determined such that the training sample mean squared

error (MSE) of the tree’s prediction t̂r(Xt) decreases maximally. This recursive partitioning5

continues until the tree is maximal (only one observation in one terminal leave) and is

then pruned by deleting leaves of the maximal tree by cost-complexity pruning.6 For an

intuitive illustration of the mechanics and visual interpretation of a regression tree we

refer to Fig. 3.2. This illustration is of course of exemplary nature: It nicely illustrates the

tree’s ability to pick up non-linearities. A complete formal treatment of how a tree is built

in our particular application is relegated to Appendix C.2.1.

An important feature of this greedy recursive partition mechanism is that trees act as a

variable selection and regression device at the same time. The recursive binary partition

scheme is crucial: It remedies the curse of dimensionality and yet still allows for regress-

ing non-linear structures. Exploiting this feature one can – unlike in traditional multi-

dimensional (non-parametric) regression – still tackle problems with a high-dimensional

predictor space.

A further unique feature of trees is surrogate splits. Surrogate splits allow observations to

descend the tree further down (to ultimately obtain a prediction) even if there are missing

values by determining a replacement split which optimally mimics the splitting as if the

split variable was present. For each split a tree with the dependent variable ‘go left’

4In a strict mathematical sense, a partition P = {P1, . . . ,Pm} of a set S is complete (S = ∪i∈{1,...,m}Pi) and non-
overlapping (Pi ∩ Pj = ∅ for any i � j).

5Observe that the partition P obtained in this recursive manner consists of halfspaces and thus leads to convex
sets with boundaries being hyperplanes perpendicular to the axes.

6Cost-complexity pruning is the method which is employed to find the optimal leaves to delete; a discussion is
found in the Appendix.
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Figure 3.2: Regression tree

In this toy example we depart from Zi = 4 X2
i +2 Y2

i +εi and estimate E(Z|X,Y) = f (X,Y) = 4 X2+2 Y2

by means of a regression tree. The true function f (X,Y) is a parabola with the minimum in zero,
growing faster in the direction of X than Y. The left panel shows the values of Zi as color-coded by
the bar in the mid panel and the corresponding values of Xi (abscissa) and Yi (ordinate). The contour
plot (the concentric ellipses) indicates the isoquants of f (X,Y). The bold lines correspond to the
binary recursive partition as obtained by a regression tree illustrated in the right panel (containing
the mean for each cell of the partition). The right hand side panel displays the recursive partition
illustrated in a tree manner. The split values as well as the averages in each leave are shown. The
splits (rhs) can be identified with the bold lines (lhs), and so can the cell means. Splits A to C are
labeled explicitly on both sides.

and ‘go right’ is fitted to the data at this particular split in question. This in-situ tree is

then used to predict the split if the split variable is missing. For a complete treatment of

surrogate splits the reader is referred to Breiman et al. (1984).

3.2.2 Previous Best Selection

The previous best scheme simply uses the prediction of the forecaster who attained the

lowest MSE in the training sample. This idea has already been introduced by Capistrán &

Timmermann (2009) and is remotely related to the idea of combining forecasts based on

their precision (Timmermann 2006, Section 2.3), i.e., the inverse of forecasts’ covariance-

matrix, but implemented more directly since the estimation (missing values) and inversion
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(almost singular) of the covariance-matrix are typically non-trivial. A valuable feature of

the selection approach is that it is not affected by missing values since the MSE of each

forecaster is simply calculated over the training-sample observations for which predictions

of this forecaster are available. For a formally rigorous account of how the selection

approach works in our application we refer to Appendix C.2.2. A related idea is presented

in Gupta & Wilton (1988): the selection is implicit in the determination of the combination

weights. However, the process of determining the weights relies on the computation of the

eigen-values of the so-called odds-matrix, which is a square matrix where the dimension

equals the number of forecasters. The large fraction of missing values (although this

method could be modified to deal with missing values) together with the large number of

forecasters renders this method inappropriate for our purposes.

3.2.3 Bagging

Bootstrap aggregating, in short bagging, was introduced in Breiman (1996) and has been

successfully applied to a variety of problems. In essence, bagging consists of resampling

and averaging models. Adopting the language of the statistical learning community we

depart from a training sample L consisting of observations {(X1,Y1), . . . , (Xn,Yn)} where

typically Xt is a multi-dimensional variable and Yt a one-dimensional, continuous out-

come. Let f̂L be a statistical learner7 trained on a sample L. Bagging then consists of

drawing B bootstrap replicates {L1, . . . ,LB} each of length n and estimating the learner on

each Lb, resulting in a set of trained learners { f̂L1 , . . . , f̂LB }. The bagged prediction f̂ B is

then the average over the learners trained on the bootstrap replicates of L, i.e.,

f̂ B(X) =
1
B

B∑
b=1

f̂Lb (X).

Bagging proves particularly useful in case of unstable predictors; unstable in the sense

that a small perturbation in one of the predictors can lead to a significant change in the

7A statistical learner is a very general term. Consider the simple case of OLS regression Yi = β0 + β1Xi + εi.
The learning procedure then consists of estimating (β0, β1) with (β̂0, β̂1) on L and consequently f̂L is given by
f̂L(Xi) = β̂0 + β̂1Xi. Equivalently, the learning process in the case of a regression trees consists of determining the
partition P1, . . . ,Pm on the learning sample L.
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predicted outcome. Consequently, f̂Lb is expected to differ substantially across the different

replicatesLb. A more detailed account of the merits of bagging is given in Breiman (1996)

and extended in Bühlmann & Yu (2002).

Recently, bagging has been applied to the prediction of consumer price inflation (Inoue &

Kilian 2008), unemployment (Rapach & Strauss 2010), volatility (Hillebrand & Medeiros

2010) and interest rates (Audrino & Medeiros 2011).

We apply bagging to both the regression trees and the previous best forecast scheme; we

generate the bootstrap replicates with the stationary bootstrap (Politis & Romano 1994)

and an expected block length of two years. In the former scheme the bagged predictor is

an average of the B predictions of B (different) trees, in the latter scheme it is the average

of the B best forecasters determined in each of the samples Lb. We choose 100 bagging

iterations for all base variants.8

3.2.4 Discussion of Methods

It is important at this point to review and contrast the proposed methods. Regression trees,

in their base variant as well as their bagged variant, will use the forecasts as predictors

and the corresponding real-time realization of a macroeconomic indicator as dependent

variable. By regressing the realization on the forecast we can potentially eliminate the bias

inherent to the submitted forecasts. In contrast, the previous best selection scheme only

relies on past real-time realizations through the selection of the best performing forecaster,

but will eventually still give one specific forecaster’s submission verbatim and thus lacks

the option of accounting for a potential bias at the individual level.

Despite the absence of a bias correction in the previous best scheme it is instructive to

compare results of this method to the outcome of regression trees: It should help to

8The number of bagging iterations, if large enough, should not be considered a tuning parameter, see Bühlmann
(2004)
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(empirically) disentangle a potential benefit due to considering micro-level information

(which both methods feature) and due to bias correction (which only trees feature).

3.3 Data and Procedures

3.3.1 Data

Our proposed methods apply to any kind of forecast data which exhibit the features out-

lined above. For illustration purposes, we choose the Survey of Professional Forecasters

(SPF) for our analysis, which has received considerable attention in recent years.

The SPF was initiated and administered by the National Bureau of Economic Research

(NBER) and the American Statistical Association (ASA) in 1968 and taken over by the

Federal Reserve Bank of Philadelphia (Philadelphia Fed) in 1990. The survey form is sent

out quarterly to professionals in different fields (academia, industry, banking, etc.) and

covers over 30 macroeconomic variables, some of which are included since the inception

of the survey. The forecasters are invited to submit their forecast for the current quarter

(nowcast) as well as the next four quarters (one to four quarters ahead forecasts) in

addition to a forecast of the current and next year’s annual development for each of the

variables contained in the survey. Hereby all forecasters dispose of the latest preliminary

release of the last quarter’s realization. The submitted point forecasts are available at

micro-level identified by an anonymized ID assigned to each forecaster. Unfortunately

the consistency of the forecasters’ IDs cannot be guaranteed for the period when the SPF

was administered by NBER and ASA requiring us to only use survey data sent out after

1990Q3. From 1990Q3 onwards there are 160 IDs in the dataset whose point forecasts of

the quarterly data we use in our analysis. A complete discussion of the timing, variables,

transformations, and horizons is found in SPF (2010).
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For our analysis we consider the series9 displayed in Tab. 3.1. As can be inferred from

Tab. 3.1 the fraction of missing invidual-level forecasts is high for each of the series ren-

dering methods that depend on complete datasets unfeasible. Since all methods outlined

in Section 3.2 are able to deal with missing values, the high fraction of non-submissions

(or equivalently, the frequent entry and exit of experts) does not pose a problem per se.

Aspiring to be maximally realistic in our application of forecast combination we pretend

“to walk in the forecasters’ shoes” and use real-time vintages, i.e. all forecasts could

have been calculated in the very same way at any given point in time. Real-time data

is provided by the Philadelphia Fed, too, and is updated quarterly to reflect ex post

revisions of a macroeconomic datum. The aggregation from monthly to quarterly data

of the real-time data is carried out in accordance with SPF standards (Stark 2010), i.e.,

quarterly data is calculated from three month averages of the original series. If necessary,

the resulting quarterly series are transformed to stationarity thereafter. See Tab. 3.1 for the

transformations we use. In the next subsection, we provide a more formal description of

our real-time procedure.

9The fact that some of the variables surveyed by the SPF suffer from changes in the base year and the requirement
that most of the time series need to be transformed, leaves us with the series of Tab. 3.1. These coincide with the
series analyzed in Poncela et al. (2011) with the exception of US treasury bond yields (TBOND).
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Table 3.1: Data description

Descriptive Statistics

Series Description Missing (%) ACF(1) ACF(5) Mean Std LB(5) ADF

BOND Avg. bond yield for
Moody’s AAA corpo-
rate bond (none, B)

76.1 0.15 −0.17 −0.06 0.29 10.13∗ −5.13∗∗

CPI Annual Inflation rate
(saar, A)

74.7 0.15 0.04 2.58 2.02 3.95 −4.02∗∗

HOUSING Level of Housing
Starts (saar, C)

74.1 0.17 0.11 0.06 26.23 8.13 −3.84∗∗

NGDP Level of Nominal
GDP (saar, C)

74.2 0.50 0.08 4.75 2.75 43.15∗∗∗ −3.46∗

TBILL Three month treasury
bill rate (none, B)

74.8 0.62 −0.03 −0.09 0.45 64.70∗∗∗ −3.93∗∗

TBOND Ten year treasury
bond rate (none, B)

76.1 0.17 −0.28 −0.07 0.38 16.43∗∗∗ −5.42∗∗

UNEMP Unemployment rate
(sa,B)

73.9 0.73 0.12 0.05 0.30 86.21∗∗∗ −3.36∗

Column two contains a description of the variable with the transformation in parentheses. The first
transformation (sa: seasonally adjusted; ar: annual rate) is predetermined by the Philadelphia Fed,
the second transformation (A: no transformation; B: first differences; C: annualized growth rate,(
(xt/xt−1)4 − 1

)
· 100) is to have stationary data. Column three contains the percentage of missing

individual-level forecasts (non-submissions) for each of the series. Descriptive statistics (Mean,
Standard Deviation, autocorrelation at lags 1 and 5) for each of the transformed series is reported
along with Ljung-Box statistics of order 5 and an Augmented Dickey-Fuller statistic (∗∗∗: p-value
< 0.01, ∗∗: p-value < 0.05, ∗: p-value < 0.1 ) in columns 4 to 9.

3.3.2 Procedures

Our analysis is based on a strict real-time approach. Denote by Y the stationary quarterly

variable of interest. For each quarter t, we have a set of SPF expert forecasts {Ŷi
t,h}i∈Et,h ,

where Ŷi
t,h is the h-step ahead forecast of expert i and Et,h is the set of individuals with

non-missing entries. Apart from these survey data, we select the historical information set

of the target variable Y that would have been realistically available to the SPF participants.

Since the SPF forecasts are collected in the middle of each quarter, the current quarter’s

value Yt is unavailable at t.10 For this reason, a nowcast (a forecast with horizon h = 0)

10See Stark (2010) and SPF (2010) for additional information on the timing of the SPF.
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is generally a non-trivial exercise. Furthermore, past data of Y may be revised as time

progresses; see Croushore (2006). To account for this setting, denote by Yt
t− j the value of

Yt− j, using the most recent vintage available at t.11

In order to assess the accuracy of a forecasting method, we compute its mean squared

prediction error (MSPE) as

MSPE =
1
L

T+L−1∑
t=T

(Y∞t − Ỹt−h,h)2,

where L is the size of the evaluation sample, the notation Y∞t suggests that the latest

available vintage of all realized data is used for evaluation12 and Ỹt−h,h denotes a generic

h-step ahead forecast made at date t − h, henceforth referred to as the “origin date”. Note

that MSPE is simply the out-of-sample counterpart of MSE, which we use as an in-sample

criterion to estimate all forecasting methods.

The micro-level methods introduced in the last section aim at exploiting information at

the level of individual survey participants. We refer to the tree- and selection methods

and their bagged variants as Tree, TreeBagg, Slct and SlctBagg in the following. In order

to put their performance in perspective, we compare them to three simple but effective

alternative methods. First, equally weighted (EW) combination of expert forecasts serves

as a natural benchmark method with a very good track record for forecast combination in

general (Timmermann 2006, Smith & Wallis 2009). Second, the bias correction proposed by

Capistrán & Timmermann (2009), henceforth CapTim, is a linear regression of the realized

value of Y on its mean survey forecast and an intercept. Third, we use an autoregressive

(AR) model whose lag length is adaptively chosen via the Akaike (1970) information

criterion.

The forecasting methods used in this paper are based on different information sets com-

prising expert forecasts and/or historical realizations of Y. While AR is based on real-time

11As described above, Yt
t− j is only available for j = 1, 2, . . ..

12In practice we use the data vintage of 2011Q1.
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data of Y only, EW uses only the current average survey prediction. CapTim uses histori-

cal realizations of Y and historical average survey predictions. The micro-level methods

analyzed in Section 3 use historical realizations of Y and the full set of historical individual-

level forecasts. We formally describe these information sets in Tab. 3.2 and Tab. 3.3 below.

In the latter table we differentiate between the information set used for estimation (i.e.,

to determine a mapping from signals to predictions) and the information set used for

out-of-sample prediction.

In practice, at each origin date t, we estimate each forecast combination scheme using a

rolling window of 40 observations. We then compute predictions based on each scheme.

This is repeated for different forecast horizons h = 0, 1, 2, 3, 4. Since all combination

schemes we consider are in the spirit of “direct regression models” (Marcellino, Stock &

Watson 2003, 2006), we re-estimate each scheme for each forecast horizon h. Once this is

complete, we move to the next forecast origin date t + 1.

Table 3.2: Notation

Symbol Interpretation

Ŷi
t,h Forecast of expert i, with origin date t and target

date t + h

Et,h Set of experts who submit an h-step ahead forecasts
at t

Ŷt,h =
1
|Et,h |

∑
i∈Et,h

Ŷi
t,h Equally-weighted (EW) combination of h-step

ahead forecasts

F ew
t = {Ŷt− j,h} j=0,1,... Set of historical EW forecasts

Et,h = ∪ j=0,1,...Et− j,h Set of experts who ever submitted an h-step ahead
forecast until t

F mic
t ≡ {Ŷi

t− j,h}i∈Et,h
j=0,1,...

Set of historical micro-level forecasts

Yt
t− j Time-t vintage of variable Yt− j

F dat
t ≡ {Yt

t− j} j=1,2,... Most recent vintages of historical data, as of t

Notation summarizing real-time information used by the different forecast combination
schemes.
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Table 3.3: Relevant information sets

Information Set

Method Estimation Prediction

AR(p) F dat
t {Yt

t−p+1, . . . ,Y
t
t−1}

EW – Ŷt,h

CapTim F dat
t ,F ew

t Ŷt,h

Slct, SlctBagg, F dat
t ,F mic

t {Ŷi
t,h}i∈Et,h

Tree, TreeBagg F dat
t ,F mic

t {Ŷi
t,h}i∈Et,h

Information sets used by different forecast combination
schemes. For simplicity, the information sets shown here
are comprehensive, i.e. the forecasting methods do not
necessarily use all of the information in these sets.

3.4 Results

3.4.1 Main Results

The main results of our forecasting study are displayed in Tab. 3.4. Our findings can be

summarized as follows. First, we provide evidence that equally weighted combination

of expert forecasts can be improved upon. Bagged regression trees achieve lower MSPEs

than EW in 23 out of the 35 forecast comparisons (= 7 variables× 5 horizons) shown below.

Bagged forecaster selection, the linear bias correction scheme proposed by Capistrán &

Timmermann (2009, CapTim), and trees also perform relatively well, achieving lower

MSPEs than EW in 14, 15 and 18 comparisons, respectively. To shed further light on the

relative performance of the alternative methods, we use the Superior Predictive Ability

(SPA) test by Hansen (2005). The null hypothesis of this test is that a given benchmark

method is not dominated by any competitor in terms of MSPE. Hence, a benchmark

method is successful in the sense of the SPA test if its “undominatedness” can rarely be

rejected across the 35 forecast comparisons. Using a 5 % significance level and varying



92 CHAPTER 3. MICRO-LEVEL EXPERT FORECASTS

benchmark methods, Tab. 3.4 shows that CapTim incurs the smallest number of rejections

when used as a benchmark, followed by TreeBagg, EW, Tree, SlctBagg and Slct.

Second, the performance of both micro-level combination methods can be ameliorated

via bagging, more pronounced however for Slct where the improvement is often by large

MSPE margins. Using one-sided Diebold & Mariano (1995) tests, the bagged versions

of Tree and Slct significantly outperform their base variants in 11 and 15 comparisons at

the 10% level (see Table C.1 in the Appendix). For both combination schemes, bagging

effectively cures the ill-conditionedness of the base variant, which implies that the pre-

diction of the base learner is not robust to small perturbations of the training data. In

the case of Tree, ill-conditionedness arises from the binary (hard) splits partitioning the

(large-dimensional) predictor space. In the case of Slct, instabilities result from the fact

that the identity of the forecaster with the lowest MSPE is likely to differ across different

sub-samples of the training sample. The less pronounced improvement of Tree can be ex-

plained by the fact that already the base variant is robustified in the sense that redundant

splits are likely to be deleted during pruning (see Sections 3.2.1 and C.2.1).

Although the focus of our paper is on the optimal use of survey forecasts, rather than

the relative merits of survey forecasts and other methods, looking at the performance of a

simple time series model can be instructive. We therefore also compare EW combination of

survey forecasts to a univariate autoregressive (AR) model whose lag length is adaptively

selected via the Akaike information criterion for each training period. We find that surveys

perform extremely well at horizon 0; the relative MSPEs of AR relative to EW range from

1.14 (HOUSING) to 4.89 (TBILL). These findings can partly be explained by intra-quarter

information on the target series which is available to survey participants but not to the

AR model.13 Note, however, that surveys also clearly outperform AR for NGDP where

this argument does not apply. These findings regarding the very good “nowcasting”

performance of the mean SPF forecast are in line with Stark (2010) who considers different

variables and/or evaluation periods than we do. Regarding the relative performance of

13When SPF participants submit their forecasts in the middle of a quarter, roughly half of the daily rates entering
the quarterly variable to be forecast are already available in the case of the interest rate series. Values for the
quarter’s first month are released around the survey date for CPI and HOUSING, while first-month values of
UNEMP are already available to survey participants. In contrast, no preliminary estimate of the current quarter’s
value is available in the case of NGDP. See Stark (2010) for further information and references.
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surveys and AR at longer horizons, our results are more mixed: While surveys tend to do

better than AR for CPI, NGDP, TBILL and UNEMP, the reverse is true for the other series.
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Table 3.4: Full evaluation sample

Forecast Combination Methods (in SPA set)

Tree TreeBagg Slct SlctBagg CapTim EW AR

BOND 0 0.96 (0.03) 0.67 (0.84) 1.51 (0.15) 0.98 (0.49) 0.92 (0.05) 1.00 (0.00) 1.81
1 0.87 (0.94) 0.90 (0.54) 1.34 (0.00) 1.12 (0.04) 0.95 (0.17) — (0.19) 0.82
2 0.82 (0.57) 0.75 (0.83) 0.96 (0.26) 0.98 (0.26) 0.77 (0.80) — (0.12) 0.71
3 0.78 (0.65) 0.98 (0.10) 1.29 (0.03) 1.10 (0.04) 0.98 (0.15) — (0.05) 0.79
4 0.78 (0.93) 0.97 (0.04) 1.07 (0.03) 1.01 (0.03) 0.84 (0.14) — (0.04) 0.78

CPI 0 2.11 (0.01) 1.36 (0.08) 1.01 (0.56) 0.94 (0.90) 0.91 (0.79) 1.00 (0.45) 2.73
1 1.08 (0.17) 1.04 (0.56) 1.03 (0.40) 1.01 (0.67) 1.02 (0.76) — (0.97) 1.10
2 1.02 (0.11) 0.93 (0.92) 1.06 (0.22) 1.04 (0.30) 1.04 (0.17) — (0.36) 1.04
3 1.54 (0.23) 0.98 (0.94) 1.06 (0.26) 1.07 (0.21) 1.06 (0.51) — (0.71) 1.03
4 1.03 (0.73) 1.03 (0.55) 1.04 (0.48) 1.05 (0.47) 1.07 (0.31) — (0.92) 1.04

HOUSING 0 0.96 (0.12) 0.70 (0.80) 1.33 (0.01) 0.93 (0.01) 1.13 (0.04) 1.00 (0.09) 1.14
1 0.83 (0.10) 0.66 (0.93) 1.08 (0.19) 0.99 (0.27) 1.03 (0.08) — (0.20) 0.79
2 0.74 (0.83) 0.74 (0.90) 0.73 (0.80) 0.78 (0.41) 1.65 (0.12) — (0.09) 0.65
3 0.71 (0.05) 0.64 (0.96) 3.04 (0.10) 1.37 (0.10) 1.41 (0.21) — (0.05) 0.61
4 0.78 (0.96) 0.81 (0.58) 2.13 (0.19) 1.20 (0.31) 1.61 (0.08) — (0.24) 0.68

NGDP 0 2.13 (0.01) 1.87 (0.06) 1.41 (0.02) 1.21 (0.03) 1.29 (0.08) 1.00 (0.70) 2.67
1 1.65 (0.07) 1.54 (0.03) 1.13 (0.08) 0.94 (0.83) 1.34 (0.02) — (0.35) 1.61
2 1.44 (0.07) 1.34 (0.04) 1.02 (0.52) 0.99 (0.98) 1.34 (0.04) — (0.44) 1.29
3 1.24 (0.01) 1.28 (0.00) 0.95 (0.82) 0.97 (0.48) 1.25 (0.01) — (0.24) 1.10
4 1.08 (0.04) 1.07 (0.07) 1.03 (0.05) 0.99 (0.67) 1.12 (0.01) — (0.45) 1.08

TBILL 0 0.57 (0.57) 0.99 (0.04) 0.90 (0.00) 0.75 (0.00) 0.53 (0.63) 1.00 (0.04) 4.89
1 1.18 (0.00) 0.66 (0.60) 1.53 (0.01) 1.08 (0.00) 0.67 (0.40) — (0.02) 1.10
2 0.96 (0.42) 0.92 (0.60) 1.19 (0.15) 1.15 (0.05) 0.85 (0.99) — (0.37) 0.96
3 0.94 (0.45) 0.83 (0.93) 1.48 (0.03) 1.26 (0.05) 0.88 (0.85) — (0.35) 1.09
4 1.25 (0.06) 0.87 (0.87) 1.33 (0.01) 1.07 (0.18) 1.03 (0.47) — (0.64) 1.02

TBOND 0 0.95 (0.23) 0.81 (0.90) 1.93 (0.04) 1.50 (0.03) 0.92 (0.39) 1.00 (0.07) 2.85
1 0.83 (0.81) 0.84 (0.88) 0.97 (0.44) 0.97 (0.51) 1.09 (0.22) — (0.35) 0.85
2 1.12 (0.03) 0.88 (0.14) 1.34 (0.01) 1.17 (0.02) 0.79 (0.92) — (0.01) 0.84
3 0.77 (0.99) 1.00 (0.25) 0.95 (0.13) 1.01 (0.02) 1.09 (0.14) — (0.11) 0.83
4 0.87 (0.99) 0.98 (0.17) 1.17 (0.17) 1.11 (0.22) 1.02 (0.26) — (0.35) 0.85

UNEMP 0 2.03 (0.00) 1.90 (0.05) 1.20 (0.02) 1.03 (0.09) 0.88 (0.98) 1.00 (0.17) 3.71
1 1.82 (0.03) 1.30 (0.05) 1.21 (0.03) 1.07 (0.06) 0.94 (0.79) — (0.35) 1.82
2 1.44 (0.10) 1.05 (0.10) 0.83 (0.86) 0.89 (0.55) 1.04 (0.05) — (0.40) 1.42
3 1.23 (0.12) 0.99 (0.76) 1.12 (0.11) 1.02 (0.66) 1.04 (0.08) — (0.84) 1.14
4 0.94 (0.44) 1.03 (0.10) 0.86 (0.83) 0.90 (0.58) 0.97 (0.35) — (0.26) 0.99

Forecast evaluation from T0 + h to T1 where T0 = 2000Q4, T1 = 2010Q4, and h = 0, . . . , 4 (41 −
h quarterly evaluation points). All combination methods use a rolling training sample of 40
observations.14 Numbers in parantheses are p-values of the Superior Predictive Ability (SPA) test
by Hansen (2005) with corresponding method used as benchmark; we use a mean block length
of 8 observations and 10.000 replications in the bootstrap implementation. All other numbers are
MSPEs, relative to the mean SPF prediction (EW).
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3.4.2 Discussion

In order to better understand the relative strengths and weaknesses of the different forecast

combination methods and eventually explain their relative performance we resort to a

well known decomposition. If a probability density is considered as density in the actual

physical sense (in kg/m3) the expectation is the center of gravity. In the world of physics

Steiner (1840) proved a result for the moment of inertia which translates – exploiting this

analogy – to Steiner’s identity (Brachinger 1999) which is widely known and used in

statistics. Let for this purpose et be a series of realizations of a random variable, ē their

average, and d an arbitrary constant; it then follows that

T∑
t=1

(et − d)2 =

T∑
t=1

(et − e)2 + T(e − d)2. (3.1)

With slight abuse of notation, let et be the (out-of-sample) forecast error of a particu-

lar method at time t and denote the evaluation period by t = 1, . . . ,T. Setting d = 0,

equation (3.1) becomes

MSPE =
1
T

T∑
t=1

e2
t =

1
T

T∑
t=1

(et − e)2 + e2
= V + B2. (3.2)

The first term, V, represents the variance of the forecast errors while the second term, B2,

represents the squared bias of the forecasts generated from a particular method.

Fig. 3.3 shows the MSPE decomposition from equation (3.2) for selected methods, across

all variables and forecast horizons. For the three interest rate series and HOUSING, the

mean survey forecast is severely biased which accounts for a nontrivial share of the MSPE

(often around 20% or more). By comparison with Tab. 3.4, these series are the ones where

TreeBagg provides the clearest MSPE improvements over EW. These improvements can be

explained by substantial bias reductions; observe from Fig. 3.3 that the bias component of

14Except for the variable TBOND which is only available since 1992Q1 and thus has a smaller training window
sample for the first evaluation points.
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TreeBagg for the interest rate series and HOUSING is negligible. In contrast, the variance

of the forecast errors is not generally smaller for TreeBagg than for EW.

These findings show that when mean survey forecasts are severely biased, their perfor-

mance can be clearly improved by TreeBagg. Interestingly, the converse also holds true:

When survey forecasts are not severely biased, TreeBagg cannot improve upon EW. This is

the case for CPI and NGDP. Fig. 3.3 shows that for these series, the MSPE of EW contains

virtually no bias component; at the same time, Tab. 3.4 shows that EW tends to outperform

TreeBagg. This result is driven by the fact that the forecast errors generated by TreeBagg

have larger variance than those generated by EW (again see Fig. 3.3).

It is natural to compare the micro-level bias correction provided by TreeBagg to the

aggregate-level bias correction provided by CapTim. For TBILL and BOND, Fig. 3.3 shows

that CapTim performs the same role as TreeBagg: It corrects the bias in EW, at the cost of

an acceptable variance increase. CapTim does not work well for TBOND and HOUSING,

however. For these two series, CapTim either fails to correct the biases in EW, or it does so

at the cost of a large variance increase.

Unlike the cases of TreeBagg and CapTim, the relative performance of SlctBagg vis-à-vis

EW appears unsystematic across series and forecast horizons. As expected (see Section

3.2.4), Fig. 3.3 reveals that the bias component of SlctBagg is generally very similar in

size to that of EW. Furthermore, the forecast error variance is not generally smaller (or

larger) for SlctBagg than for EW. We view these findings as evidence that differences

in the individual predictive ability of forecasters are too small and/or unsystematic to be

exploited by schemes like SlctBagg. Together with the above comparison between TreeBagg

and CapTim, this suggests that the gains of TreeBagg over EW are due to bias corrections,

and not due to the trees’ use of individual-level information.
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Figure 3.3: MSPE decomposition

Decompositions of the MSPEs of selected forecasting methods as in Equation (3.2), for all series and
forecast horizons. Percentage shares of the variance component (V/MSPE · 100) in (3.2)) are given
inside the bars.

3.4.3 Results for the Pre-Crisis Sample

Our evaluation sample contains the recent financial crisis which is clearly reflected in

the series we analyze. Under squared error loss and a small evaluation sample typical

of empirical macroeconomics, it is important to analyze the impact of the crisis on our

results. In Tab. C.3, we therefore re-evaluate our findings for a smaller evaluation sample

ending in 2007Q3 (“pre-crisis sample”).

First, we find that the benefits of using TreeBagg are smaller in the pre-crisis sample than

in the complete sample: While TreeBagg outperforms EW in 23/35 comparisons in the

complete sample, this is true for only 13/35 comparisons in the pre-crisis sample. Second,
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our finding that bagging improves the performance of Tree and Slct is equally valid for

the pre-crisis sample (this is reflected in Tab. C.1 and Tab. C.2 in the Appendix). Third, for

HOUSING and TBILL the performance of AR (relative to EW) is worse in the pre-crisis

sample than in the complete sample; it is largely unchanged for the other variables.

Taken together, we find some evidence that equally weighted SPF forecasts perform better

in the pre-crisis than in the complete sample; this is true both relative to TreeBagg and

relative to AR. Conversely, the relative performance of EW during the crisis periods is

quite poor. This casts some doubt on the usefulness of the “raw” EW survey forecasts in

turbulent times and emphasizes the potential value of robust bias correction methods like

TreeBagg.

3.5 Conclusion

This paper analyzes the combination of macroeconomic expert forecasts. The main scheme

we propose, (bagged) regression trees, can estimate flexible conditional mean functions

based on a large number of predictors without suffering from the curse of dimensionality.

In the present context, this enables trees to correct potential biases of survey forecasts at the

level of individual participants. This stands in contrast to simple methods like the mean

or median which are summary statistics from the (anonymous) set of available forecasts.

Using data from the Survey of Professional Forecasters and an evaluation sample between

2001 and 2010, we find that trees achieve lower Mean Squared Prediction Errors than the

mean survey forecast for the majority of time series and forecast horizons we consider. We

show that these improvements occur whenever the survey forecasts are severely biased.

Comparisons with other forecast combination methods suggest that these bias corrections

– rather than the use of individual-level information – explain the improvements of trees

over the mean forecast.

Finally, the applicability of trees as a forecast combination method is by no means limited to

the setting we consider in this paper: First, other expert surveys like the Livingston survey
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or the European Survey of Professional Forecasters share the salient features of the Survey

of Professional Forecasters. Second, while trees can deal with high-dimensional structures

and missingness, there is no reason why they should not work equally well (or better)

in less ambitious data settings, such as the combination of forecasts from econometric

models.
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Appendix A

Lassoing the HAR model: A Model Selection

Perspective on Realized Volatility Dynamics

A.1 Proof of Theorem 2

This proof is structured as follows. We first show in Lemma 1 that the irrepresantable

condition is satisfied for the HAR model. Based on this we invoke a theorem of Zhao

& Yu (2006) which relaxes the assumptions on the innovation term for the lasso to be

model consistent. Finally we show that the HAR model satisfies the assumptions of the

aforementioned theorem and we can thus expect the lasso to be model selection consistent

without the assumption Gaussianity for the error term.

Lemma 1. Under the assumption that HAR model is true, condition (ii) of Theorem 1 is satisfied.

Lemma 1 states that if the true DGP indeed obeys the law of motion as specified by the

HAR model one can apply the results of Nardi & Rinaldo (2011) who establish that the

111
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lasso is a valid model selection device under two assumption, namely, that (i) ‖Γ−1
SS‖∞ ≤ C

and (ii) ‖ΓScSΓ
−1
SS‖∞ < 1. Γ denotes the autocovariance matrix, S is the true active set of

predictors, Sc is the true non-active set of predictors. When embedding the HAR model

in this specification we have that S consists of the lagged values up to order 22 and Sc is

any other lagged values beyond 22. Since (i) holds trivially as by (1.1) none of variables is

a linear combination of another, we only collect the proof of (ii) in the Lemma below.

Proof. The proof is split into two parts. First we show that the infinity norm of ΓScSΓ
−1
SS

can be seen as the sum of the absolute values of the regression coefficients of the usual

HAR estimates, second, we show that it is sufficient to consider one specific non-active

regressor.

Moreover, consider the following equivalent notations:

Cov(Sc,S) Var(S)−1 = Cov(Sc,S) Cov(S,S)−1 = ΓScSΓ
−1
SS .

To rule out any possible confusion we re-state the definition of the infinity norm of a

matrix. If ‖ξ‖∞ for ξ ∈ Rn is defined as ‖ξ‖∞ = max1≤i≤n |ξi|, then the corresponding matrix

norm is given as

‖A‖∞ := max
‖ξ‖∞=1

‖Aξ‖∞

where it can be shown (Lewis 1991, Proposition 3.4.1) for A = [aij]1≤i≤n,1≤ j≤m that

‖A‖∞ = max
1≤i≤n

m∑
j=1

|aij|.

In what follows we consider a row-vector ξ = [ξ1, . . . , ξn] as 1 × n matrix such that

‖ξ‖∞ = ‖ξ′‖1.
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Throughout the proof we assume without loss of generality the HAR model to contain no

intercept. Moreover, for the sake of notational simplicity we assume the AR process to be

labeled as

xt =

22∑
i=1

φixt−i + εt. (A.1)

Assume that |Sc| = 1 with Sc = {xt−23}1 and that the true model is in fact the HAR model,

i.e. |S| = 22 with S = {xt−1, xt−2, . . . , xt−22}. In other words, the active set consists of the first

22 lagged values and the first non-active predictor is xt−23. We then find that

Cov(xt−23, [xt−1, xt−2, . . . , xt−22])Var([xt−1, xt−2, . . . , xt−22])−1 = [φ̃1, . . . , φ̃22], (A.2)

where [φ̃1, . . . , φ̃22] is the usual representation of regression coefficients of xt−23 on xt−1, xt−2,

. . ., xt−22 (note that the previously introduced superscript “HAR” is omitted to alleviate

notation).

Since we are only interested in the sum of the absolute values of these regression coeffi-

cients, i.e. ‖[φ̃1, . . . , φ̃22]‖∞, we may as well reorder the regressors since

‖[φ̃1, . . . , φ̃22]‖∞ = ‖[φ̃σ(1), . . . , φ̃σ(22)]‖∞ (A.3)

is true for any permutation σ. With σ(i) = 22 − i + 1 we find that

‖[φ̃σ(1), . . . , φ̃σ(22)]‖∞ = ‖Cov(xt−23, [xt−22, xt−21, . . . , xt−1])Var([xt−22, xt−21, . . . , xt−1])−1‖∞

A closer look at the second term (exploiting covariance stationarity and thus, the fact that

1Observe that we slightly deviate from the notation used previously where S ⊂�; we use S and Sc to denote the
corresponding lags variables rather than their indices.
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the autocovariance is an even function, (see for instance Brockwell & Davis (1986)) shows

that

Cov(xt−23, [xt−22, xt−21, . . . , xt−1] = [Cov(xt−23, xt−(23−i))]1≤i≤22

= [Cov(xt, xt−i)]1≤i≤22

= Cov(xt, [xt−1, xt−2, . . . , xt−22])

and

Var([xt−22, xt−21, . . . , xt−1]) = Var([xt−1, xt−2, . . . , xt−22])

such that

[φ̃σ(1), φ̃σ(2), . . . , φ̃σ(22)] = Cov(xt−23, [xt−22, xt−21, . . . , xt−1]) Var([xt−22, xt−21 . . . , xt−1)

= Cov(xt, [xt−1, xt−2, . . . , xt−22]) Var([xt−1, xt−2, . . . , xt−22])−1

= [φ1, φ2, . . . , φ22] (A.4)

Combining (A.3) and (A.4) shows that (A.2) is indeed simply the sum of the absolute

values of the coefficients of (A.1), i.e., we conclude for Sc = {xt−23} that we have

‖ΓScSΓ
−1
SS‖∞ = β(d) + β(w) + β(m). (A.5)
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When extending the set of non-active predictors to SC = {xt−(22+i)}1≤i≤k one can verify2 that

Cov([xt−(22+1), . . . , xt−(22+k)], [xt−1, xt−2, . . . , xt−22])Var([xt−1, xt−2, . . . , xt−22])−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
φ̃(1)

1 φ̃(1)
2 · · · φ̃(1)

22

...
...

...

φ̃(k)
1 φ̃(k)

2 · · · φ̃(k)
22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(A.6)

Hence,

‖Cov(Sc,S)Var(S)−1‖∞ = max
1≤ j≤k

22∑
i=1

|φ̃( j)
i |.

In a next step we show that
∑22

i=1 |φ(l)
i | <

∑22
i=1 |φ(k)

i | for l > k by induction. The conclusion

then follows since it holds for k = 1, i.e. for Sc = xt−23 which has already been proved in

(A.5).

Given the argument which shows that reversing the order has no effect on the sum of the

coefficients we present the argument in the usual AR(22) representation as given in (A.1)

and thus drop the tilde, i.e.

xt+ j =

22∑
i=1

φ( j)
i xt+ j−i + εt+ j.

2This can either be seen by establishing the usual AR(p) moment conditions or recalling the fact that the OLS
estimates of an AR(p) process are consistent.Note that the consistency of the AR(p) estimates only gives results a.s.
by asymptotic equivalence. However, basing the argument on theoretical moments and the fact that for appropriate
random matrices X and Y we have [Cov(Y,X) Var(X)−1]′ = Var(X)−1 Cov(X,Y) yields (A.6) directly.
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Now, consider the induction basis for j = 1→ 2:

xt+1 =

22∑
i=1

φ(1)
i xt+1−i + εt+1

= φ(1)
1

⎛⎜⎜⎜⎜⎜⎝
22∑
i=1

φ(1)
i xt−i + εt

⎞⎟⎟⎟⎟⎟⎠ +
22∑
i=2

φ(1)
i xt+1−i + εt+1

=

21∑
i=1

(
φ(1)

1 φ
(1)
i + φ

(1)
i+1

)
xt−i + φ

(1)
1 φ

(1)
22 xt−22 + ε̃t+1

=

22∑
i=1

φ(2)
i xt−i + ε̃t+1,

where ε̃t+1 = φ
(1)
1 εt + εt+1 and

φ(2)
i = φ

(1)
1 φ

(1)
i + φ

(1)
i+1 for i = 1, . . . , 21 and φ(2)

22 = φ
(1)
1 φ

(1)
22 . (A.7)

By the assumptions put forward in (1.1) we have that φ(2)
i > 0 ∀i = 1, . . . , 22 and taking the

difference of the sum of absolute values thus yields

22∑
i=1

|φ(2)
i | −

22∑
i=1

|φ(1)
i | = φ(1)

1

⎛⎜⎜⎜⎜⎜⎝
22∑
i=1

φ(1)
i − 1

⎞⎟⎟⎟⎟⎟⎠ = φ(1)
1

(
β(d) + β(w) + β(m) − 1

)
.

By (A.7) and (1.3) we have the induction basis φ(2)
i > 0 ∀i = 1 . . . 22 and also we find by the

fact3 β(d) + β(w) + β(m) < 1 that
∑22

i=1 φ
( j−1)
i <

∑22
i=1 φ

( j)
i .

3This follows directly from the causality assumption: Since all roots lie outside the unit circle and the P(z), the
characteristic polynomial, is continous on R it follows that P(1) > 0 and thus that β(d) + β(w) + β(m) < 1.
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Reapplying the same argument for the induction step j→ j + 1 yields

xt+ j =

22∑
i=1

φ( j)
i xt+1−i + εt+ j

= φ( j)
1

⎛⎜⎜⎜⎜⎜⎝
22∑
i=1

φ(1)
i xt−i + εt

⎞⎟⎟⎟⎟⎟⎠ +
22∑
i=2

φ( j)
i xt+1−i + εt+ j

=

21∑
i=1

(
φ( j)

1 φ
(1)
i + φ

( j)
i+1

)
xt−i + φ

(1)
22φ

( j)
1 xt−22 + ε̃t+ j

=

22∑
i=1

φ( j+1)
i xt−i + ε̃t+ j

where again ε̃t+ j = φ
(1)
1 εt+εt+ j andφ( j+1)

i = φ( j)
1 φ

(1)
i +φ

( j)
i+1 for i = 1, . . . , 21 andφ( j+1)

22 = φ(1)
1 φ

( j)
22 .

Taking the difference between the sum of φ( j+1)
i and the sum of φ( j)

i yields

22∑
i=1

φ( j+1)
i −

22∑
i=1

φ( j)
i =

⎛⎜⎜⎜⎜⎜⎝
22∑
i=1

φ(1)
i − 1

⎞⎟⎟⎟⎟⎟⎠φ( j)
1 .

By the induction basis we have φ( j)
i > 0 ∀i = 1, . . . , 22 such that φ( j+1)

i > 0 ∀i = 1, . . . , 22 and

thus
22∑
i=1

|φ( j+1)
i | −

22∑
i=1

|φ( j)
i | < 0

such that the claim
22∑
i=1

|φ( j+1)
i | <

22∑
i=1

|φ( j)
i |

follows. Summarizing we conclude that for the HAR model it holds that ‖ΓScSΓSS‖∞ ≤ 1−δ
if β(d) + β(w) + β(m) ≤ 1 − δ. �

Having proven the above we look at a theorem provided by Zhao & Yu (2006) which

shows that the lasso is model selection consistent under some assumptions. Later we will

prove that these assumptions hold if the HAR model is assumed to be true and we can
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thus safely relax the assumption of normally distributed errors if we are willing to accept

a fixed S and Sc (as opposed to Nardi & Rinaldo’s (2011) results where p = |S| is allowed

to grow as the sample size increases.

Theorem A (Zhao & Yu (2006)). Under the assumptions of S and Sc fixed and

(A1) |ΓSCSΓ
−1
SS sgn(suppφ0)| a.s.

< 1 where 1 is a vector of ones and the inequality is understood

componentwise

(A2) Γn
(S,Sc),(S,Sc)

a.s.−−→ Γ(S,Sc),(S,Sc) where Γ(S,Sc) is the autocovariance matrix and Γn
(S,Sc) its sample

analogon

(A3) 1
n max0≤i≤n−p

∑p
j=1 x2

t−i− j
a.s.−−→ 0

the lasso is model selection consistent in the sense of Definition 1 if the innovation term has finite

second moment and λn is chosen such that λn/n→ 0 and λn/n
1+c

2 →∞ with 0 ≤ c < 1.

Proof of Theorem 2. We prove that the assumptions of Theorem A above are satisfied if one

assumes the dynamics of the HAR model as put forward in (1.1) to hold as well as the

existence of a finite fourth moment of the innovation term.

(A1) |ΓSCSΓ
−1
SS sgn(suppφ0)| a.s.

< 1 in (A1) of Theorem A holds since the argument in the

proof of Lemma 1 can be made in terms of sample moments. Knowing that the

least squares estimates converge a.s. to the true values (Brockwell & Davis 1986,

Theorem 10.8.1) the conclusion follows since |ΓSCSΓ
−1
SS sgn(suppφ0)| a.s.

< 1 is weaker

than ‖ΓScSΓ
−1
SS‖∞ ≤ 1 − δ as all components of suppφ0 are greater than zero by (1.3).

(A2) Under the assumption of a finite fourth moment of the innovations we have by a

result of Hong-Zhi, Zhao-Guo & Hannan (1982) the convergence almost surely. The
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positive definiteness follows from the fact that Γ(S,Sc) is positive semi-definite iff a

variable is a linear combination of the others which is ruled out by the assumption

of the HAR model as given in (1.3).4

(A3) Assuming that xi is finite almost surely gives that 1
n max0≤i≤n−p

∑p
j=1 x2

t−i− j is of class

oa.s.(n).

The condition on the innovation follows from Hölder’s inequality since we have that

L4 ⊂ L2 such that it suffices to require a finite fourth moment of the error term. �

Summarizing we have that the lasso should detect the HAR model if we assume a finite

fourth moment.

A.2 Log-Transformed Volatilities

Although it is common to use the log-transform to model realized variance for reasons of

positiveness, lower skewness and lower kurtosis, the case of the HAR model even allows

for additional arguments to justify the use of log-transformed realized volatilities. These

are not solely related to the realized volatility series as such (as for instance in Martens et al.

(2009, Table 1)) but also to how realized volatility is modeled. Extending the approach

of Box & Cox (1964) where only the dependent variable is transformed we employ the

Box-Cox transform

fλ(x) = x(λ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
xλ−1
λ if λ � 0

log(x) otherwise.

4It is semi-definite since it is a covariance matrix.
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to series of realized volatility. Consequently, the Box-Cox transform not only affects the

dependent variable but also predictor variables in the HAR model. As in the original

work of Box & Cox we then compute the (quasi-)likelihood for each λ. Since the (quasi-

)likelihood is equivalent to the R2 we report the R2 for different values of λ in Fig. A.1.

Figure A.1: Coefficient of determination along power transform
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t on the whole sample as

described in Section 1.3.1. The green line indicates the maximal R2 and the dotted lines indicate
common transformations for realized volatilities (log RVt with λ = 0,

√
RVt with λ = 1/2, and

RVt with λ = 1)

Clearly, following again Box & Cox and choosing a rational λ it follows that λ = 0
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is a sensitive choice and thus justifies the use of log-transformed volatilities. A further

argument for usingλ = 0 may be found in the fact that for the case ofλ = 0 we can construct

unbiased estimates (under the assumption of normality of the log-transformed realized

volatilities) explicitly without resorting to the median (Pankratz & Dudley 1987, Proietti

& Lütkepohl 2013).

A.3 Robustness

This section shows the key results in graphical form as presented in the main paper if

the realized volatility is estimated by Andersen et al.’s (2010) MedRV estimator instead

of Zhang et al.’s (2005) two-time-scale estimator. MedRV is not only computationally

attractive but also robust to zero returns and outliers induced by jumps. Figures A.2 to

A.4 and Tab. A.1 are found below and are otherwise identical to the corresponding figures

in the main text. There are marginal differences, but, the conclusions made in the main

text remain valid such that we abstain from further discussion of these results.
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Figure A.2: Autocorrelation function for log RVt series using MedRV.

Figure A.2 (a) Figure A.2 (b)

Panel (a) shows the autocorrelation function for the 9 log RVt series. Panel (b) shows a violin
plot (Hintze & Nelson 1998) of the unconditional log RVt. Both use the MedRV estimator.
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Figure A.3: HAR versus lasso coefficients with all predictors using MedRV estimator
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Figure A.4: Stability of Lasso selected Regressors for all assets using MedRV estimator
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A.4 Risk Management Application

This section contains the actual violations of the value-at-risk visualized in Fig. 1.5 collected

in Tab. A.2. Moreover, we have added summary statistics for the distribution of returns

in Fig. A.5.
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Figure A.5: Kernel density estimates of standardized log-returns for pre-crisis (PC) and
full sample (FS) against normal distribution.

A.5 Mincer Zarnowitz Regressions

In this paragraph we present the Mincer-Zarnowitz (Mincer & Zarnowitz 1969) regressions

for the lasso as well as the HAR model for the different training window lengths as well as
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split into pre-crisis (PrC), post-crisis (PoC), and full-sample (FS). Instead of reporting tables

we include three figures: Fig. A.6 contains the estimated intercept with 95% confidence

intervals, Fig. A.7 contains the estimated slope parameter with 95% confidence intervals,

and Fig. A.8 contains the p-value of the joint hypothesis that the intercept equals 0 and the

slope equals 1. Horizontal lines show the 5% and 10% level. In total the lasso is rejected

38 times (48 times) at the 5% level (10% level) whereas the HAR is rejected 50 times in

both cases (out of 99 tests for each model). We account for dependence of the error term

by using HAC consistent standard errors (Newey & West 1987).

Figure A.6: Mincer Zarnowitz Estimates (Intercept)

Estimate of α̂ in log RVt = α + β · ̂log RVt + εt
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Figure A.7: Mincer Zarnowitz Estimates (Slope)

Estimate of β̂ in log RVt = α + β · ̂log RVt + εt
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Figure A.8: Joint hypothesis p-values

p-valueH0 : α = 0 ∧ β = 1 of log RVt = α + β · ̂log RVt + εt

A.6 Implementation

The present paper uses R, the statistical programming language (R Core Team 2012) in its

version 2.14.1 The lasso estimates were obtained using the glmnet package which is based

on Friedman et al. (2010) as well as the lars package (Hastie & Efron 2011). All codes

used herein are available from the author upon request.
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Appendix B

Markets from East to West, News and

Volatility: Comparing Forecast Accuracy

B.1 Data Description

B.1.1 Market Data

I use five-minute price data from tickdata.com spanning Jan 2, 2007 to Sep 25, 2012 of the

three cash indices S&P 500, FTSE 100, and Nikkei 225, each featuring two decimals.

The S&P 500 (Standard & Poors) is an index containing 500 large cap US-traded companies

and is weighted according to market capitalization. Its constituents span different sectors

(Poors 2013) denoted in US dollars.

133
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The FTSE (Financial Times Stock Exchange) is an index comprising 100 UK-traded blue

chip companies from different sectors and is denoted in British pounds (FTSE Group 2013).

The Nikkei 225 is a price-weighted index constituted of 225 stocks listed on the on

the Tokyo Stock Exchange (Nikkei 2013) comprising different sectors and is denoted in

Japanese yen.

The data are available on a trading day from 9.30 a.m. to 4.00 p.m. (S&P 500, local time),

8.00 a.m. to 4.30 p.m. (FTSE 1000, local time), and 9.00 a.m. to 3.00 p.m. (Nikkei 225, local

time).1

B.1.2 Volatility Estimators

In the following I briefly review the estimators used in the current application. An

overview this topic might also be found in McAleer & Medeiros (2008) or in Bauwens,

Hafner & Laurent (2012). Altough realized variance is often said to be a model-free estimator

its meaningfulness still hinges on the common assumption of a (jump-) diffusion. Let an

asset’s log price pt be governed by the following process:

dpt = μtdt + σtdWt

where the mean process μt is continuous and of finite variation, σt is the instantaneous

volatility which is assumed to be càdlàg and Wt is a standard Brownian motion.

1Tokyo Stock Exchange has a break from 11.30 a.m. to 12.30 p.m. Prior to Nov 21, 2011 the break was from 11.00
a.m. to 12.30 p.m. For the sake of consistency I maintain the fictitious break from 11.00 a.m. to 12.30 p.m. through
the whole sample.
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Then, if one defines the log return of a day (with a day normalized to 1), rt = pt − pt−1, one

finds that

rt =

∫ t

t−1
μsds +

∫ t

t−1
σsdWs

such that

rt ∼ N
(∫ t

t−1
μsds,

∫ t

t−1
σ2

s ds
)

where
∫ t

t−1
σ2

s ds is commonly denoted as integrated volatility, IVt.

If this process is now observed at M discrete times tj ∈ [t − 1, t] for a specific day t one

may compute intraday returns rtj = ptj − ptj−1 . One can then show that realized volatility,

RVt =
∑M

j=1 r2
tj

, converges to IVt, i.e., if Δ = maxi ti − ti−1, then RVt plimΔ→0 IVt. Since high-

frequency asset prices are often plagued by microstructure noise or jump components in

the price process, this standard assumption may not be sufficient. However, since the data

are index data, I consider microstructure noise to be of minor importance and focus on

possible jumps. If one thus relaxes the assumption of the log price process following an

Itō process to the class of Brownian semi-martingale with finite activity jumps (BSMFAJ)

one may show that RVt no longer converges to IVt such that an alternative is required.

One possible estimator introduced is the bipower variation, defined as

BPVt = μ
−2 M

M − 1

M∑
i=2

|rti ||rti−1 |, μ =
√

2/π,

which can be shown to converge to IVt under the assumption of BSMFAJ (Barndorff-

Nielsen & Shephard 2004, Barndorff-Nielsen, Shephard & Winkel 2006).

By slight abuse of language I will refer to realized volatility as the quantitiy computed by

either RVt or BPVt and provide further information to avoid confusion when needed.

To compute the realized volatilities of each of the three indices I use a five-minute aggrega-
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tion of prices pt such that tj−tj−1 = 300 seconds and use the bipower variation as a primary

estimator for the integrated volatility.2 As an alternative measure I have also included the

results for the naive quadratic variation estimator RVt in Appendix B.2. As the Nikkei is

traded in two separate sessions a day, I compute RVtm for the morning session, and RVta

for the afternoon session and add these two as RVt = RVtm + RVta as suggested in Ishida

& Toshiaki (2009).

Since for the multivariate application cannot simply omit missing values I impute the

values of RVt−1 if the observation on date t−1 is missing. For the out-of-sample evaluation

I do not impute any values for the S&P’s realized volatility to avoid distortion of the out-

of-sample results.

As is common practice I then transform RVt series by the logarithm to obtain a time series

that is amenable to modeling: log RVt features near-normality in terms of unconditional

distribution, further more, this transform ensures positiveness of volatility estimates as

well as increasing the variance explained for a linear volatility model (Audrino & Knaus

2012). In the following I hence provide descriptive statistics for each of the three log RVt

series. Although I follow a strict separation of in-sample (Jan 3, 2007 to Dec 31, 2010) and

out-of-sample (Jan 1, 2011 to Sep 25, 2012) I report the descriptive statistics for the whole

sample jointly in Tab. B.1 in the interest of space. Fig. B.2 contains a graphical illustration

of the autocorrelations found in the sample.

2To mitigate the stale quote problem the first 5 minute return is discarded, thus leaving M = 77 5-minutes returns
for both S&P 500 and FTSE 1000 (pseudo-closing), and M = 53 5-minutes returns for the Nikkei 225.
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Table B.1: Descriptive statistics

NE FT SP

Observations 1406 1417 1445
Mean -9.889 -9.979 -9.739
Standard Dev. 0.936 0.955 1.132
Ex. Kurtosis 1.880 0.629 0.476
Skewness 0.923 0.532 0.631
ρ1 0.795 0.811 0.865
ρ10 0.618 0.622 0.674
ρ20 0.513 0.499 0.551
ρ50 0.337 0.331 0.369

Descriptive statistics for the three log R̂Vt series
using bipower variation. ρi denotes the autocorre-
lation at lag i.

Figure B.1: Distribution of unconditional log RVt
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Violin plots (Hintze & Nelson 1998) of the unconditional log RVt distribution for the three markets
with an inset boxplot. The mean is indicated as a red dot.
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Figure B.2: Autocorrelation over time

ACF over time with a rolling width of 500 observations. The end date of window is color coded
according to the scheme on the right-hand side. The total sample ACF is shown as a black dashed
line.

Figure B.3: Full day versus partial day realized volatility

Regression plot of full day (log) volatility (ordinate) versus pseudo-closing (log) volatility (abscissa)
for the FT with inset least square fit (solid black) and bisectrix (dashed gray).
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Table B.2: Regression estimates full versus partial day

Realized Volatility Log Realized Volatility

Intercept 0.00002 0.01001
(0.00000) (0.07386)

Slope 1.32656 0.95497
(0.02956) (0.00743)

R2 0.964 0.953
N 1417 1417

Regression estimates of xFull Day ∼ α+β ·xPartial Day with Newey-West
adjusted standard errors for realized volatility as well as log realized
volatility.

B.1.3 News Data

The news data I used are collected by forexfactory.com which serves as an aggregator of

different news sources. Relevant to the present study are the following sources and news

events: GDP (Bureau of Economic Analysis, final GDP), unemployment figures (Bureau

of Labor Statistics, unemployment rate), inflation (Bureau of Labor Statistics, CPI), and

federal fund rates (Federal Reserve). The release schedule for these indicators as used in

the present study is collected below.

Employment
Jan 04, 2007, Feb 02, 2007, Mar 09, 2007, Apr 06, 2007, May 04, 2007, Jun 01, 2007, Jul 06, 2007, Aug 03, 2007, Sep 07, 2007, Oct 05, 2007, Nov 02, 2007, Dec 07, 2007,

Jan 04, 2008, Feb 01, 2008, Mar 07, 2008, Apr 04, 2008, May 02, 2008, Jun 06, 2008, Jul 03, 2008, Aug 01, 2008, Sep 05, 2008, Oct 03, 2008, Nov 07, 2008, Dec 05, 2008,

Jan 09, 2009, Feb 06, 2009, Mar 06, 2009, Apr 03, 2009, May 08, 2009, Jun 05, 2009, Jul 02, 2009, Aug 07, 2009, Sep 04, 2009, Oct 02, 2009, Nov 06, 2009, Dec 04, 2009,

Jan 08, 2010, Feb 05, 2010, Mar 05, 2010, Apr 02, 2010, May 07, 2010, Jun 04, 2010, Jul 02, 2010, Aug 06, 2010, Sep 03, 2010, Oct 08, 2010, Nov 05, 2010, Dec 03, 2010,

Jan 07, 2011, Feb 04, 2011, Mar 04, 2011, Apr 01, 2011, May 06, 2011, Jun 03, 2011, Jul 08, 2011, Aug 05, 2011, Sep 02, 2011, Oct 07, 2011, Nov 04, 2011, Dec 02, 2011,

Jan 06, 2012, Feb 03, 2012, Mar 09, 2012, Apr 06, 2012, May 04, 2012, Jun 01, 2012, Jul 06, 2012, Aug 03, 2012, Sep 07, 2012

GDP
Jan 31, 2007, Feb 28, 2007, Mar 29, 2007, Apr 27, 2007, May 31, 2007, Jun 28, 2007, Jul 27, 2007, Aug 30, 2007, Sep 27, 2007, Oct 31, 2007, Nov 29, 2007, Dec 20, 2007,

Jan 30, 2008, Feb 28, 2008, Mar 27, 2008, Apr 30, 2008, May 29, 2008, Jun 26, 2008, Jul 31, 2008, Aug 28, 2008, Sep 26, 2008, Oct 30, 2008, Nov 25, 2008, Dec 23, 2008,

Jan 30, 2009, Feb 27, 2009, Mar 26, 2009, Apr 29, 2009, May 29, 2009, Jun 25, 2009, Jul 31, 2009, Aug 27, 2009, Sep 30, 2009, Oct 29, 2009, Nov 24, 2009, Dec 22, 2009,

Jan 29, 2010, Feb 26, 2010, Mar 26, 2010, Apr 30, 2010, May 27, 2010, Jun 25, 2010, Jul 30, 2010, Aug 27, 2010, Sep 30, 2010, Oct 29, 2010, Nov 23, 2010, Dec 22, 2010,

Jan 28, 2011, Feb 25, 2011, Mar 25, 2011, Apr 28, 2011, May 26, 2011, Jun 24, 2011, Jul 29, 2011, Aug 26, 2011, Sep 29, 2011, Oct 27, 2011, Nov 22, 2011, Dec 22, 2011,
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Jan 27, 2012, Feb 29, 2012, Mar 29, 2012, Apr 27, 2012, May 31, 2012, Jun 28, 2012, Jul 27, 2012, Aug 29, 2012

CPI
Jan 18, 2007, Feb 21, 2007, Mar 16, 2007, Apr 17, 2007, May 15, 2007, Jun 15, 2007, Jul 18, 2007, Aug 15, 2007, Sep 19, 2007, Oct 17, 2007, Nov 15, 2007, Dec 14, 2007,

Jan 16, 2008, Feb 20, 2008, Mar 14, 2008, Apr 16, 2008, May 14, 2008, Jun 13, 2008, Jul 16, 2008, Aug 14, 2008, Sep 16, 2008, Oct 16, 2008, Nov 19, 2008, Dec 16, 2008,

Jan 16, 2009, Feb 20, 2009, Mar 18, 2009, Apr 15, 2009, May 15, 2009, Jun 17, 2009, Jul 15, 2009, Aug 14, 2009, Sep 16, 2009, Oct 15, 2009, Nov 18, 2009, Dec 16, 2009,

Jan 15, 2010, Feb 19, 2010, Mar 18, 2010, Apr 14, 2010, May 19, 2010, Jun 17, 2010, Jul 16, 2010, Aug 13, 2010, Sep 17, 2010, Oct 15, 2010, Nov 17, 2010, Dec 15, 2010,

Jan 14, 2011, Feb 17, 2011, Mar 17, 2011, Apr 15, 2011, May 13, 2011, Jun 15, 2011, Jul 15, 2011, Aug 18, 2011, Sep 15, 2011, Oct 19, 2011, Nov 16, 2011, Dec 16, 2011,

Jan 19, 2012, Feb 17, 2012, Mar 16, 2012, Apr 13, 2012, May 15, 2012, Jun 14, 2012, Jul 17, 2012, Aug 15, 2012, Sep 14, 2012

FED
Jan 31, 2007, Mar 21, 2007, May 09, 2007, Jun 28, 2007, Aug 07, 2007, Sep 18, 2007, Oct 31, 2007, Dec 11, 2007, Jan 22, 2008, Jan 30, 2008, Mar 18, 2008, Apr 30, 2008,

Jun 25, 2008, Aug 05, 2008, Sep 16, 2008, Oct 08, 2008, Oct 29, 2008, Dec 16, 2008, Jan 28, 2009, Mar 18, 2009, Apr 29, 2009, Jun 24, 2009, Aug 12, 2009, Sep 23, 2009,

Nov 04, 2009, Dec 16, 2009, Jan 27, 2010, Mar 16, 2010, Apr 28, 2010, Jun 23, 2010, Aug 10, 2010, Sep 21, 2010, Nov 03, 2010, Dec 14, 2010, Jan 26, 2011, Mar 15, 2011,

Apr 27, 2011, Jun 22, 2011, Aug 09, 2011, Sep 21, 2011, Nov 02, 2011, Dec 13, 2011, Jan 25, 2012, Mar 13, 2012, Apr 25, 2012, Jun 20, 2012, Aug 01, 2012, Sep 13, 2012

B.2 Robustness

The subsequent paragraphs contain a sensitivity analysis with regard to training window

length as well as a robustness analysis when using the naive quadratic estimator to

compute realized volatility instead of the bipower variation estimator.

B.2.1 Sample Length Sensitivity
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B.2.2 Out-of-sample Results Naive Estimator

Table B.4: Out-of-sample results using the naive estimator

δ1 δ2 δ3 δ4 MSPE Var Bias MAPE R2

C1

1 0 0 - 0.263 0.263 −0.011% 0.409 0.677
0 1 0 - 0.270 0.270 −0.013% 0.414 0.670
1 1 0 - 0.259 0.259 −0.009% 0.407 0.683
0 0 1 - 0.260 0.260 −0.011% 0.406 0.680
1 0 1 - 0.252 0.253 −0.008% 0.402 0.690
0 1 1 - 0.259 0.259 −0.009% 0.406 0.682
1 1 1 - 0.249 0.249 −0.006% 0.399 0.694

C2

0 0 0 0 0.272 0.273 −0.039% 0.414 0.666
1 0 0 0 0.264 0.264 −0.012% 0.411 0.677
0 1 0 0 0.247 0.247 0.038% 0.398 0.696
1 1 0 0 0.218∗∗∗ 0.216 0.315% 0.370∗∗∗ 0.736∗∗
0 0 1 0 0.256 0.255 0.015% 0.402 0.686
1 0 1 0 0.226∗ 0.225 0.299% 0.376∗∗∗ 0.725∗∗
0 1 1 0 0.266 0.266 −0.031% 0.410 0.675
1 1 1 0 0.241 0.241 0.038% 0.392 0.704
0 0 0 1 0.234 0.233 0.298% 0.382 0.717∗∗
1 0 0 1 0.225∗ 0.223 0.315% 0.375∗∗∗ 0.728∗∗
0 1 0 1 0.220∗∗∗ 0.218 0.308% 0.368∗∗∗ 0.734∗∗
1 1 0 1 0.250 0.250 0.019% 0.397 0.693
0 0 1 1 0.228∗ 0.227 0.298% 0.376∗∗∗ 0.724∗∗
1 0 1 1 0.255 0.256 −0.009% 0.404 0.687
0 1 1 1 0.221∗∗∗ 0.219 0.300% 0.370∗∗∗ 0.732∗∗
1 1 1 1 0.213∗∗∗ 0.212 0.310% 0.364∗∗∗ 0.741∗∗

C3 - - - - 0.220∗∗∗ 0.218 0.380% 0.370∗∗∗ 0.734∗∗∗

C4 - - - - 0.240 0.238 0.318% 0.387 0.710∗∗

Out-of-sample forecast results with naive RVt. Otherwise equivalent to Tab. 2.3

B.2.3 Value-at-risk Results Naive Estimator
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Table B.6: Out-of-sample value-at-risk forecasts using naive estimator

VaR 1% VaR 2.5%

δ1 δ2 δ3 δ4 Hit Ratio UC IND CC Hit Ratio UC IND CC

C1

1 0 0 - 3.20% 0.00 0.34 0.00 4.12% 0.05 0.21 0.06
0 1 0 - 2.97% 0.00 0.37 0.00 4.12% 0.05 0.21 0.06
1 1 0 - 2.97% 0.00 0.37 0.00 4.35% 0.02 0.19 0.03
0 0 1 - 3.20% 0.00 0.34 0.00 3.89% 0.08 0.24 0.11
1 0 1 - 3.20% 0.00 0.34 0.00 4.35% 0.02 0.19 0.03
0 1 1 - 3.20% 0.00 0.34 0.00 4.12% 0.05 0.21 0.06
1 1 1 - 2.97% 0.00 0.37 0.00 4.35% 0.02 0.19 0.03

C2

0 0 0 0 3.20% 0.00 0.34 0.00 4.12% 0.05 0.21 0.06
1 0 0 0 3.20% 0.00 0.34 0.00 4.12% 0.05 0.21 0.06
0 1 0 0 3.20% 0.00 0.34 0.00 4.12% 0.05 0.21 0.06
1 1 0 0 2.97% 0.00 0.37 0.00 4.12% 0.05 0.21 0.06
0 0 1 0 3.66% 0.00 0.27 0.00 4.12% 0.05 0.21 0.06
1 0 1 0 3.20% 0.00 0.34 0.00 4.35% 0.02 0.19 0.03
0 1 1 0 3.20% 0.00 0.34 0.00 4.12% 0.05 0.21 0.06
1 1 1 0 3.20% 0.00 0.34 0.00 4.35% 0.02 0.19 0.03
0 0 0 1 2.52% 0.01 0.45 0.02 4.12% 0.05 0.21 0.06
1 0 0 1 2.75% 0.00 0.41 0.01 3.89% 0.08 0.24 0.11
0 1 0 1 2.75% 0.00 0.41 0.01 4.35% 0.02 0.19 0.03
1 1 0 1 3.43% 0.00 0.30 0.00 4.35% 0.02 0.19 0.03
0 0 1 1 2.75% 0.00 0.41 0.01 4.35% 0.02 0.19 0.03
1 0 1 1 2.97% 0.00 0.37 0.00 4.35% 0.02 0.19 0.03
0 1 1 1 2.97% 0.00 0.37 0.00 4.35% 0.02 0.19 0.03
1 1 1 1 2.75% 0.00 0.41 0.01 4.12% 0.05 0.21 0.06

C3 - - - - 2.52% 0.01 0.45 0.02 4.12% 0.05 0.21 0.06

C4 - - - - 2.75% 0.00 0.41 0.01 3.89% 0.08 0.24 0.11

Static - - - - 0.23% 0.05 0.92 0.15 0.69% 0.00 0.81 0.02

The hit ratio (HR) together with p-values of tests of correct unconditional coverage prob-
ability (UC), independence (IND), and conditional coverage probability (CC) are shown.
Non-rejection at the 0.1 (0.05) level is highlighted in boldface (italics).

B.3 Implementation

The present paper uses R, the statistical programming language (R Core Team 2012) in its

version 2.14.2 The lasso estimates were obtained using glmnetwhich is based on Friedman

et al. (2010). All the codes used herein are available from the author upon request.
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Figure B.5: Distribution of standardized (forecasted) returns

Quantile-quantile plots of returns standardized by forecasted volatility
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Appendix C

Learning from Micro-level Expert Forecasts:

Real-time Data, Regression Trees, and

Bagging

C.1 Additional Results

149
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C.2 Detailed Methods

C.2.1 Regression Trees

In line with the notation established in Section 3.3.2 (particularly, Tab. 3.2) we derive the

construction of regression trees as loosely discussed in Section 3.2.1.

Suppose we are at time T and interested in making an h-step ahead forecast. Let the

forecasters who have ever submitted a forecast with horizon h in the training period of

length p be denoted by TS, i.e.,

TS =
T−(h+1)⋃

t=T−(h+p+1)

Et,h.

Set k = |TS|, the number of all forecasters in the training set. Denote by Ŷt,h = (Ŷi1
t,h, . . . , Ŷ

ik
t,h)′

with i1, . . . , ik ∈ TS the k-dimensional vector containing the individual forecasts of all

forecasters in the training set.

The goal is to obtain a partition P = {P1, . . . ,Pm} as described in Section 3.2.1. A node, or

equivalently, a cell Pk is now split into left node Pk,l and right node Pk,r such that the MSE

decreases maximally. Let S be the set of all possible splits, i.e, S = {1, 2, . . . , k} × R and
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P(n) = P1, . . . ,Pn the current partition1 such that the optimal split s∗ for each cell Pk can be

determined as follows:

s∗ = argmax
s∈S

R(Pk) − R(Pk,l(s)) − R(Pk,r(s)). (C.1)

For a given split s we have Pk,l(s) = Pk ∩ {x : x ∈ Rp, xj < ξ} (where the split s is obviously

identified with xj < ξ) and Pk,r(s) = Pk \ Pk,l(s). Denote by ȲPk the average within one cell,

i.e.

ȲPk =
1

|{Ŷl,h : Ŷl,h ∈ Pk}|
∑

l∈
{l:Ŷl,h∈Pk}

YT
l+h.

such that R(Pk) can be written as

R(Pk) =
∑

l∈
{l:Ŷl,h∈Pk}

(
YT

l+h − ȲPk

)2
. (C.2)

Obviously (C.2) applies to Pk,l(s) and Pk,r(s) in the same way such that (C.1) is well defined.

Replace Pk in the partition P(n) with Pk,l and Pk,r for each k to obtain a new partition P(2n)

and start over again.

Once a maximal tree (or equivalently, a maximal partition) is obtained one starts deleting

leaves by cost-complexity pruning: define R(t̂r) to be the tree’s MSE, i.e. if t̂r has the

partition P(n) = {P1, . . . ,Pn} define R(t̂r) as follows

R(t̂r) =
1
p

n∑
i=1

R(Pi).

Next, define Rα(t̂r) = R(t̂r) + α · size(t̂r) = R(t̂r) + α · n. It can the be shown (Ripley 2008)

that for each α there is a unique smallest subtree that minimizes Rα. α acts as a tuning

parameter between goodness of fit and size of the tree. The optimal α is then determined
1To start set n = 1 such that P = {P1} = {R}
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via cross-validation (10-fold in our application) and the final tree is obtained with the

estimated optimal α̂ giving a tree with partition P = {P1, . . . ,Pm}. Full details can be found

in Breiman et al. (1984) or Ripley (2008).

C.2.2 Previous Best

Let again TS be the set of all forecasters who have submitted a forecast in the training

period. Define for a forecaster i the individual MSE as

MSEi =
1
p

p∑
l=1

(
Ŷi

T−(l+h),h − YT
T−l

)2
for i ∈ TS

and choose the forecaster as the one with lowest MSEi, i.e.,

i∗ = arg min
i∈TS

MSEi

Forecaster i∗ is then selected for the forecast in question.

C.3 Implementation

The procedures described herein were all implemented in R. The statistical open-source

program is freely available at http://cran.r-project.org/. For the implementation of

regression trees we used the package rpart (Therneau, Atkinson & Ripley 2010) with R

2.10.1 (x86_64-pc-linux-gnu). All codes and alternative robustness checks are available

upon request.
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Table C.3: Pre-crisis evaluation sample

Forecast Combination Methods (in SPA set)

Tree TreeBagg Slct SlctBagg CapTim EW AR

BOND 0 1.14 (0.04) 0.83 (0.20) 0.68 (0.42) 0.62 (0.96) 0.84 (0.09) 1.00 (0.05) 2.03
1 0.82 (0.96) 0.94 (0.12) 1.34 (0.00) 1.08 (0.09) 0.97 (0.00) — (0.23) 0.78
2 0.89 (0.44) 0.75 (0.94) 0.98 (0.37) 0.99 (0.44) 0.82 (0.59) — (0.34) 0.72
3 0.77 (0.91) 1.08 (0.01) 1.12 (0.14) 1.02 (0.20) 1.05 (0.05) — (0.10) 0.78
4 0.83 (0.94) 1.03 (0.02) 1.00 (0.16) 1.00 (0.23) 0.90 (0.32) — (0.20) 0.82

CPI 0 1.76 (0.00) 0.99 (0.14) 1.00 (0.24) 0.81 (0.89) 0.99 (0.08) 1.00 (0.04) 1.86
1 0.96 (0.89) 1.03 (0.22) 1.17 (0.01) 1.03 (0.25) 0.96 (0.88) — (0.43) 1.04
2 1.05 (0.24) 0.96 (0.71) 0.99 (0.26) 0.94 (0.95) 1.00 (0.65) — (0.47) 1.03
3 0.90 (0.14) 0.83 (0.91) 1.10 (0.00) 1.06 (0.01) 0.94 (0.02) — (0.03) 0.93
4 0.92 (0.10) 1.00 (0.20) 1.05 (0.32) 1.03 (0.40) 0.90 (0.96) — (0.00) 0.93

HOUSING 0 0.72 (0.17) 0.54 (0.99) 1.03 (0.01) 0.87 (0.02) 0.84 (0.08) 1.00 (0.01) 1.01
1 0.94 (0.49) 0.90 (0.98) 1.17 (0.14) 1.04 (0.68) 1.09 (0.00) — (0.60) 0.99
2 1.02 (0.58) 0.98 (0.72) 1.00 (0.41) 0.96 (0.99) 1.04 (0.30) — (0.57) 1.01
3 1.19 (0.17) 1.02 (0.40) 0.85 (0.95) 1.07 (0.09) 1.16 (0.30) — (0.25) 1.14
4 1.29 (0.02) 1.22 (0.04) 0.89 (0.86) 0.97 (0.07) 1.20 (0.05) — (0.28) 1.24

NGDP 0 1.82 (0.00) 1.40 (0.02) 1.46 (0.00) 1.16 (0.14) 1.16 (0.20) 1.00 (0.99) 1.87
1 1.37 (0.00) 1.64 (0.01) 1.83 (0.06) 1.25 (0.27) 1.39 (0.04) — (0.85) 1.35
2 1.28 (0.00) 1.49 (0.00) 1.40 (0.10) 1.15 (0.13) 1.42 (0.00) — (0.91) 1.26
3 1.74 (0.03) 1.76 (0.01) 0.80 (0.31) 0.79 (0.70) 1.36 (0.00) — (0.00) 1.14
4 1.15 (0.12) 1.22 (0.17) 1.19 (0.07) 1.02 (0.55) 1.32 (0.03) — (0.66) 1.16

TBILL 0 0.92 (0.00) 1.15 (0.11) 1.30 (0.00) 0.97 (0.00) 0.56 (0.61) 1.00 (0.06) 6.11
1 1.70 (0.00) 0.72 (0.07) 2.45 (0.03) 1.28 (0.01) 0.60 (0.81) — (0.04) 1.60
2 1.59 (0.17) 1.21 (0.52) 1.08 (0.60) 1.13 (0.00) 1.09 (0.63) — (0.86) 1.31
3 1.97 (0.10) 1.45 (0.38) 1.45 (0.03) 1.23 (0.02) 1.29 (0.49) — (0.82) 1.67
4 1.28 (0.21) 1.06 (0.72) 1.54 (0.07) 1.01 (0.76) 1.71 (0.00) — (0.70) 1.27

TBOND 0 1.13 (0.00) 0.68 (0.88) 2.26 (0.05) 1.68 (0.05) 0.90 (0.43) 1.00 (0.03) 2.80
1 0.84 (0.85) 0.93 (0.31) 0.92 (0.80) 0.95 (0.51) 1.32 (0.19) — (0.28) 0.80
2 1.38 (0.03) 0.86 (0.51) 1.45 (0.02) 1.24 (0.14) 0.83 (0.93) — (0.30) 0.67
3 0.85 (0.63) 1.18 (0.17) 0.83 (0.81) 0.88 (0.07) 1.44 (0.06) — (0.31) 0.71
4 1.01 (0.35) 1.15 (0.01) 0.87 (0.90) 0.94 (0.59) 1.40 (0.02) — (0.27) 0.94

UNEMP 0 2.47 (0.02) 1.76 (0.06) 1.61 (0.00) 1.18 (0.06) 0.84 (0.99) 1.00 (0.14) 3.45
1 2.37 (0.01) 1.40 (0.16) 1.77 (0.06) 1.24 (0.10) 1.15 (0.46) — (0.90) 1.98
2 1.30 (0.25) 1.18 (0.33) 1.30 (0.26) 1.16 (0.47) 1.38 (0.11) — (0.98) 1.31
3 1.04 (0.49) 1.39 (0.08) 1.49 (0.00) 1.22 (0.02) 1.19 (0.03) — (0.72) 0.97
4 0.93 (0.99) 1.01 (0.40) 1.30 (0.13) 1.09 (0.41) 1.01 (0.55) — (0.61) 1.00

Forecast evaluation from T0 + h to T1 where T0 = 2000Q4, T1 = 2007Q3, and h = 0, . . . , 4 (28 −
h quarterly evaluation points). All combination methods use a rolling training sample of 40
observations.a Numbers in parantheses are p-values of the Superior Predictive Ability (SPA) test
by Hansen (2005) with corresponding method used as benchmark; we use a mean block length
of 8 observations and 10.000 replications in the bootstrap implementation. All other numbers are
MSPEs, relative to the mean SPF prediction (EW).

aExcept for the variable TBOND which is only available since 1992Q1 and thus has a smaller training window
sample for the first evaluation points.



Curriculum Vitæ

Simon D. Knaus from Hemberg (St. Gallen)

Education

2009 – 2013 PhD in Economics and Finance, University of St. Gallen, Switzerland
2005 – 2007 MSc in Mathematics, University of Fribourg, Switzerland
2001 – 2004 BSc in Mathematics, University of Fribourg, Switzerland

Working Experience

2013 – date Consultant with c-alm AG, St. Gallen, Switzerland
2008 – 2008 Consultant with McKinsey & Co., Inc., Zürich, Switzerland
2006 – 2008 Treasury IT engineer with Postfinance, Berne, Switzerland
2004 – 2005 Intern with McKinsey & Co., Inc., Zürich, Switzerland
2000 – 2001 Software engineer with Viviance AG, St. Gallen, Switzerland

Conference Presentations

2012 Int. Conference on Computational Statistics, Limassol, Cyprus
R/Rmetrics, Leissingen, Switzerland

2011 Academy of Behavioral Finance & Economics, Los Angeles, USA
CESifo Conference, Munich, Germany
R/Rmetrics, Leissingen, Switzerland

2010 Int. ERCIM Conference Computing & Statistics, 2010, London, UK


