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Summary

The following dissertation has two parts. The topic of the first part is the role

of freedom in normative and positive economics. This part deals with ques-

tions such as “How can one measure freedom in economic models?”, “How

can one design institutions that give individuals the most freedom?”, and “Do

individuals intrinsically value freedom?”. To answer these questions, a game-

theoretic approach is endorsed. One chapter provides a measure of freedom

which captures many intuitions we have about this elusive concept. By various

examples, it is shown how this measure can be used for policy evaluation in

normative economics. Another chapter demonstrates the importance of free-

dom in positive economics by use of an experiment. Experimental subjects

played a game where their choices affected the freedom they had at later stages

of the game. Using the freedom measure from the previous chapter, it was then

estimated to which degree individuals value freedom intrinsically.

The topic of the second part is the interaction between groups when com-

peting in a contest. This part analyzes how the technology with which group

members aggregate their efforts influences the success of the group. Again, a

game-theoretic model is used. One chapter examines the role of complemen-

tarity among group members’ efforts in more detail. Another chapter focuses

on the interaction of various technological properties with group size to deter-

mine which technological properties benefit larger or smaller groups.



Zusammenfassung

Die folgende Dissertation hat zwei Teile. Das Thema des ersten Teils ist

die Rolle von Freiheit in normativer und positiver Ökonomik. Dieser Teil

beschäftigt sich mit Fragen, wie: „Wie kann man Freiheit in ökonomischen

Modellen messen?“, „Wie kann man Institutionen schaffen, die Individuen

maximale Freiheit geben?“ und „Bevorzugen Individuen intrinsisch mehr Frei-

heit?“ Um diese Fragen zu beantworten, wird ein spieltheoretischer Ansatz

verwendet. Ein Kapitel entwickelt ein Maß für Freiheit, welches viele Intu-

itionen dieses schwer fassbaren Konzepts widerspiegelt. Mittels verschiedener

Beispiele wird gezeigt, wie das Maß in normativer Ökonomik verwendet wer-

den kann. In einem weiteren Kapitel wird mittels eines Experimentes die

Wichtigkeit von Freiheit in positiver Ökonomik demonstriert. Teilnehmer des

Experiments spielten ein Spiel in welchem ihr Verhalten ein Einfluss auf ihre

Freiheit im restlichen Verlauf des Spiels hat. Mittels des Freiheitsmaßes wurde

dann die intrinsische Wertschätzung für Freiheit geschätzt.

Das Thema des zweiten Teils ist die Interaktion zwischen Gruppen in einem

Wettkampf. Dieser Teil analysiert wie die Technologie mit welcher Gruppen-

mitglieder ihre Anstrengungen aggregieren den Gruppenerfolg beeinflussen.

Erneut wird ein spieltheoretischer Ansatz verwendet. Ein Kapitel untersucht

die Rolle von Komplementarität zwischen den Anstrengungen im Detail. Ein

weiteres Kapitel beschäftigt sich damit, welche technologischen Eigenschaften

große oder kleine Gruppen bevorteilen.
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1 Introduction

From an outsider’s perspective, the framework for making normative judg-

ments in economics seems often simplistic. Standard results from Economics

such as welfare theorems in competitive economies (e.g. Arrow, 1951; Debreu,

1959) solely rely on the preferences of individuals. One aspect where the con-

trast between economic practice and the moral intuitions outside of economics

is especially stark, is the value of freedom. As Sen (1988) puts it:

The foundational importance of freedom may well be the most

far-reaching substantive problem neglected in standard economics.

(Sen, 1988, p. 294)

There may be a diverse set of reasons for this. First and foremost is the abil-

ity of Economics to derive policy recommendations based on welfare criteria.

Welfare, whether it is measured in the ordinal or cardinal sense, provides a sim-

ple and mathematically tractable way for making normative judgments in many

economic settings. A measure that can easily be applied in general economic

models has not yet been provided for freedom. Second, the concept of free-

dom has ever been an elusive one, with conflicting opinions held in what Berlin

(1958) called an “open war” (p. 6) of conflicting ideals about freedom. This

discussion has not only been limited to the philosophical literature. Indeed, at-

tempts to measure freedom in the freedom of choice literature (e.g. Dowding &

van Hees, 2009) have brought up a wide range of aspects that should (or should

not) be included in a measure of freedom. Among them are the number of op-
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tions an individual can choose from (Pattanaik & Xu, 1990), their degree of

reasonableness (Jones & Sugden, 1982), their diversity (van Hees, 2004), their

welfare implications (Sen, 1991), and the role of other individuals (Braham,

2006). Third, it is unclear whether individuals actually intrinsically care for

freedom. While it is easy to observe that individuals care for their well-being,

the case may be less clear for freedom. Even though in a recent contribution

Fehr, Herz, and Wilkening (2013) have shown that individuals care about deci-

sion rights, it is unclear whether this preference for decision rights originates in

preference for power over others or preference for freedom, or other reasons.

The first part of this dissertation strikes out against all three of these prob-

lems. In Chapter 2 a class of freedom measures is provided for game-theoretic

models. Since virtually all eonomic analysis today can be expressed with the

tools of game theory, this bridges the gap between freedom as an abstract con-

cept and its implementation in normative economics. It is shown that this class

of measures can account for the above mentioned intuitions of the freedom of

choice literature and even different philosophical concepts of freedom. In an

application of this measure, in Chapter 3, it is shown by an experiment that

individuals show significant preference for freedom. More precisely, the re-

sults suggest that in our experiment individuals strongly disliked interferences

of others in their outcomes and had no significant preference for power over

other individuals.

The second part of the dissertation analyzes group contests. There are

numerous settings where individuals compete in groups against each other.

Among these settings there are lobbying contests, research and development

contests, sports competitions, litigation, and warfare. The literature on group

contests (e.g. Corchón, 2007; Garfinkel & Skaperdas, 2007; Konrad, 2009)

has tried to examine the properties of such contests under the assumption that

individuals behave rationally. With few exceptions, however, the focus has

been almost exclusively on contests where the efforts of individuals are aggre-

gated by summation. In Chapter 4 the Nash equilibrium behavior for contests

is determined, in which efforts are aggregated via functions with a constant
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elasticity of substitution. It is shown that if individuals have heterogeneous

valuations within the group, changing the elasticity of substitution from the

case of additive impact functions indeed has an impact on behavior. Moreover,

it is shown that the winning probability of a group is increasing in the elasticity

of substitution of their members’ efforts.

An important question in the literature on group contests has been the ques-

tion whether larger or smaller groups have an advantage in such settings. Olson

(1965) described what was later coined the “group-size paradox” by Esteban

and Ray (2001). His claim was that due to free-rider problems larger groups

are inherently at a disadvantage in collective action problems such as contests.

While Esteban and Ray (2001) showed that this must not necessarily be the

case, their analysis was limited in two important ways: First, though allowing

for convex costs of effort, the analysis is still limited to the case where efforts of

group members are summed over the group members. Second, all group mem-

bers are assumed to have identical valuations of winning the contest. Chapter

5 generalizes their analysis by allowing for more general ways to aggregate

efforts and allowing for heterogeneous valuations within groups.

I hope this dissertation will be interesting to the reader and will help shed

some light on the issues mentioned above.
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2 Measuring Freedom in Games 1

Hendrik Rommeswinkel

This paper provides freedom measures for game theoretic settings. Three core

philosophical concepts of freedom are measured: positive, negative, and repub-

lican liberty. The measures solve two fundamental problems in the literature on

freedom of choice: The integration of freedom and welfare into a single mea-

sure and the measurement of freedom in situations where agents interact. Since

most economic models contain interactions between agents, the measures open

a wide range of economic applications for policy evaluation based on freedom.

1This paper is based on an earlier version titled “A Causal Measure of Freedom”. I thank pre-
sentation participants at the Public Choice Society 2011 meeting, the Royal Economic Society
2011 meeting, the European Economic Association 2011 meeting, the LSE Choice Group, the
California Institute of Technology, the University of Groningen, the Karlsruhe Institute of Tech-
nology and the University of St. Gallen for their helpful comments. Special thanks go to Dirk
Burghardt, Philipp Denter, Martin van Hees, Chris Hitchcock, Martin Kolmar, Philip Pettit, and
Clemens Puppe for more detailed comments on earlier versions of this paper.



2.1. INTRODUCTION 15

2.1 Introduction

Presumably the largest difference in normative reasoning between an economist’s

model and a layperson’s appraisal is the value of freedom. In standard eco-

nomic models, the value of freedom is purely instrumental for utility satis-

faction. However, philosophers have stressed the intrinsic importance of free-

dom (e.g. Berlin, 1958). Therefore, Sen (1988) has argued for the inclusion

of freedom into economic analysis. To this end, the freedom of choice lit-

erature,2 following the seminal contributions of Pattanaik and Xu (1990) and

Jones and Sugden (1982), has attempted to provide measures which can be

used to determine the freedom offered by an opportunity set. These contribu-

tions greatly enhanced our conceptual understanding of freedom but Pattanaik

(1994) showed that these measures encountered problems when being applied

to situations in which agents interact. The difficulty arises because in situa-

tions in which agents interact, opportunity sets from which agents can freely

choose are no longer clearly defined: The choice of one agent may influence

the available opportunities of another agent and vice versa. This problem has

prevented the literature to provide measures even for a simple exchange econ-

omy as Pattanaik (1994) showed. Yet, it is exactly these cases when agents

depend on each other to achieve their goals, when they exhibit power over each

other, or when they are coerced by others that the measurement of freedom be-

comes interesting. The lack of freedom measures for situations where agents

interact therefore creates an undesirable wedge between the normative analysis

performed by economists and normative perceptions outside economic theory.

Also from a positive perspective, a microeconomic measure of freedom for

interacting agents is desirable. In the macroeconomic literature on the relation

of growth and freedom (e.g. Easton & Walker, 1997; de Haan & Sturm, 2000),

proxies have been used such as the size of the government, price stability, or

the security of property rights (Gwartney & Lawson, 2003; Gwartney, Hall,

& Lawson, 2010). The development of such indices of economic freedom for

2For surveys of the literature, see Barberà, Bossert, and Pattanaik (2004), Baujard (2007), or
Dowding and van Hees (2009).
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cross-country comparisons and the contemporaneous development of microe-

conomic measures in the freedom of choice literature have been remarkably

disconnected from each other. A microeconomic measure of freedom which

can be applied in economic models may help bridge the gap between the eco-

nomic freedom indices and the freedom of choice literature by providing mi-

crofoundations for the former.

The present paper attempts to provide a measure of freedom for interactive

situations and therefore breaks with the opportunity-set based approach in favor

of a game theoretic setting. The goal is to maintain the intuitions gained by

the opportunity-set based measures from the freedom of choice literature and

generalize them to interactive situations.

The main issue when measuring freedom in interactive situations is the

imperfect control agents have over the outcomes, which a measure must ac-

commodate. Additionally to the number of different outcomes and their value,

the degree to which an agent controls each outcome becomes relevant. It makes

a difference whether an individual brings about an outcome by her own actions

or whether the outcome is determined by the actions of another person. This

control over outcomes is not only relevant from a normative perspective: Fehr

et al. (2013) have shown experimentally that individuals value the control over

outcomes even if this control comes at a monetary cost. The idea of the mea-

sure is therefore that the better an agent can influence which outcome occurs,

the larger the freedom. Meanwhile, it maintains the idea from the freedom of

choice literature that freedom increases in the number of outcomes an agent

can achieve.

An issue complicating the measurement of freedom are the diverse norma-

tive ideals people have about freedom. The paper therefore provides distinct

measures for the most common philosophical concepts of freedom: Positive

liberty as the degree of rational self-determination, negative liberty as the ab-

sence of interference by others, and republican liberty as the absence of subju-

gation by others. Moreover, the measures are only defined up to two functions

which may contain additional normative considerations of the measurer. Aside
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from weighting the importance of freedom over the outcomes, they can be used

in two interesting ways:

First, they may integrate a measure of well-being and freedom into a sin-

gle measure. This problem has been extensively discussed in the literature:

Sen (1985, 1988) argued that a measure of well-being should be included in a

measure of freedom. Others have presented impossibility results on integrat-

ing freedom and welfare into a single measure (Puppe, 1995, 1996; Nehring &

Puppe, 1996; Pattanaik & Xu, 1998; Gravel, 1998; Baharad & Nitzan, 2000),

drawing a rather negative picture on the possibility to integrate welfare and

freedom of choice. If one introduces utility into the measure via the normative

inputs, it turns out that the freedom measure is equal to weighted expected util-

ity, where the weights are causal influence measures representing the control an

agent has over each outcome. Expected utility is only reached if the agent has

perfect control over all outcomes. The less control the agent has over an out-

come, the less the utility of the outcome matters for the measure. This strikes

a balance between care for the well-being of an agent and her possibilities to

influence her surroundings.

Second, the functions can be used for the freedom measure to capture the

qualitative diversity of the outcomes of the game. For the freedom of an indi-

vidual, it may not only matter to have control over a large number of outcomes,

but also that these outcomes are qualitatively dissimilar. If one uses the quali-

tative diversity weights of Nehring and Puppe (2002) as normative inputs, the

positive freedom measure is a generalization of a diversity measure proposed

by Nehring and Puppe (2009) which captures both quantitative and qualitative

diversity.

The properties of the freedom measures are shown in various examples. An

example on labor market discrimination shows how the positive, negative, and

republican liberty measures differ in their judgments of how discrimination af-

fects freedom. The crucial difference aspect of the positive liberty measure is

that it allows for positive discrimination as a way to improve the freedom of a

group. In contrast, the negative and republican freedom measures regard both
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positive and negative discrimination as an interference and thus as a threat to

freedom. The difference between negative and republican liberty is that a de-

crease in the republican liberty measure does not require actual discrimination

from occuring. The republican liberty measure instead focuses on whether the

institutional setting potentially allows for discrimination or not.

As an example of a combination of utility and freedom into a measure, an

experiment by Fehr et al. (2013) is considered. In this experiment, individuals

showed a strong preference against delegating a decision right. This prefer-

ence could not fully be accounted for by expected utility maximization. In

the present paper, a theory of preference for freedom is sketched, which com-

bines the positive freedom measure with utility. Individuals with preference for

freedom value outcomes of a game higher, if they have actively caused them.

An individual is therefore less willing to forego a decision right if this trans-

fers some causal influence over the outcomes to another person. In this way,

preference for freedom explains the low delegation rates in Fehr et al. (2013).

Two more examples are given: In a simple voting model where the median

voter theorem holds the freedom-maximizing distance between candidates is

determined. The optimal candidate distance has to account for three factors:

first, the degree of influence each voter has on the outcomes which roughly

represents voting power. Second, the quantitative diversity of the outcomes.

A set of candidates where one character is unlikely to be chosen provides less

freedom than one where all candidates are plausible outcomes. Third, the qual-

itative difference in the outcomes, since if all candidates are identical, the vot-

ers are not left with a meaningful choice. It is shown that the freedom measure

accounts for all three factors. Finally, the example of competitive equilibrium

models from Pattanaik (1994) is considered. Though not a complete analysis,

the example suggests that price stability in an economy contributes to posi-

tive freedom, which gives microfoundations for the use of price stability as an

component of an index of freedom as in Gwartney et al. (2010).

The paper continues as follows. First, in Section 2.2 a review of the litera-

ture on various measures of freedom is given, with a focus on the ones related
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to the measures developed here. Section 2.3 provides the formal framework

and an interpretation of the elements of the measure. The three philosophical

concepts of liberty are introduced in Section 2.4 and a measure of freedom is

given for each of them. Section 2.5 states convergence theorems of the measure

to measures of the freedom of choice literature and the diversity measurement

literature. The convergence results reveal that the measure is a generalization of

a diverse set of measures from the literature examined in Section 2.2. To show

the differences between the three concepts of freedom and how this translates

into the measures an example of labor market discrimination is given in Section

2.6. The problem of integrating utility or other measures of well-being into a

freedom measure is addressed in Section 2.7. A case where it seems intuitive

for utility to enter a freedom measure is the case where individuals have pref-

erence for freedom. Therefore, Section 2.8 provides a theory of preference for

freedom and an application to an experiment by Fehr et al. (2013). Two further

applications are provided as examples: Section 2.9 shows in a simple voting

model how optimal diversity of candidates is affected by accounting for quali-

tative diversity in the freedom measure. An application of the positive freedom

measure to a production economy is given in Section 2.10. By this example

it is shown that the class of measures in this paper indeed solves the problem

posed by Pattanaik (1994).

2.2 Freedom Measures

In the following, only few measures will be reviewed. For a more extensive sur-

vey, the reader may consider Barberà et al. (2004), Baujard (2007), or Dowding

and van Hees (2009). Two very early contributions to the freedom of choice

literature are Pattanaik and Xu (1990) and Jones and Sugden (1982) for which

later on some convergence results will be stated. Other closely related mea-

sures to the one presented in this paper are given in Braham (2006), Suppes

(1996), and Nehring and Puppe (2009). Therefore these measures will be pre-

sented here, while the rest of the literature will only be touched upon briefly.
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All measures will be indexed by the authors’ last names. Since the measures

are based on opportunity sets C, some notation needs to be introduced to state

these measures: Suppose X is a set of alternatives. A freedom relation %F

holds between subsets C of X . C %F C′ with C,C′ ⊆ X can be interpreted

as ‘the opportunity set C offers weakly more freedom than the opportunity set

C′’. The measure of Pattanaik and Xu (1990) states that the freedom offered

by an opportunity set C is its cardinality ♯(C), that is:

Definition 2.1. Cardinality Measure (Pattanaik & Xu, 1990)

Suppose C,C′ ⊆ X . Then C %F,PX C′⇔ ♯(C) ≥ ♯(C′).
Since the interest here lies not in the axiomatization of this measure, the ax-

ioms from which the measure can be derived will not be stated. While still

considered the starting point of any measure of freedom, criticism of the mea-

sure has been abundant. For example Sen (1991) demands a more intricate

relation between preference and freedom. However, as shown for example by

Baharad and Nitzan (2000) the joint evaluation of the welfare and the freedom

provided by an opportunity set often runs into difficulties or allows only for

lexicographic comparisons (Romero-Medina, 2001).

A mild introduction of preferences into a freedom measure has been made

by Jones and Sugden (1982). In their measure, which has been given a formal

basis by Pattanaik and Xu (1998), a setR of so-called “reasonable” preference

relations R is introduced and freedom is measured according to the set of rea-

sonably chosen alternatives {x ∈ C ∶ ∃R ∈ R ∶ ∀y ∶ xRy}. While the precise

definition of “reasonable” is left open, Jones and Sugden (1982) give as an ex-

ample the choice of a prisoner, who can either “stay in the cell” or “get shot”.

Since it would be unreasonable to prefer getting shot to staying in the cell, the

set of reasonably chosen alternatives is the singleton “stay in the cell”. On the

basis of the ideas developed by Jones and Sugden (1982), Pattanaik and Xu

(1998) axiomatize the following measure:

Definition 2.2. Reasonable Preference Measure (Jones & Sugden, 1982; Pat-

tanaik & Xu, 1998)
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Suppose C,C′ ⊆ X . Then C %F,JS C′ iff

♯({x ∈ C ∶ ∃R ∈ R ∶ ∀y ∶ xRy}) ≥ ♯({x ∈ C′ ∶ ∃R ∈ R ∶ ∀y ∶ xRy}).
The measure thus states that the freedom an opportunity set offers can be mea-

sured by the cardinality of the set of reasonably chosen alternatives. This does

not solve the critique of Sen (1991), since it may still occur that an opportunity

set C is ranked higher by the measure than C′, although in terms of preference

each element in C′ dominates all other elements in C. The difficulties are even

increased: The set C′ may now have even more elements than C and each el-

ement in C′ may dominate all elements in C. Still, the measure may rank C

higher than C′.
The closest relatives to the measure which will be developed in this paper

are given by the following measures by Braham (2006), Suppes (1996), and

Nehring and Puppe (2009). Unlike the above two measures, these measures are

not solely based on opportunity sets but also include probability information.

The measure by Braham (2006) relies on game forms to account for inter-

actions between agents. It is not necessary to further examine the formal struc-

ture of the measure, since it has a very intuitive interpretation: The measure

tries to capture the degree to which an individual i can force a certain outcome

x to come about in the game. With some abuse of notation the measure states:

Definition 2.3. Game Form Measure (Braham, 2006)

FB(x,i) = P(outcome is x∣i chooses x)
where it may occur that P(outcome is x∣i chooses x) < 1 because the actions of

the other agents may lead to another outcome, even if i chooses x. The measure

therefore takes up the idea that an agent is free if he can force certain outcomes

to occur. This will also be the core idea of the causal influence measure in this

paper, though the degree to which an agent can force certain outcomes will be

measured in a different way.

It has been argued that freedom of choice is strongly connected to diver-

sity. Individuals are more free if they are able to make choices over a more
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diverse opportunity set. Two types of diversity have been identified: Quanti-

tative diversity refers to the relative frequencies with which different objects

are chosen and can for example be measured by the Shannon (1948) entropy.

Suppes (1996) proposes to measure freedom as the entropy of the relative fre-

quencies with which an agent chooses the alternatives of an opportunity set:

Definition 2.4. Entropy Freedom Measure (Suppes, 1996)

FS(C,P) = −∑x∈C P(x) ln P(x) where P(x) refers to the probability with

which an agent chooses element x of the opportunity set C.

The entropy measure results as one special case in the measure axiomatized in

this paper. More specifically, if agents have perfect control with their actions

over outcomes and no additional normative information is relevant, the mea-

sures converge. The precise relation between the two will be given in Proposi-

tion 2.2 in Section 2.5.

Qualitative diversity instead measures how different the elements of the

opportunity set are. An example is Nehring and Puppe (2002). A model of

qualitative diversity has been given by Nehring and Puppe (2002). Their model

supposes that objects x ∈ X have attributes A which can be defined via the

subset of objects of X which also have this attribute. Therefore, A ∈ X is the

attribute that all elements in A share. To measure the diversity value of a set,

each attribute is given a weight λ(A). Diversity of a distribution of objects P

can then be measured for example by v(λ,P) = ∑A⊆X ∶∃x∈A∶P(x)>0 λA. The

intuition is very simple: the more attributes are represented in a distribution

(and the more diversity weight they have), the higher the diversity. In case of

an opportunity set C one could set P(x) = 1/∣C∣ if x ∈ C and 0 otherwise to

obtain the aggregate qualitative diversity of the opportunity set.

Building on this framework in Nehring and Puppe (2009) a generalized

measure is proposed which captures both quantitative and qualitative aspects

of diversity at once:

Definition 2.5. Diversity Measure (Nehring & Puppe, 2009)
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DNP(C,P, λ) = − ∑
A∶A∩C /=∅

λ(A) ∑
x∈A

P(x) ln∑
y∈A

P(y)
which is the λ(A)weighted entropy of the attributes. While the entropy is max-

imized if as many objects as possible have a distribution as even as possible, the

measure DNP(λ,P) changes this in two ways: First, it considers the entropy

over attributes, i.e. the attributes (and not the objects) need to have a distribu-

tion as even as possible. Second, there exists an additional tradeoff between

a very even distribution and higher frequencies of objects with attributes that

have a high weight λ(A). While this diversity measure has not been explicitly

formulated as a measure of freedom, it turns out that in the perfect control case

the freedom measure in this paper is identical to DNP if the weights λ(A) are

included as normative information in the measure.

The further literature can be divided into several branches. One branch

deals with the aforementioned aspect of the diversity of an opportunity set

(Bavetta and del Seta (2001), Bossert, Pattanaik, and Xu (2003), and van Hees

(2004)). Another considers unstable preferences to be a source of preference

for freedom (Koopmans (1964), Kreps (1979a), and Sugden (2007)). Freedom

has been studied in game forms in Peleg (1997), Bervoets (2007), and Ahlert

(2010). The idea of multiple preference relations as in Jones and Sugden (1982)

has been further examined by Sugden (1998), Nehring and Puppe (1999), and

Bavetta and Peragine (2006). Rosenbaum (2000) develops a measure of free-

dom based on underlying characteristics of the elements of the opportunity set.

An important topic is also the distribution of freedom between individuals, for

which a survey is given by Peragine (1999). Broader discussions are given by

van Hees (1999), Bavetta (2004), Carter (2004), and Kolm (2010).

The paper is also related to the literature on axiomatizations for informa-

tion theoretic measures, see Csiszár (2008) for a survey and Frankel and Volij

(2011) for an application to segregation. Naturally very closely related are

measures for power in voting systems, where mutual information between the

cast vote and the outcome of the vote has been proposed as one dimension of

power (Diskin & Koppel, 2010). The present paper uses a more general form of
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mutual information than in these papers in order to also account for normative

information that becomes relevant when measuring freedom.

2.3 Theoretical Framework

The major assumption of the way freedom will be measured is the idea that

freedom involves (a) the possibility of an agent to do otherwise and (b) to

achieve other results by doing so. This means that freedom in this paper will

always involve some counterfactual such as “if the agent had acted otherwise,

he would have obtained a different outcome” containing an antecedent and

a consequent. Most measures in the freedom of choice literature implicitly

contain such a combination of antecedent and consequent: The above given

measure by Jones and Sugden (1982) has reasonable preference relations as the

antecedent and the chosen elements of the opportunity set as the consequent.

Freedom then involves the counterfactual: “If the agent had had reasonable

preferencesR, he would have chosen element x.” Similarly, in the capabilities

approach, freedom is accounted for by considering the set of functionings an

individual can reach from the available commodity vectors. The counterfactual

notion is again very clear: “If the agent had chosen commodity vector x, he

would have obtained the function vector f”.

The goal of this section is therefore to find a formal framework in which

one can model interactions between individuals and which can account for both

(a) and (b).

Assume an extensive game form a = (N,A,ψ,P ,I,C,p,R), where N =
{1, . . . ,n} is a finite set of players, A is a finite set of nodes, and ψ ∶ A/a0 → A

is a predecessor function such that for node a, ψ(a) is the immediate prede-

cessor of a. P is the player partitioning of the nodes and I = {I0, . . . , In} the

information partitioning with Ii being the set of information sets of player i.

Let A(I) = {a ∈ A ∶ ψ(a) ∈ I} return the set of nodes following information

set I . C is the set of choice sets CI for each information set I . Further ∆(CI )
is the set of probability distributions over the choice set at I . For b ∈ I and
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b = ψ(a) let c(a∣b) ∈ CI be the choice that leads at node b to node a. p is

the probability distribution for moves by nature. Finally, R is the set of result

functions for each player, where a result function ri ∶ Aω → Oi maps the termi-

nal nodes Aω into the finite set of possible outcomes for player i, Oi . This last

point deviates slightly from standard definitions of game forms, where result

functions are not player specific. In case all result functions are identical, we

are back in the standard case. The use of player-specific outcome functions is

necessary to account for (b) in a meaningful way. The difference between some

outcomes of the game may simply be irrelevant to all players except for player

i. If player j then gets to make a choice between these outcomes, it would not

be meaningful to call this a case where j is especially free. Rather, it is a case

where j has power over the outcomes relevant for i.

Due to (a) the individual must possess some nontrivial form of agency,

some capacity to make choices which are not completely prescribed by a single

preference relation. For example, the measure of Jones and Sugden (1982) gen-

erates this capacity via the assumption of multiple preference relations which

the individual may reasonably hold. In the model here, agency is introduced

for all players in the game via a preference expansion ` = (J ,U , p̂). The pref-

erence expansion contains U = {U1, . . . ,Un} as the set of the sets of utility

functions Ui = {ui,1, . . . ,ui,ū} over outcomes for each player ui,u ∶ Oi → R. p̂

assigns each of these utility functions a probability. It will be assumed that the

preferences of players are independently distributed and the marginal distribu-

tion for each player i is p̂i ∈ ∆Ui . This probability may be interpreted either as

a degree of reasonableness as in Jones and Sugden (1982) or an ex-ante prob-

ability with which an individual holds a preference if randomly drawn from a

population. A more precise definition on what is contained in U will be given

when considering various concepts of freedom. J is the set of information

partitions for each player over the reasonable utility functions. To simplify

notation, it will at times be convenient to treat the sets Ui and Oi as discrete

random variables instead, with realizations ranging over the elements of the

original set. For example, we may want to write P(Oi = o) as the probability
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of the outcome of the game being o but we may also want to write ∑o∈Oi
as

the sum over all possible outcomes. It will be clear from the context whether

Oi refers to the set or the random variable.

A local strategy s(I) ∈ ∆(CI ) is a probability distribution over the elements

of the choice set. Define a strategy profile S as a tuple of strategies specifying

behavior at each information set S = (s(I)∣I∈Ii ∣i∈N ). Further, let θS be the joint

probability distribution over nodes resulting from strategy profile S. Finally, we

need to consider that strategies may depend on preferences in the preference

expansion. Let S(û) be the strategy profile resulting from preference profile

û ∈ ×i∈NUi . It makes sense to enrich the probability distribution θ by the

outcomes and the preferences. For this, define:

∀i ∈ N ∶ ∀o ∈ Oi ∶ θS(û)(o∣û) = ∑
a∈Aω ∶ri (a)=o

θS(û)(a) (2.1)

∀i ∈ N ∶ ∀o ∈ Oi ∶ θS(û)(o) = ∑
û∈×i∈NUi

p̂(u)θS(û)(o∣û) (2.2)

∀i ∈ N ∶ ∀o ∈ Oi ∶ ∀ j ∈ N ∶ θS(û)(o∣u j) = ∑
û∈×k≠jUk×u j

p̂(û)
p̂(u j) θ

S(û)(o∣û) (2.3)

These last definitions are the central elements of the measures in this paper as

they express whether it is one’s own preferences or the preferences of other

players that determine which outcome occurs. For notational simplicity, where

unambiguous the superscripts S(û) will be omitted.

2.4 Concepts of Freedom

The concept of freedom has been heavily debated within Philosophy.3 In a very

influential article, Berlin (1958) attempted to categorize concepts of freedom

in two categories: positive and negative freedom. Positive freedom refers to

the actual ability to control one’s own destiny while negative liberty refers to

the absence of interferences of others in one’s destiny. A common example

3For an overview, see Gaus and Courtland (2011).
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(e.g. Carter, 2012) showing the difference is that of a smoker who due to his

addiction does not have the ability to stop smoking. Due to this lack of control

over whether he smokes or not, he does not have positive freedom. However,

there is also nobody interfering with whether he smokes or not. Thus, he still

has negative freedom. Only if another person was able to force him to smoke

or prevent him from smoking would he lose negative freedom.

A third concept of freedom which according to its proponents falls out of

the categorization by Berlin (1958) is republican liberty (e.g. Pettit, 1996).

From the perspective of a republican liberal freedom is high when individu-

als are not subject to arbitrary power of other individuals. This idea is closely

related to negative freedom. The main difference between the two is that repub-

lican freedom refers to the possibility of interference while negative freedom

refers to actual interference. In the case of the smoker republican freedom is

low if somebody has the possibility to prevent another from smoking (or force

to smoke) even without actually preventing or forcing him.

All three concepts of liberty can be accomodated in the model. The fol-

lowing subsections will explore this in detail. For each concept, one measure

will be derived. However, due to the large variety of conceptions of freedom

by philosophers, it is unlikely that even when accounting for the three cate-

gories, the measures will fit all conceptions therein. Appendix 2.A provides

an axiomatization of a more general class of measures than the three presented

here. However, this axiomatization provides mainly a justification for the way

causal relations can be measured and aggregated into a freedom measure and

thus only applies to concepts of freedom that (implicitly) assume a causal rela-

tion between agents and outcomes as a primitive.

2.4.1 Positive Liberty

Positive freedom as the degree of rational self-control is the most straightfor-

ward to measure in the model. If Uh
i is a variable representing the preferences

of the “higher” rational self which is unrestricted by addictions, irrationalities

etc., then the degree to which an individual exhibits rational self-control can be
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measured by the causal influence from Uh
i to Oi .

Strategies for calculating this influence should be given by empirical behav-

ior4 Se to account for deficits in self-control as in the example of the smoker.

That is, an individual may behave according to a behavioral theory which may

limit the influence of the preferences of the “higher” self on outcomes. Positive

freedom is measured as:

Φ
pos(a,θ) = ∑

u∈Uh
i

p̂(u) ∑
o∈Oi

θ(o∣u)(c(o,u) ln
θ(o∣u)
θ(o) + d(o,u)) (2.4)

where c ∶ Oi ×Ui → R and d ∶ Oi × Ui → R are normative inputs into the

measure. c(o,u) and d(o,u) are used to capture the value of having control

over outcomes and to incorporate elements of freedom unrelated to the causal

control, respectively. For example, Sen (1991) stressed the importance of free-

dom being increasing in well-being which can be captured using c(o,u) and

d(o,u). This will be elaborated in more detail in Sections 2.7. The use of

c(o,u) to capture qualitative diversity as an important component of freedom

will be shown in 2.5. For now, assuming c(o,u) = 1 and d(o,u) = 0, the fo-

cus rests on the causal influence measures ln θ(o∣u)
θ(o . The freedom measure is

a weighted expectation of these ln θ(o∣u)
θ(o) terms which are large if u makes o

more likely and small if u makes o less likely. Going back to the example of

the smoker without self control, let the outcomes be Oi = {s,ns} and the pref-

erences be Uh
i = {ups ,upns} where s and ns stand for the outcome of smoking

or not smoking and ups is the utility function if the player prefers to smoke

and upns is the utility function if the player prefers not to smoke. If the smoker

has no self-control, we have θ(ns) = θ(ns∣upns) = 0 and θ(s) = 1. There-

fore, Φpos = 0 and the player has no freedom according to the measure since

for each of the ln(θ(o∣u)/θ(o)) = ln(1) = 0. If the smoker gains more self

4One can also use a descriptive model of behavior. The main point is that under positive free-
dom it is important that se reflects actual behavior (as opposed to theoretically optimal behavior),
irrespective whether it is obtained from a descriptive model or field data.
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control, θ(ns∣pns) > θ(ns) > θ(ns∣ps) and thus ln(θ(ns∣upns)/θ(ns)) will

increase while ln(θ(s∣upns)/θ(s)) will decrease. Since each outcome-utility

combination is weighted by their joint probability p̂(u)θ(o∣u), the former effect

dominates and the overall effect will be an increase in the measure. While such

self control cases are important for a proper measure of positive freedom, the

present paper will mostly focus on limitations to freedom due to the structure

of the game and not limits to rationality. Further research on freedom when

agents are boundedly rational would be interesting, but are outside the scope

of this paper.

2.4.2 Negative Liberty

Negative freedom is associated with two distinct aspects. The first is the idea

of non-interference of others. Defining negative freedom, Berlin (1958) stated:

“By being free in this sense I mean not being interfered with by others.” (Berlin

(1958), p.8). The second aspect is that of not being restricted by others: “Mere

incapacity to attain a goal is not a lack of political freedom. [. . . ] It is only

because I believe that my inability to get a given thing is due to the fact that

other human beings have made arrangements whereby I am, whereas others are

not, prevented from having enough money with which to pay for it, that I think

myself a victim of coercion or slavery” (Berlin (1958), p.7). These two aspects

are quite distinct, since one can be restricted by others without being interfered

with and vice versa.5

When measuring negative freedom, these two aspects open two possibili-

ties. One is that negative freedom decreases in the extent to which the pref-

erences of other players determine the outcomes of a player. This emphasizes

the non-interference aspect of negative freedom. The other possibility is to

emphasize the aspect of not being restricted by others. This would be achieved

by some maximized version of the positive freedom measure, which does not

depend on the actual ability of an agent to influence his outcomes but on the

5For example a group of the population who’s vote does not count in an election is restricted in
their political influence but not interfered with. A person convincing another not to go to vote may
interfere with the other person’s choice but does not restrict the other person’s political influence.



2.4. CONCEPTS OF FREEDOM 30

potential ability given others’ behavior. Since the latter can be interpreted as a

variant of positive freedom, the proposed measure of negative freedom follows

the idea of non-interference.

Thus, negative liberty of individual i is measured by the degree of causal

influence of other individuals on the outcomes of individual i. Since negative

liberty refers to actual interferences, both preferences of other players {Uj ∶
j /= i} and strategy profiles s should equal their empirical counterparts. It is

important to note that in such cases, all relevant institutions which limit an

individual’s freedom must be part of the model. That is, in order to measure

limitations of freedom from the government, the government itself must be a

player in the game.

Φ
neg(a,θ) = −∑

j≠i
∑

u j ∈Ue
j

p̂(u j) ∑
o∈Oi

θ(o∣u j)(c(o,u j) ln
θ(o∣u j)
θ(o) + d(o,u j))

(2.5)

Again the measure is a weighted expectation over the (negative) logarithmic

terms measuring influence. In negative freedom we are interested however in

the degree to which other agents’ preferences determine one’s outcomes which

is why Uj is the variable causing or preventing o.

In the case of the smoker, nobody actually interferes with the decision of the

smoker. Just as the smoker exercises no control over Oi , so does nobody else

interfere, i.e. θ(ns) = θ(ns∣u j ). Suppose now i lives in a dictatorship where j

may be a smoking-averse dictator u j,pns or a smoking-friendly dictator u j,ps .

If via the game played the dicator manages to influence the outcome of whether

i smokes, freedom will be lower: θ(ns∣upns) > θ(ns) > θ(ns∣ps) and thus the

measure decreases relative to the case where Oi and Uj are independent.

2.4.3 Republicanism

Republican liberty is closely related to negative liberty but does not only con-

sider actual interventions of others, but also potential interventions. The most

prominent conception of liberty in this class has been given by Pettit (1996),
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“taking the antonym of freedom to be subjugation, defenseless susceptibility

to interference, rather than actual interference” (p.577). When measuring po-

tential interferences of others, one can obviously no longer rely on empirical

behavior Se. A further difficulty in measuring this is the qualification that an

agent must be “defenseless”. We may consider a player i not to be defenseless

if she has some means by which she may deter another player j from taking

certain actions against her. This however requires some notion of rationality or

at least responsiveness of j to the payoff threats that i can make against j. It

therefore makes sense to use some equilibrium concept to solve the game and

obtain S∗(û) as the strategy profile with which to calculate θS
∗(û) and the re-

maining probabilities defined in Section 2.3. Republican liberty6 is measured

as follows:

Φ
rep(a,θ) = −max

p̂
∑
j≠i
∑

u j ∈Uj

p̂(u j) ∑
o∈Oi

θ(o∣u j )

⋅ (c(o,u j) ln
θ(o∣u j)

p̂(u j)θ(o∣u j) + d(o,u j)) (2.6)

By maximizing with respect to probability distributions over the preference

relations of each individual j /= i, the measure returns the maximal interference

of others into i’s affairs given that individuals still act rationally. The central

difference to the negative freedom measure is that even if the actual distribution

p̂ is such that nobody would interfere with i, republican freedom may still be

low if other individuals (in virtue of the structure of the game and thus the

conditional probabilities θ(Oi ∣Uj)) have potential influence on the outcomes

of i. For example, if a dictator can decide whether to allow smoking or ban

smoking, republican freedom is low even if the dictator in equilibrium decides

6One has to note though that Pettit (1996) acknowledges that for republican liberty “there are
two subgoals involved. [. . . ] One involves the reduction of subjugation, [. . . ] the other involves the
maximization of the domain of individual choice” (p. 593). This suggests that Pettit’s conception
of power should be measured as some aggregate of the above republican measure and a measure
that is closer to the measure of positive freedom.
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with probability 1 to allow smoking. In comparison, republican freedom is

high if either there is no possibility to ban smoking or if many actors need to

jointly decide to ban smoking for it to be banned. It is important to note that the

measure strongly depends on the specification of Uj : a too narrow specification

would bring the measure closer to negative freedom. A too wide specification

may yield a very low freedom measure just by some absurd behavior which

empirically never occurs.

2.5 Relation to Previous Measures

The positive freedom measure is a generalization of several measures in the

freedom of choice literature and the literature on diversity measures. This sec-

tion will explore these relations. Since all the measures are based on opportu-

nity sets, it will be useful to define aT (C) as the trivial game where one player

faces an opportunity set C as the outcomes of the game. The positive freedom

measure turns out to be a generalization of the freedom measure by Jones and

Sugden (1982):

Proposition 2.1. Suppose for all trivial games aT (C) normative inputs ∀x ∈
C,u ∈Ui : c(x,u) = 1, d(x,u) = 0 and rationality of player i:

∀u ∈Ui ∶ ∃x ∈ C ∶ θ(x∣u) = 1⇔ x ∈ arg max
x∈C

u(x). (2.7)

Moreover, assume that Ui are utility representations of the reasonable prefer-

ences:

∀R ∈R ∶ ∃u ∈ Ui ∶ ∀x, x′ ∈ C ∶ xRx′⇔ u(x) ≥ u(x′). (2.8)

Let all outcomes with positive probability be equally probable:

θ(x) > 0 ∧ θ(x′) > 0⇒ θ(x) = θ(x′). (2.9)

Then positive freedom is a representation of the measure by Jones and Sugden
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(1982):

Φ
pos(aT (C),θ) ≥ Φpos(aT (C′),θ) ⇔ C %F,JS C′ (2.10)

For the positive freedom measure to converge to the reasonable preference

measure three steps are needed: First, no additional normative information

such as utility or qualitative diversity may be included. Second, individuals

must be rational and the utility functions representation of the reasonable pref-

erence relations. Third, quantitative diversity must be maximal such that each

outcome is equally likely. If the set of reasonable preferences is the set of ra-

tional preferences, the measures of Jones and Sugden (1982) and Pattanaik and

Xu (1990) are equivalent and positive freedom represents also the cardinal-

ity measure. Therefore, Φpos generalizes the measures of Jones and Sugden

(1982) and Pattanaik and Xu (1990) by allowing for the game theoretic set-

ting, normative inputs c(o,U) and d(o,U), and the quantitative diversity of

outcomes.

The connection to the measure of the quantitative diversity of choices by

Suppes (1996) is as follows:

Proposition 2.2. Suppose for all trivial games that aT (C) normative inputs

are ∀x ∈ C,u ∈ Ui : c(x,u) = 1, d(x,u) = 0 and that the individual has full

control over the outcomes:

∀u ∈Ui ∶ ∃x ∈ C ∶ θ(x∣u) = 1. (2.11)

Then positive freedom is equal to the entropy freedom measure:

Φ
pos(aT (C),θ) = FS(C,θ). (2.12)

The measure can also include qualitative aspects of diversity. It turns out

that by adding up the positive freedom of all attributes, one can obtain a gener-

alization of DNP(C,P, λ). For this, define aT (C,A) as the trivial game aT (C)
with C being the set of terminal nodes and the set of outcomes Oi replaced by

a partitioning of nodes into members with attribute A and members without,
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Oi,A = {A,AC}.
Proposition 2.3. Suppose for all trivial games aT (C,A) normative inputs are

c(A,u) = λ(A), c(AC ,u) = 0, and d(o,U) = 0. Further, suppose full control

over the outcomes

∀u ∈Ui ∶ ∃x ∈ X ∶ θ(x∣u) = 1. (2.13)

Then positive freedom is equal to the diversity measure by Nehring and Puppe

(2009)

∑
A⊆X
Φ

pos
i (aA,θ) = DNP(C,θ,λ) (2.14)

This means that when considering a game where a player has full control

over the terminal nodes, we can measure aggregate diversity as the sum of

positive freedom over all attributes. In situations of imperfect control, Φpos

additionally controls for whether the diversity of chosen objects is due to the

preferences of the individual or due to force by others, since if the realization

of the attribute A is independent of Ui , i.e ∀u ∈ Ui ∶ θ(A∣u) = θ(A), then

Φ
pos
i (aA,θ) = 0 and the added diversity from A does not increase freedom.

2.6 Freedom and Labor Market Discrimination

In this section the central properties of the freedom measures are discussed

via the example of discrimination in the labor market. A simple game is stud-

ied where wages are fixed before the employer knows the applicant and the

main source of discrimination is the difference in acceptance rates of equally

qualified men and women. An empirical study can be found in Oaxaca and

Ransom (1994). Let there be two players, N = {1,2} with 1 being an appli-

cant to an employer 2. The applicant can be either female or male, g ∈ { f ,m},
which is determined by nature with probability 1/2. Also, the productivity ζ

of the applicant is distributed uniformly over the interval [0,1]. After gender

and productivity has been determined, the applicant chooses whether to apply

or not apply x1 ∈ {ap,nap}. If the applicant does not apply, the game ends

and the applicant has no job. If the applicant applies, the employer decides
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whether to accept or reject x2 ∈ {ac,nac} the applicant which results in the

applicant having a job ( job) or not (nojob). The outcome space for the em-

ployer is {noworker} ∪ [0,1] × {male, f emale}.7 The last part necessary for

the specification of the game is the information partition. We may consider two

variants: First, a1 is the perfect information game where each information set

is a singleton. Therefore, the employer knows the gender and productivity of

the applicant. Second, with a2 we may consider a game where the gender of

the applicant is not revealed before the application.

Given the extensive game form, we can measure the freedom if we supple-

ment it with a preference expansion. Let the utility functions of the applicant

be U1 = {uA
1 ,u

B
1 } with

uA
1 ( job) = 1 > 0 = uA

1 (nojob) (2.15)

uB
1 ( job) = 0 < 1 = uB

1 (nojob). (2.16)

Therefore, type A likes to take the job while type B does not. Both types occur

with probability 1/2. The employer can either be discriminatory or nondiscrim-

inatory: U2 = {uA
2 ,u

B
2 } with uA

2 (noworker) = uB
2 (noworker) = 1, uA

2 (ζ) =
2ζ , uB

2 (ζ,male) = 2(ζ + d), and uB
2 (ζ, f emale) = 2(ζ − d). The extent to

which the discriminatory employer has preferences against women is therefore

measured by d ∈ [0,0.5]. Let the fraction of discriminatory types B be δ. Fi-

nally, J = {{{uA
1 ,u

A
2 ,u

B
2 },{uB

1 ,u
A
2 ,u

B
2 }},{{uA

2 ,u
A
1 ,u

B
1 },{uB

2 ,u
A
1 ,u

B
1 }}} is the

information partitioning over the preferences such that each individual knows

his own preferences.

It is straightforward to calculate the Bayesian Nash equilibrium of each

game:

7One may hold the normative conviction that the employer’s freedom on whom to employ is
also normatively relevant. In this case, one would need to find a way to aggregate the two. Since
this would require a further analysis of interpersonal comparisons of freedom, this is outside the
scope of this paper.
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x
a1
1 = x

a2
1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ap, U1 = uA

1

nap, else
(2.17)

x
a1
2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ac, U2 = uA
2 ∧ ζ ≥ 1/2

ac, U2 = uB
2 ∧ ζ + d ≥ 1/2 ∧ g = m

ac, U2 = uB
2 ∧ ζ − d ≥ 1/2 ∧ g = f

nac, else

(2.18)

x
a2
2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ac, ζ ≥ 1/2
nac, else

(2.19)

Assume that empirical strategies are identical with the above given Bayesian

Nash equilibrium strategies. Then the above strategies give us the probability

distribution θ(O1∣U1) for the positive measure as shown in Tables 2.1 and 2.2.

a1 job no job

uA
1 1/2 + δd(1 − 2 ⋅ 1(g = f )) 1/2 − δd(1 − 2 ⋅ 1(g = f ))

uB
1 0 1

uA
2 1/4 3/4

uB
2 1/4 + d(1 − 2 ⋅ 1(g = f ))/2 3/4 − d(1 − 2 ⋅ 1(g = f ))/2

marginal 1/4 + δd(1 − 2 ⋅ 1(g = f ))/2 3/4 − δd(1 − 2 ⋅ 1(g = f ))/2

Table 2.1: θ(O∣U) in a1

a2 job no job

uA
1 1/2 1/2

uB
1 0 1

uA
2 1/4 3/4

uB
2 1/4 3/4

marginal 1/4 3/4

Table 2.2: θ(O∣U) in a2
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Positive freedom for each game is given by the following calculations:

Φ
pos

f (a1,θ) =1 − 2δd

4
ln (2) + 1 + 2δd

4
ln(2 + 4δd

3 + 2δd
) + 1

2
ln( 4

3 + 2δd
)

(2.20)

Φ
pos
m (a1,θ) =1 + 2δd

4
ln (2) + 1 − 2δd

4
ln(2 − 4δd

3 − 2δd
) + 1

2
ln( 4

3 − 2δd
)

(2.21)

Φ
pos(a2,θ) =(3/4) ln(4/3), (2.22)

where for simplicity c(o,u) = 1 and d(o,u) = 0. Moreover, in a2 freedom

does not depend on gender. The comparative statics are very intuitive as can be

seen in Figure 2.1: Men’s freedom increases in δ and d since the more likely it

is that they will be employed if they apply, the greater their control over their

employment status. For women the opposite is the case: If they apply, their

employment chances are negatively affected by δ and d, which translates into

lower freedom. If δd = 0 in a1 or if a2 is played, their freedom is maximal.
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δ: Fraction of discriminating employers,
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Figure 2.1: Positive Freedom of Women and Men in a1
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Φ
neg

f (a1,θ) = − δ(1 − 2d)
4

ln( 1 − 2d

1 − 2δd
) − δ(3 + 2d)

4
ln( 3 + 2d

3 + 2δd
)

−
(1 − δ)

4
ln( 1

1 − 2δd
) − (1 − δ)3

4
ln( 3

3 + 2δd
) (2.23)

Φ
neg
m (a1,θ) = − δ(1 + 2d)

4
ln( 1 + 2d

1 + 2δd
) − δ(3 − 2d)

4
ln( 3 − 2d

3 − 2δd
)

−
(1 − δ)

4
ln( 1

1 − 2δd
) − (1 − δ)3

4
ln( 3

3 + 2δd
) (2.24)

Φ
neg(a2,θ) =0, (2.25)

where again the normative inputs have been set to c(o,u) = 1 and d(o,u) = 0.

The central difference of negative freedom is that freedom for men is now

also decreasing in d. This is because the positive discrimination of discrimi-

nating employers towards men constitutes just as much of an interference as

their negative discrimination against women. This is a central conceptual dif-

ference: under negative freedom, affirmative action or other types of positive

discrimination restrict freedom and are thus undesirable. No matter whether

an individual is improved or worsened in its well-being by an interference of

another player, in both cases negative freedom decreases in the extent and in-

tensity of discrimination. What negative freedom shares with positive freedom

is that δd = 0 yields the same freedom as a2: The fact that nobody actually dis-

criminates men and women is equivalent with a setting in which the employer

cannot discriminate due to the structure of the game.

What appears counterintuitive at first is the fact that the negative freedom

measure is not monotone in δ. This is related to the fact that it is a measure

of actual interference but not restriction. If all employers discriminate women,

the employment status of an individual no longer depends on the variations

in the preferences of others. Naturally, one could move away from using the

actual distribution of preferences to a hypothetical distribution to account for

the fact that the employer still has power over the employee. However, by this

one would move from actual to hypothetical interference and at a republican
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Figure 2.2: Republican and Negative Freedom of Women and Men in a1

liberty measure:

Φ
rep

f (a1,θ) =min
δ,d
Φ

neg

f (a1,θ) (2.26)

Φ
rep
m (a1,θ) =min

δ,d
Φ

neg
m (a1,θ) (2.27)

Φ
rep(a2,θ) =0 (2.28)

Republican freedom in this model simply maximizes negative freedom with

respect to the fraction of discriminating employers and the intensity of dis-

crimination. The minimal freedom of women is reached at d = 1 and δ ≈ 0.61

as marked with the dots in Figure 2.2. Notice that in practice one may want to

put restrictions on d for this measure, since extreme values for d may no longer

be economically feasible for the employer. The republican freedom measure

shares with the negative freedom measure the impossibility of positive discrim-

ination increasing freedom. The main difference is that one does not need to

observe actual interference to conclude that a person is unfree. Just by the in-

formation structure given in a1 the applicant’s freedom is jeopardized. This

fits with current debates on privacy rights: From the perspective of a republi-
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can libertarian a corporation or government does not need to actually interfere

with the lives of individuals to violate their freedom. It already constitutes a

violation of freedom if it has acquired the information necessary to interfere.

Having his information, even if it is not used to interfere in equilibrium, gives

nontheless the potential to interfere which decreases republican freedom.

2.7 Freedom and Utility

An important issue in the discussion on measures of freedom has been the

integration of utility into the measures such that freedom is increasing in well-

being.8 However, Puppe (1995), Nehring and Puppe (1996), Gravel (1998),

Pattanaik and Xu (1998), and Baharad and Nitzan (2000) have provided im-

possibility results with respect to this endeavor. The freedom measures in this

paper allows for the integration of utility in two different ways.9 The first is

simply additive via the function d(. . . ), while the second via c(. . .) yields a

more intricate connection between freedom and utility. For simplicity, only

positive freedom will be considered. The combination utility with negative

freedom or republican freedom is conceptually unclear, since in these measures

it seems to intuitively make more sense to additionally include the qualitative

impact other individuals have on one’s life.

First, suppose d(u,o) = u(o); then expected utility

EUi(a,θ) = ∑
u∈Ui

p̂(u) ∑
o∈Oi

θ(o∣u)u(o) (2.29)

8E.g. Sen (1991) or Sen (1985). Although the remarks here focus on the integration of utility
into a freedom measure, they also hold for other measures of well-being, e.g. value functions over
capabilities as long as they are at least defined on an ordinal scale.

9In principle there of course exist infinite possibilities to integrate freedom and utility. There-
fore, mathematically the following results are trivial. They only gain relevance in conjunction
with the axiomatization in Appendix 2.A which rules out other ways than c(. . .) and d(. . .) of
integrating utility.



2.7. FREEDOM AND UTILITY 41

enters the positive freedom measure additively such that:

Φ
pos(a,θ) = ∑

u∈Uh
i

p̂(u) ∑
o∈Oi

θ(o∣u)c(o,u) ln
θ(o∣u)
θ(o)

+EUi(a,θ) (2.30)

This approach yields a simple, but plausible way to combine a measure of free-

dom and a measure of well-being. It allows for tradeoffs between utility gains

and freedom gains and c(o,u) controls how important freedom over outcome

o ∈ Oi is for type u ∈ Ui . Using c(o,u) the measurer can make utility and

freedom cardinally comparable such that one unit of causal influence on out-

comes has the same value as c(o,u) units of utility. The measure of course does

not contradict the existing impossibility theorems. For example, Gravel (1994,

p. 456, Axiom 3) requires for a measure defined over opportunity sets that

if the highest ranked alternative of one set C is preferred to the highest ranked

alternative of another set C′, the set C is higher ranked than the set C′. This ax-

iom would never allow a tradeoff of more freedom for less utility as the above

measure does. The main way in which the present paper avoids these impos-

sibility results is therefore to make causal influence over outcomes cardinally

comparable to utility. This is done via the additional information provided by

the strategies of the players. The opportunity-set based impossibility theorems

cited above in comparison only use information about Oi .

The particular way in which freedom and utility are combined above, can

be unsatisfactory however. One reason may be the perfect substitutability of

freedom for utility and vice versa. Another reason may be the fact that the

direction of the influence of the agent is not accounted for: Suppose by some

lack of knowledge an agent always chooses the option worst for himself. As

long as the c(o,u) values are all positive, the measure still increases in the

degree of control the agent has over the outcomes. While one can account for

this explicitly via accounting for the agent’s beliefs in c(o,u), there is a more

elegant way to solve this problem, which is the second way in which utility can
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enter the measure:

Suppose c(u,o) = u(o) and d(o,u) = 0:

Φ
pos(a,θ) = ∑

u∈Uh
i

p̂(u) ∑
o∈Oi

θ(o∣u)u(o) ln
θ(o∣u)
θ(o) (2.31)

The advantage of integrating freedom and well-being via the function c(. . .) is

the complementarity between choice and well-being: There are now outcomes

where without additional utility (u(o) = 0), more influence is irrelevant. Also,

without any influence on outcomes (ln(. . .) = 0), additional utility is irrelevant.

Finally, having control over the outcomes may be detrimental for one’s freedom

if the associated utility level is negative. It is important to realize that under

this specification utility is no longer measured on a cardinal scale but instead

on a ratio scale. The u(o) = 0 point becomes meaningful as the point where

freedom does not matter.

The connection with expected utility is less obvious here: Suppose the in-

dividual has full control over the outcomes such that for each u ∈Ui there exists

some o ∈ Oi with θ(o∣U) = 1. Suppose further that all outcomes are equally

likely: θ(o) = 1/∣Oi ∣. Then the measure becomes:

Φ
pos(a,θ) = ∑

u∈Uh
i

p̂(u) ∑
o∈Oi

θ(o∣u)u(o) ln(∣Oi ∣) (2.32)

Under the above given conditions, freedom is therefore expected utility times

the logarithm of the number of alternatives. This captures the idea that free-

dom is both increasing in our well-being and the number of options we have.

Moreover, one can neither be free without well-being nor without being able

to influence one’s outcomes.

2.8 Preference for Freedom

A natural application of the positive freedom measure accounting for utility is

the case where agents prefer to be in situations where they have freedom with
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respect to some outcomes of a game. Such individuals may be thought of as

maximizing a combination of freedom and utility as in (2.31) or (2.32). Exam-

ples of such behavior are given by an experiment in Fehr et al. (2013). In this

study, individuals were given a choice between keeping or delegating a deci-

sion right and delegating was associated with some gain in expected payoffs.

In the experiment, subjects chose to delegate to a lower extent than what could

have been explained from utility maximization. This section shows that prefer-

ence for freedom can explain the choices the subjects made in the experiment

by Fehr et al. (2013).

Some further notation will be necessary. Let the subgame function denoted

by subg(a,a) return for any extensive form game a the subgame starting at

node a. Let θi be a joint probability distribution over nodes and outcomes

representing the beliefs of player i. Let θi(b∣I) denote the belief that the current

node is b ∈ I given that play has reached information set I . We can construct

the belief of node a following the current information set given strategy s as

θ̃(a∣s) = θi(ψ(a)∣I)s(c(a∣ψ(a))).
Define an equilibrium of a as a strategy profile S∗ = (s∗(I ,θi)∣I∈Ii ∣i∈N )

and beliefs such that ∀i ∶ θi = θS∗ with:

s∗(I ,θi) = arg max
s∈∆(CI )

∑
a∈A(I)

θ̃i(a∣s)Vi(subg(a,a),θi) (2.33)

Individuals therefore maximize the expected valuation Vi of the possible

subgames following their choice s, given beliefs θi which are true in equilib-

rium. If Vi is the expected utility of the subgame, this definition corresponds to

the Bayesian Nash equilibrium.

Definition 2.6. Freedom Adjusted Expected Utility:

Let the normative inputs in Φpos
i be:

ci(u,o) =αu(o) (2.34)

di(u,o) =(1 − α)u(o) (2.35)
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then preference for positive freedom is represented by the valuation function:

Vi(a,θi) =Φpos
i (a,θi)

=α ∑
u∈Ui

p(u) ∑
o∈Oi

θi(o∣u)u(o) ln(θi(o∣u)
θi(o) )

+ (1 − α) ∑
u∈Ui

p(u) ∑
o∈Oi

θi(o∣u)u(o) (2.36)

In the specified valuation function, α controls the degree to which positive10

freedom is relevant for the agent. If α = 0, then Vi(. . . ) equals expected utility.

The higher α, the more relevant freedom becomes.

In the experiment by Fehr et al. (2013) subjects played a game about a card

selection where nature randomly determined the player’s preferences over 36

cards. One default card always had a fixed, known payoff π̄, but the preferences

over all other cards were unknown to both players at the beginning of the game.

One of the other cards gave a high payoff π̂1 to player 1 and a lower payoff π̌2

to player 2. Yet another card gave a high payoff π̂2 to player 2 and a lower

payoff π̌1 to player 1. All other cards gave an extremely low payoff /π to deter

the player with the decision right to randomly choose a card. Payoffs were for

each player i ordered as follows: π̂i > π̌i > π̄ >/π.

Player 1, the principal, could then choose to delegate a decision right to

the agent player 2 or to keep it. Next, there was an investment stage at which

both players could simultaneously invest effort (payoff) in order to raise the

probability with which they learned about their preferences over the cards in the

following stage. Let pi be the probability of the player with the decision right

and qj be the probability of the player without the decision right. After players

learned about their preferences, there was a card selection stage in which the

player without the decision right could make a suggestion to the other player.

Then the player with the decision right selected one of the cards.

Let Up ∈ {1, . . . ,35} represent the possible preferences of the principal for

10A similar definition would also be possible for republican or negative freedom. In fact, with
a different experimental setup one could determine the preference for each concept of freedom
separately. See Chapter 3 for such an experiment.
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her favorite card. Similarly, let Ua ∈ {1, . . . ,35} represent the possible prefer-

ences of the agent for his favorite card. In calculating this example, players are

assumed to be risk neutral.11

The game can be solved using backward induction. Obviously, the last

stage is uninfluenced by preference for freedom: If the player i with the deci-

sion right knows his preferences, he will choose the card giving payoff π̂i . If

he does not know his preferences, but the other player has made a suggestion,

he will choose the suggested card if he believes it is the card giving him payoff

π̌i (in equilibrium, this is the case). In all other cases, the player will choose

the default card giving payoff π̄.

For the player j without the decision right, strategies are similarly simple:

In case he knows his preferences, he will recommend the card giving payoff π̂ j

to himself and π̌i to the other player. In case he does not know his preferences,

he will recommend the card giving payoff π̄.

In the previous stage, nature determines randomly whether the players learn

about their preferences over cards. This happens with the previously chosen

probabilities pi for the player with the decision right and qj for the player

without the decision right.

The stage at which preference for freedom influences the decision making

of the agents is the bidding stage. Under Nash equilibrium behavior with risk

aversion, we should observe the following optimal efforts:

p∗NE
i = arg max

pi

pi π̂i + (1 − pi)(q∗j π̌i + (1 − q∗j )π̄) − c(pi) (2.37)

q∗NE
j = arg max

q j

p∗i π̌ j + (1 − p∗i )(qj π̂i + (1 − qj)π̄) − c(qj) (2.38)

To determine efforts given preference for freedom, we need to measure

freedom in the subgame after effort has been invested. Let a(pi ,qj ,D) be

the node in the game where the player with the decision right has invested pi

and the player without the decision right has invested qj and where delegation

11It has already been verified by Fehr et al. (2013) that the players’ measured risk/loss aversion
cannot explain the behavior in the game.
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decision D ∈ {0,1} has been made. The freedom of player i with the decision

right is:

Φi,dr (subg(a,a(pi,qj ,D)),θ) =
pi(π̂i − c(pi))(α ln( 35pi

pi + (1 − pi)qj

) + 1 − α)
+ (1 − pi)qj(π̌i − c(pi))(α ln( 35(1 − pi)qj

34(pi + (1 − pi)qj)) + 1 − α)
+ (1 − pi)(1 − qj)(π̄ − c(pi))(1 − α) (2.39)

where θ are equilibrium beliefs which contain the above described behavior in

subsequent stages. The freedom of the player j who does not have the decision

right is:

Φi,ndr (subg(a,a(pi,qj ,D)),θ) =
pi(π̌ j − c(qj))(α ln( 35pi

34(pi + (1 − pi)qj)) + 1 − α)
+ (1 − pi)qj(π̂ j − c(qj))(α ln( 35(1 − pi)qj

pi + (1 − pi)qj

) + 1 − α)
+ (1 − pi)(1 − qj)(π̄ − c(qj))(1 − α) (2.40)

Under preference for freedom, the optimal efforts are given by the system

of equations:

p∗Φi = arg max
pi

Φi,dr (subg(a,a(pi,q∗j ,D),θ) (2.41)

q∗Φj = arg max
q j

Φ j,ndr (subg(a,a(p∗i ,qj ,D),θ) (2.42)

For both players, marginal utility from effort has increased, but even more so

for player i. Player j will only gain valuation from freedom with probability(1 − pi), i.e. if player i does not learn about his preferred card. Therefore, we

should expect p∗i to be larger for players who have α > 0 than players who
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maximize expected utility (α = 0).

In the delegation stage, given expected payoffmaximization we have:

D∗NE = 1(p∗1 π̂1 + (1 − p∗1 )(q∗2 π̌1 + (1 − q∗2 )π̄) − c(p∗1 )
< p∗2 π̌1 + (1 − p∗2 )(q∗1 π̂1 + (1 − q∗1 )π̄) − c(q∗1 )) (2.43)

The principal, player 1, simply compares the situation in which he has control

and plays the optimal p∗1 to the situation in which he does not have control and

plays the optimal q∗1 , subject to the other player also playing the optimal p∗2
and q∗2 . Under preference for freedom, player 1 compares the freedom in the

situation with or without delegation:

D∗Φ = 1 (Φi,dr (subg(a,a(p∗1 ,q∗2 ,0),θ) < Φi,ndr (subg(a,a(p∗2 ,q∗1 ,1),θ))
(2.44)

where use has been made of the fact that p∗i and q∗i do not depend on Ui and

Uj and therefore Φ does not depend on whether it is measured at a(p∗i ,q∗j ,D)
or at the node following the delegation decision. The above condition can be

interpreted as follows. Player 1 compares the freedom he has if he has the

decision right (Φ1,dr ) after he has not delegated (D = 0) and has played p∗1 and

the other player has played q∗2 to the freedom he has if he does not have the

decision right (Φ1,ndr ) after he has delegated (D = 1) and has played q∗1 while

the other player has played p∗2 . Looking back at (2.39) and (2.40), compared to

a player maximizing expected utility, a player with a large α will require much

larger gains in expected payoffs to delegate. Under preference for freedom, we

should therefore see lower delegation rates.

In Table 2.3 the payoffs used in the experiment by Fehr et al. (2013) are

given. The players had identical cost functions with c(p) = 25 ⋅ p2. Based

on this information, predictions of preference for freedom for a representative

player can be made.

From Table 2.4 we can see that preference for freedom improves the Nash
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Treatment π̂1 π̌2 π̌1 π̂2 π̄ /π
PLOW 40 35 20 40 10 0
LOW 40 20 20 40 10 0
HIGH 40 35 35 40 10 0
PHIGH 40 20 35 40 10 0

Table 2.3: Payoffs in each treatment

q j pi D

Treatment Obs. α = 0.1 α = 0 Obs. α = 0.1 α = 0 Obs. α = 0.1 α = 0

PLOW 19.6 25.3 27.3 61.9 65.1 54.5 16.3 0 0
LOW 15.2 26.5 27.3 67.2 65.1 54.5 13.9 0 0
HIGH 23.0 30.1 34.3 53.4 59.8 42.9 35.5 0 100
PHIGH 19.0 31.6 34.3 61.6 59.4 42.9 42.7 0 100

Table 2.4: Observed average strategies and predicted strategies with α = 0.1
and α = 0

equilibrium predictions in several ways: first, preference for freedom explains

the overprovision of effort12 by the person with the decision right. Since free-

dom increases in pi , the individual with the decision right is more willing to

contribute effort. Second, preference for freedom explains the low delegation

rates in treatments HIGH and PHIGH. For a principal with α = 0.1 the loss of

freedom in the last stage outweights the expected payoff gains associated with

delegation. While α = 0.1 was chosen to roughly optimize the match between

observed and predicted qj and pi , one could naturally improve the fit further

by considering heterogeneous agents which vary in α. For example, below

α ≈ 0.08 an individual would delegate in PHIGH and below α ≈ 0.06 also in

HIGH. With heterogeneous α, the observed delegation rates would naturally

arise out of the model.

12Observed pi (q j ) is the arithmetic mean of the strategies of the principal and the agent in
case they did (not) have the decision right. The numbers were originally reported separately for
principal and agent.
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2.9 Freedom and Voting Systems

This section makes use of and exemplifies the capacity of the measure to in-

corporate diversity information. In a democracy, it is not only important that

votes can be cast freely and have an influence on the election result, but also

that the candidates are sufficiently distinct to make the vote meaningful.

Let the political spectrum be S = [0,1]. There are three politicians com-

peting with exogeneous positions o1,o2,o3 ∈ S. Assume a point line diversity

measure (Nehring & Puppe, 2002) such that the qualitative diversity of the out-

comes is given by: v(O) = v(o1)+ d(o1,o2)+ d(o2,o3) with d(o1,o2) = (o2 −

o1)1/2 and v(o1) = 0. Then λ1 = d(o1,o2), λ2 = d(o1,o2)+d(o2,o3)−d(o1,o3)
and λ3 = d(o2,o3). The maximum diversity candidate composition is then

given by (0,0.5,1).
Define the following notation for the binomial distribution:

f nk (x) = xk(1 − x)n−k n!

k!(n − k)! (2.45)

Consider now a voting model with 2k − 1 voters where k ∈ N. Suppose

voters have preferences ui(o) = ∣∣o − αi ∣∣ where αi is distributed over S with

density p(αi) = 1. If the median voter theorem holds, we have for the distribu-

tion θ(o):
θ(o1) = ∫

o1+o2
2

0
f 2k−2
k−1 (x)(2k − 1)dx (2.46)

θ(o2) = ∫
o2+o3

2

o1+o2
2

f 2k−2
k−1 (x)(2k − 1)dx (2.47)

θ(o3) = ∫ 1

o2+o3
2

f 2k−2
k−1 (x)(2k − 1)dx (2.48)

and for the conditional distribution θ(o∣ui):
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θ(o1∣αi) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ o1+o2
2

0 f 2k−3
k−1 (x)(2k − 2)dx, o1+o2

2 < αi

1
2 f 2k−2

k−1 (αi) + ∫ o1+o2
2

0 f 2k−3
k−1 (x)(2k − 2)dx, o1+o2

2 = αi

f 2k−2
k−1 (αi) + ∫ αi

0 f 2k−3
k−1 (x)(2k − 2)dx

+ ∫ o1+o2
2

αi
f 2k−3
k−2 (x)(2k − 2)dx, o1+o2

2 > αi

(2.49)

θ(o2∣αi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ o2+o3
2

o1+o2
2

f 2k−3
k−1 (x)(2k − 2)dx,

o2+o3
2 < αi

1
2 f 2k−2

k−1 (αi) + ∫ o2+o3
2

o1+o2
2

f 2k−3
k−2 (x)(2k − 2)dx, o1+o2

2 = αi

f 2k−2
k−1 (αi) + ∫ αi

o1+o2
2

f 2k−3
k−1 (x)(2k − 2)dx

+ ∫ o2+o3

αi
f 2k−3
k−2 (x)(2k − 2)dx, o1+o2

2 < αi < o2+o3
2

1
2 f 2k−2

k−1 (αi) + ∫ o2+o3
2

o1+o2
2

f 2k−3
k−1 (x)(2k − 2)dx,

o2+o3
2 = αi

∫ o1+o2
2

o2+o3
2

f 2k−3
k−2 (x)(2k − 2)dx, o1+o2

2 > αi

(2.50)

θ(o3∣αi) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f 2k−2
k−1 (αi) + ∫ αi

o2+o3
2

f 2k−3
k−1 (x)(2k − 2)dx

+ ∫ 1
αi

f 2k−3
k−2 (x)(2k − 2)dx, o2+o3

2 < αi

1
2 f 2k−2

k−1 (αi) + ∫ 1
o2+o3

2
f 2k−3
k−2 (x)(2k − 2)dx,

o2+o3
2 = αi

∫ 1
o2+o3

2
f 2k−3
k−2 (x)(2k − 2)dx,

o2+o3
2 > αi

(2.51)

We can now measure quantitative, qualitative, and joint quantitative and

qualitative diversity in the model as well as freedom with c(o,u) = 1 and

c(o,u) = λ(o). For comparative statics purposes, let (o1,o2,o3) = (1/2 −
d,1/2,1/2+ d) with d ∈ [0,1/2].

There is a large range of possibilities for measuring qualitative diversity as

shown in Nehring and Puppe (2002). However, the differences between these

measures usually only appear when considering more than three elements. In
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our example, all reasonable measures should agree that larger d lead to larger

qualitative diversity. Here, a square root distance metric is used for qualitative

diversity:

v(o1,o2,o3) = (o3 − o2)1/2 + (o2 − o1)1/2 = 2d1/2 (2.52)

Notice that from this diversity function one can generate the diversity weights

λ(o):
λ(o1) =(d)1/2 (2.53)

λ(o2) =2(d)1/2 − 1 (2.54)

λ(o3) =(d)1/2 (2.55)

Quantitative diversity of chosen candidates can be measured by the free-

dom measure of Suppes (1996) yielding the entropy over the chosen candi-

dates:

FS(O,θ) = − 3∑
x=1

θ(ox) ln θ(ox) (2.56)

The combined quantitative and qualitative diversity as suggested in Nehring

and Puppe (2009) is:

DNP(O,θ) = − 3∑
x=1

λx θ(ox) ln θ(ox) (2.57)

So far the freedom measure has only been used in settings with a finite

number of outcomes and a finite number of preferences. Since in this example

the preference variable is continuous, the freedom measure needs to accommo-

date this, which is done here by replacing the summations with integrals:

Φ
pos(a) = ∫ 1

0
∑
o∈Oi

θ(o∣αi) ln(θ(o∣αi )
θ(o) ) dαi (2.58)

As discussed in the previous section, it is often normatively desirable for

freedom to measure both quantitative and qualitative diversity. The following
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measure attempts this by replacing the normative weights c(o,u) = λ(o):
Φ

pos,λ(a) = ∫ 1

0
∑
o∈Oi

λ(o)θ(o∣αi) ln(θ(o∣αi)
θ(o) ) dαi (2.59)

Using the above specifications for diversity and freedom, the optimal di-

versity values d were obtained by numerical optimization over each measure.
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Figure 2.3: Optimal Candidate Distance

As can be seen in Figure 2.3, a voting system maximizing the qualitative di-

versity v of candidates will naturally maximize d. A voting system maximizing

quantitative diversity will try to make all three alternatives equally likely to be

chosen. As the number of voters increases, extreme candidates are less likely

to be chosen and the quantitative diversity gain from these extreme candidates

decreases. Φpos captures these effects and its optimal candidate distance there-

fore decreases in k. Additionally, it accounts for the expected influence a voter

will have on the outcomes creating a tradeoff between greater quantitative di-

versity and causal influence. The direction and extent of this effect depends on

the voting system analyzed. The freedom measure Φpos,λ accounting for di-
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versity weights λ(A) and the diversity measure DNP strike a balance between

optimal quantitative diversity Φpos and maximal qualitative diversity v(. . .).
Concluding, the example shows that the measure can account for both

quantitative and qualitative diversity of choices in an intuitive way. In a voting

game, agents have overall very low influence on the outcomes of the game.

Therefore, the freedom measure naturally does not give radically different an-

swers than measures which do not incorporate the causal influence agents have

on outcomes.

2.10 Freedom in a Production Economy

To further illustrate the measure for positive freedom, it will be employed to

analyze freedom in a production economy, a similar problem to the one posted

in Pattanaik (1994). According to Pattanaik (1994), the problem of measuring

freedom in any interactive model of an exchange economy is that prices and

therefore also opportunity sets change both with one’s own preferences and

preferences of the other agents. Since most measures of freedom are based

on opportunity sets, they fail to give a satisfying answer to the problem, as

Pattanaik (1994) concludes.

For easier exposition, some simplifying assumptions on the production

economy will be made. Suppose there is a single13 consumer and a single firm,

which produces an output good (food, x1) from an input good (labor, l). The

firm is maximizing its payoff π = f (l)p − lw and the consumer is maximizing

his utility Uα = α ln(x1) + (1 − α) ln x2 over food consumption and leisure

(x2 = 1 − l) and completely owns the company. The budget constraint of the

agent is then px1 + w(1 − l) = π + w. The production function of the firm is

linear with an efficiency parameter γ: f (l) = γl.

It can be shown that in this economy the firm earns zero profit and the

13The author is aware of the fact that the common interpretation of this model is that there are
many consumers and a change in an individual’s preferences has no impact on prices. This does
not affect the point made by this section, since the setting could be changed to a game theoretic
one and instabilities in prices or technology would still have the same effect on freedom.
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equilibrium consumption of food is x∗1 = αγ while equilibrium leisure is x∗2 =
1 − α with an equilibrium relative price w

∗/p∗ = γ. Although this is not a

game, the measure can still be employed in exactly the same manner. Positive

freedom is the effect of the preferences on certain relevant outcomes, where an

obvious choice here is the consumption of food.14.

To measure freedom, a preference expansion is needed, which specifies

the set of utility functions and the probability with which each utility function

occurs. Let us assume U = {Uα ∶ α ∈ [(1 − c)/2,(1 + c)/2] and p̂(Uα) =
1/(c), i.e. the preference parameter is uniformly distributed over an interval

of size c. This can be interpreted as the reasonable preferences an individual

may have. If there is no further uncertainty added, preferences completely

determine consumption and freedom should be high. However, suppose some

random weather conditions may affect the efficiency of the firm. γ is therefore

random with γ ∈ {(1 − d)/2,(1 + d)/2} and p̂(γ) = 1/d, i.e. γ is distributed

uniformly around 1/2 with the support determined by d < 1.

Since both variables are continuous, the measure needs to accommodate

this, which is done here by replacing the summations with integrals:

Φ
pos(a) = ∫ (1+c)/2

(1−c)/2
p̂(uα)∫ x(α)

x(α)
θ(x1 ∣uα) ln(θ(o∣uα)

θ(o) ) dαdx1 (2.60)

where x(α) and x(α) are the minimal and maximal values x∗1 can take, given

uα . Φpos measures how much the preference parameter α influences the equi-

librium consumption x∗1 . For simplicity, c(o,u) = 1 and d(o,u) = 0.

The derivations to obtain the conditional distribution θ(x1 ∣uα) and the

marginal distribution θ(x1) are provided in the appendix. Given these dis-

tributions, one can plot Φpos as a function of the parameters c and d. The

graph is given in Figure 2.4 and shows two main effects:

First, the wider the support of the reasonable preferences, the higher the

freedom. This is due to the fact that more preferences become reasonable: For

14In principle, it would of course be possible to also consider combinations of food consumption
and leisure as the outcome variable. However, it would not provide much further insight, since
leisure is already a deterministic function of the preference parameter α only.
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Figure 2.4: Freedom in a Production Economy

example a person who can also live with less sleep or with less food than others

draws from a wider array of reasonable preferences, since she may also prefer

to eat very little and have lots of leisure or have little leisure and lots of food.

This effect could also be observed in the measure of Jones and Sugden (1982).

Second, the more random the productivity, the smaller the freedom mea-

sure. This is intuitive, since food consumption depends more on tomorrow’s

weather conditions than on the consumer’s preferences. An individual is less

free, if her consumption of food is strongly dependent on fluctuating weather

conditions and does not face stable food production. Since the technology

directly determines prices here, this argument extends to price stability: The

more stable the prices are, the greater the freedom of an agent. The simple

model of this section therefore provides microfoundations for the use of price

stability as an indicator of freedom as for example done in Gwartney et al.

(2010).15

15It has of course to be noted that the price stability in this model refers to relative price stability
and not absolute price level stability. However, it is clear how an extension to an intertemporal
framework with real imperfections would yield the same result for absolute price level stability
over time. If unstable prices influence consumption, freedom will decrease as there is less room
for individual preferences to influence consumption.
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The example application shows how the measure can be employed in stan-

dard economic models. It also yields some intuitive comparative statics results.

This opens the door for policy evaluation not solely based on welfarist or utili-

tarian evaluations, but also based on freedom.

2.11 Concluding Remarks

The paper has proposed a class of freedom measures for extensive form games.

It has shown that such measures can be applied in a wide range of economic

models, where freedom is normatively relevant. In many of these applica-

tions there already exist measures for normatively relevant phenomena such

as option diversity, discrimination, voting power or price stability. The mea-

sure presented in this paper however provides a unified normative framework

according to which one can evaluate all these cases.

The paper has also shown that aside from its use in normative economics,

the measure has the potential to explain behavior in situations where individ-

uals can influence their freedom with their actions. It may well be the case

that the abstract philosophical idea that freedom is normatively desirable has

behavioral roots in the fact that individuals have non-instrumental preference

for freedom.

In both positive and normative economics, there is a large potential for

further research. An axiomatic foundation of preference for freedom may be

interesting, but also further investigations in variants of the authority game

may explore to what degree individuals indeed have a preference for freedom.

Possible normative applications include more interesting variants of the simple

models used in this paper and other topics such as taxation, trade policy, and

political rights.



Appendix

2.A Axiomatization of the measure

This section axiomatizes a measure of causal influence between two variables

A and O that is general enough (i.e. allows for normative inputs) to measure

freedom in the ways it is measured in this paper. Φpos and Φneg are instances

of the measure that will be axiomatized while Φrep is a maximized version of

it. It should be noted that the axiomatization is not based on game-theoretic

primitives but on a probability distribution P over A and O. A is to be inter-

preted as either the actions of an agent or the preferences. O is to be interpreted

as the outcomes like in the main body of the paper.

The measure will be developed in two steps: In the first, a given background

state bx is assumed. For this state, a measure Ψ is developed which states the

degree to which a certain action ai influences a certain outcome os . Since

Ψ will be a probabilistic measure of influence without any interpretation of

freedom, no further information beyond the probabilities is admitted. Ψ will

be called a causal influence measure. In a second step, the values for Ψ are

aggregated over i, s, x into an aggregate freedom measure Φ which describes

the general influence of A on O under background conditions B. This is in line

with the idea that the freedom measure should be based on the causal influence

of individuals on outcomes. The aggregate freedom measure Φ however must

also permit additional information which is relevant to distinguish freedom

from blunt causal influence.
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2.A.1 Causal Influence Measure

The first step in the axiomatization is to find a measure of causal influence

Ψ(ai ,os ∣bx). The state bx can be interpreted as a state that is conditioned on,

such that the setting in which causation is measured is causally homogenous

(Cartwright, 1979). This ensures that the causal relation between ai and os

is measured and not the influence of a third factor on both states. A causal

influence measure is thus defined in the following way:

Definition 2.7. Causal Influence Measure:

A function Ψ(ai ,os ∣bx) = f (P(A ∩O ∩ B)) where A ↪ O and B ↪ A holds,

is called a causal influence measure of a state ai on a state os in a causally

homogenous state bx .

Various causal strength measures have been presented in the literature, over

which Fitelson and Hitchcock (2011) gives an overview. A first axiom seems

immediately plausible:

Axiom 2.1. Independence:

∀ j ∶ P(a j ∩ os ∣bx) = P(a′j ∩ o′s ∣bx) and

∀t ∶ P(ai ∩ ot ∣bx) = P(a′i ∩ o′t ∣bx) jointly imply:

Ψ(ai ,os ∣bx) = Ψ(a′i ,o′s ∣bx)
The independence axiom states that the measure is independent of the prob-

abilities of antecedents and outcomes unrelated to the antecedent and the out-

come that is being considered. It is very intuitive to assume that the probability

of an unrelated cause-effect combination should have no impact on the mea-

sure. In the example of the Bayesian game, one may want to know the influ-

ence of player 2 playing L after A1 = U on obtaining outcome o2. Then the

probability of playing R and obtaining o3 should be irrelevant to the measure.

Next, we may want the measure to be independent of homogenous transfor-

mations among the probabilities of antecedents and outcomes. If an antecedent

is simply less likely, the measure should not change:



2.A. AXIOMATIZATION OF THE MEASURE 59

Axiom 2.2. Homogeneity in Antecedents:

P(A∩O∣bx) = P(A′ ∩O′∣bx) except:

∀t ∶ P(ai ∩ ot ∣bx) = αP(a′i ∩ o′t ∣bx) and

∀t ∶ P(aī+1 ∩ ot ∣bx) = (1 − α)P(a′i ∩ o′t ∣bx) jointly imply:

Ψ(ai ,os ∣bx) = Ψ(a′i ,o′s ∣bx) for α ∈ (0,1].
The somewhat complicated form is due to the fact that probabilities must

always sum to one and thus the probability mass needs to be reallocated to other

states. Here this happens by introducing a new action state and allocating the

probability mass between the action state ai and the new state aī+1 according

to a factor α. Consider the above example again: In background state A1 = U,

player 2 choosing L completely determines that o1 will come about. Then no

matter how likely it is that player 2 chooses L, the measure of causal influence

of L on o1 should return a high value.

The next axiom states the same for outcomes. The degree to which an

outcome is influenced by an action is independent of how probable the outcome

is in general:

Axiom 2.3. Homogeneity in Outcomes:

P(A∩O∣bx) = P(A′ ∩O′∣bx) except:

∀ j ∶ P(a j ∩ os ∣bx) = βP(a′j ∩ o′s ∣bx) and

∀ j ∶ P(a j ∩ os̄+1∣bx) = (1 − β)P(a′j ∩ o′s ∣bx) jointly imply:

Ψ(ai ,os ∣bx) = Ψ(a′i ,o′s ∣bx) for β ∈ (0,1].
This axiom expresses that the measure is about how much the relative ef-

fect of the antecedent ai is on the occurrence of the outcome os . The measure

should be independent of the probability with which the outcome comes about

in general. Homogeneity in Outcomes and Homogeneity in Antecedents are

thus two sides of the same coin, stating that absolute probability levels do not

matter, but only relative influence. This is the main difference to the causal

influence measure of Braham (2006), where the absolute probability level mat-

ters. Unfortunately, one link to the probability of an outcome is unavoidable: If

the outcome occurs with certainty P(os ∣bx) = 1 or never occurs P(os ∣bx) = 0,
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then the antecedents have no control over whether the outcome occurs or not.

Also, if the probability of os converges to zero or one, the probability of ai

needs to converge to zero for the value of the measure to remain unchanged.

These floor effects are unfortunately unavoidable.

Axiom 2.4. Irrelevance of Substitution among other Outcomes:

P(A∩O∣bx) = P(A′ ∩O′∣bx) except:

P(ai ∩ ot ∣bx) = P(a′i ∩ o′t ∣bx) + ǫ with j ≠ i and

P(ai ∩ ou ∣bx) = P(a′i ∩ o′u ∣bx) − ǫ with k ≠ i jointly imply:

Ψ(ai ,os ∣bx) = Ψ(a′i ,o′s ∣bx) for 0 ≤ ǫ ≤ min(P(a′k ∩os ∣bx),1−P(a′j ∩os ∣bx)).
This axiom states that the probabilities P(ai ∩ ot ∣bx) with t ≠ s are perfect

substitutes. This may be seen as a sharpening of the independence axiom. Not

only do unrelated probabilities not matter as we have seen above, but even

the probabilities which to some extent are related (the other outcomes which

may occur after the antecedent) matter only in their sum. This can again be

exemplified by the above game. Suppose one is interested in the causal effect

of player 2 choosing L on whether o1 occurs. Then the probability of choosing

R and obtaining o2 influences the measure the same way as the probability of

choosing R and obtaining o3. This is natural as long as one assumes that all

alternatives are equally distinct. If o1 and o3 are qualitatively very similar, one

may disagree with treating both equally.

Axiom 2.5. Irrelevance of Substitution among other Antecedents:

P(A∩O∣bx) = P(A′ ∩O′∣bx) except:

P(a j ∩ os ∣bx) = P(a′j ∩ o′s ∣bx) + ǫ with j ≠ i and

P(ak ∩ os ∣bx) = P(a′k ∩ o′s ∣bx) − ǫ with k ≠ i jointly imply:

Ψ(ai ,os ∣bx) = Ψ(a′i ,o′s ∣bx) for 0 ≤ ǫ ≤ min(P(a′k ∩os ∣bx),1−P(a′j ∩os ∣bx)).
The interpretation of this axiom is analogue to the interpretation of Axiom

2.4 above.
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Axiom 2.6. Monotonicity16:

Ψ(ai ,os ∣bx) is strictly decreasing in P(a j ∩ os ∣bx) and P(ai ∩ ot ∣bx) for all

j ≠ i and t ≠ s unless P(ai ∩ os ∣bx) = 0.

The monotonicity axiom ensures the compliance of the measure with the

following intuition: Suppose we want to measure how much ai causes os . If

the probability of os is high even if ai does not occur, ai causes os to a lower

degree than if the probability of os without ai was lower. To put it more simply,

the axiom follows the logic: ’How can ai cause os if os is going to happen

anyways?’ Only if the joint probability of the antecedent and the outcome

occurring is zero, this does not hold.

Given the above axioms, we can now characterize a general form of the

measure Ψ:

Theorem 2.1. The axioms Independence, Homogeneity in Antecedents, Ho-

mogeneity in Outcomes, Irrelevance of Substitution among other Antecedents,

Irrelevance of Substitution among other Outcomes, and Monotonicity imply

Ψ(ai ,os ∣bx) = ψ( P(ai∩os ∣bx)
P(ai ∣bx)P(os ∣bx)) where ψ(. . . ) can be any strictly increas-

ing function.

Theorem 2.1 gives a way to measure the causal strength of ai on os given

bx . Fitelson and Hitchcock (2011) gives an overview and discussion of other

measures, which however all fail at least one of the above axioms.

2.A.2 Aggregate Freedom Measure

What we are interested in, is the overall freedom of the agent, which can of

course not be reduced to a single antecedent-outcome-background state com-

bination. For example, in different states of B, there may be more or less

influence of the antecedent on the outcomes. Also, there may be different ac-

tions with which the agent can influence the outcomes. Therefore, the next step

16An alternative, and equally intuitive Monotonicity axiom would be that Ψ(ai, os ∣bx) is
strictly increasing in the conditional probability P(os ∣ai ∩ bx) under redistributions such that
∑t P(ot ∣ai ∩ bx) = 1 holds. Both versions are equivalent given the other axioms. Preference is
given here to the one with the simpler exposition.
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is to find a reasonable way to aggregate the causal strength measures of each

combination ai , os , and bx into an overall measure of freedom. It seems plau-

sible to say that the overall measure ΦZ(A,O,B) is a function of the statewise

measures Ψ(ai ,os ∣bx) and some further information Z , which one may con-

sider relevant for the measure. The further information Z is crucial here, since

it allows the measure not only to capture more than just the causal relationship

between the variables: In the capabilities framework, an agent may have a high

influence on his functioning vector but only through illegal actions. In the rea-

sonable preference framework an agent may always obtain the lowest ranked

alternative instead of the highest one. In a game of incomplete information,

a player may not be aware in which way her actions influence the outcomes.

In all these cases the causal influence of the antecedents on the outcomes are

high, but intuitively freedom still remains low. By adding further information,

such as whether an action is legal, how a preference relation ranks the outcome

or what the beliefs of a player are, one can control for such cases.

It is assumed that the additional relevant information Z = {z1,1,1, . . . , zī, s̄, x̄}
is partitioned such that zi,s,x contains all the relevant information for the state

ai ∩ os ∩ bx .

Definition 2.8. Aggregate Freedom Measure:

ΦZ(A,O,B) = G(Ψ(A,O∣B),P(A∩O∩B),Z), where Z contains all further in-

formation we may consider relevant for our freedom measure, andΨ(A,O∣B) ={Ψ(a1,o1∣b1), . . . ,Ψ(aī ,os̄ ∣bx̄)}.

This definition rests at the very heart of the freedom measure, since it states

that the aggregate freedom measure is a function of the statewise causal in-

fluence measures. To simplify notation, define ξi,s,x ≡ P(ai∩os ∣bx)
P(ai ∣bx)P(os ∣bx) =

ψ−1(Ψ(ai ,os ∣bx)). Note that ψ(. . . ) has not yet been further specified. Since

ψ is a strictly increasing function, any function h(ψ(a),ψ(b), . . . ) can be di-

rectly expressed as hψ(a,b, . . . ) without imposing further assumptions. In par-
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ticular,

G(Ψ(A,O∣B),P(A∩O ∩ B),Z) ≡
Gψ(ψ−1(Ψ(a1,o1∣b1)), . . . ,ψ−1(Ψ(aī ,os̄ ∣bx̄)),P(A∩O ∩ B),Z)

= Gψ(ξ1,1,1, . . . , ξī, s̄, x̄ ,P(A∩O ∩ B),Z). (2.61)

This is useful for the following axioms.

Axiom 2.7. Unbiasedness:

ΦZ(A,O,B) = H(hψ(ξ1,1,1,P(a1 ∩ o1 ∩ b1), z1,1,1), . . . ,hψ(ξī, s̄, x̄ ,P(aī ∩ os̄ ∩

bx̄), zī, s̄, x̄)) and H(. . . ) is a symmetric function.

The axiom states that the aggregate is a symmetric function H of identical

functions h which each take the value of the statewise measure Φ(ai ,os ∣bx),
the probability of this state P(ai ∩ os ∩ bx), and the related information zi,s,x

into account.

Note that the arguments ξi,s,x to the function hψ are measured on indepen-

dent ratio scales17 and therefore the admissible information preserving transfor-

mations are multiplications by constants for each value. From the mathematical

theory of aggregation (Aczél & Roberts, 1989) we know that the scale type of

both input and output variables is highly relevant for the correct specification

of an aggregation function. For maximal generality, it is assumed that the final

measure has at least ordinal scale18. According to Kim (1990), the measure

then needs to fulfill the following functional equation:

17For each argument ξi,s,x of the function we have a natural zero P(ai ∩ os ∣bx) = 0 and
neutral elements P(ai ∩ os ∣bx) = P(ai ∣bx)P(os ∣bx).

18The remaining axioms indeed imply that the final measure has cardinal scale. A stronger scale
type axiom requiring cardinal scale of the final measure however does not imply the remaining
axioms.
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Axiom 2.8. Scale Type:

The measure fulfills the functional equation:

Gψ(λ1,1,1ξ1,1,1 , . . . , λ ī, s̄, x̄ ξī, s̄, x̄ ,P(A∩O ∩ B),Z) =
Ĝψ(λ1,1,1, . . . , λ ī, s̄, x̄ ,Gψ(ξ1,1,1 , . . . , ξī, s̄, x̄ ,P(A ∩O ∩ B),Z)) (2.62)

The interpretation of the scale type axiom is the following: If one performs

linear transformations of the causal strength measures, then one obtains order-

maintaining transformations of the aggregate measure. If an aggregate measure

fails to fulfill this axiom, this means that it attempts to extract additional infor-

mation from ξi,s,x , which are beyond its ratio-scale nature.

The following branching axioms deal with the question how the measure

should react if the state descriptions become more detailed.

Axiom 2.9. Antecedent Branching:

P(A∩O ∩ B) = P(A′ ∩O′ ∩ B′) and Z = Z ′ except for some x,i:

∀s ∶ P(ai ∩ os ∩ bx) = αP(a′i ∩ o′s ∩ b′x) and

∀s ∶ P(aī+1 ∩ os ∩ bx) = (1 − α)P(a′i ∩ o′s ∩ b′x) and

∀s ∶ zī+1,s,x = z′i,s,x jointly imply:

ΦZ(A,O,B) = ΦZ ′(A′,O′,B′) for α ∈ [0,1].

The antecedent branching axiom is formally strongly related to the homo-

geneity in antecedents in the statewise causal strength measure. Its interpre-

tation is different however for the aggregate: It states that the aggregate mea-

sure should not change if an antecedent is split into two actions that have the

same probabilistic structure such that their probabilities are linearly dependent.

Thus, the idea is here that if we specify the states in more detail, the measure

does not change if these details yield linearly dependent probabilities.
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Axiom 2.10. Outcome Branching:

P(A∩O ∩ B) = P(A′ ∩O′ ∩ B′) and Z = Z ′ except for some x, s:

∀i ∶ P(ai ∩ os ∩ bx) = βP(a′i ∩ o′s ∩ b′x) and

∀i ∶ P(ai ∩ os̄+1 ∩ bx) = (1 − β)P(a′i ∩ o′s ∩ b′x)
∀i ∶ zi, s̄+1,x = z′i,s,x jointly imply:

ΦZ(A,O,B) = ΦZ ′(A′,O′,B′) for β ∈ [0,1].

The Outcome Branching axiom has a similar interpretation as the An-

tecedent Branching axiom, except for that it applies to outcomes. One can

thus understand it such that the distinction between two outcomes does not

matter if in each situation the probabilities are linearly dependent of each other

and thus the Ψ measure is identical in both.

Axiom 2.11. Background Branching:

P(A∩O ∩ B) = P(A′ ∩O′ ∩ B′) except for some x:

∀i,t ∶ P(ai ∩ ot ∩ bx) = γP(a′i ∩ o′t ∩ b′x) and

∀i,t ∶ P(ai ∩ ot ∩ bx̄+1) = (1 − γ)P(a′i ∩ o′t ∩ b′x)
∀i, s ∶ zi,s, x̄+1 = z′i,s,x jointly imply:

ΦZ(A,O,B) = ΦZ ′(A′,O′,B′) for γ ∈ [0,1].

The Background Branching axiom now applies the branching property to

the restrictions: If we have two states of the background variable under which

the conditional probabilities of the actions and outcomes are the same, then it

does not change the measure if we integrate these two background states into a

single state.

To obtain a full characterization, we need to add an axiom of how the values

of different variables should be comparable.



2.A. AXIOMATIZATION OF THE MEASURE 66

Axiom 2.12. Additivity:

P(A∩O ∩ B)P(A′ ∩O′ ∩ B′) = P(A∩O ∩ B ∩ A′ ∩O′ ∩ B′)⇒
ΦZ(A,O,B)+ΦZ ′(A′,O′,B′) = ΦZ ′′(A∩ A′,O ∩O′,B ∩ B′) (2.63)

where Z ′′ is an appropriate union of the information contained in Z and

Z ′. The Additivity axiom regulates how independent situations add up in their

freedom. Namely, if two sets of variables A,O,B and A′,O′,B′ are indepen-

dent, measuring the freedom via the joint variables A ∩ A′, O ∩O′, B ∩ B′ is

equivalent to adding up the freedom values separately. The Additivity axiom

makes no restrictions if the probabilities are not independent, for example if

the antecedent in one situation also affects the outcome of the other situation.

It is also possible to consider non-additive measures. For example eΦ
pos

is a

measure which is multiplicative. However, all measures not fulfilling the Addi-

tivity axiom will be monotone transformations thereof, as evident from (2.103)

of the axiomatization proof.

Finally, some technical issues also need to be addressed by the following

regularity axiom:

Axiom 2.13. Regularity:

Continuity: For given variables A,O,B, the aggregate measure ΦZ(A,O,B)
is a continuous function of P(A∩O ∩ B) and Ψ(A∩O ∩ B).
Boundedness: ∃Φ ∈ R ∶ ∣ΦZ(A,O,B)∣ ≤ Φ for a given number of antecedents

and outcomes and for some A,O,B it has to hold that Φ > 0.

Responsiveness: ∃Z ∶
∆ΦZ (A,O,B)
∆Ψ(A∩O∩B) ≠ 0.

The boundedness requirement states that for a given number of states of an-

tecedents, outcomes, and restrictions the measure has a maximum (minimum)

value it either reaches or converges to. Responsiveness ensures that the mea-

sure is in fact a function of the statewise measures of influence and does not

only depend on Z .

Given these axioms, the measure can be characterized in the following way:
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Theorem 2.2. The axioms Unbiasedness, Scale Type, Action Branching, Out-

come Branching, Restriction Branching, Additivity, and Regularity imply that

the aggregate measure takes the form:

ΦZ(A,O,B) = ∑
i,s,x

P(ai ∩ os ∩ bx) ⋅ ⎛⎝c(zi,s,x )
⋅ ln( P(ai ∩ os ∣bx)

P(ai ∣bx)P(os ∣bx)) + ln d(zi,s,x)⎞⎠ (2.64)

with for all A′,O′,B′ independent of A,O,B:

c(zi,s,x) =
P(ai ∩ os ∩ bx) ∑

i′,s′,x′
P(a′i′ ∩ o′s′ ∩ b′x′)c(z′′i,s,x,i′,s′,x′) (2.65)

∏
i,s,x

d(zi,s,x)P(ai∩os∩bx) =

∏
i,s,x,i′ ,s′,x′

d(z′′i,s,x,i′,s′,x′)P(ai∩os∩bx)P(a′i′∩o
′
s′∩b

′
x′)

d(z′
i′,s′,x′)P(a′i′∩o′s′∩b′x′) . (2.66)

Note that all the non-probabilistic information is aggregated into c and d.

The former determines the weight of a certain action-outcome-restriction state

combination, while the latter is a scalar of the whole measure. Also, the base of

the logarithm may be changed via a rescaling of c(. . . ). To clarify the features

of the measure it may be useful to return to the example from Section 2.3:

2.A.3 Proof of Theorem 2.1

Proof. We start with the definition of a causal influence measure:

Ψ(ai ,os ∣bx) = f (P(A ∩O ∩ B)) (2.67)
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By independence,

f (P(A ∩O ∩ B)) =
f̂ (P(a1 ∩ os ∣bx), . . . ,P(aī ∩ os ∣bx),P(ai ∩ o1∣bx), . . . ,P(ai ∩ os̄ ∣bx)).

(2.68)

By the two substitution axioms,

f̂ (. . . ) = g(P(ai ∩ os ∣bx),∑
j≠i

P(a j ∩ os ∣bx),∑
t≠s

P(ai ∩ ot ∣bx))
= g (P(ai ∩ os ∣bx),P(ai ∣bx) − P(ai ∩ os ∣bx),P(os ∣bx) − P(ai ∩ os ∣bx))

≡ h (P(ai ∩ os ∣bx),P(ai ∣bx),P(os ∣bx)) . (2.69)

The homogeneity axioms now imply that h has to fulfill the following func-

tional equation:

h (αβP(ai ∩ os ∣bx), βP(ai ∣bx),αP(os ∣bx)) =
h (P(ai ∩ os ∣bx),P(ai ∣bx),P(os ∣bx)) . (2.70)

Since the functional equation has to hold for all possible values of β, we can

assume for a moment β = 1. This implies that the function h is homogeneous

of degree zero in the two variables P(ai ∩ os ∣bx) and P(os ∣bx). By Aczél and

Dhombres (1989) it then has the general solution:

h (P(ai ∩ os ∣bx),P(ai ∣bx),P(os ∣bx)) = ĥ (P(ai ∩ os ∣bx)
P(os ∣bx) ,P(ai ∣bx))

(2.71)

where ĥ can be any arbitrary function. ĥ however is a solution to the functional

equation (2.70) if and only if for all β

ĥ(β P(ai ∩ os ∣bx)
P(os ∣bx) , βP(ai ∣bx)) = ĥ(P(ai ∩ os ∣bx)

P(os ∣bx) ,P(ai ∣bx)) . (2.72)
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We again have a functional equation by which ĥ is homogeneous of degree zero

in two variables, P(ai∩os ∣bx)
P(os ∣bx) and P(ai ∣bx). Applying the solution from Aczél

and Dhombres (1989) again yields as the solution to the functional equation

(2.70):

Ψ(ai ,cs ∣bx) = ψ ( P(ai ∩ os ∣bx)
P(ai ∣bx)P(os ∣bx)) . (2.73)

The monotonicity axiom now implies that ψ(. . . ) needs to be a strictly increas-

ing function since its argument is decreasing in P(a j∩os ∣bx) and P(ai∩ot ∣bx)
for all j ≠ i and t ≠ s. �

2.A.4 Proof of some useful Lemmas

For the proof of Theorem 2.2, some Lemmas will be necessary. Since the

measure assumes Responsiveness, all Lemmas will also focus on responsive

solutions.

Proof. Some lemmas will be useful for the proof and are thus stated first:

Lemma 2.1. (Kim, 1990) The class of continuous functions u ∶ Rn → R ful-

filling the functional equation u(γ1x1, . . . ,γnxn) = f (γ1, . . . ,γn ,u(x1, . . . xn))
with ∀i ∶ γi > 0 and xi > 0 and where f is strictly increasing in u(. . . ), is:

u is constant or u(x1, . . . , xn) = g(∏n
i x

di

i )where di can be arbitrary constants

and g is continuous and strictly increasing.

The proof is given by Kim (1990). The next two lemmas are useful functional

equations:

Lemma 2.2. ∀a,b ∶ g(a)+ h(b) = i(v(a) ⋅ w(b)) implies:

g(x) = c1 + c2 ⋅ ln v(x), h(x) = c3 + c2 lnw(x), i(x) = c1 + c3 + c2 ⋅ ln x

Proof. Set i∗(ln x) = i(x) to obtain g(a)+ h(b) = i∗(ln v(a)+ lnw(b)) from

the assumption g(a) + h(b) = i(v(a) ⋅ w(b)). The solution to this functional

equation is (Polyanin & Zaitsev, 2004): g(x) = c1 + c2 ⋅ ln v(x), h(x) = c3 +

c2 ⋅ lnw(x) and i∗(x) = c1+ c3+ c2 ⋅ x. From i∗(ln x) = i(x) we then know that

i(x) = c1 + c3 + c2 ⋅ ln x as desired. �
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Lemma 2.3.

∀A,B, x, y ∶ g(A ⋅ x) + g(B ⋅ y) = g(C ⋅ x ⋅ y) (2.74)

implies: g(x) = c ⋅ ln(x), C = A ⋅ B.

Proof. Holding A,B,C constant, we define:

gA(x) = g(A ⋅ x) (2.75)

gB(y) = g(B ⋅ y) (2.76)

gC(x ⋅ y) = g(C ⋅ x ⋅ y) (2.77)

and thus obtain the functional equation:

gA(x) + gB(y) = gC(x ⋅ y) (2.78)

By Lemma 2.2, we have as a solution:

gA(x) = ĉ1 + ĉ2 ln(x) (2.79)

gB(y) = ĉ3 + ĉ2 ln(y) (2.80)

gC(xy) = ĉ4 + ĉ2 ln(xy) (2.81)

where c4 = c1 + c3 must hold. Holding A,B,C no longer constant, we notice

that ĉ2 cannot be a function of any of these arguments, since it appears in all

three equations. However, ĉ1 can still be a function of A, so we have:

g(A ⋅ x) = ĉ1(A) + ĉ2 ln(x) (2.82)

which is a special form of the functional equation i(a ⋅ b) = g(a)+ h(b) from

Lemma 2.2, which we can therefore apply:

g(A ⋅ x) = c1 + c3 + c2 ln(A ⋅ x) (2.83)
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One can quickly verify that this solution is in line with equations (2.79) to

(2.81). However, we still need to verify (2.74). Inserting the solution yields:

2c1 + 2c3 + c2 ln(A ⋅ x) + c2 ln(B ⋅ y) = c1 + c3 + c2 ln(C ⋅ x ⋅ y) (2.84)

Simplifying yields:

c1 + c3 + c2 ln(A ⋅ B) = c2 ln(C) (2.85)

From which follows that c1 = c3 = 0 and focussing on the responsive solution

with c2 ≠ 0 we also need A ⋅ B = C. �

Lemma 2.4. ∀A,B,ai, xi ,bj , y j ∶

g (A ⋅∏
i

a
xi
i ) + g ⎛⎝B ⋅∏

j

b
y j

j

⎞⎠ = g ⎛⎝C ⋅∏
i

a
x′i
i ⋅∏

j

b
y′j
j

⎞⎠ (2.86)

implies: g(x) = c ⋅ ln x and A ⋅ B = C and ∀i ∶ xi = x′i and ∀ j ∶ y j = y′j .

Proof. The proof proceeds in two steps. First it will be shown that xi = x′i and

y j = y
′
j for all i, j. The second step is then a direct application of Lemma 2.3.

Further, define:

ğA (axi
i ) ≡ g (A ⋅∏

i

a
xi
i ) (2.87)

holding all factors except a
xi
i constant and

ğB (by j

j ) ≡ g ⎛⎝B ⋅∏
j

b
y j

j

⎞⎠ (2.88)

holding all factors except b
y j

j constant and

ğC (ax
′
i

i ⋅ b
y
′
j

j ) ≡ g ⎛⎝C ⋅∏
i

a
x
′
i

i ⋅∏
j

b
y
′
j

j

⎞⎠ (2.89)
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holding all factors except a
x′i
i and b

y′j
j constant.

From equation (2.86) we now obtain:

ğA (axi
i ) + ğB (by j

j ) = ğC (ax′i
i ⋅ b

y′j
j ) . (2.90)

if we hold everything except ai , xi , x
′
i ,bj , y j , y

′
j constant. This equation we can

rewrite:

ğA (axi
i ) + ğB (by j

j ) = ğC ((axi
i )x′i /xi ⋅ (by j

j )y′j /yi) (2.91)

which allows us to use Lemma 2.2 yielding:

ğA (axi
i ) = d̆A + c̆ ⋅ ln(ax′i

i ) (2.92)

ğB (by j

j ) = d̆B + c̆ ⋅ ln(by′jj ) (2.93)

Note that the constants d̆A, d̆B , and c̆ become functions of the variables held

constant before, once these are no longer held fixed:

g (A ⋅∏
i

a
xi
i ) = d̆ (A∏

k≠i
a
xk
k
) + c̆ (A∏

k≠i
a
xk
k
) ⋅ ln(ax′i

i ) (2.94)

g
⎛⎝B ⋅∏

j

b
y j

j

⎞⎠ = d̆
⎛⎝B,∏

l≠ j
b
yl
l

⎞⎠ + c̆
⎛⎝B,∏

l≠ j
b
yl
l

⎞⎠ ⋅ ln(by
′
j

j ) (2.95)

But since by equations (2.92) and (2.93) we have that

c̆ (A,∏
k≠i

a
xk
k
) = c̆

⎛⎝B,∏
l≠ j

b
yl
l

⎞⎠ , (2.96)

we know that c̆ is invariant in its arguments and thus a constant. Further, since

in equation (2.94) ai only appears in the logarithm on the RHS and to the

power of x′i , but x′i does not enter the LHS, we know that ∀i ∶ xi = x′i and

symmetrically for equation (2.95) that ∀ j ∶ y j = y
′
j . Having obtained xi = x′i
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and y j = y′j for all i, j, we can rewrite (2.86):

g (A ⋅∏
i

axi
i ) + g ⎛⎝B ⋅∏

j

b
y j

j

⎞⎠ = g ⎛⎝C ⋅∏
i

axi
i ⋅∏

j

b
y j

j

⎞⎠ (2.97)

We apply Lemma 2.3 to equation (2.97) from which follows C = A ⋅ B and

g(x) = c ln(x)
�

2.A.5 Proof of Theorem 2.2

For the main proof of Theorem 2.2, we start out with the definition of the

aggregate freedom measure:

ΦZ(A,O,B) = G (Ψ(A,O∣B),P(A∩O ∩ B),Z)
= Gψ (ξ1,1,1 , . . . , ξ ī, s̄, x̄,P(A ∩O ∩ B),Z) . (2.98)

By Lemma 2.1, the scale type axiom and the regularity axiom (continuity, re-

sponsiveness) then imply that the measure takes the form

g
⎛⎝∏i,s,x (ξi,s,x )c̃i,s,x(P(A∩O∩B),Z) ,P(A∩O ∩ B),Z⎞⎠ .

Further, the unbiasedness axiom implies: c̃i,s,x (P(A ∩O ∩ B),Z) = ĉ(P(ai ∩

os ∩ bx), zi,s,x ) and also:

g
⎛⎝∏i,s,x(ξi,s,x )ĉ(P(ai∩os∩bx),zi,s,x),P(A∩O ∩ B),Z⎞⎠ =
ĝ
⎛⎝∏i,s,x(ξi,s,x )ĉ(P(ai∩os∩bx),zi,s,x) ⋅ d̂ (P(ai ∩ os ∩ bx), zi,s,x )⎞⎠ (2.99)

where ĝ is a strictly increasing function. The branching axioms now directly

imply that ĉ(P(ai ∩ os ∩ bx), zi,s,x ) is homogenous of degree one in P(ai ∩
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os ∩bx). By the homogeneity equation (Aczél & Dhombres, 1989, p. 345) this

implies

ĉ (P(ai ∩ os ∩ bx), zi,s,x ) = P(ai ∩ os ∩ bx)c̆(zi,s,x ). (2.100)

The branching axioms also imply

d̂ (P(ai ∩ os ∩ bx), zi,s,x ) = d̂ (αP(ai ∩ os ∩ bx), zi,s,x )
⋅d̂ ((1 − α)P(ai ∩ os ∩ bx), zi,s,x ) . (2.101)

Holding zi,s,x fixed, this is an exponential Cauchy equation and thus has the

solution (Aczél & Dhombres, 1989, p. 28):

d̂ (P(ai ∩ os ∩ bx), zi,s,x ) = d̆(zi,s,x )P(ai∩os∩bx). (2.102)

Implementing the above results into equation (2.98) yields:

ΦZ(A,O,B) = ĝ⎛⎝∏i,s,x(ξi,s,x )P(ai∩os∩bx)c̆(zi,s,x) ⋅ d̆(zi,s,x )P(ai∩os∩bx)⎞⎠ .
(2.103)

What remains to be specified is the function ĝ. For this, we can use the Addi-

tivity axiom, which now states:

ĝ
⎛⎝∏i,s,x(ξi,s,x )P(ai∩os∩bx)c̆(zi,s,x) ⋅ d̆(zi,s,x )P(ai∩os∩bx)⎞⎠
+ ĝ
⎛⎝ ∏i′,s′,x′(ξ′i′,s′,x′)P(a

′
i′∩o

′
s′∩b

′
x′)c̆(z

′
i′,s′,x′) ⋅ d̆(z′i′,s′,x′)P(a′i′∩o′s′∩b′x′)⎞⎠ =

ĝ( ∏
i,s,x,i′ ,s′,x′

(ξi,s,x ξ′i′,s′,x′)P(ai∩os∩bx)P(a′i′∩o
′
s′∩b

′
x′)c̆(z

′′
i,s,x, i′,s′,x′)

⋅ d̆(z′′i,s,x,i′ ,s′,x′)P(ai∩os∩bx)P(a′i′∩o
′
s′∩b

′
x′)) (2.104)
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Rewriting the RHS yields:

⋅ ⋅ ⋅ =ĝ(∏
i,s,x

(ξi,s,x )P(ai∩os∩bx)∑i′,s′,x′ P(a′i′∩o
′
s′∩b

′
x′)c̆(z

′′
i,s,x, i′,s′,x′)

⋅ ∏
i′,s′,x′

(ξ′i′,s′,x′)P(a′i′∩o′s′∩b′x′)∑i,s,x P(ai∩os∩bx)c̆(z′′i,s,x, i′,s′,x′)

⋅ ∏
i,s,x,i′ ,s′,x′

d̆(z′′i,s,x,i′ ,s′,x′)P(ai∩os∩bx)P(a′i′∩o
′
s′∩b

′
x′))

Therefore, equation (2.104) has the form needed to apply Lemma 2.4. Apply-

ing this lemma yields:

ĝ(x) = ċ ⋅ ln(x) (2.105)

c̆(zi,s,x ) = ∑
i′,s′,x′

P(a′i′ ∩ o′s′ ∩ b′x′)c̆(z′′i,s,x,i′ ,s′,x′) (2.106)

c̆(z′i′,s′,x′) = ∑
i,s,x

P(ai ∩ os ∩ bx)c̆(z′′i,s,x,i′,s′,x′) (2.107)

∏
i,s,x,i′ ,s′,x′

d̆(zi,s,x )P(ai∩os∩bx) ⋅ d̆(z′i′,s′,x′)P(a′i′∩o′s′∩b′x′) =
∏

i,s,x,i′ ,s′,x′
d̆(z′′i,s,x,i′ ,s′,x′)P(ai∩os∩bx)P(a′i′∩o

′
s′∩b

′
x′) (2.108)

Define c(zi,s,x ) = c̆(zi,s,x ) ⋅ ċ to obtain the aggregate measure:

ΦZ(A,O,B) = ∏
i,s,x

(ξi,s,x )P(ai∩os∩bx)c(zi,s,x) ⋅d(zi,s,x)P(ai∩os∩bx) (2.109)

with c(zi,s,x) = ∑i′,s′,x′ P(a′i′ ∩ o′s′ ∩ b′x′)c(z′′i,s,x,i′,s′,x′) and

∏
i,s,x,i′ ,s′,x′

d(zi,s,x)P(ai∩os∩bx) ⋅ d(z′i′,s′,x′)P(a′i′∩o′s′∩b′x′) =
∏

i,s,x,i′ ,s′,x′
d(z′′i,s,x,i′,s′,x′)P(ai∩os∩bx)P(a′i′∩o

′
s′∩b

′
x′) (2.110)
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for all A′,O′,B′ independent of A,O,B. �

2.B Proof of Proposition 2.1

Proof. Setting c(x,u) = 1, d(x,u) = 0 gives:

Φ
pos(aT (C),θ) = ∑

u∈Ui

p̂(u) ∑
x∈C

θ(x∣u)(ln
θ(x∣u)
θ(x) ) (2.111)

Since for each u there exists x: θ(x∣u) = 1 it holds for all other x′ that θ(x′ ∣u) =
0 and thus θ(x′ ∣u) ln(θ(x′∣u)/θ(x′)) = 0. Define U(x) = {u ∈ Ui ∶ θ(x∣u) =
1}. We then get after rearranging terms:

Φ
pos(aT (C),θ) = ∑

x∈C
(ln 1

θ(x)) ∑
u∈U(x)

p̂(u)θ(x∣u) (2.112)

Moreover,

θ(o) = ∑
u∈U(x)

p̂(u)θ(x∣u) + ∑
u∈Ui /U(x)

p̂(u)θ(x∣u) = ∑
u∈U(x)

p̂(u)θ(x∣u)
(2.113)

and thus:

Φ
pos(aT (C),θ) = ∑

x∈C
θ(o)(ln

1

θ(o)) (2.114)

By rationality and the fact that the members of Ui represent the members ofR:

θ(x) > 0⇔ x ∈ {x ∈ C ∶ ∃R ∈ R ∶ ∀y ∶ xRy} (2.115)

Since all outcomes with strictly positive probability have equal probability:

θ(x) > 0⇒ θ(x) = 1

♯{x ∈ C ∶ ∃R ∈ R ∶ ∀y ∶ xRy} (2.116)
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Inserting this yields:

Φ
pos(aT (C),θ) = ln (♯{x ∈ C ∶ ∃R ∈R ∶ ∀y ∶ xRy}) (2.117)

Since ln() is monotonically increasing, it follows that Φpos represents %F,JS .

�

2.C Proof of Proposition 2.2

Proof. Setting c(x,u) = 1, d(x,u) = 0 gives:

Φ
pos(aT (C),θ) = ∑

u∈Ui

p̂(u) ∑
x∈C

θ(x∣u)(ln
θ(x∣u)
θ(x) ) (2.118)

Since for each u there exists x: θ(x∣u) = 1 it holds for all other x′ that θ(x′ ∣u) =
0 and thus θ(x′ ∣u) ln(θ(x′∣u)/θ(x′)) = 0. Define U(x) = {u ∈ Ui ∶ θ(x∣u) =
1}. We then get after rearranging terms:

Φ
pos(aT (C),θ) = ∑

x∈C
(ln 1

θ(x)) ∑
u∈U(x)

p̂(u)θ(x∣u) (2.119)

Finally θ(o) = ∑u∈U(x) p̂(u)θ(x∣u) = ∑u∈Ui
p̂(u)θ(o∣u).

Φ
pos(aT (C),θ) = ∑

x∈C
θ(o)(ln

1

θ(o)) = FS(C,θ) (2.120)

�

2.D Proof of Proposition 2.3

Proof. Setting c(A,u) = λ(A), c(AC ,u) = 0, and d(o,U) = 0 gives:

Φ
pos(aT (C,A),θ) = ∑

u∈Ui

p̂(u)λ(A)θ(A∣u) ln
θ(A∣u)
θ(A) (2.121)
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Since for each u there exists x: θ(x∣u) = 1 it holds for outcome A that θ(A∣u) =
1 or θ(A∣u) = 0. Define U(A) = {u ∈Ui ∶ θ(A∣u) = 1}. It follows that:

Φ
pos(aT (C,A),θ) = ∑

u∈U(A)
p̂(u)λ(A) ln

1

θ(A) (2.122)

Since θ(A) = ∑u∈U(A) p̂(u)θ(A∣u) = ∑u∈U(A) p̂(u), we have:

Φ
pos(aT (C,A),θ) = λ(A)θ(A) ln

1

θ(A) (2.123)

Summing over A:

∑
A⊆X
Φ

pos(aT (C,A),θ) = ∑
A∶A∩C /=∅

Φ
pos(aT (C,A),θ)

= − ∑
A∶A∩C /=∅

λ(A)θ(A) ln θ(A) (2.124)

where the first step follows from the fact that if A∩C = ∅ then θ(A) = 0. Since

with the aforementioned (Section 2.3) abuse of notation θ(A) = ∑x∈A θ(x),
we get:

DNP(C,θ,λ) = − ∑
A∶A∩C /=∅

λ(A) ∑
x∈A

θ(x) ln ∑
y∈A

θ(y) = ∑
A⊆X
Φ

pos(aT (C,A),θ)
(2.125)

�
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2.E Derivations of Distributions for Section 2.10

The probability density functions of α and γ are:

fα(a) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
c
(1 − c)/2 ≤ a ≤ (1 − c)/2

0 else
(2.126)

fγ(g) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
d
(1 − d)/2 ≤ b ≤ (1 + d)/2

0 else
(2.127)

Due to independence their joint distribution is:

fα,γ(a,b) = fα(a) fγ(g) = 1

cd
. (2.128)

The measure requires the joint distribution of α and x∗1 , fα,x∗1
(a, x) and the

marginal distributions, fα(a) and fx∗1
(x) of these variables. While the marginal

distribution of α is given above, the other distributions are unknown, but can

be found via the change of variables technique. The change of variables will

be made from γ and α to x∗1 and α: Defining the vectors w⃗ = [ x∗1 α ]′ and

v⃗ = [ γ α ]′, we have w⃗ = M(v⃗). In our case M is such that:

⎡⎢⎢⎢⎢⎣
x∗1
α

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
αγ

α

⎤⎥⎥⎥⎥⎦ (2.129)

The change of variables yields the joint probability density function of w⃗:

f w⃗(w⃗) = f v⃗(v⃗) ∣det( d v⃗

dw⃗
)∣ (2.130)
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which is in this case:

fα,x∗1
(a, x) = fα(a) fγ(g) RRRRRRRRRRRRdet

⎡
⎢
⎢
⎢
⎢
⎣

1
α
−

x∗1
α2

0 1

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRR

(2.131)

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
cda

(1 − c)/2 ≤ a ≤ (1 + c)/2 ∧ x(a) ≤ x ≤ x(a)
0 else

(2.132)

where x(a) = a(1 + d)/2 and x(a) = a(1 − d)/2. Having obtained the joint

distribution of x∗1 and α, what remains to be found is the marginal density of x∗1
by integration over a. For this, the boundaries of the distribution as a function

of x need to be found first:

a(x) = max( 2x

1 + d
,
1 − c

2
) (2.133)

a(x) = min( 2x

1 − d
,
1 + c

2
) (2.134)

This is equivalent with:

a(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1−c
2 , 1−c

2
1−d

2 ≤ x < 1−c
2

1+d
2

2x
1+d ,

1−c
2

1+d
2 ≤ x ≤ 1+c

2
1+d

2

(2.135)

a(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2x
1−d ,

1−c
2

1−d
2 ≤ x < 1+c

2
1−d

2

1+c
2 , 1+c

2
1−d

2 ≤ x ≤ 1+c
2

1+d
2

(2.136)

Notice that for d ⋚ c, we have that 1−c
2

1+d
2 ⋚ 1+c

2
1−d

2 . Therefore it is neces-

sary to differentiate between whether c is larger or smaller than d when calcu-

lating the marginal distribution of x∗1 . Having obtained the integration bound-



2.E. DERIVATIONS OF DISTRIBUTIONS FOR SECTION 2.10 81

aries, the marginal distribution of x∗1 is for the case c ≤ d:

fx∗1
(x) = ∫ a(x)

a(x)
fα,x∗1

(a, x)da

=
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ln( 4x
(1−c)(1−d) )

cd
, 1−c

2
1−d

2 ≤ x < 1+c
2

1−d
2

ln( 1+c
1−c )
cd

, 1+c
2

1−d
2 ≤ x < 1−c

2
1+d

2

ln( (1+c)(1+d)4x )
cd

, 1−c
2

1+d
2 ≤ x ≤ 1+c

2
1+d

2

(2.137)

For the case c > d, the marginal distribution is:

fx∗1
(x) = ∫ a(x)

a(x)
fα,x∗1

(a, x)da

=
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ln( 4x
(1−c)(1−d) )

cd
, 1−c

2
1−d

2 ≤ x < 1−c
2

1+d
2

ln( 1+d
1−d )
cd

, 1−c
2

1+d
2 ≤ x < 1+c

2
1−d

2

ln( (1+c)(1+d)4x )
cd

, 1+c
2

1−d
2 ≤ x ≤ 1+c

2
1+d

2

(2.138)

The remaining step to obtain the measure is to insert the marginal distributions

into equation (2.60) and solving the integrals. Since the terms become compli-

cated and add little intuition beyond what is shown in Figure 2.4, they are not

shown here, but can be obtained from the author.



3 Freedom and Power: An Experiment 1
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Hendrik Rommeswinkel

We propose a theoretical foundation for preference for decision rights, driven

by preference for positive freedom, power, and negative freedom, which can

lead subjects to value decision rights intrinsically, i.e. beyond the expected

utility associated with them. We conduct a novel laboratory experiment in

which the effect of each preference can be disentangled. The experimental

design combines a bidding stage in which a decision right is allocated between

two players and a decision stage in which the player holding the decision right

exercises it, generating payoff consequences for both players. Risk preferences

are elicited via an additional lottery-choice questionnaire. We find evidence

of a stronger role of preference for negative freedom than of preference for

positive freedom or power. This result suggests that individuals value decision

rights not because of the actual decision making process, but rather because

they have preference against others interfering in their outcomes.

1We have benefitted from the opportunity to present earlier versions of this work at the 2014
International Meeting on Experimental and Behavioral Social Sciences, at the Social Choice and
Welfare 2014 Meeting, at the 2014 International Meetings of the Economic Science Association
and at the University of St.Gallen. We are grateful to seminar participants and to Martin Kolmar
and Clemens Puppe for their comments. Financial support of the Deutsche Forschungsgemein-
schaft (DFG) and the University of St. Gallen is gratefully acknowledged.
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3.1 Introduction

Freedom and power are pervasive components in any social, political and eco-

nomic interaction in our life. In any organization, from clubs to corpora-

tions and government bodies, individuals interact by taking decisions, affecting

themselves to the extent that they have the freedom to do so, and affecting oth-

ers to the extent that they have the power to do so. Thus, freedom and power are

fundamentally related to the exercise of decision rights. Economics, which has

traditionally considered decision rights solely for their instrumental value in

achieving outcomes, has recently (e.g. Fehr et al. (2013) or Bartling, Fehr, and

Herz (2013)) moved to consider decision rights also for their intrinsic value,

i.e. the value beyond the expected utility associated with them.

In this paper we propose a theoretical foundation for preference for deci-

sion rights, driven by preference for positive freedom, negative freedom, and

power and we conduct a novel laboratory experiment in which the effect of

each preference can be disentangled. We employ the following terminology.

An agent experiences positive freedom when his actions influence his own out-

comes. An agent experiences power when his actions influence another agent’s

outcomes. An agent experiences negative freedom, when his outcomes are not

influenced by another agent’s actions, i.e. if no other player has power over

him. Influence is intended as causal influence: an agent, by acting based on his

preferences over the outcomes, determines the outcomes. In addition to pref-

erences over outcomes, agents have preference for positive freedom, negative

freedom, and power, which can lead them to value decision rights intrinsically.

For intuition, consider the following situation as an example. On Tuesday

John and his siblings agree that they will watch a movie all together at the

cinema the following Sunday and that John on Sunday will choose the movie

to watch. On Tuesday it is already known that two movies will be available

on Sunday: a drama and a comedy. What neither John nor any of his sib-

lings knows yet on Tuesday is what movie they will each prefer on Sunday.

Holding the decision right, John will be able to choose one movie or the other,
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depending on his preferences. If his preferences change, so would the movie

he chooses. According to our terminology, John has freedom since his pref-

erences determine which movie he watches. John has also power since his

preferences determine which movie his siblings watch. Finally, John experi-

ences negative freedom since his siblings’ preferences do not influence which

movie he watches. But what if only the comedy is available? Then, since John

necessarily watches the comedy, neither his preferences nor his siblings’ pref-

erences determine which movie he watches. Thus, he does not have positive

freedom but he does have negative freedom. Also, since his siblings necessar-

ily watch the comedy, John’s preferences do not determine which movie his

siblings watch: he does not have power. Finally, what if John’s preferences

are fixed such that he cannot prefer anything else than comedy? Then, even

if he has the decision right, John has neither positive freedom nor power: he

cannot choose one movie or the other, depending on his preferences, but he

necessarily watches the comedy and so do his siblings too.

We present a general theoretical model of decision-rights allocation and

choice, which we formulate in the context of extensive form games. Within a

Bayesian Nash equilibrium setting, the model can represent a player who may

change his behavior at an earlier stage of the game in anticipation of greater

positive freedom, power, and negative freedom at a later stage. Specifically,

in an auction setting, where a player bids for the decision right, a bid may be

influenced by the positive freedom, power and negative freedom the decision

right conveys. The model has several key features. First, since players may at

a point in time not yet know their preferences over outcomes (e.g., John does

not yet know on Tuesday whether he will prefer drama or comedy on Sun-

day), information sets contain both nodes and preference profiles. Second, in

order to distinguish positive freedom, which involves influencing one’s own

outcomes, from power, which involves influencing other players’ outcomes,

outcome functions associating each terminal node to an outcome, are player-

specific. Third, the causal influence that preference profiles have on outcomes

is measured by how far the joint distribution of outcomes and preference pro-
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files is from the independent case.

We then implement a simplified version of the model in our experiment.

In the experiment pairs of participants (Player 1 and Player 2) play a game

which involves the allocation and the exercise of a decision right. First, Player

1 bids for the decision right. Second, if Player 1 receives the decision right,

he exercises it, otherwise Player 2 exercises it. The exercise of the decision

right consists of making a final choice, which generates payoff consequences

for both players. Uncertainty regarding the payoff consequences is resolved

before the final choice is made but only after the bid for the decision right

is submitted by Player 1. Across treatments and rounds we vary the positive

freedom, power, and negative freedom associated with the decision right. We

estimate how Player 1’s preference for positive freedom, power, and negative

freedom affect his valuation of the decision right, as revealed by his bid. A

higher bid has two effects. First, it increases the probability that Player 1 holds

the decision right. Second, it decreases the payoff uncertainty for Player 1.

Therefore, it is crucial to distinguish between two different motivations of a

high bid: intrinsic valuation of the decision right or risk aversion. By eliciting

individual risk preferences in an additional game, we compare the actual bids

with the bids implied by the elicited risk preferences.

Evidence from our experiment confirms the existence of an intrinsic value

of decision rights, as previously reported in Fehr et al. (2013) and Bartling et al.

(2013), and extends it from a delegation setting to a willingness to pay/auction

setting. Most importantly, our theoretical framework and experimental design

allow us to disentangle the drivers behind this phenomenon.

We highlight two main findings. First, we find no evidence of preference

for power. This result suggests that preference for power as casually observed

in politics or other institutional settings may simply be instrumental to other

components of well-being, such as status recognition.

Second, we find stronger evidence of preference for negative freedom than

for positive freedom. This result suggests that individuals value decision rights

not because of the actual decision making process, but rather because they
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have preference against others intervening in their outcomes. This result leads

to a fundamental change of perspective on preference for decision rights. In

contrast to the interpretation presented by Fehr et al. (2013) and Bartling et

al. (2013), individuals like to have decision rights in virtue of the absence of

decision rights of other individuals. An individual’s evaluation of risks then de-

pends on whether risks are generated by an objective process or by the behavior

of other individuals.

We are aware of several limitations in our results. The weak evidence of

preference for power may partly be driven by the experimental setting, in which

each player learns his own preferences towards the final choice but never learns

the preferences of the other player. Therefore, a Player 1 with preference for

power may not find the exercise of power over Player 2 particularly satisfying

because he does not know Player 2’s preferences over outcomes. Experimen-

tal settings that relax such information constraints may shed further light on

the role of preference for power. We consider this an interesting direction for

further research.

Further, preference for negative freedom may be driven by ambiguity aver-

sion. If a subject believes that other individuals, when having the decision

right, will not choose with certainty the option in their best interest, then he

will perceive ambiguity with respect to the type of individuals he is facing.

However, evidence from our experiment seems not to support this conjecture.

Almost all participants in our experiment chose the option in their best interest.

Thus, in order to fully explain the extent of preference for negative freedom we

would need to posit either very strong ambiguity aversion or beliefs about other

players that are far off the equilibrium path.

This paper lies at the intersection of several literatures, both experimen-

tal and theoretical. The paper builds on previous experimental work docu-

menting the intrinsic value of decision rights. In a principal-agent experiment,

Fehr et al. (2013) find that principals often decide not to delegate a decision

right to an agent, even when delegation would provide large expected utility

gains. Bartling et al. (2013) report that two game-specific characteristics affect
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the intrinsic value of decision rights. The intrinsic value of decision rights is

higher, the higher the stake size and the higher the alignment of interests be-

tween the principal and the agent. They find that the intrinsic value of decision

rights cannot be explained by risk preferences, social preferences, ambiguity

aversion, loss aversion, illusion of control, preference reversal, reciprocity or

bounded rationality. Instead, they conclude that the intrinsic value of decision

rights originates from a preference for decision rights. Our paper tackles the

unanswered question of what are the ultimate drivers of a preference for de-

cision rights. Our theoretical framework and experimental design allow us to

distinguish three drivers: positive freedom, power, and negative freedom.

Our paper builds on concepts and measures originally developed in the

freedom of choice literature (Barberà et al., 2004, Baujard, 2007, Dowding

& van Hees, 2009) and the power index literature (Penrose, 1946, Shapley

& Shubik, 1954, Banzhaf, 1965, Diskin & Koppel, 2010). The distinction

between positive freedom and negative freedom dates back to Berlin (1958)

though not in a game theoretic context.

In addition to the literatures mentioned above, our work can contribute to

diverse literatures that analyze attitudes towards decision rights and their effect

on behavior in applied settings, such as: the corporate governance literature on

allocation and exercise of control (Dyck & Zingales, 2004), and the human re-

source management literature on workers’ autonomy in the work place (Handel

& Levine, 2004).

We highlight two concepts that are related to our main result (i.e., the intrin-

sic value of decision rights), but not to our framework: preference for flexibil-

ity (Kreps, 1979b) and betrayal aversion (Bohnet & Zeckhauser, 2004). First,

preference for flexibility does not apply to our framework, nor to Fehr et al.

(2013) and Bartling et al. (2013), since preference for flexibility is already

captured in the behavior predicted by Nash equilibrium. In our experimental

design players learn about their preferences over outcomes after the decision

right is assigned. In the Nash equilibrium individuals anticipate at an earlier

stage the value of being able at a later stage to make a final choice instead of
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receiving the outcome of a lottery. Thus, the value of flexibility is fully incor-

porated in the Nash equilibrium behavior. Our observed deviations from Nash

equilibrium behavior cannot be explained by preference for flexibility.2

Second, Bohnet and Zeckhauser (2004) report experimental evidence sug-

gesting that the decision not to trust another agent is driven by betrayal aver-

sion. In their experimental design, the decision to trust someone (letting him

make a final choice which has payoff consequences for both agents) entails an

additional risk premium compared to the decision to let a random-device lot-

tery determine the final choice and payoff consequences. They argue that the

additional risk premium is required to balance the costs of trust betrayal.3 How-

ever, as they acknowledge, their design cannot distinguish whether differences

in behavior are due to different assessments of the outcomes, and thus they can-

not rule out that their results are driven not by an aversion to betrayal but by

an aversion to relinquishing control to another agent (preference for negative

freedom in our framework).4 Our results suggest that aversion to interference

may be a driver of behavior in their experiment.

The paper proceeds as follows. In Section 3.2 we outline a behavioral

model of preference for positive freedom, power, and negative freedom. Sec-

tion 3.3 describes the experimental design. We present the theoretical predic-

tions of the model in Section 3.4 and the empirical strategy in Section 3.5. The

results are given in Section 3.6. Section 3.7 concludes.

2In our movie example, preference for flexibility refers to the expected utility gain from being
able to choose the movie that one likes best. This is captured by Nash equilibrium behavior.
Preference for positive freedom is the procedural rather than consequentialist value of one’s own
preferences determining the outcomes.

3Bohnet and Zeckhauser (2004) compare behavior in a trust game and a risky dictator game.
The trust game involves a binary choice by Player 1 (trust or not trust) followed by a binary choice
by Player 2 conditional on Player 1’s decision to trust. The risky dictator game differs only in that
Player 1’s decision to trust is followed by a random-device lottery, not by a choice by Player 2. In
both games, a decision not to trust yields payoffs (S,S) to Player 1 and 2, respectively. Following
a decision to trust, the payoff pairs can be either (B,C) or (G,H), with G > S > B and C > H > S.
In both games, participants with the role of Player 1 report their minimum acceptable probability
(MAP) of getting G such that they prefer to trust instead of not to trust.

4‘A MAP gives us information on how a Decision Maker assesses the risky-choice problem he
is confronted with, but not on how he values each possible outcome. Based on our data, we are not
able to distinguish whether differences in MAPs are due to different assessments of S or of B and
G.’
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3.2 Theoretical Framework

In this section we describe a model of decision-rights allocation and choice. In

order to provide a general theoretical framework, we formulate the model in

the context of extensive form games. We then implement a simplified version

of the model in our experiment.

Consider an extensive-form game a = (N,A,ψ,P ,I,C,O,U ,p). There is

a finite set of players, N = {1, . . . ,n}, and A is a finite set of nodes. ψ ∶

A/a0 → A is a predecessor function such that for node a, ψ(a) is the immediate

predecessor of a. P is the player partitioning of the nodes. I = {I0, . . . , In} is

the information partitioning, with Ii being the set of information sets of Player

i, and A(I) = {a ∈ A ∶ ψ(a) ∈ I} is the set of nodes following information set

I . C is the set of choice sets CI for each information set I and ∆(CI ) is the set

of probability distributions over the choice set at I . For b ∈ I and b = ψ(a) let

c(a∣b) ∈ CI be the choice that leads from node b to node a.

Our notation diverges from standard notation of game forms in two main

aspects. First, O = {o1, ...,on} is the set of outcome functions, where oi ∶

Aω → Oi maps the terminal nodes Aω = A/ψ(A) into the finite set of possible

outcomes for Player i, Oi . We require player-specific outcome functions to

distinguish power and positive freedom. Having power means being able to

influence another player’s outcomes. Having positive freedom means being

able to influence one’s own outcomes. Outcome functions that are not player-

specific would conflate power and positive freedom.

Second, U = {U1, . . . ,Un} is a set of sets Ui = {u1
i , . . . ,u

J
i } of utility func-

tions for each Player i where u
j
i ∶ Oi → R. Since positive freedom requires the

possibility to act in one way or another, individuals need to potentially have

more than one preference profile in order to have positive freedom. Since indi-

viduals may at a point in time not yet know their preferences, information sets

contain both nodes and utility functions: I ⊆ A∪i∈N Ui such that I ∩ A ≠ ∅ and

∀i ∶ I ∩Ui ≠ ∅. For example, at an information set I ∈ I1 = {a1,a2,u
1
1,u

2
1,u

1
2}

Player 1 does not know whether he is at node a1 or a2 and whether he has
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preferences u1
1 or u2

1, but knows that Player 2 has preferences u1
2.

A local strategy sI ∈ ∆(CI ) is a probability distribution over the elements

of the choice set at information set I . A strategy profile S is a tuple of local

strategies specifying behavior at each information set S = (sI ∣I∈Ii ∣i∈N ). p is

the probability distribution for moves by Nature at information sets in I0 and

over utility functions for each player. Finally, θS denotes the joint probabil-

ity distribution over nodes, outcomes, and preference profiles resulting from

strategy profile S and moves by Nature according to p. The subgame function

subg(a,a) returns for any game a the subgame starting at node a. Let θi be

a joint probability distribution over nodes, outcomes and preference profiles

representing the beliefs of Player i. Let θi∣I (θi∣a) denote the beliefs of Player

i given that play has reached information set I (node a) derived from Bayesian

updating on θi . We can construct the belief of node a following the current

information set given strategy sI as θ̃i∣sI (a) = θi∣I (ψ(a)) ⋅ sI (c(a∣ψ(a))).
Finally, we define an equilibrium of game a as a strategy profile S∗ =(s∗(I ,θi)∣I∈Ii ∣i∈N ) and beliefs such that ∀i ∶ θi = θS∗ with:

s∗(I ,θi) = arg max
s∈∆(CI )

∑
a∈A(I)

θ̃i∣s(a)Vi(subg(a,a),θi∣a). (3.1)

This definition corresponds to a standard Bayesian Nash equilibrium if

Vi(a,θ) coincides with expected utility EUi(a,θ):
EUi(a,θ) = ∑

u∈Ui

θ(u) ∑
o∈Oi

θ(o∣u)u(o). (3.2)

Instead, we define Vi as to also include the utility from positive freedom,

power and negative freedom for each subgame. Thus, individuals may change

their behavior at earlier stages of the game in anticipation of greater positive

freedom, power and negative freedom at later stages. Note that in this frame-

work there are two distinct notions of preferences. First, there are the non-

procedural preferences over outcomes, u ∈ Ui . Second, there is the procedural

preference for subgames, Vi , containing a player’s preference for positive free-

dom, negative freedom, and power. To avoid confusion, we refer to the former
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in the plural and the latter in the singular. We use the following terminology.

Positive Freedom Player i has positive freedom if he causally influences his

own outcomes. In our movie example, John has positive freedom if his prefer-

ences on Sunday determine which movie he watches. Thus, positive freedom

is measured by the degree to which Player i’s own preferences determine his

own outcomes, as:

Φ
p f
i (a,θ) = ∑

u∈Ui

θ(u) ∑
o∈Oi

g(o,u)θ(o∣u) log2
θ(o∣u)
θ(o) , (3.3)

where log2
θ(o∣u)
θ(o) is the causal influence measure capturing how far the joint

probability of outcome o and preference profile u is from the independent case

and the expectation is taken over all preference-outcome combinations. For

example, take two outcomes A and B and an individual which either prefers A

or B, i.e. has preferences uA or uB . If θ(A∣uA) = θ(A) = 1− θ(B), the fact that

an individual prefers A or B makes no difference on whether the outcome is A

or B. This is captured by the causal influence measure via log2
θ(o∣u)
θ(o) = 0, for

all o ∈ {A,B} and u ∈ {uA,uB}. However, if the individual has some influence,

then θ(A∣uA) > θ(A) and this will result in a positive causal influence measure.

This measure captures Berlin’s definition of positive freedom as “[t]he freedom

which consists in being one’s own master” (1958, p.8) and other intuitions from

the freedom of choice literature.5

The function g(o,u) is included to capture the value of the causal influence.

For example, if two outcomes are qualitatively very similar, the value of having

freedom to choose between the two may be very low. If in the cinema only one

movie is playing and the only choice to make is whether to watch it in theater

1 or 2, the alternative outcomes may not be qualitatively distinct enough for

the decision right to provide a high amount of positive freedom. The causal

influence measure log2
θ(o∣u)
θ(o) between outcome o and preferences u is there-

5For details, see Section 2.5 of this Dissertation.
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fore weighted by g(o,u). Several specifications of g(o,u) will be discussed in

Section 3.4.

Negative Freedom Player i has negative freedom if other players do not

causally influence his outcomes. In our movie example, John experiences neg-

ative freedom if he chooses the movie or if there is only one movie available.

In both cases others’ preferences do not influence which movie he watches.

Interference is measured by the degree to which other players’ preferences de-

termine Player i’s own outcomes. Thus negative freedom is measured by:

Φ
n f
i (a,θ) = − ∑

j∈N/i
∑
v∈Uj

θ(v) ∑
u∈Ui

θ(u∣v) ∑
o∈Oi

g(o,u)θ(o∣v) log2
θ(o∣v)
θ(o) .

(3.4)

The intuition for negative freedom is analogous to the one provided for posi-

tive freedom. The difference is that negative freedom captures not the causal

influence that a player has on his own outcomes but the causal influence that

other players have on his outcome. This measure captures Berlin’s definition

of negative freedom as “not being interfered with by others. The wider the area

of non-interference, the wider my freedom”(1958, p.3). Again, g(o,u) can be

used to determine the value of not being interfered with. For example, inter-

ference may matter little to John, if his siblings only get to choose whether to

watch the movie in theater 1 or 2, but do not choose the movie itself. Reduc-

ing the interference of another player may be less valuable when its qualitative

impact on the outcome is small compared to the case in which it is large.

Power Player i has power if he causally influences the outcomes of other

players. In our movie example, if John chooses the movie, then John has power,

since his preferences determine which movie his siblings watch. However, if

there is only one movie available at the cinema, John does not have power,

since his preferences do not determine which movie his siblings watch: they

simply watch the only available movie. Power is measured as:
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Φ
p
i (a,θ) = ∑

u∈Ui

θ(u) ∑
j∈N/i

∑
o∈O j

g(o,u)θ(o∣u) log2
θ(o∣u)
θ(o) . (3.5)

This measure is similar to the voting power measure by Diskin and Kop-

pel (2010) with the exceptions that we introduced player-specific outcomes,

a weighting function g(o,u) and the measure is generalized to extensive form

games. The weighting function g(o,u) measures the qualitative impact on the

outcomes of those players over whom Player i has power.

The valuation function Vi(a,θ) of a Player i with preference for positive

freedom, negative freedom and power includes all the above components as:

Vi(a,θ) = αiΦ
p f
i (a,θ) + βiΦn f

i (a,θ) + γiΦp
i (a,θ) + δiEUi(a,θ), (3.6)

where the coefficients α, β, γ and δ determine the intensity of each component.

An individual with preference for positive freedom/negative freedom/power

evaluates the choices not only by the expected utility of the subgame following

the choice but also by the expected positive freedom/negative freedom/power

offered by the subgame.

Measuring positive freedom, negative freedom and power requires deter-

mining not only what individuals can causally influence (i.e., their own or oth-

ers’ outcomes), but also what enables individuals to exercise such a causal

influence (i.e. the source of agency). Agency is what allows an individual to

behave in one way or another and to achieve an outcome or another by doing

so. Outside of an experimental setting, the source of agency lies in an individ-

ual’s preferences over the alternative outcomes.

In an experimental setting, it is standard practice to induce the value of

each alternative via monetary payments.6 Thus, the source of agency is in-

troduced by the game structure by means of a payment structure. This is

unproblematic in experiments which investigate how behavior changes if the

values of the alternatives change: manipulating the monetary payments is suf-

6For an introduction to induced-value theory, see Smith (1976).
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ficient. However, an experiment such as ours, which investigates how behavior

changes if positive freedom/negative freedom/power change, requires making

the formation of preferences part of the game, since manipulating positive free-

dom/negative freedom/power requires manipulating the relationship between

preferences over outcomes and outcomes. We achieve this by having prefer-

ences over outcomes randomly determined by moves of Nature at the beginning

of a subgame.

While we are aware that positive freedom in real-world situations may be

qualitatively different from positive freedom induced by the game structure, we

also believe that our framework makes preference for positive freedom more

unlikely to be observed in the experiment. Therefore, evidence of preference

for positive freedom in the experiment suggests that such preference for pos-

itive freedom is even more likely to arise in real-world settings, where pref-

erences are not induced but formed internally. Analogous arguments can be

made for preference for negative freedom and for power.

3.3 Experimental Design

The experiment implements a simplified version of the theoretical framework

presented in Section 3.2. Two players, Player 1 and Player 2, play a game

involving the selection of a card from one of either two boxes, Box L and Box

R. Box L and Box R each contain two cards, Card A and Card B. Each card

has two sides, Side 1 and Side 2.

The game consists of two stages: a bidding stage and a choice stage. The

bidding stage serves to determine which player has the decision right in the

choice stage. In the choice stage the player with the decision right makes the

card selection. The decision right is allocated via a Becker-DeGroot-Marschak

(BDM) mechanism (Becker, Degroot, & Marschak, 1964). Player 1 is required

to bid for the decision right by choosing an integer between 0 and 100, y ∈{0, . . . ,100}. The computer then randomly determines an integer between 1

and 100 with uniform probability, r ∈ {1, . . . ,100}. If y ≥ r, Player 1 has the



3.3. EXPERIMENTAL DESIGN 95

decision right: he will select a card from Box L in the choice stage and pay a

fee equal to r. Otherwise, Player 2 has the decision right: he will select a card

from Box R in the choice stage and no fee is paid by either player.

In each box independently, the colors of the sides of the cards are deter-

mined via a random draw from the four cases represented in Figure 3.1. Each

case has a priori equal probability. The color of Side 1 is payoff-relevant for

Player 1 and the color of Side 2 is payoff-relevant for Player 2. Green is as-

sociated with a higher payoff, i.e. πhigh,Ki > πlow,Ki , where πhigh,Ki denotes

Player i’s payoff if Side i of the card selected from box K is Green, and πlow,Ki

denotes Player i’s payoff if Side i of the card selected from box K is Red, and

K ∈ {L,R}.
Each side of each card can be Green or Red with equal probability. More-

over, side i of Card A and side i of Card B are always of a different color,

which guarantees that Player i either prefers Card A to be selected or Card

B to be selected. If Side 1 and Side 2 of a given card are of the same color,

then Players prefer the same card. Otherwise, Players prefer different cards.7

We can interpret the random draw from the four cases in Figure 3.1 as a move

by Nature, which randomly determines players’ preferences over outcomes,

U1 ∈ {uA
1 ,u

B
1 } and U2 ∈ {uA

2 ,u
B
2 }, as discussed in Section 3.2.

The order of events is shown in Figure 3.2. As the bidding stage starts,

players learn the values of πhigh,Ki and π
low,K
i for i = 1,2 and K ∈ {L,R}.

Thus, they learn, for each player and for each box, what the payoff associated

with Green and the payoff associated with Red are. At this moment, neither

player knows, for either box, whether he prefers Card A or B, or whether the

other player prefers Card A or B.

As the choice stage starts, players receive additional information. The box,

from which the card selection will occur, is opened and each player observes

the colors on ‘his’ side of the two cards: Player 1 observes Side 1 of Card A

and Side 1 of Card B, Player 2 observes Side 2 of Card A and Side 2 of Card

7As shown in Figure 1: in case 1 both players prefer Card B, in case 2 Player 1 prefers Card
B and Player 2 prefers Card A, in case 3 Player 1 prefers Card A and Player 2 prefers Card B, in
case 4 both players prefer Card A.
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Figure 3.1: Card colors in Box K = L,R

B. Therefore, each player learns which card gives him the higher payoff, i.e.

learns which card he prefers. However, no player observes the colors on ‘the

other’ side of the two cards. Therefore, no player learns which card the other

player prefers.

Each player learns
the high and low
payoffs for each

player for each box

Player 1
bids y

Random
draw r

Each player learns
which card gives

him the high
payoff in Box L

Player 1 chooses a
card from Box L

y < r

Each player learns
which card gives

him the high
payoff in Box R

Player 2 chooses a
card from Box R

y ≥ r

Figure 3.2: Order of events

To represent preference for positive freedom, negative freedom and power

we need to define the set of outcomes. For Player 1, let O1 = {0, . . . ,100} ×{1,2}×{A,B}with o1(r,i,c) denoting the outcome where the randomly drawn

number is r, Player i has the decision right and chooses card c. For Player 2 the
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number r is never relevant, so let O2 = {1,2} × {A,B} with o2(i,c) denoting

the outcome where Player i has the decision right and chooses card c.

i = 1
c = A c = B

π1(o1(r, i, c), uA
1 ) w1 + πhigh,L

1 − r w1 + π l ow,L
1 − r

π1(o1(r, i, c), uB
1 ) w1 + π l ow,L

1 − r w1 + πhigh,L

1 − r
π2(o1(i, c), uA

2 ) w2 + πhigh,L

2 w2 + π l ow,L
2

π2(o1(i, c), uB
2 ) w2 + π l ow,L

2 w2 + πhigh,L

2
i = 2

c = A c = B

π1(o1(r, i, c), uA
1 ) w1 + πhigh,R

1 w1 + π l ow,R
1

π1(o1(r, i, c), uB
1 ) w1 + π l ow,R

1 w1 + πhigh,R

1

π2(o1(i, c), uA
2 ) w2 + πhigh,R

2 w2 + π l ow,R
2

π2(o1(i, c), uB
2 ) w2 + π l ow,R

2 w2 + πhigh,R

2

Table 3.1: Payoff structure

The payoff structure of the game is always common knowledge. Payoffs

vary across rounds and treatments, as described in detail in Section 3.3.1-

3.3.2. Table 3.1 provides the general payoff structure. Player 1’s payoff is

π1(o1(r,i,c),uA
1 ) if he prefers Card A and π1(o1(r,i,c),uB

1 ) if he prefers Card

B. Analogously, Player 2’s payoff is π2(o2(i,c),uA
2 ) if he prefers Card A and

π2(o2(i,c),uB
2 ) if he prefers Card B. Moreover, Player 1 and Player 2 start the

game holding endowments w1 and w2, respectively.

3.3.1 Rounds

The game is played repeatedly for 20 rounds. Across rounds, we vary the

values for Player 2’s payoffs πhigh,L2 and πlow,L2 to account for situations in

which the decision right gives Player 1 power or not. a
np are games where

π
high,L

2 = πlow,L2 . Therefore, when Player 1 has the decision right and selects

a card from Box L, he does not have power since he cannot influence Player

2’s outcomes: Player 2 is indifferent between the cards since πhigh,L2 = πlow,L2 .

a
p are games where πhigh,L2 > πlow,L2 , and therefore the decision right gives

Player 1 power.
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Across the 20 rounds, participants play 10 a
np games and 10 a

p games.

Within a
np and a

p , the rounds differ in the expected payoff and the stake size

for each player, as shown in Table 3.2. The order in which the rounds are played

is random. Notice that in both a
np and a

p we have πhigh,R2 > πlow,R2 : Player

2 is never indifferent between the cards when he has the decision right. Finally,

Player 1’s payoffs are πhigh,L1 = πhigh,R1 = πhigh1 and πlow,L1 = πlow,R1 = πlow1 .
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Box L Box R

Player 1 Player 2 Player 1 Player 2

game round Green/Red Green/Red Green/Red Green/Red

π
high

1 /π l ow
1 π

high,L

2 /π
l ow,L
2 π

high

1 /π l ow
1 π

high,R

2 /π
l ow,R
2

a
np 1 100/30 70/70 100/30 100/30

a
np 2 90/40 70/70 90/40 90/40

a
np 3 80/50 70/70 80/50 80/50

a
np 4 85/15 70/70 85/15 85/15

a
np 5 75/25 70/70 75/25 75/25

anp 6 65/35 70/70 65/35 65/35

a
np 7 70/0 70/70 70/0 70/0

a
np 8 60/10 70/70 60/10 60/10

a
np 9 50/20 70/70 50/20 50/20

a
np 10 100/0 70/70 100/0 100/0

a
p 11 75/25 85/15 75/25 85/15

a
p 12 75/25 75/25 75/25 75/25

a
p 13 75/25 65/35 75/25 65/35

a
p 14 75/25 90/40 75/25 90/40

ap 15 75/25 60/10 75/25 60/10

a
p 16 85/15 75/25 85/15 75/25

ap 17 65/35 75/25 65/35 75/25

a
p 18 90/40 75/25 90/40 75/25

a
p 19 60/10 75/25 60/10 75/25

a
p 20 100/0 100/0 100/0 100/0

Table 3.2: Payoffs in each round

3.3.2 Treatments

We conduct the experiment under three treatments, in which we modify key

features of the game. Games are denoted a1, a2 and a3 in Treatment 1, 2

and 3, respectively. In the benchmark Treatment 1 both players receive an

endowment of 100 points (w1 = w2 = 100). In Treatment 2 only Player 1

receives an endowment (w1 = 100, w2 = 0). The variation in endowments

allows us to verify whether social preferences play a role. Specifically, Player
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1 may prefer to bid higher or lower due to advantageous or disadvantageous

inequality. We explore the role of inequality aversion in Appendix 3.D.

In Treatment 3 w1 = 100 and w2 = 0 as in Treatment 2, but Box L contains

only one card (Card C) which is green on Side 1 and is either red or green on

Side 2. Under this modified design, the decision right provides Player 1 only

negative freedom, but neither positive freedom nor power. Similarly to the

other treatments, if Player 1 has the decision right, he enjoys negative freedom

since Player 2 cannot influence Player 1’s outcomes. However, Player 1 does

not have positive freedom since he cannot influence his own outcomes: there is

no choice for him to make, since Box L contains only Card C. Moreover, Player

1 has no power since he cannot influence Player 2’s outcomes. Treatment 3

allows us to distinguish negative freedom from positive freedom, which are

not distinguishable in Treatment 1 and 2.

Treatment Endowments Cards Games decision right gives Player 1

w1, w2 in Box L positive freedom negative freedom power

1 100,100 A, B
a
np

1 yes yes no

a
p

1 yes yes yes

2 100,0 A, B
a
np

2 yes yes no

a
p

2 yes yes yes

3 100,0 C a3 no yes no

Table 3.3: Treatments

Table 3.3 summaries the characteristics of each treatment. Notice that the

distinction between games anp and games ap is relevant for Treatment 1 and

2, but not for Treatment 3, which does not involve power either in games anp

or in games ap .

3.3.3 Procedures

We conducted 8 sessions: 3 sessions of Treatment 1, 3 sessions of Treatment

2 and 2 sessions of Treatment 3. The sessions took place over two consecu-

tive days in October 2013 at the University of Cologne. Each session lasted
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approximately 1.5 hours. In total 244 subjects participated: 86 in Treatment

1, 96 in Treatment 2 and 62 in Treatment 3.8 Participants were recruited via

ORSEE (Greiner, 2004) and consisted mostly of students at the University of

Cologne. The experiment was implemented in zTree (Fischbacher, 1999). The

experiment is divided into three parts. Participants receive instructions for each

part only after completing the previous part.

In Part 1 subjects play the card game described above.9 At the start, half

of the subjects are randomly assigned the role of Player 1 and the other half

of the subjects the role of Player 2. Each Player 1 is randomly matched with

a Player 2. The roles and the matches are then fixed for the entire duration of

Part 1. Subjects play a trial round of game anp (which does not count for their

earnings) and then play 20 rounds (10 games anp and 10 games ap). Rounds

are played in random order and feedback regarding each round is given only

at the end of the experiment (i.e. end of Part 3). At the end of the experiment

one round is randomly selected and each subject is paid according to the payoff

earned in that round only.

Part 2 and Part 3 involve individual decisions, with no interaction among

subjects. In Part 2 subjects answer a lottery-choice questionnaire similar to

Holt and Laury (2002). The lottery-choice questionnaire, which is reported

in Table 3.A.3 in Appendix 3.A, allows us to elicit subjects’ risk attitudes.

Each question involves the choice between a safe lottery (Option A) which

yields prize πA with certainty and a risky lottery (Option B) yielding a high

prize πB,high with probability 0.5 and a low prize πB,low with probability 0.5.

8One session had 22 participants, one session 30 participants and 6 sessions 32 participants.
9As Part 1 starts, subjects receive written instructions. In order to have participants focus on the

key features of the game, we present them with four comprehension questions. The questions are
reported in Appendix 3.A. When participants submitted an incorrect answer, they were provided
with a correction and a short explanation. In general, subjects understood the experiment well.
Questions 1, 2 and 3 are answered correctly by 96, 98 and 97 percent of the subjects, respectively.
Question 4 is presented to highlight the fact that, if Player 1’s bid is successful, Player 1 has to
pay not his own bid but the number randomly drawn by the computer. Question 4, which is clearly
the most difficult question, is answered correctly by 58 percent of the subjects. Individuals were
thereby reminded, in a non-technical way, of the second-price nature of the bidding mechanism.
Despite the lower fraction of initial correct answers, we believe that the provided correction and
explanation are instrumental in achieving subjects’ understanding.
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The lotteries of Part 2 are designed to resemble the implicit lotteries faced

by the players in the games of Part 1. Prize πA resembles the certain payoff

that a player receives when he has the decision right, while prizes πB,high

and πB,low resemble the payoffs that a player may receive when the other

player has the decision right. As discussed in Section 3.4, an expected-utility-

maximizer Player 1 who chooses bid y
∗ in a game of Part 1 should choose

the safe Option A in the corresponding lottery-choice question of Part 2 (with

πB,high = πhigh1 , πB,low = πlow1 ) if and only if πA ≥ πB,high − y
∗. At the

end of the experiment one lottery-choice question is randomly selected. Each

subject has his chosen option played out and is paid accordingly.

Finally, in Part 3, subjects answer a Locus of Control Test (Rotter, 1966,

Levenson, 1981, Krampen, 1981).10 In personality psychology, locus of con-

trol refers to the extent to which individuals believe that they can control events

that affect them. A person’s ‘locus’ is either internal (if he believes that events

in his life derive primarily from his own actions) or external (if he believes that

events in his life derive primarily from external factors, such as chance and

other people’s actions, which he cannot influence). There may be several rea-

sons why attitudes towards locus of control may be related to attitudes towards

positive freedom and negative freedom. For example, subjects who believe that

other individuals control their lives may have a greater preference for positive

freedom and negative freedom. However, as reported in Appendix 3.C, we do

not find strong evidence that attitudes towards locus of control are correlated

with preference for positive freedom or negative freedom.

At the end of the experiment participants answer a socio-demographic ques-

tionnaire. All payoffs in the experiment were expressed in points. The conver-

sion rate was AC1 = 12 points. Individuals earned on average AC10.97 in Part 1

and AC4.90 in Part 2. In addition, subjects received AC2.50 for participation.

10The questionnaire is reported in Appendix 3.C.
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3.4 Theoretical Predictions

The Bayesian Nash equilibrium predictions, assuming Vi(a,θ) = EUi(a,θ)
and a utility function u linear in payoffs, are straightforward. In the choice

stage Player i with the decision right chooses c∗RNNE = A ⇔ Ui = uA
i and

c∗RNNE = B ⇔ Ui = uB
i . In the bidding stage it is optimal for Player 1 to

bid his true valuation of the decision right. The continuation payoff from the

subgame where Player 1 has the decision right is πhigh1 and the continuation

payoff from the subgame where he does not have the decision right is (πhigh1 +

πlow1 )/2. Therefore, the optimal bid of a risk-neutral Player 1 is y
∗RNNE =(πhigh1 − πlow1 )/2.

Allowing for risk aversion, while keeping Vi(a,θ) = EUi(a,θ), does not

affect behavior in the choice stage: Player i with the decision right chooses

c∗NE = A ⇔ Ui = uA
i and c∗NE = B ⇔ Ui = uB

i . However, in the bidding

stage Player 1 is influenced by the fact that Box R involves the risky lottery( 1
2 ,π

high

1 ; 1
2 ,π

low
1 ) while Box L involves the safe lottery (1,πhigh1 ).11 There-

fore, the optimal bid y
∗NE satisfies the following condition:

u(w1 − y
∗NE + π

high

1 ) = 1

2
u(w1 + π

high

1 ) + 1

2
u(w1 + π

low
1 ). (3.7)

Defining the certainty equivalent CE of the risky lottery as:

CE (1

2
,π

high

1 ;
1

2
,πlow1 ) = c ∶ u(c) = 1

2
u(πhigh1 ) + 1

2
u(πlow1 ), (3.8)

we can rewrite equation (3.7) in terms of certainty equivalent as:

w1 − y
∗NE + π

high

1 = CE (1

2
,w1 + π

high

1 ;
1

2
,w1 + π

low
1 ) . (3.9)

To predict the behavior of a participant with preference for positive free-

11( 1
2, π

high

1 ; 1
2 , π

l ow
1 ) is the lottery yielding πhigh

1 with probability 0.5 and π l ow
1 with prob-

ability 0.5. (1, πhigh

1 ) is the lottery yielding πhigh

1 with probability 1.
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dom, negative freedom and power, we need to determine positive freedom,

negative freedom and power at each subgame following the bid of Player 1:

the measures Φp f

1 , Φn f

1 , and Φp

1 introduced in Section 3.2. Before doing so,

we have to determine the functional form of g(o,u) in equations (3.3)-(3.5).

We consider two specifications. First, and most simply, we can set g(o,u) =
1, assuming that the value of positive freedom, negative freedom or power is

independent of the outcome and the utility of the outcome. According to this

first specification, we index the measures as Φp f ,c
1 , Φn f ,c

1 , and Φp,c
1 . Second,

we can set g(o,u) = ∆πi = ∣πhighi −πlowi ∣. While the logarithmic terms in equa-

tions (3.3)-(3.5) account for the probabilistic causal influence of preferences on

outcomes, the distance in payoffs ∆πi measures the qualitative effect of such

causal influence. For example, the decision between two outcomes yielding

very similar payoffs may be seen as having a smaller qualitative effect than a

decision between two outcomes yielding very different payoffs. Thus, posi-

tive freedom, negative freedom and power may become more important as the

alternative outcomes differ more in terms of the payoffs they yield. We need

to use ∆π1, the qualitative impact on Player 1’s payoffs, for positive freedom

and negative freedom, and ∆π2, the qualitative impact on Player 2’s payoffs,

for power. According to this second specification, we index the measures as

Φ
p f ,d

1 , Φn f ,d

1 , and Φp,d

1 .12

Decisions in the choice stage are unaffected by preference for positive free-

dom, negative freedom and power. Since the subgame following each choice

is a terminal node aω , we have θ(o(aω)) = 1 and thus the causal influence

measures log2
θ(o∣u)
θ(o) are equal to zero. This is intuitive: while the individual

has control over the outcome at the moment of making the decision, he loses

the control by exercising it. Since the terminal nodes do not offer any positive

freedom, negative freedom or power, the choice over terminal nodes is there-

fore unaffected by preference for them. Thus, an individual i with δi > 0 in

12We are aware that this is a very crude way of comparing the qualitative difference of an element
to a set. For the purposes of this experiment with essentially only two outcomes, such a simple
metric will be sufficient. More sophisticated measures of qualitative diversity and their relation
to difference metrics are given in Nehring and Puppe (2002). It may be interesting to consider
experiments where outcomes have a qualitative difference aside from payoffs.
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equation (3.6) chooses c∗ = A⇔ Ui = uA
i and c∗ = B ⇔ Ui = uB

i , just as in

the Bayesian Nash equilibrium. In the bidding stage, instead, the bid of Player

1 is affected by preference for positive freedom, negative freedom and power.

Derivations of all measures (Φp f ,c

1 , Φp f ,d

1 , Φn f ,c

1 , Φn f ,d

1 , Φp,d
1 ) for Treatment

1, 2 and 3 are given in Appendix 3.B and a summary is presented in Table 3.1.13

With a slight abuse of notation, let subg(a, y) refer to the subgame following

a bid y by Player 1.

Game Specification Measure

a1 , a2 Φ
p f ,c y

100

a3 Φ
p f ,c 0

a1 , a2 Φ
p f ,d y

100 (π
high

1 − π l ow
1 )

a3 Φ
p f ,d 0

a1 , a2, a3 Φ
n f ,c − 100−y

100

a1 , a2, a3 Φ
n f ,d − 100−y

100 (π
high

1 − π l ow
1 )

a
p

1 , ap

2 Φ
p,d y

100 (π
high

2 − π l ow
2 )

a
np

1 , anp

2 , a3 Φ
p,d 0

Table 3.1: Positive Freedom, Power and Negative Freedom measures

As an example, lets analyze the decision problem in Treatment 1 of a Player

1 with preference for positive freedom under the Φp f ,c specification. Intu-

itively, positive freedom under such specification is equal to the probability of

having the decision right. This is because if Player 1 has the decision right,

then g(A,uA
1 ) log2

θ(A∣uA
1 )

θ(A) = g(B,uB
1 ) log2

θ(B∣uB
1 )

θ(B) = log2
1

1/2 = 1. If Player

1 does not have the decision right, then g(o,u) log2
θ(o∣u)
θ(u) = 0 ∀o,u. Thus, a

Player 1 with preference for positive freedom chooses his bid so as to solve:

max
y

V1 = max
y
α1

y

100
+ δ1EU1(subg(a1,θ1∣y)). (3.10)

The optimal bid condition corresponding to (3.7) then becomes:

13Since games ap differ from games anp uniquely because of a positive payoff difference for

Player 2, ∆π2 = π
high,L

2 − π l ow,L
2 , we consider only the specification Φp,d for power.
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α1 + u(w1 − y
∗F + πhigh1 ) = 1

2
u(w1 + π

high

1 ) + 1

2
u(w1 + π

low
1 ). (3.11)

This means that the utility from having the decision right is increased by a

constant α1. In Treatment 3, instead, in which by design Card C is the outcome

of the game if Player 1 has the decision right, it would be g(C,uC1 ) log2
θ(C ∣uC

1 )
θ(C) =

g(C,uC1 ) log2
1
1 = 0 and thus positive freedom would be zero.

3.5 Empirical Strategy

Equation (3.11) gives an especially simple way of measuring Player 1’s pref-

erence for positive freedom in a game of Treatment 1. The parameter α1 can

be inferred from a regression of the difference in estimated utilities from Box

L and Box R, ∆EU1= u(w1− y+π
high

1 )− 1
2 u(w1+π

high

1 )− 1
2u(w1+π

low
1 ), on

a constant.14 A similar approach can be also applied to measuring Player 1’s

preference for negative freedom and preference for power. For simplicity, since

we consider exclusively Player 1’s behavior, we introduce a subscript denoting

each subject in the sample who plays as Player 1. For each subject k playing

as Player 1, we consider the following estimation equation:

∆EUk,t = αkV
f

k,t
+ βkV ni

k,t + γkV
p

k,t
+ ǫk,t (3.12)

where k stands for the subject, t for the round of play, V f ,V ni ,V p for the posi-

tive freedom, negative freedom and power variable, respectively, and where we

normalized δk = 1 of equation (3.6), in order to achieve identification of αk ,

βk , and γk . Table 3.1 gives an overview of the measures and their empirical

implementation.

14The estimated utility from Box L in ∆EU1 is computed setting r = y .
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Measure Variable Value

Φ
p f ,c V f ,c −1[a1,a2]

Φ
p f ,d V f ,d −1[a1,a2]

∆π1

Φ
n f ,c V ni,c −1

Φ
n f ,d V ni,d −∆π1

Φ
p,d V p,d −1[ap

1
,a

p

2
]∆π2

1[a,a′] = 1 if game is a or a′ , = 0 otherwise.

Table 3.1: Empirical Implementation of Measures

As discussed above, in Treatment 1 the positive freedom measure Φp f ,c

corresponds to a constant. The same holds in Treatment 2. In Treatment 3, in-

stead, positive freedom is excluded by design.15 Therefore, estimating prefer-

ence for positive freedom under the specificationΦp f ,c corresponds to running

a regression on a dummy variable which equals 1 in Treatments 1 and 2 and

equals 0 in Treatment 3, denoted 1[a1,a2]. Under the specification Φp f ,d , the

dummy is interacted with the payoff distance ∆π1 = πhigh1 − πlow1 .

Differently from positive freedom, negative freedom is present in all treat-

ments.16 Therefore, estimating preference for negative freedom under the spec-

ification Φn f ,c corresponds to running a regression on a constant. The specifi-

cation Φn f ,d takes into account the difference in payoffs ∆π1.

Power is present only in games ap in Treatment 1 and 2, denoted a
p

1 and

a
p

2 .17 We focus on the specification Φp,d since games a
p differ from a

np

uniquely because of a positive payoff distance for Player 2, ∆π2 = πhigh,L2 −

π
low,L
2 . Thus, estimating preference for power under the specification Φp,d

corresponds to running a regression on ∆π2 times a dummy variable which

15In Treatment 3 Box L contains only 1 card, so even if his bid is successful Player 1 does not
select a card and thus has no positive freedom.

16In Treatment 3 Player 2 affects the outcomes of Player 1 if the bid is not successful, therefore
a successful bid yields negative freedom for Player 1.

17In Treatment 3 Box L contains only 1 card, so even if his bid is successful Player 1 does not
select a card and thus has no power on Player 2. In games anp in Treatment 1 and 2, Player 2’s

payoffs in box L are equal, πhigh,L

2 = π
l ow,L
2 , and thus Player 1 has no power on Player 2. In

games ap in Treatment 1 and 2, instead Player 2’s payoffs in box L differ, πhigh,L

2 > π
l ow,L
2 ,

and thus Player 1 has power on Player 2.
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equals 1 in games ap in Treatment 1 and 2, and equals zero otherwise.

3.6 Results

3.6.1 Allocation and Exercise of Decision Rights

Before turning to the results obtained via the empirical strategy described in the

previous section, we briefly present descriptive results on how Players 1 bid for

the decision right, and on how the players with the decision right (Players 1 or

2) make the card selection.

First, we inspect whether bids differ across treatments. Table 3.A.4 in Ap-

pendix 3.A reports the median bids submitted by Players 1 for each treatment

and each game. For most games, bids in Treatment 3, in which the decision

right gives Player 1 only negative freedom (in all rounds 1-20), are significantly

higher than in Treatment 1, in which the decision right gives positive freedom

and negative freedom (rounds 1-10, i.e. games a
np), or power and positive

freedom and negative freedom (rounds 11-20, i.e. games ap). This evidence

suggests the key role of negative freedom, which we further investigate later in

this section.

Second, we inspect whether bids in games that do not involve power (anp)

differ from those in games that involve power (ap). We make pair-wise com-

parisons across rounds in which Player 1 faces the same stake size and the same

expected payoff. We compare round 5 versus round 12, and round 10 versus

round 20.18 We find no significant differences between a
np and a

p in either

pair of comparisons.19 This evidence suggests that considerations regarding

power may be less relevant than considerations regarding positive freedom and

18Player 1 faces a stake size of 25 and an expected payoff of 50 in rounds 5 and 12, and a stake
size of 50 and an expected payoff of 50 in rounds 10 and 20.

19We perform a Wilcoxon signed rank sum test on observations paired at the participant level.
For round 5 versus round 12, we have z = 0.658 (p = 0.5102) in Treatment 1 and z = 1.339
(p = 0.1806) in Treatment 2. For round 10 versus round 20, we have z = −1.143 (p = 0.2531)
in Treatment 1 and z = −1.356 (p = 0.1750) in Treatment 2. In Treatment 3, as highlighted in
Section 3.3.2, all rounds involve negative freedom, but do not involve either positive freedom or
power. Therefore, distinguishing a

np and a
p in Treatment 3 is not meaningful.
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negative freedom. We investigate further this aspect later in this section.

Once the decision right is allocated, the player with the decision right

makes the card selection. Recall from Section 3.3 that if Player 1 has the

decision right, he chooses a card from Box L, knowing which card yields him

the highest payoff.20 Similarly, if Player 2 has the decision right, he chooses

a card from Box R, knowing which card yields him the highest payoff.21 Do

agents with the decision right use it in their favor, selecting the card that yields

them the highest payoff? Pooling all data together, we find that in more than

98 percent of the observations, the decision right is exercised by selecting the

card that yields the decision-maker his highest payoff.22

3.6.2 Certainty Equivalents

To verify whether subjects playing as Player 1 behave according to expected

utility maximization, we compare the certainty equivalent in each lottery-choice

in Part 2, CElot tery (L) with L = ( 1
2 ,π

high

1 ; 1
2 ,π

low
1 ), to the certainty equiva-

lent implied in the bidding choice in the corresponding situation in Part 1, i.e.

involving the same πhigh1 and πlow1 :

π
high

1 − y = CE (1

2
,π

high

1 ;
1

2
,πlow1 ) . (3.13)

Denote ∆CE as:

∆CE = πhigh1 − y −CElot tery (1

2
,π

high

1 ;
1

2
,πlow1 ) . (3.14)

Overbidding occurs if ∆CE is negative: the subject behaves more risk

averse in the bidding-choice than in the lottery-choice. Underbidding occurs

if ∆CE is positive: the subject behaves more risk averse in the lottery-choice

20In Treatment 1 and 2, the highest payoff for Player 1 is generated by Card B in case 1 and 2,
by Card A in case 3 and 4, as shown in Figure 3.1. In Treatment 3, Box L contains only Card C,
making the choice of Player 1 trivial.

21In Treatment 1 and 2, the highest payoff for Player 2 is generated by Card B in case 1 and 3,
by Card A in case 2 and 4, as shown in Figure 3.1.

22See Table 3.A.1 in Appendix 3.A for details.
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than in the bidding-choice.23

If the only error in ∆CE is due to the imprecise measurement of the cer-

tainty equivalent (which are measured on intervals of 5 payoff units), we should

expect ∆CE to be distributed uniformly with mean 0 and standard deviation(25/12)1/2 ≈ 1.44. We find instead that the mean is too low (-14.11) and the

standard deviation is too high (25.41).24 Both deviations are significant at the

1% level. We can therefore reject the hypothesis of expected utility maximizing

behavior.

3.6.3 Risk Preferences

Among the variables defined in Section 3.5, ∆EU requires knowledge of an

individual’s utility function over payoffs, u(π). We approximate u(π) by a

CRRA utility function u(π) = π1−ρ
1−ρ . For each subject, we estimate his risk

aversion coefficient via maximum likelihood estimation from his responses in

the lottery-choice questionnaire in Part 2, using a random utility model with:

uk (1

2
,πhigh,q ;

1

2
,πlow,q) = (πhigh,q)1−ρk

2(1 − ρk) +
(πlow,q)1−ρk

2(1 − ρk) + ǫq,k (3.15)

where ǫq,k ∼iid N(0,σ2
k), k indicates the subject and q the lottery in question.

We are able to estimate the risk aversion coefficients for 235 out of 244

subjects: 9 subjects exhibit such extreme risk preferences in the lottery-choice

questionnaire that we are unable to fit a CRRA model. In general, risk pref-

erences range from slightly risk loving to strongly risk averse.25 Based on the

risk aversion coefficients, we calculate the expected utility values of the payoffs

23We are aware of a caveat. When subjects answer the lottery-choice questionnaire in Part 2,
they already know their endowment in Part 1 (w1), but they do not know their earnings in Part 1
yet. Therefore, if there are significant income effects on risk aversion, we cannot expect (3.9) to be
identical to (3.13).

24The empirical distribution of ∆CE over 1132 observations has mean -14.11, median -12.50,
25% percentile -27.5, 75% percentile 2.5, standard deviation 25.41.

25The empirical distribution of ρ̂ over 235 observations has mean 0.59, median 0.37, 25% per-
centile .28, 75% percentile .46, standard deviation 2.58.
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from Box L and Box R.

3.6.4 Preference for Positive Freedom, Negative Freedom and Power

As a preliminary analysis, we perform a linear regression on the whole dataset

for different combinations and specifications of V f , V ni and V p . We assume

that, for each individual k, αk = α, βk = β and γk = γ, i.e. all individuals have

the same preference for positive freedom, negative freedom and power. Thus,

equation (3.12) simplifies to:

∆EUk,t = αV
f

k,t
+ βV ni

k,t + γV
p

k,t
+ ǫk,t (3.16)

Results are reported in Table 6. Among the alternatives (1)-(4), the best fit is

provided by (1), i.e. the model where both the positive freedom variable and

the negative freedom variable are specified as a constant. We find no conclu-

sive evidence of preference for positive freedom. Instead, we find that the effect

of preference for negative freedom is both economically and statistically sig-

nificant. Negative freedom parameters in regressions (1) and (2) for example

mean that the control of Player 2 of Box R comes with a utility loss of 6.711

and 6.082, respectively, which corresponds to an endowment loss of 35 payoff

units in rounds 10 and 20, for example. Due to the nature of the CRRA func-

tion, this amount will be higher for individuals with higher risk aversion and

lower for individuals with lower risk aversion. Finally, preference for power is

neither statistically nor economically significant.

A limitation of the population regression is that it tries to estimate a single

parameter for all individuals, even though after the risk aversion regression

their ∆EU will differ in scale and standard deviation. It therefore makes sense

to estimate the preferences for each individual separately with the more general

model:

∆EUk,t = αkV
f

k,t
+ βkV ni

k,t + γkV
p

k,t
+ ǫk,t , (3.17)

which we interpret as a random coefficient model with αk = α + ǫα,k , βk =



3.6. RESULTS 112

model (16) model (17)-(22)
(1) (2) (3) (4) (I) (II)

V
f ,c -1.748 0.565 0.1895

(1.935) (1.427) (0.7423)

V f ,d -0.029 -0.059 -0.0077
(0.053) (0.065) (0.0192)

V ni,c 6.711*** 6.082*** 5.6507***
(1.520) (1.163) (0.4032)

V ni,d 0.171*** 0.218*** 0.2081***
(0.039) (0.049) (0.0291)

V
p,d 0.004 -0.0004 -0.007 0.008

(0.005) (0.005) (0.005) (0.005)

obs 2360 2360 2360 2360 2360 2360
subjects 118 118 118 118 117 117
F-test 12.7 12.71 11.11 11.65

R-squared 0.1556 0.1539 0.1405 0.1425

J test χ2(1) 0.0319 0.0591

Table 3.1: Freedom and Power Estimation Results26

β + ǫβ,k , γk = γ + ǫγ,k . Since power is not a statistically significant explana-

tory variable in the estimation of (3.16), we include only positive freedom and

negative freedom as explanatory variables in the estimation of (3.17). We esti-

mate (3.17) using the following moment conditions:

26Column (1)-(4) report estimation results of model (3.16). Standard errors are clustered at
the individual level and are shown in parenthesis: * p < 0.05, ** p < 0.01, *** p < 0.001.
Column (I)-(II) report estimation results of model (3.17)-(3.22). We used simulated annealing
with 1000 search points. The estimation of parameters and weighting matrix was iterated 5 times
to achieve better finite-sample properties. To avoid misspecification, we excluded one individual
who perfectly maximized expected payoffs. This does not impact the statistical or economical
significance of the results. Standard errors are shown in parenthesis: * p < 0.05, ** p < 0.01,
*** p < 0.001. J test χ2(1) is the Hansen test of over-identifying restrictions. Since χ2(1).05 =

3.841, we do not reject the null hypothesis of a correctly specified model in either (I) or (II).
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E[ǫk,tV f

k,t
] = 0 (3.18)

E[ǫk,tV ni
k,t ] = 0 (3.19)

E[ǫα,k − α] = 0 (3.20)

E[ǫβ,k − β] = 0 (3.21)

E[ǫβ,k1k,[a3]] = 0 (3.22)

Conditions (3.18)-(3.19) state that errors ǫk,t are independent of the regressors,

the positive freedom variable V
f

k,t
and the negative freedom variable V ni

k,t , re-

spectively. Conditions (3.20)-(3.21) identify the population parameters α and

β. Condition (3.22) states that the mean of individual negative freedom pa-

rameters in Treatment 3 is equal to the one in the other treatments. Since treat-

ment assignment was random, individuals’ preference for positive freedom or

negative freedom should be independent across treatments. This allows iden-

tification of the positive freedom parameters αk for individuals in Treatment 1

and 2. Without condition (3.22) we cannot distinguish whether their bidding

behavior was motivated by preference for positive freedom or preference for

negative freedom. However, assuming that the mean preference parameters are

identical across treatments, we can identify the mean α via the difference in

behavior between Treatment 3 and the other treatments.

The random coefficient model (3.17)-(3.22) confirms the previous results.

Preference for negative freedom is the driving force for preference for decision

rights. The median preference for negative freedom parameters in (I) and (II)

were 0.04 and 1.70. For median risk aversion (.37) losing the decision right

in rounds 10 and 20 was therefore equivalent to an endowment loss of 10.37

and 12.38 points. The results therefore remain statistically and economically

highly significant.

Additionally, in Appendix 3.C we used the obtained estimates on individual-

level αk and βk to examine whether preference for positive freedom and neg-

ative freedom can be explained by individuals’ locus of control, which is mea-
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sured in Part 3 of the experiment. We find that one of the three separate scales

used to measure locus of control, the P-scale, which measures the degree to

which individuals believe that other persons control their lives, explains pref-

erence for positive freedom and negative freedom in model (I), but not in (II).

Thus evidence suggests that preference for positive freedom and negative free-

dom cannot fully be explained by locus of control.27

3.7 Conclusions

In this paper we present theoretical foundations for preference for decision

rights, driven by preference for positive freedom, power and negative freedom.

We conduct a laboratory experiment in which the role of each preference can

be distinguished.

Our results confirm the existence of an intrinsic value of decision rights

and extend these from delegation settings to a willingness to pay/auction set-

ting. Evidence from our experiment highlights two main results. First, we find

no evidence of preference for power. Thus, preference for power as casually

observed in politics or other institutional settings may simply be instrumen-

tal to other components of well-being, such as status recognition. This result,

however, may partly depend on the experimental setting, in which each player

learns his own preferences towards the final choice but never learns the prefer-

ences of the other player. Therefore, a Player 1 with preference for power may

not find the exercise of power over Player 2 particularly satisfying because he

does not know Player 2’s preferences, and thus does not know in which way he

can influence him. We consider experimental settings that relax such informa-

tion constraints an interesting direction for further research.

Second, we find stronger evidence of preference for negative freedom than

for positive freedom. This result suggests that individuals value the decision

right not because of the actual decision-making process, but rather because

they have preference against others intervening in their outcomes. This result

27For details on the scales used to measure locus of control, see Appendix 3.C.
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leads to a fundamental change of perspective on preference for decision rights.

In contrast to the interpretation presented by Fehr et al. (2013) and Bartling et

al. (2013), individuals like to have decision rights in virtue of the absence of

decision rights of other individuals. An individual’s evaluation of risks then

depends on whether the risks are generated by an objective process or by the

behavior of other individuals.



Appendix

3.A Additional Tables and Figures

Treatment Player 1 Player 2

has decision chooses has decision chooses

right preferred card right preferred card

1 0.41 1 0.59 0.98

2 0.4 0.99 0.6 0.99

3 0.55 1 0.45 0.94

all 0.44 1 0.56 0.98

Table 3.A.1: Decision rights and choice behavior conditional on having the

decision right. Fraction of observations.

Statement Correct Correct

Answer %

If participant 1 has the decision right, box R is opened. Not True 96.3

It is in the best interest of participant 1, to bid equal to his/her

true valuation for the decision right.

True 98.0

The participants receive payments for each round of part 1. Not True 96.7

If the bid of participant 1 is higher than the randomly de-

termined number, participant 1 has to pay a fee equal to the

amount of the bid.

Not True 58.2

Table 3.A.2: Comprehension questions
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Screen 1 Screen 2 Screen 3

Option A Option B Option A Option B Option A Option B

30 1
2, 85; 1

2, 15 30 1
2, 75; 1

2 , 25 30 1
2, 65; 1

2 , 35

35 1
2, 85; 1

2, 15 35 1
2, 75; 1

2 , 25 35 1
2, 65; 1

2 , 35

40 1
2, 85; 1

2, 15 40 1
2, 75; 1

2 , 25 40 1
2, 65; 1

2 , 35

45 1
2, 85; 1

2, 15 45 1
2, 75; 1

2 , 25 45 1
2, 65; 1

2 , 35

50 1
2, 85; 1

2, 15 50 1
2, 75; 1

2 , 25 50 1
2, 65; 1

2 , 35

55 1
2, 85; 1

2, 15 55 1
2, 75; 1

2 , 25 55 1
2, 65; 1

2 , 35

60 1
2, 85; 1

2, 15 60 1
2, 75; 1

2 , 25 60 1
2, 65; 1

2 , 35

65 1
2, 85; 1

2, 15 65 1
2, 75; 1

2 , 25 65 1
2, 65; 1

2 , 35

70 1
2, 85; 1

2, 15 70 1
2, 75; 1

2 , 25 70 1
2, 65; 1

2 , 35

75 1
2, 85; 1

2, 15 75 1
2, 75; 1

2 , 25 75 1
2, 65; 1

2 , 35

80 1
2, 85; 1

2, 15 80 1
2, 75; 1

2 , 25 80 1
2, 65; 1

2 , 35

Table 3.A.3: Paired lottery-choice questions. 1
2 ,π

B,high ; 1
2 ,π

B,low denotes

the lottery yielding a high prize πB,high with probability 0.5 and a low prize

πB,low with probability 0.5.
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Round Treatment

1 2 3 all 1 vs 2 2 vs 3 1 vs 3

1 50 52 69 60 -2.492 (0.0127)

2 48 40 45 44 -2.357 (0.0184)

3 28 30 30 30 -1.709 (0.0874)

4 45 40 60 50 -3.073 (0.0021) -2.884 (0.0039)

5 40 40 45 40 -1.831 (0.0671)

6 30 30 30 30 -1.781 (0.0749)

7 50 40 70 50 -2.968 (0.0030) -3.000 (0.0027)

8 30 36 45 35 -2.198 (0.0280)

9 20 30 30 30 -2.489 (0.0128) -2.893 (0.003)

10 66 68 80 70 -1.945 (0.0518)

11 40 40 45 40 -2.043 (0.0411)

12 35 36 45 40 -1.703 (0.0886) -1.977 (0.0481)

13 35 40 50 40 -2.296 (0.0217) -2.430 (0.0151)

14 33 35 43 40 -1.719 (0.0856) -1.909 (0.0562)

15 30 30 45 40 -1.706 (0.0880) -1.941 (0.0523)

16 50 40 65 50 -2.586 (0.0097) -2.916 (0.0035)

17 25 30 30 30 -2.411 (0.0159)

18 40 47 50 48 -1.860 (0.0628) -2.614 (0.0089)

19 30 31 35 33

20 80 70 70 72

all 40 40 50 40

Table 3.A.4: Median bids. Results of a Mann-Whitney-Wilcoxon rank-sum test

(p-values in parenthesis) are reported only for statistically significant cases.
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3.B Derivations of Valuation Functions

In this appendix we present the derivation of the measures of positive freedom

Φ
p f

1 , negative freedomΦn f

1 and powerΦp

1 under each specification of function

g(o,u) (g = 1 and g = ∣πhigh − πlow ∣) and for each treatment (1, 2 and 3).

The positive freedom measure Φp f

1 under Treatment 1 for a general func-

tion g is:

Φ
p f

1 (subg(a1, y),θ1∣y) =
∑
r≤y
∑
u∈U1

θ1∣y(u) ∑
c∈{A,B}

g(o(r,1,c),u)θ1∣y(o(r,1,c)∣u) log2

θ1∣y(o(r,1,c)∣u)
θ1∣y(o(r,1,c))

+ ∑
r>y
∑
u∈U1

θ1∣y(u) ∑
c∈{A,B}

g(o(r,2,c),u)θ1∣y(o(r,2,c)∣u) log2

θ1∣y(o(r,2,c)∣u)
θ1∣y(o(r,2,c))

(3.23)

where we use the fact that ∑o∈Oi
f (o) = ∑100

r=1∑i∈{1,2}∑c∈{A,B} f (o(r,i,c))
for any function f (o) and that y ≥ r implies θ1∣y(o(r,2,c)) = 0. Moreover,

θ1∣y(o(r,2,c)∣u) = θ1∣y(o(r,2,c)) since if Player 2 has the decision right, the

outcome is independent of Player 1’s preferences. Since log2 1 = 0, the mea-

sure simplifies to:

Φ
p f

1 (subg(a1, y),θ1∣y) =
∑
r≤y
∑
u∈U1

θ1∣y(u) ∑
c∈{A,B}

g(o(r,1,c),u)θ1∣y(o(r,1,c)∣u) log2

θ1∣y(o(r,1,c)∣u)
θ1∣y(o(r,1,c))

(3.24)
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The remaining probabilities are as follows:

∀u ∈U1 ∶ θ1∣y(u) = 1/2
∀u ∈ U1 ∶ ∀r ≤ y ∶ θ1∣y(o(r,1,A)∣u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

100 , u = uA
1

0, else

∀u ∈ U1 ∶ ∀r ≤ y ∶ θ1∣y(o(r,1,B)∣u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
100 , u = uB

1

0, else

∀r ≤ y ∶ θ1∣y(o(r,1,A)) = 1/200

∀r ≤ y ∶ θ1∣y(o(r,1,B)) = 1/200 (3.25)

The positive freedom measure therefore simplifies to:

Φ
p f

1 (subg(a1, y),θ1∣y) = 1

200
∑
r≤y
(g(o(r,1,A),uA

1 ) + g(o(r,1,B),uB
1 ))

(3.26)

Since Treatment 2 differs from Treatment 1 only in that Player 2’s endowment

w2 equals 0 instead of 100, it follows that

Φ
p f

1 (subg(a1, y),θ1∣y) = Φp f

1 (subg(a2, y),θ1∣y).
For Treatment 3, instead:

Φ
p f

1 (subg(a3, y),θ1∣y) =
∑
r≤y
∑
u∈U1

θ1∣y(u) ∑
c∈{C}

g(o(r,1,c),u)θ1∣y(o(r,1,c)∣u) log2

θ1∣y(o(r,1,c)∣u)
θ1∣y(o(r,1,c))

+ ∑
r>y
∑
u∈U1

θ1∣y(u) ∑
c∈{A,B}

g(o(r,2,c),u)θ1∣y(o(r,2,c)∣u) log2

θ1∣y(o(r,2,c)∣u)
θ1∣y(o(r,2,c))

(3.27)
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As in (3.23), θ1∣y(o(r,2,c)∣u) = θ1∣y(o(r,2,c)): if Player 2 has the deci-

sion right, the outcome is independent of Player 1’s preferences. In addition,

θ1∣y(o(r,1,C)∣u) = θ1∣y(o(r,1,C)): if Player 1 has the decision right, then

only Card C is available, and thus the outcome is independent of Player 1’s

preferences. Since ln2 1 = 0, the measure equals Φp f

1 (subg(a3, y),θ1∣y) = 0.

This concludes the derivations for positive freedom Φp f .

The negative freedom measure Φn f

1 for a general function g is:

Φ
n f

1 (subg(a, y),θ1∣y) =
−∑

r≤y
∑
v∈U2

θ1∣y(v) ∑
u∈U1

θ1∣y(u∣v)
⋅ ∑
c∈{A,B}

g(o(r,1,c),u)θ1∣y(o(r,1,c)∣v) log2

θ1∣y(o(r,1,c)∣v)
θ1∣y(o(r,1,c))

−∑
r>y
∑
v∈U2

θ1∣y(v) ∑
u∈U1

θ1∣y(u∣v)
⋅ ∑
c∈{A,B}

g(o(r,2,c),u)θ1∣y(o(r,2,c)∣v) log2

θ1∣y(o(r,2,c)∣v)
θ1∣y(o(r,2,c)) (3.28)

In all treatments, θ1∣y(o(r,1,c)∣v) = θ1∣y(o(r,1,c)): if Player 1 has the

decision right, the outcome is independent of Player 2’s preferences. Thus,

Φ
n f

1 can be written, for all treatments, as:

Φ
n f

1 (subg(a, y),θ1∣y) =
−∑

r>y
∑
v∈U2

θ1∣y(v) ∑
u∈U1

θ1∣y(u∣v)
⋅ ∑
c∈{A,B}

g(o(r,2,c),u)θ1∣y(o(r,2,c)∣v) log2

θ1∣y(o(r,2,c)∣v)
θ1∣y(o(r,2,c)) (3.29)

Since the negative freedom measure captures ‘interferences’, it captures

what happens if Player 2 has the decision right, and not what happens if Player
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1 has the decision right. The remaining probabilities are as follows:

∀v ∈ U2 ∶ θ1∣y(v) = 1/2
∀v ∈U2 ∶ ∀u ∈ U1 ∶ θ1∣y(u∣v) = 1/2
∀v ∈U2 ∶ ∀r ≤ y ∶ θ1∣y(o(r,2,A)∣v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

100 , v = uA
2

0, else

∀v ∈U2 ∶ ∀r ≤ y ∶ θ1∣y(o(r,2,B)∣v) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
100 , v = uB

2

0, else

∀r ≤ y ∶ θ1∣y(o(r,2,A)) = 1/50

∀r ≤ y ∶ θ1∣y(o(r,2,B)) = 1/50 (3.30)

The negative freedom measure therefore simplifies to:

Φ
n f

1 (subg(a, y),θ1∣y) = − 1

400
∑
r>y
∑
u∈U1

(g(o(r,2,A),u)+ g(o(r,2,B),u))
(3.31)

It is then straightforward to insert the values for g(o,u) in the above equa-

tions. Summing up, we have for positive freedom:

Φ
p f ,c(subg(a1, y),θ1∣y) = Φp f ,c(subg(a2, y),θ1∣y) = y

100

Φ
p f ,d(subg(a1, y),θ1∣y) = Φp f ,d(subg(a2, y),θ1∣y) = y

100
(πhigh1 − πlow1 )

Φ
p f ,c(subg(a3, y),θ1∣y) = Φp f ,d(subg(a3, y),θ1∣y) = 0 (3.32)

For negative freedom we have for all a ∈ {a1,a2,a3} ∶
Φ

n f ,c(subg(a, y),θ1∣y) = − 100 − y

100

Φ
n f ,d(subg(a, y),θ1∣y) = − 100 − y

100
(πhigh1 − πlow1 ) (3.33)
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Power is largely analogous to Φp f ,d and therefore gives:

Φ
p,d(subg(ap

1 , y),θ1∣y) = Φp,d(subg(ap

2 , y),θ1∣y) = y

100
(πhigh2 − πlow2 )

(3.34)

Φ
p,d(subg(anp

1 , y),θ1∣y) = Φp,d(subg(anp

2 , y),θ1∣y) =0 (3.35)

Φ
p,d(subg(a3, y),θ1∣y) =0 (3.36)
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3.C Locus of Control

We implement the Levenson Multidimensional Locus of Control Test as de-

signed by Levenson (1981) and translated from English to German by Krampen

(1981). In personality psychology, locus of control refers to the extent to which

individuals believe that they can control events that affect them. A person’s

‘locus’ is either internal (i.e., the person believes that events in his life de-

rive primarily from his own actions) or external (i.e., the person believes that

events in his life derive primarily from external factors, such as chance and

other people’s actions, which he cannot influence). There are three separate

scales used to measure one’s locus of control: Internal Scale (I scale), Power-

ful Others External Scale (P scale), and Chance External Scale (C scale). The

I-scale measures the degree to which individuals believe that they control their

lives. The P-scale measures the degree to which individuals believe that other

persons control their lives. Finally, the C-scale measures the degree to which

individuals believe that chance plays a role in their lives.

The questionnaire is reported in Table 3.C.2. There are eight items on each

of the three scales, which are presented to the subject as one unified attitude

scale of 24 items. The specific content areas mentioned in the items are coun-

terbalanced so as to appear equally often for all three dimensions. To score

each scale, add up the points of the answers for the items appropriate for that

scale (from 1 for strongly disagree to 6 for strongly agree). The possible range

on each scale is from 0 to 48. Each subject receives three scores indicative of

his or her locus of control on the three dimensions of I, P, and C.

Table 3.C.1 reports summary statistics of the three scales across all partici-

pants. Since the empirical distribution does not differ across treatments, Table

3.C.1 pools all treatments together.
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scale No. mean std min p25% p50% p75% max

I-scale 244 36 4 16 33 36 38 46

P-scale 244 24 5 10 21 24 27 38

C-scale 244 25 5 11 22 25 28 39

Table 3.C.1: Locus of Control: summary statistics of each scale.

There may be several reasons why attitudes towards locus of control may

be thought to be intrinsically related to attitudes towards positive freedom and

negative freedom. Subjects who believe that other individuals control their

lives may have a greater preference for positive freedom and negative freedom.

Subjects who believe that chance controls their lives may be more risk averse.

Also, after a series of low bids resulting in Player 2 determining the game

outcome, Player 1 may be more likely to believe that other individuals control

his life.

As shown in Table 3.C.3, we do not find strong evidence that attitudes

towards locus of control are correlated with preference for positive freedom

or negative freedom. In one model there is some suggestion that the P-scale

predicts preference for positive freedom and negative freedom but this does not

extend to the other specification. This suggests that general attitudes towards

control in their lives are unrelated to their preference for control over outcomes.

I-scale C-scale P-scale

αV f ,c + βV ni,d
α -0.1632 -0.2132* -0.2930**

β 0.1596 0.1799 0.2258*

αV f ,d + βV ni,c
α -0.0917 0.1124 -0.0096

β 0.1732 0.0215 0.0363

Table 3.C.3: Correlation of estimated preference parameters with Locus of

Control scores. *: p < 0.05, **: p < 0.01
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1. (I) Whether or not I get to be a leader depends mostly on my ability.

2. (C) To a great extent my life is controlled by accidental happenings.

3. (P) I feel like what happens in my life is mostly determined by powerful people.

4. (I) Whether or not I get into a car accident depends mostly on how good a driver I am.

5. (I) When I make plans, I am almost certain to make them work.

6. (C) Of ten there is no chance of protecting my personal interests form bad luck happenings.

7. (C) When I get what I want, it is usually because I’m lucky.

8. (P) Although I might have good ability, I will not be given leadership responsibility without appealing
to those positions of power.

9. (I) How many friends I have depends on how nice a person I am.

10. (C) I have often found that what is going to happen will happen.

11. (P) My life is chiefly controlled by powerful others.

12. (C) Whether or not I get into a car accident is mostly a matter of luck.

13. (P) People like myself have very little chance of protecting our personal interests when they conflict
with those of strong pressure groups.

14. (C) It’s not always wise for me to plan too far ahead because many things turn out to be a matter of
good or bad fortune.

15. (P) Getting what I want requires pleasing those people above me.

16. (C) Whether or not I get to be a leader depends on whether I’m lucky enough to be in the right place at
the right time.

17. (P) If important people were to decide they didn’t like me, I probably wouldnâĂŹt make many friends.

18. (I) I can pretty much determine what will happen in my life.

19. (I) I am usually able to protect my personal interests.

20. (P) Whether or not I get into a car accident depends mostly on the other driver.

21. (I) When I get what I want, it’s usually because I worked hard for it.

22. (P) In order to have my plans work, I make sure that they fit in with the desires of people who have
power over me.

23. (I) My life is determined by my own actions.

24. (C) It’s chiefly a matter of fate whether or not I have a few friends or many friends.

Table 3.C.2: Locus of Control questionnaire
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3.D Inequality Aversion

Our experimental design also allows for the estimation of fairness preferences.

We implemented the Fehr and Schmidt (1999) model, which gives us the fol-

lowing optimal bid condition:

b − (πhi1 − π
lo
1 )/2 = λV dis + µV adv (3.37)

V dis
= max(0, πhigh

2 +πlow2

2 + w2 − π
high − w1 + b) −max(0,πhigh2 + w2 −

π
high

1 +πlow1

2 − w1)

Vadv
= max(0,πhigh1 + w1 − b −

π
high

2 +πlow2

2 − w2) −max(0, πhigh

1 +πlow1

2 + w1 − π
high

2 − w2)
where V dis stands for the difference in disadvantageous inequality between

Box L and Box R, and V adv stands for the difference in advantageous inequal-

ity between Box L and Box R. An individual behaving according to the above

model compares not only the utility values resulting from having or not hav-

ing the decision right, but also the expected payoff inequalities resulting from

having or not having the decision right.

Note that whether an observation is in the area of advantageous or disad-

vantageous inequality for Player 1 depends not only on the payoffs but also on

the bid of Player 1.

For better readability, we define:
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η1 = π
high,L

1 −
π
high,R
1 + πlow,R1

2
(3.38)

η2 =
π
high,L

1 + πlow,L1

2
− πhigh,R (3.39)

ηL = π
high,L
1 −

π
high,L
2 + πlow,L2

2
(3.40)

ηR =
π
high,R
1 + πlow,R1

2
− π

high,R

2 (3.41)

ηw = w1 − w2 (3.42)

b∗ is then implicitly defined via:

b∗(λ, µ) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η1 −
λ

1+λ η2 , (ηL + ηw < b∗) ∧ (ηR + ηw < 0)
η1+λ(ηw+ηL)+µ(ηw+ηR)

1+λ , (ηL + ηw < b∗) ∧ (ηR + ηw > 0)
η1 +

µ

1−µ η2 , (ηL + ηw > b∗) ∧ (ηR + ηw > 0)
η1−µ(ηw+ηL)+λ(ηw+ηR)

1−µ , (ηL + ηw > b∗) ∧ (ηR + ηw < 0)
(3.43)

Which case is the relevant one depends on the round and preference pa-

rameters λ and µ and the optimal bid is nonlinear in λ and µ. We therefore

estimated the preference parameters via nonlinear least squares on the bids.

We additionally included a constant to account for preference for negative free-

dom.28 The estimated model is:

bi,t = b∗i,t (λ, µ) + γ + ǫ i,t . (3.44)

We find only slight evidence for preference for advantageous inequality. In-

28Technically, this is not quite the same definition of negative freedom as in the main body of
the paper, where the model additionally accounts for risk attitudes. Since in both the risk-neutral
and the risk-averse case there is strong evidence for preference for negative freedom, we interpret
this as an additional robustness result.
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λ .013038
(.0514239)

µ -.0886128*
(.044491)

γ 12.44203***
(1.783147)

obs 2440
subjects 122
R2 0.7604

Table 3.D.1: Estimation results of model (3.44). We used a grid of 103 starting points for
the three parameters and obtained standard errors via bootstrapping with clusters at the individual
level and 100 repetitions. Standard errors are shown in parenthesis: * p < 0.05, ** p < 0.01, ***
p < 0.001.

dividuals therefore seemed to engage more in competitive bidding when they

were in an advantageous situation. The main explanation for overbidding rela-

tive to the Nash equilibrium predictions is still negative freedom.

There are several explanations why inequality aversion seems to play a

small role in explaining the data. First, in more complex decision tasks indi-

viduals may focus more strongly on their own payoffs than on inequality. Sec-

ond, unlike decision problems such as the dictator game, the decision problem

in our experiment is not clearly framed as one where individuals are morally

obliged to share. Finally, experiment participants may not have been aware of

the effect that their bids had on the payoffs of the other player.



4 Contests with Group-Specific Public Goods and

Complementarities in Efforts1

Martin Kolmar

Hendrik Rommeswinkel

This paper starts from the observation that in public-goods group contests,

group impact can in general not be additively decomposed into some sum (of

functions) of individual efforts. We use a CES-impact function to identify the

main channels of influence of the elasticity of substitution on the behavior in

and the outcome of such a contest. We characterize the Nash equilibria of

this game and carry out comparative-static exercises with respect to the elas-

ticity of substitution among group members’ efforts. If groups are homoge-

neous (i.e. all group members have the same valuation and efficiency within

the group), the elasticity of substitution has no effect on the equilibrium. For

heterogeneous groups, the higher the complementarity of efforts of that group,

the lower the divergence of efforts among group members and the lower the

winning probability of that group. This contradicts the common intuition that

groups can improve their performance by solving the free-rider problem via

higher degrees of complementarity of efforts.

1This paper has been published as Kolmar and Rommeswinkel (2013).
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4.1 Introduction

In many economic situations like R&D races, military conflicts, lobbying, or

sports, groups compete for economic rents that are group-specific public goods.

Usually, in all these examples, efforts of different group members are to some

extent complementary. In R&D races, where teams of researchers develop

new technologies, the whole project is often divided into different, more or

less complementary sub-projects that are carried out by different researchers.

In military conflicts the armed forces are highly specialized and often divided

into complementary units. The same is true for the standard lobbying case if

representatives of different firms or organizations lobbying for the same pol-

icy differ in qualifications and specialize accordingly. In sports contests, team

members are usually specialized with respect to qualifications that complement

each other in a non-additive way. Another example for a group conflict is com-

petition for a prize between different business partnerships. Management con-

sultants, lawyers, physicians, and architects often organize their companies as

partnerships where individual incomes of the partners are determined accord-

ing to their shares in the partnership (Garicano & Santos, 2004). Consultan-

cies and architect offices competing for projects and physicians competing for

patients are all in situations that closely resemble a contest.2 Furthermore, the

substitutability of the partners’ efforts depends on the industry as well as on the

qualifications of the different partners (and thereby the organizational structure

and the business strategy). A medical center that combines physicians with dif-

ferent qualifications has a relatively high degree of complementarity between

the different physicians’ qualifications. A consulting firm that specializes in

only one field of business, on the other hand, is likely to have a higher degree

of substitutability between the partners’ efforts.

This list of examples could be more or less arbitrarily extended because

the mere idea of specialization implies that there is a certain degree of com-

plementarity in team or group production. Individuals differ in talents, qual-

2Competition for customers has more the character of an oligopolistic market. However, if
market demand is isoelastic, the Tullock contest is isomorphic to a Cournot oligopoly.
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ifications, and affections in a way that they will specialize to increase overall

productivity. We can therefore expect a certain degree of complementarity be-

tween the efforts of the group members. Alchian and Demsetz (1972) see the

non-additivity as constitutive for group or team production (pp. 777): “Re-

source owners increase productivity through cooperative specialization. [...]

With team production it is difficult, solely by observing total output, to either

define or determine each individual’s contribution to this output of the coop-

erating inputs. The output is yielded by a team, by definition, and it is not a

sum of separable outputs of each of its members. [...] Usual explanations of

the gains from cooperative behavior rely on exchange and production in ac-

cord with the comparative advantage specialization principle with separable

additive production. However [...] there is a source of gain from cooperative

activity involving working as a team, wherein individual cooperating inputs do

not yield identifiable, separate products which can be summed to measure the

total output.”

Despite the growing interest in the influence of heterogeneity within and

between groups, with only a few exceptions the literature on group contests

(surveyed in Corchón, 2007; Garfinkel & Skaperdas, 2007; Konrad, 2009) has

focused attention on situations where the effort levels of group members are

perfect substitutes. This case is an important starting point for the analysis

of group contests. However, if complementarities are the rule rather than the

exception, it is important to understand how the degree of complementarity be-

tween individual efforts influences behavior in and the outcome of the contest.

We use a CES production (impact) function in an n-group contest. To be

more specific, assume that individual efforts xki are mapped onto group impact

(that enters a lottery contest as aggregate contribution by a group)3 by means of

a CES-impact function, gi ⋅ (∑ ak
i ⋅ (xki )γi )1/γi , with variable elasticity of sub-

stitution 1/(1 − γi), ranging from perfect complements (γi → −∞) to perfect

substitutes (γi → 1), and aggregate as well as individual efficiency parame-

ters gi , ak
i respectively. The contest is of the Tullock type, and the rent is a

3The term ‘impact function’ is defined and discussed in Wärneryd (2001); Münster (2009).
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group-specific public good (i.e. nonrival and nonexcludable in consumption).

If groups instead of individuals compete in a contest, the well-known free-

rider problem among group members exists. Every individual bears the full

costs of its investments, whereas the benefits partly spill over to the rest of the

group (Katz, Nitzan, & Rosenberg, 1990; Esteban & Ray, 2001; Epstein &

Mealem, 2009; Nitzan & Ueda, 2009; Ryvkin, 2011). Depending on the shar-

ing rule applied, this problem may also exist for a private good (Nitzan, 1991a,

1991b; Esteban & Ray, 2001; Nitzan & Ueda, 2009). In the recent literature,

Baik (2008), Epstein and Mealem (2009), and Lee (2012) have presented con-

test models with group-specific public goods. A major result in Baik (2008) is

that in a model with linear effort costs and additively linear impact functions

only those group members with the highest valuation of the rent make positive

investments in the contest.4 In his model, efforts of group members are per-

fect substitutes and therefore the optimality conditions given by the first-order

conditions cannot hold for different valuations. With several group members

having the maximal valuation among the group, there exist multiple equilibria,

since the first order condition only defines the total effort spent by the group.

Epstein and Mealem (2009) stick to the assumption of additive separability

of individual effort in the group-production functions but introduce decreas-

ing returns to investment. Using a technology that fulfills standard “Inada”

conditions they show that every individual makes positive investments. Their

model is isomorphic to a model with linear impact functions and in which in-

dividuals face strictly convex costs. In this sense, effort levels are no longer

perfect substitutes, but the impact function is still additively separable. Lee

(2012) focuses attention on weakest-link or perfectly complementary impact

functions. The perfect complementarity of efforts creates a coordination prob-

lem between group members which gives rise to multiple equilibria, and the

equilibrium with highest efforts is determined by the valuation of the player

with minimum valuation within each group. Hence, the models of Baik (2008)

4This result has, of course, a counterpart in the literature on the private provision of public
goods where it follows as a special case of the seminal contribution by Bergstrom, Blume, and
Varian (1986).
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and Lee (2012) represent the “polar” cases with respect to the elasticity of sub-

stitution between group members for those cases where the iso-impact curves

remain convex. Chowdhury, Lee, and Sheremeta (2011) nicely complements

our paper. They analyze the case of a best-shot impact function as the most

extreme case of non-convex iso-impact curves.

Our model generalizes the “convex” models by allowing for degrees of

complementarity among group efforts. It turns out that the equilibrium behav-

ior of each group is unique for all values of γi ∈ (0,1). For γi ∈ (−∞,0), the

complementarity of efforts is high enough, such that the effort contributions of

each member become indispensable. Groups may therefore end up in a high

effort equilibrium, in which all members contribute, or in a low effort equilib-

rium, where none contribute. However, in both cases we can give analytical

expressions for equilibrium strategies. In our comparative statics analysis we

therefore track equilibria with the same set of groups which fail to coordinate

on a high effort equilibrium.

A first corollary is that if there is no within-group heterogeneity with re-

spect to valuations of the prize vki and efficiency ak
i of each group member and

all groups have the same size, the equilibrium is independent of the elasticity

of substitution except for the mentioned multiple equilibria issue. This result is

a useful starting point because it shows that the elasticity of substitution per se

has no impact on behavior in the contest, contrary to the cursory idea that in-

creasing the degree of complementarity between group-members’ efforts may

help to internalize the existing free-rider problem.5 This point, which has been

derived for public-goods games with effort complementarity (Cornes, 1993;

Cornes & Hartley, 2007), carries over to the contest environment.6 As a con-

5E.g. Hirshleifer (1983) argues for the special case of perfect complements (“weakest-link”
technology) that the complementarity between group members’ efforts helps solving the free-rider
problem.

6Cornes and Hartley (2007) have analyzed a voluntary-contributions to a public-good game
with CES production (social-composition) functions where a single group jointly produces a public
good. The additional dimension of generality from the contest structure comes at the cost of a more
restrictive class of utility functions. Whereas Cornes and Hartley (2007) need binormal utility
functions, we assume that utility functions are additively separable between the group-specific
public good and some numéraire good that finances individual contributions.
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venient side effect, this independence shows that the standard results on group

contests are robust with respect to variations in the elasticity of substitution

under within-group homogeneity.

The comparative-static analysis of the paper reveals that this effect is even

more pronounced in the general case: A larger degree of complementarity

within a single group reduces its winning probability. The intuition for this

result is as follows. It is true that a larger degree of complementarity brings the

effort levels of the group members closer together. Free-riding that is especially

pronounced in the boundary case γi = 1 is therefore mitigated. However, the

level of effort is increasingly determined by the group member with the lowest

valuation, and it is this latter effect that turns out to be dominant. Even though

the winning probability is decreasing, the effect on the overall welfare of the

group is ambiguous: Highly efficient group members with a low valuation may

start to provide effort under higher degrees of complementarity and due to their

efficiency raise the overall welfare of the group. The results highlight the im-

portance of accounting for within-group heterogeneity and complementarity

for a proper analysis of the provision of group-specific public goods in a con-

test environment.

While these results are derived for the public good “winning probability

in a contest”, it may be interesting to see whether they hold in general for the

private provision of public goods. So far it has not been possible to analyze this

point in public goods models such as Cornes and Hartley (2007), since there

exist no analytical solutions for the equilibrium contributions aside from some

special cases. The fact that in our model we can explicitly solve for equilibrium

strategies enables us to perform this comparative-static analysis with respect to

the degree of complementarity in efforts.

The paper is organized as follows. We introduce the model in Section 2

and start with introductory examples in Section 3. We characterize the simul-

taneous Nash equilibria of the general model in Section 4. In section 5 the

comparative-static results are summarized. Section 6 concludes. Large proofs

are given in the appendix, and in a special Appendix C we will state conver-
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gence results for γ⃗ approaching 1, 0, and −∞.

4.2 The model

Assume that n ≥ 2 groups compete for a given rent. The set of groups is given

by N = {1,2, . . . ,n} while mi is the number of individuals in group i and k

is the index of a generic member of this group. The rent is a group-specific

public good that has a value v
k
i > 0 to individual k of group i. pi represents

the probability of group i = 1, ...,n to win the contest. It is a function of some

vector of aggregate group output q1, ...,qn . We focus on Tullock-form contest-

success functions where the winning probability of a group i is defined as:

Assumption 4.1.

pi(Q1, ...,Qn) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Qi

∑n
j=1 Q j

, ∃Q j > 0

1
n
, Q j = 0 ∀ j

, (4.1)

with i = 1, ...,n

The aggregate group output Qi of each group i = 1, ...,n depends on in-

dividual effort xki , Qi = qi(x1
i , ..., x

mi

i ). Following the literature we will call

qi(.) impact functions in the following and make the assumption that they are

of the constant elasticity of substitution (CES) type.

Assumption 4.2.

qi(x1
i , ..., x

mi

i ) = gi ⋅ (mi∑
l=1

al
i ⋅ (xli)γi)1/γi

, (4.2)

with γi ∈ {(−∞,0),(0,1)}, i = 1, ...n.

The function has the usual parameters ak
i for the efficiency of an individ-

ual’s effort and gi for the relative strength of the group. Note that we obtain a

closed-form solution only if for all i it holds that γi ≠ 0. Also, if γi < 0 and
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∃k ∶ xki = 0, the function is not well defined. We will therefore take the limit of

qi(. . . ) as xki → 0, which means qi(. . . ) = 0 in that case. Note that for γi > 0

this is not the case.

Assumption 4.3. Individuals are risk neutral, face linear costs, and maximize

their net rent.

It follows from Assumptions 1, 2, and 3 that the individual expected utility

functions are as follows:

πki (x1
1, ..., x

mn
n ) ∶= πki (xki , x⃗/xk

i
) = vki ⋅ gi ⋅ (∑l al

i ⋅ (xli)γi )1/γi

∑ j gj ⋅ (∑l al
j ⋅ (xlj)γ j )1/γ j

− xki , (4.3)

where x⃗/xk
i

refers to the vector x1
1, ..., x

mn
n without xki . We are looking for a

Nash equilibrium of this game where individuals choose their effort xki simul-

taneously to maximize their expected utility,

xk∗i ∈ arg max
xk
i

πki (xki , x⃗∗/xk
i

) ∀i,k, (4.4)

where “∗” refers to equilibrium values.

4.3 Introductory examples

In this section we analyze two simple special cases that provide intuition for

the relevance of the degree of complementarity in contests. As we will see, the

degree of complementarity is only relevant if the valuations between members

of the same group differ. The examples restrict attention to a contest between

two groups, 1 and 2, with m1 and m2 members whose valuations can take two

values. The valuation of the group members are either high vi or low vi , thus

vi ≥ vi , i = 1,2. The examples are chosen to highlight the central mechanisms

of this model, we therefore relegate all technical details about the existence of

interior solutions, active and inactive groups and group members, etc. to the

next section.
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Example 1: Let us restrict attention to groups of equal size m1 = m2 = m with

only a single valuation of the members of a given group, vi = vi = vi ,i = 1,2

and identical technologies with ak
i = 1, gi = 1 and γi = γ. In this case

x∗1(v1,v2,m) = (v1)2 ⋅ v2

m ⋅ (v1 + v2)2 , x∗2(v1,v2,m) = v1 ⋅ (v2)2
m ⋅ (v1 + v2)2

constitutes an interior equilibrium. Investments in the contest are independent

of γi . This example shows that the elasticity of substitution does not play a

role if there is no within-group heterogeneity and groups are of equal size and

have the same impact function. The reason for this result is the combination of

a constant-return to scale impact function with a contest success function that

is homogeneous of degree zero. Conversely, it must be either within-group

heterogeneity and/or differences in group size and technology that may cause

behavioral changes due to changes in γi . The next example shows that this

may in fact be the case.

Example 2: Let us assume again m1 = m2 = m and for all i and k that ak
i = 1

and γi = γ. However, we allow for heterogeneous valuations within groups:

v1 = v2 = v ≤ v = v1 = v2. The population of each group is divided into

m = m = m/2 of individuals with the high and the low valuation, respectively.

One gets the following symmetric equilibrium:

x∗(v,v,m,γ) = v

2 ⋅m ⋅ ((v/v) γ
1−γ + 1) ,

x∗(v,v,m,γ) = v

2 ⋅m ⋅ ((v/v) γ
1−γ + 1) . (4.5)

where x∗ and x∗ are the respective equilibrium efforts of the individuals with

the high and low valuation. As expected, γ may influence the outcome of the

game if differences among the valuations of the rent among the group members

exist.
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4.4 The general case

We now turn to the analysis of the general case. In order to have a lean notation,

let Xi = ∑k xki , yki = (xki )γi , and Yi = (∑l al
i ⋅ y

l
i ). Further, Q = ∑ j Q j =

∑ j gj ⋅ Y

1
γ j

j = gi ⋅ Y
1
γi

i +∑ j≠i gjY
1
γ j

j = Qi + Q/i in the following. Also, let γ⃗

denote the vector of all γi . While deriving the equilibrium strategies, we will

omit the parameters of these functions for better readability (e.g y
k
i instead of

y
k
i (γi , xki )).

Hillman and Riley (1987) and Stein (2002) have shown that individuals

may prefer to stay inactive in a single player contest. Baik (2008) has shown

for γi = 1 that only group members with maximum valuation participate in

a contest. Hence, it is possible that some individuals and/or groups will stay

inactive in our setup. We therefore start with an analysis of active individuals

and groups.

Definition 1: An individual k of group i is said to participate if xki > 0. A

group i is said to participate if there exists some k such that xki > 0. A group is

said to fully participate if ∀k ∶ xki > 0.

Lemma 4.1. a) In a Nash equilibrium of a contest fulfilling Assumptions 1, 2,

and 3 if a group participates, it fully participates.

b) If γi < 0, mi > 1, and one group member of group i does not participate, it

is always a best response for all group members to not participate.

The proof of this as well as the next Lemma can be found in the appendix.

Lemma 1 a) implies that in order to determine whether an individual partici-

pates, it is sufficient to determine whether its group participates. Lemma 1 b)

shows that irrespective of the behavior of the other groups, it may occur that a

group does not participate. The reason is that for γi < 0, a positive contribution

from each member is indispensable: As soon as some group member k chooses

xki = 0, we have qi(. . . ) = 0. This of course gives rise to multiple equilibria

as a group i may either coordinate on not participating or fully participating if

γi < 0. In the following, we will therefore use the notation that there are n ≤ n
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groups with γi < 0 and mi > 1 and we will denote their set as N , which may be

empty. For each of the equilibria determined we must specify a subset of N of

groups that coordinate on not participating, which will be denoted N0.

Let Vi(γi) ≡ gi ⋅ (∑l al
i ⋅ (al

i ⋅ v
l
i ) γi

1−γi ) 1−γi
γi

. Without loss of generality,

suppose that all groups are ordered with descending Vi such that Vi(γi) ≥
Vi+1(γi+1). Q∗i (γ⃗,N0) and Q∗(γ⃗,N0) shall denote Qi and Q in an equilib-

rium where N0 do not participate. We use ∣ . . . ∣ to denote the cardinality of a

set of groups. The following Lemma determines the groups that participate in

the equilibrium in which N0 do not participate.

Lemma 4.2. a) The best response conditions of the members of a group i ∈

N/N0 can be fulfilled, if and only if the following group best response function

is fulfilled:

Q̂i(γ⃗,Q/i) = max(0,√Q/i ⋅Vi(γi) −Q/i) . (4.6)

where Q/i > 0 must hold.

b) Groups N∗(γ⃗,N0) = {i ∈ N/N0 ∶ i ≤ n∗(γ⃗,N0)} participate, where

n∗(γ⃗,N0) ≡ arg maxi∈N/N0
i such that Vi(γi) > Q∗(γ⃗,N0).

c) Holding N0 fixed, if the resulting Nash equilibrium is unique, Q∗i (γ⃗,N0) and

Q∗(γ⃗,N0) are continuous functions in γ⃗.

Lemma 2 a) gives the necessary and sufficient condition for existence of

best response strategies of those groups that do not belong to N0, for which

it is automatically fulfilled. If (4.6) is not fulfilled, there will be at least one

individual who does not play best responses if the group reaches impact Qi ≠

Q̂i(. . . ).
Lemma 2 b) characterizes the participating groups given that the groups in

N0 do not participate. There are therefore two reasons why a group might not

participate: Either because the average valuation of the group members are too

low or because it belongs to N0. However, once N0 is fixed, one can uniquely

identify the remaining groups which do not participate.

Lemma 2 c) is useful for the comparative-static analysis if one focuses
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on a specific equilibrium with given N0. Given that the number and identity of

active groups then still depends on γ⃗, it is a priori not clear that aggregate effort

and indirect utilities are continuous in γ⃗. The Lemma reveals that continuity

is in fact guaranteed if the identity of groups in N0 remains the same. The

economic intuition is as follows: Excluding groups among N0, assume that

γ̂ j is a point where a formerly active group becomes inactive or a formerly

inactive group becomes active. The aggregate group effort of the active group

is continuously reduced to zero as γ j approaches γ̂ j , and the formerly inactive

group continuously increases its effort from 0 as γ j increases from γ̂ j . Hence,

there is a “smooth” fade out or fade in of groups at those points.

The following proposition characterizes the set of Nash equilibria of the

game. For readability, the strategies xki are defined as functions of Q∗(γ⃗) and

Vi(γi).
Proposition 4.1. The set of Nash equilibria of the game characterized by As-

sumptions 1,2, and 3 is given as follows. For each set of groups in N0 such that∣N/N0∣ ≥ 2 there exists a Nash equilibrium given by strategies xki
∗(γ⃗,N0) that

fulfill

xki
∗(γ⃗,N0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⋅(Q∗(γ⃗,N0) − Q∗(γ⃗,N0)2

Vi(γi ) ) ⋅ (gi)
γi

1−γi (ak
i ⋅v

k
i )

1
1−γi

Vi(γi ) 1
1−γi

, i ∈ N∗(γ⃗,N0)
0, else

(4.7)

where Q∗(γ⃗,N0) = ∣N∗(γ⃗,N0)∣−1

∑i∈N∗(γ⃗,N0)Vi(γi )−1 and N∗(γ⃗,N0) is defined in Lemma 2

a).

Proof. Suppose N0 do not participate. From Lemma 1 b) we then know that

the members of these groups play best responses. Lemma 2 b) determines the

participating groups. To obtain Q∗(γ⃗,N0)we sum (4.6) over all i ∈ N∗(γ⃗,N0):
Q∗(γ⃗,N0) = ∣N∗(γ⃗,N0)∣ − 1

∑i∈N∗(γ⃗,N0)Vi(γi)−1
. (4.8)
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With an explicit solution for Q∗(γ⃗,N0), we can now determine individual ex-

penditures xki
∗(γ⃗,N0) by solving equation (4.6) using (4.8). The participation

condition of a group is given by Lemma 2, while Lemma 1 a) ensures that there

does not exist an incentive for any group member to deviate to xki = 0 in the

participating groups. It was further shown that the first-order conditions return

local maxima. Since the system of equations given by the first-order condi-

tions of the participating groups has a unique solution this is indeed the unique

Nash equilibrium given N0. Notice if N/N0 has cardinality 1, we have Q/i = 0

in (4.6) and thus best responses are no longer well defined for the participat-

ing group. There may be therefore some N0 for which no equilibrium exists.

However, there is always at least one Nash equilibrium for N0 = ∅. �

Several things are noteworthy: Given the set N0, the equilibrium is unique

if it exists. Therefore, the maximum number of equilibria is the number of

possible combinations of N0 such that in total either no groups or at least two

groups participate. However, it is possible that some of these equilibria are

identical since removing group i from N0 does not necessarily mean that it

enters N∗.

Further, it may be a Nash equilibrium that no group participates if for all

i we have γi < 0 and mi > 1. It also may occur that for some N0 no Nash

equilibrium exists, since for (4.7) to be well defined it is required that at least

two groups participate. An N0 that leaves only one potentially participating

group will therefore not yield a Nash equilibrium.

A focal special case has no intra-group heterogeneity v
k
i = vi∀k∀i and

ak
i = ai∀k∀i. The following corollary of Proposition 1 can then be established.

Corollary 4.1. Let N0 = ∅. Suppose for all groups i and all individuals k, it

holds that ak
i = ai and v

k
i = vi and further for all other groups j it holds that

ai ⋅mi = a j ⋅m j . Then the equilibrium efforts are independent of γ⃗.

Proof. Inserting the above values for every individual l al
i = ai and v

l
i = vi

and setting for all other groups j a j ⋅ m j = ai ⋅ mi into (4.7) directly yields the

result. �
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The corollary shows that γ⃗ is only relevant if there is either heterogene-

ity with respect to valuations within groups and/or heterogeneity with respect

to group size. In all other cases equilibrium behavior does not depend on γ⃗

with the exception that groups may fall into the set N0 if their γi drops below

0. The corollary shows that corresponding results from public-goods games

with complementarities in efforts (Cornes, 1993; Cornes & Hartley, 2007)

continue to hold in a contest environment. This finding implies that an in-

crease in complementarity between group members’ effort per se has no effect

on the within-group free-rider problem, as could have been conjectured from

Hirshleifer (1983). A further implication of the corollary is that the results on

group contests that have been derived in the literature for the case of perfect

substitutes or perfect complements carry over to arbitrary elasticities of sub-

stitution if homogeneous groups differ only in their valuations of the rent and

their group efficiency parameter gi .

4.5 Comparative statics

Before we move on to the comparative-static analysis, let us first note that the

winning probability of group i takes the form:

pi(Q∗1 (γ⃗), ...,Q∗n(γ⃗)) = Qi
∗(γ⃗)

Q∗(γ⃗) = (1 − Q∗(γ⃗)
Vi(γi) ) , (4.9)

which can be derived from (4.6). An analysis of convergence results for γi

which can be found in Appendix C suggests that it makes sense to generally

impose ∑k ak
i = 1 to model relative differences in efficiency between group

members and use the parameter gi for the resulting absolute differences in effi-

ciency between groups. Only then the comparative statics with respect to γ⃗ will

capture solely the effect of different degrees of substitution and no productivity

effects.

We now turn to the comparative-static analysis of the influence of the elas-

ticity of substitution on the behavior in the contest using the approach devel-
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oped by Cornes and Hartley (2005). Since we have multiple equilibria for

γi < 0, it is necessary to exclude jumps from one equilibrium to another. We

will therefore focus in the following on the equilibrium given by some N0 in

which at least two groups participate.

Most interestingly, individual valuations in relation to the valuations of the

other group members define the individuals’ share of the amount of effort spent

by the group, xki
∗/X∗i . The valuation of other groups have no effect on these

shares. As was to be expected, a larger elasticity of substitution γi increases

ceteris paribus the dispersion of these shares, since in equilibrium the expo-

nent discriminates more strongly between differences in (efficiency-weighted)

valuations. The next proposition states the effect of γi on the individual shares.

Proposition 4.2. Suppose group i participates. The share of an individual of its

group’s effort,
xki
Xi

, increases (decreases) strictly in the elasticity of substitution

among efforts if the valuation times the efficiency ak
i ⋅ v

k
i of the individual is

strictly larger (smaller) than the share-weighted geometric mean of the group

members’ valuation times efficiency,∏l (al
i ⋅ v

l
i )(

xl
i

Xi
)

.

Proof. It is straightforward to derive the following equation from (4.7):

xki
∗(γ⃗)

X∗i (γ⃗) =
(ak

i ⋅ v
k
i ) 1

1−γi

∑l (al
i ⋅ v

l
i ) 1

1−γi
(4.10)

Taking the derivative of (4.10) with respect to γi yields

∂
x
k
i

Xi

∂γi
=
(ak

i ⋅ v
k
i ) 1

1−γi

∑l (al
i ⋅ v

l
i ) 1

1−γi

1(1 − γi)2
⎛⎜⎝ln(ak

i ⋅ v
k
i ) − ∑l (al

i ⋅ v
l
i ) 1

1−γi ln(al
i ⋅ v

l
i )

∑l (al
i ⋅ v

l
i ) 1

1−γi

⎞⎟⎠ .
(4.11)

The RHS of the above equation is positive whenever the term in brackets is

positive. Setting ln(ak
i ⋅ v

k
i ) ≥ ∑l (al

i ⋅ v
l
i ) 1

1−γi ln(al
i ⋅ v

l
i )/∑l (al

i ⋅ v
l
i ) 1

1−γi and
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rearranging yields the condition:

∂
x
k
i

Xi

∂γi
T 0 ⇔ ak

i ⋅ v
k
i T∏

l

(al
i ⋅ v

l
i )
⎛⎜⎜⎝

(al
i
⋅vl
i
)

1
1−γi

∑s (asi ⋅v
s
i
)

1
1−γi

⎞⎟⎟⎠
. (4.12)

�

The proposition implies that for all group members with a valuation above

the weighted geometric mean, the share of total group effort increases with γi .

The result shows that the dispersion of valuations plays a crucial role for the

comparative-static effects of γi . In the easiest case of a two-member group i

with individuals j and k, the proposition boils down conveniently: Individual

j’s share increases in γi if and only if a jv j > akvk : The individual with the

higher efficiency-weighted valuation increases its relative contributions if γi

goes up. In the context of the partnership example from the introduction, the

finding implies that the relative burden for group success is increasingly carried

by the individuals with either the highest stakes and/or the highest productivity

if it becomes easier to substitute between the partners’ efforts. The reason is

as follows. A higher elasticity of substitution has two effects. From the point

of view of the high-stake / high productivity player, effort becomes less de-

pendent on the other players’ efforts, which ceteris paribus gives an additional

stimulus to invest relatively more. And from the point of view of his fellow

team mates, the negative effects of slacking off become less detrimental, which

ceteris paribus implies that it pays to invest relatively less.

A second interesting question may be whether the winning probability of

groups can be increased by a higher degree of complementarity of efforts. The

intuition behind this may be twofold: First, with higher complementarity, the

free-rider problem is solved better, such that also individuals with low valua-

tions participate. Second, there often exist gains from specialization. While

the latter intuition is induced by the technology itself, which is exogenous in

our model, the first intuition can be examined through comparative statics of

the model.
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Proposition 4.3. Suppose ∑k ak
i = 1. Then the winning probability of a par-

ticipating group i is weakly increasing in γi and strictly increasing whenever

there exist two group members k and l such that ak
i ⋅v

k
i ≠ al

i ⋅v
l
i and the change

in γi does not turn any group from a participative into a non-participative

status.

Proof. Using (4.8), the winning probability of group i, (4.9), can be written as

Qi
∗(γ⃗,N0)

Q∗(γ⃗,N0) =
⎛⎜⎝1 −

n∗(γ⃗) − 1

1 +∑ j≠i
Vi (γi)
Vj (γ j )

⎞⎟⎠ , (4.13)

where the sum refers to all active groups 1, ...,n∗(γ⃗) except i. Two cases have

to be distinguished: (a) A change in γi turns group i from a participative to a

non-participative status or leaves its non-participative status intact. In this case,

the change in γi has no influence on group i’s winning probability because

of the smooth fade out of the group’s investments. (b) A change in γi has

no influence on the participative status of i. In this case, note that (4.13) is

strictly increasing in Vi(γi). Vi(γi) has under the assumption of ∑k ak
i = 1

the structure of an ak
i weighted power mean of the ak

i ⋅ v
k
i values of the group

members. By the weighted power mean inequality (Bullen, 2003) we know

that Vi(γi) is strictly increasing in γ⃗ whenever there exist two individuals with

ak
i ⋅v

k
i ≠ al

i ⋅v
l
i . Whenever all individuals have the same ak

i ⋅v
k
i , Vi(γi) = gi ⋅ak

i ⋅v
k
i

and is therefore independent of γi . �

This result contradicts the common intuition that higher complementarity

leads to a better solution of the free-rider problem and thus a better perfor-

mance of the group. The result shows exactly the opposite: All things equal,

heterogeneous groups with higher complementarity perform worse than simi-

lar groups with low complementarity. The intuition behind this is that a lower

γi puts more emphasis on the lower values of xki , so the lower γi , the more

the equilibrium will reflect the optimal qi of lower valuation group members.

This has an important implication for the provision of public goods by groups

in general: Highly complementary technologies will only be used if there are
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sufficient gains of specialization coming with them. While higher complemen-

tarity solves the free-rider problem, it solves it in the worst possible way: By

reducing the incentives of high valuation individuals more than increasing the

incentives of low valuation individuals.

For the partnership example from the introduction, Proposition 3 implies

that if the production of impact of a partnership becomes more complementary,

the equilibrium share or winning probability for this partnership goes down. If

as a thought experiment one defines the sum of prizes of the partners in a part-

nership as total profit, the distribution of these profits depends on the shares

of the partners in the firm, and can therefore be considered a design element.

If in addition one considers the degree of complementarity also as a design

element (because it depends at least to a certain extend on the organizational

structure and the business model of the partnership), Proposition 3 reveals a

rather odd implication for the share- or winning-probability maximizing de-

sign: The partnership would try to minimize complementarities. If it is pos-

sible to reach perfect substitutability, it would allocate all the profit shares to

the single, most productive and / or highest-stake individual (Olson, 1965 and

Ray, Baland, & Dagnelie, 2007). This conclusions runs counter to the intuition

that complementarity in efforts encourages division of labor. Our finding iso-

lates the pure effect of complementarity and shows that this pure effect alone

is not only insufficient but counterproductive to explain gains from the divi-

sion of labor. It is true that the division of labor comes with specialization,

which makes individual efforts complementary. But the gains from specializa-

tion must result from an increase in group productivity, and this increase must

be sufficiently strong to overcompensate the negative effect resulting from an

increase in complementarity. If groups cannot use incentive mechanisms to

internalize the within-group externalities, a free-rider problem exists for all de-

grees of complementarity and the effects are the more severe the higher the

complementarity.

Our result is also novel in the literature on public-goods games in which no

general comparative-static results have been provided for the effect of comple-
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mentarity in efforts on the provision of public goods for heterogeneous contrib-

utors. The fact that we can solve for equilibrium strategies analytically allows

us to perform this analysis here. This may also motivate a reexamination of the

public-goods games in Cornes (1993) and Cornes and Hartley (2007) outside

a contest setting to verify whether this result carries over to other public-goods

games. Since it is not generally possible to solve for equilibrium strategies an-

alytically in these models, one can expect this to be a nontrivial task, however.

Given that the winning probability of group i is monotonically increasing

in γi , we may be interested in whether the same is true for the expected payoff.

It turns out that the effect on the expected payoff of the group members is

ambiguous both for the aggregate of players as well as the individual players.

Inserting (4.7) into (4.4) we obtain:

πki = pi
⎛⎝vki −Q∗(γ⃗,N0)(gi) γi

1−γi
(ak

i ⋅ v
k
i ) 1

1−γi

Vi(γi) 1
1−γi

⎞⎠ . (4.14)

As we know from Proposition 4.3, pi is increasing in γi . However, also

Q∗(γ⃗,N0) is increasing in γi and for sufficiently high ak
i v

k
i the term (gi) γi

1−γi ⋅

(ak
i ⋅v

k
i )

1
1−γi

Vi(γi ) 1
1−γi

may be increasing as well. Therefore, for the group members with

the highest ak
i ⋅ v

k
i , expected utility may be decreasing in γi . It is also clear that

the group members of the lowest ak
i ⋅ v

k
i will always improve their expected

payoff by lower complementarity, since they will strictly reduce their effort and

the group has a higher winning probability. The optimal γi a utilitarian planner

who maximizes the sum of the group members’ expected payoffs would im-

pose is ambiguous: A lower γi may induce individuals with a lower valuation

v
k
i but higher efficiency ak

i to exert higher effort. If the highest type has a high

valuation but a low efficiency, this may lead to overall efficiency gains for the

group. From a group-production perspective one can understand the underly-

ing mechanism in the following way: By changing the incentives of the group

members, different degrees of complementarity also change the shares of effort

provided by them. In turn, under heterogeneous technologies, this also changes
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the shares of total effort used by the different technologies. Different γi will

therefore not only influence the effort Xi provided by the group, but also the

average efficiency of the group in converting this effort into impact. To get a

better intuition for this result we turn to an example.

Example 4: Since we are only interested in the effects of higher complemen-

tarity for one group, let the aggregate of the valuations of the first group be

V1(γ1) = 10. Since this is the only way in which parameters from the first

group enter the decision problem of the second, no more information about

group one would be necessary. One could for example think of a group of a

single individual with v
1
1 = 10, ak

1 = 1, and g1 = 1. For the second group, as-

sume two individuals with efficiency parameters a1
2 = 0.2 and a2

2 = 0.8. Thus,

∑l al
2 = 1 and comparative statics over γ2 contain no effects from changes in

productivity. Further, let valuations be heterogeneous such that v1
2 = 30 and

v
2
2 = 5. Finally, the efficiency parameter of the group is g2 = 1.

From the fact that v1
2 ⋅ a

1
2 = 6 > 4 = v

2
2 ⋅ a

2
2, we know that for γ2 = 1 only

the first individual will participate and for γ2 → −∞, both individuals will

participate. Proposition 4.3 tells us that the winning probability will decrease

with lower values of γ2.
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Figure 4.1: Effort levels and winning probability for different values of γ2.

From Figure 4.1 we can see how this translates into our example. The

effort level of individual 2 (with high efficiency and low valuation, dashed line)

slowly increases as we reduce γ2, while the effort of individual 1 (solid line)
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Figure 4.2: Expected utility for different values of γ2.

falls. Both converge as γ2 → −∞. We also see that the winning probability

is falling with lower values of γ2, as expected. The free-rider problem is thus

solved with lower γ2, but in a way such that the overall winning probability

of the group is decreased. The more interesting result is, however, how this

translates into the expected utility of the individuals.

In Figure 4.2 we see the expected utility of individuals 1 and 2 (again, repre-

sented by solid and dashed lines) and the aggregate expected utility (dotdashed

line). The expected utility of individual 2 is of course rising in γ2 (falling with

higher complementarity), since in the case of perfect substitutes, i.e. γ2 = 1,

individual 2 can fully free ride. The change of expected utility of individual 1

is ambiguous with respect to changes in γ2. For very high values of γ2, it is

also increasing with γ2, while for low values it is decreasing in γ2. Aggregate

expected utility is mainly influenced by individual 1 and thus total expected

utility of the group members behaves similarly: It is also maximal for very

high degrees of complementarity and has a minimum below γ2 = 1. The result

is driven by the fact that the efficiency of individual 2 is much higher than that

of individual 1 and at the same time the valuation of individual 1 is much higher

than that of individual 2. In the perfect-substitutes case γ2 = 1, only the less

efficient individual 1 contributes effort and individual 2 takes a free ride. As we



4.6. CONCLUDING REMARKS 151

move away from this case, individual 2’s incentives to provide effort increase

only slowly. Due to the complementarity, individual 1 incurs very high losses

in these cases. Reducing γ2 even further provides much stronger incentives for

individual 2. Individual 1 can thus reduce its effort further and in turn gain

utility from the higher complementarity.

4.6 Concluding Remarks

This paper has started from the observation that group effort can in general not

be additively decomposed into some sum (of functions) of individual efforts.

The use of a CES-impact function has allowed to identify the main channels

of influence of the elasticity of substitution on the behavior in and the outcome

of contests. If groups have are homogeneous (i.e. all group members have the

same valuation and efficiency within the group), the elasticity of substitution

does not matter. For heterogeneous groups, the higher the complementarity of

efforts of that group, the lower the divergence of efforts among group mem-

bers and the lower the winning probability of that group. This contradicts the

common intuition that groups can improve their performance by solving the

free-rider problem via higher degrees of complementarity of efforts. Only if

very high valuation members are also very inefficient at effort production the

total expected utility may be higher for higher degrees of complementarity: At

high levels of complementarity, highly efficient individuals with low valuations

may replace some of the effort that is provided by less efficient group members

at low levels of complementarity. The beneficial or detrimental role of comple-

mentarity for a group is therefore undetermined without further information on

the composition of a group.



Appendix

4.A Proof of Lemma 4.1

Proof. For the proof of Lemma a) we first check that the interior solution is a

local maximum if all group members participate. The first-order condition of

the maximization problem (4.4) can be written as

Q/i
Q2

Y
1
γi
−1

i =
(yki ) 1

γi
−1

v
k
i

. (4.15)

The second-order condition is satisfied if

v
k
i ⋅Q/i ⋅Y

1
γi
−2

i

γi ⋅Q2

⎛⎝
1 − 2 ⋅ Qi

Q

γi
− 1
⎞⎠ −

1
γi
− 1

γi
⋅ (yki ) 1

γi
−2
< 0. (4.16)

Solving the first-order condition for vki and inserting the expression into the

second-order condition we obtain, upon rearranging:

1 − 1
γi

γi
(1 − y

k
i

Yi
) − 2 ⋅

1

γ2
i

⋅
Qi ⋅ y

k
i

Q ⋅Yi
< 0, (4.17)

which holds for all γi ∈ {(−∞,0),(0,1)}. Therefore, all solutions of the first-

order condition are local maxima taking the other players’ strategies as given.

The best responses are either given by the solution to the first-order condition,
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or by a corner solution. From equation (4.3) it is clear that the only possible

corner solutions are non-participation with xki = 0. We thus need to verify that

whenever the best response of one member of the group is given by the solution

to the first-order condition, it is not possible for any member of the group to

have the best response xki = 0.

First, we will show that whenever there exists a solution of the first-order

condition for one individual of a group, it exists for all individuals: From the

first-order conditions of two representative group members l, k we obtain the

within-group equilibrium condition:

∀l,k ∶
(yki ) 1

γi
−1

v
k
i

=
(yli ) 1

γi
−1

v
l
i

(4.18)

for all members k, l of group i. Both, the left-hand side (LHS) and right-hand

side (RHS) of (4.18) are strictly increasing in y
k
i , yli if γ⃗ ∈ (0,1). For γ⃗ ∈(−∞,0) both LHS and RHS of (4.18) are strictly decreasing in y

k
i , yli . Thus,

for each y
k
i there exists a y

l
i such that the within-group equilibrium condition

holds. Since for all group members the LHS of (4.15) is equal, there exists a

positive solution to the first-order condition (FOC) for either all group members

or none.

Second, we need to show that xki = 0 is not a best response if it is a best

response for another individual l in the group to play xli > 0. We do so by

contradiction: Obviously, for a corner solution with xki = 0 and xli > 0 the

following condition needs to hold:

∂πki

∂xki
=

Q/i
Q2
⋅Y

1
γi
−1

i ⋅(xki )γi−1
⋅ vki − 1∣

xki = 0, xli > 0
≤ 0. (4.19)

From the fact that there is an individual l in the group, which participates with

strictly positive effort, we know that

∂πli

∂xli
=

Q/i
Q2
⋅Y

1
γi
−1

i ⋅(xli)γi−1
⋅ vli − 1∣

xki = 0, xli > 0
= 0. (4.20)
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Inserting (4.20) into (4.19) yields:

(xli)1−γi
v
l
i

−
(xki )1−γi

v
k
i

∣
xki = 0, xli > 0

≤ 0 (4.21)

from which we obtain by inserting xki = 0:

(xli)1−γi ∣
xli > 0

≤ 0 (4.22)

which is a contradiction for all γi < 1. Thus there does not exist an equilibrium

in which for one player in the group a corner solution at zero effort investments

is obtained while for another an interior solution holds.

Part b) can be shown as follows: Suppose xki = 0 for some k, mi ≥ 2 and

γi < 0. Then qi(x1
i , . . . , x

mi

i ) = 0. The expected payoff πli (x1
i , . . . , x

mi
n ) of any

other group member is then strictly decreasing in its own effort xli independent

of Q/i . Therefore, xki = 0, xli = 0 are mutually best responses for all group

members, independent of the behavior of other groups reflected in Q/i .
�

4.B Proof of Lemma 4.2

Proof. Suppose i /∈ N0. If there exists a solution to the FOC, it is characterized

by the following equation, obtained by solving (4.18) for yli and summing over

all l,

Yi = y
k
i ⋅∑

l

( vli
v
k
i

) γi
1−γi . (4.23)

We can now solve equation (4.15) for Yi explicitly:

Yi = (√Q/i ⋅Vi(γi) −Q/i)γi . (4.24)

Thus, the condition for a strictly interior solution is (∑l v
l
i

γi
1−γi ) 1−γi

γi > Q/i .
Note that this condition is the same for all members of a group. In all other
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cases, we get yki = 0 for γi ∈ (0,1) and y
k
i =∞ for γi ∈ (−∞,0) as was to be

expected and which corresponds to xki = 0. In these cases we have ∀l ∶ yki = y
l
i

by equation (4.18) and by the definition of Qi , we have: Qi = Y
1
γi

i = 0. We can

write a group best-response function as

Q̂i(γi ,Q/i) = max(0,√Q/i ⋅Vi(γi) −Q/i) . (4.25)

establishing part a), since by Lemma 1 either for all group members we obtain

an interior solution or for none. Since the best-response function is continuous

in γi ≠ 0 and in the strategies of the other groups Q/i , if a unique Nash equilib-

rium exists, the equilibrium strategies must also be continuous in all γi . This

establishes part c) of Lemma 2. What remains to be shown is which groups

participate in equilibrium given that N0 do not participate. Suppose a group ζ

participates in equilibrium with strictly positive effort, while a group ζ +1 does

not participate. Let Q∗i (γ⃗,N0) be Qi in equilibrium (the notation ignores here

that these are best responses and should thus be functions of Q∗/i ) and let the

other variables introduced above be defined correspondingly in equilibrium.

Then by the above condition in equilibrium we have for any given γ⃗:

Vζ(γi) > Q∗/ζ(γ⃗,N0)
Vζ+1(γi) ≤ Q∗/ζ+1(γ⃗,N0) (4.26)

Since by assumption Q∗ζ+1(γ⃗,N0) = 0, we have Q∗/ζ+1(γ⃗,N0) = Q∗(γ⃗,N0).
Solving (4.6) for Q/i tells us that in an equilibrium where group ζ participates,

the following needs to be true:

Q∗/ζ(γ⃗,N0) = Q∗(γ⃗,N0)2
Vζ(γi) . (4.27)



4.C. CONVERGENCE RESULTS 156

We now insert (4.27) into the first equation of (4.26) and the condition Q̂/ζ+1 =

Q̂ into the second equation. Thus, the condition (4.26) becomes

Vζ(γζ) > Q∗(γ⃗,N0)
Vζ+1(γζ+1) ≤ Q∗(γ⃗,N0) (4.28)

in equilibrium. It follows that Vζ(γζ) > Vζ+1(γζ+1). We can thus order the

groups such that Vi(γi) ≥ Vi+1(γi+1) and define n∗(γ⃗,N0) as the group with

the highest index number in N/N0 that still participates with strictly positive

effort. By (4.28), all groups with i ∈ N/N0 and i ≤ n∗(γ⃗) participate. This

establishes part b) of Lemma 2. �

4.C Convergence Results

We will now state convergence results where for all groups j, γ j approaches 1,

0, and −∞. X∗i denotes Xi in equilibrium. Throughout we will assume N0 = ∅.

Proposition 4.4. For γi → 1−, we get
xki
∗

X∗
i

= 0 if ∃al
iv

l
i > ak

i v
k
i and 1

♯{l ∶al
i
⋅vl

i
=ak

i
⋅vk

i
}

otherwise.

Proof. It is straightforward to derive the following equation from (4.7):

xki
∗(γ⃗)

X∗i (γ⃗) =
(ak

i ⋅ v
k
i ) 1

1−γi

∑l (al
i ⋅ v

l
i ) 1

1−γi

(4.29)

For the limit it then holds:

lim
γi→1

(ak
i ⋅ v

k
i ) 1

1−γi

∑l (al
i ⋅ v

l
i ) 1

1−γi

= lim
γi→1

⎛⎜⎝∑l (
al
i ⋅ v

l
i

ak
i ⋅ v

k
i

)
1

1−γi ⎞⎟⎠
−1

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, ∃al

i ⋅ v
l
i > ak

i ⋅ v
k
i

1
♯{al

i
⋅vl

i
∶al

i
⋅vl

i
=ak

i
⋅vk

i
} , else

.(4.30)

�



4.C. CONVERGENCE RESULTS 157

Proposition 4.4 shows that for γi increasing towards one, the group mem-

bers with lower valuations will decrease their efforts towards zero, and only

the group members with the highest valuations contribute. If there is more

than one individual with the highest valuation, we converge to an equilibrium

where those individuals contribute equally. In this case we get multiple equilib-

ria if γi = 1 with the property that the sum of contributions is always identical

(Baik, 2008). In this sense, our convergence result can be interpreted as an

equilibrium-selection mechanism which selects the equal-contributions equi-

librium from the multiple equilibria in Baik (2008).

Next we will analyze the other boundary case when all γ j approach −∞. In

order to have a lean notation we denote γ j = γ and limγ→−∞ f (γ) by f (−∞)
for all functions f (.):
Proposition 4.5. For γ → −∞, we obtain:

a) limγ→−∞ Vi(γ) = gi

mi
H M(v1

i , . . . ,v
mi

i )
b) limγ→−∞

xki
∗(γ)

X∗
i
(γ) = 1

mi

c) limγ→−∞Q∗(γ) = n∗(−∞)
∑j ∑l 1/(vl

j
⋅gi)

d) xki
∗

is independent of al
j ∀ j, l

where H M(v1
i , . . . ,v

mi

i ) = mi

∑l
1

vl
i

is the harmonic mean of the valuations within

the group.

The results follow directly from the determination of the limit of (4.7).

Since relative strength of groups is determined by Vi , the limit behavior

of Vi is of course of great interest. From Proposition 4.5 b) we see that the

distribution and level of relative strengths ak
i of each group member have no

effect on Vi . The irrelevance of ak
i is further shown by part d) of the propo-

sition, where we see that even equilibrium efforts xki
∗

are unaffected by ak
i .

This was to be expected, since under perfect complements in fact all inputs are

crucial for the level of qi . Proposition 4.5 b) shows that (as expected given the

results by Lee (2012)) all group members participate with equal amounts. In

this sense, for γ near −∞, we obtain similar results as for a min(. . . ) impact

function. However, this function creates multiple equilibria with an associated
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equilibrium-selection problem. Given the uniqueness of equilibria for all finite

γ⃗, our limit result can be interpreted as an equilibrium-selection mechanism

where individual contributions depend on the harmonic mean of the valuations.

Next we look at the limit behavior for γ → 0. It turns out that we have

to consider γ → 0+ and γ → 0− separately because the problem may not be

continuous at this point.

Proposition 4.6. At γi = 0, Vi(γi) is discontinuous if∑l al
i ≠ 1.

lim
γi→0+

Vi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞, ∑ ak
i > 1

∏(ak
i ⋅ v

k
i )ak

i , ∑ ak
i = 1

0, ∑ ak
i < 1

, (4.31)

lim
γi→0−

Vi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, ∑ ak
i > 1

∏(ak
i ⋅ v

k
i )ak

i , ∑ ak
i = 1

∞, ∑ ak
i < 1

. (4.32)

Since the winning probability, the equilibrium efforts, and impacts are all

functions of all Vi , it follows that these values will in general also be discon-

tinuous in γi . In particular, the winning probability and the participation con-

dition of group i are increasing functions of Vi . For γ → 0+ the group with the

strictly highest ∑ ak
i will therefore win with probability one while for γ → 0−

the group with the strictly lowest ∑ ak
i will win with probability one. Only if

all groups have ∑ ak
i = 1, these effects do not occur and we obtain for Vi the

ak
i -weighted geometric mean of vki ⋅ a

k
i . To obtain a proper intuition for the

behavior near γ = 0, it is helpful to show an example.

Example 3: Assume that v1 = v2 but allow for differences in group size with

mi > 1. Further, we fix ak
i = 1, gi = gj = 1, and γi = γ. Therefore, we are
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always in a situation with ∑ ak
i = mi > 1. In this case, (4.7) implies

x1(m1,m2,γ,v) = v ⋅m
1−2γ
γ

1 ⋅m
1−γ
γ

2

(m
1−γ
γ

1 +m
1−γ
γ

2 )2
, x2(m1,m2,γ,v) = v ⋅m

1−γ
γ

1 ⋅m
1−2γ
γ

2

(m
1−γ
γ

1 +m
1−γ
γ

2 )2
,

(4.33)

in a within-group symmetric equilibrium. In this case, individual efforts de-

pend on the size of the groups. Coming back to Example 2, (4.33) can be used

to determine that the values of the impact functions are

q1(m1,m2,γ,v) = v⋅ m
1−γ
γ

1 ⋅m
1−γ
γ

2

(m
1−γ
γ

1 +m
1−γ
γ

2 )2
, q2(m1,m2,γ,v) = v⋅ m

1−γ
γ

1 ⋅m
1−γ
γ

2

(m
1−γ
γ

1 +m
1−γ
γ

2 )2
,

which in turn can be used to determine the equilibrium winning probabilities:

p1(m1,m2,γ) = m
γ−1
γ

2

m
γ−1
γ

1 +m
γ−1
γ

2

, p2(m1,m2,γ) = m
γ−1
γ

1

m
γ−1
γ

1 +m
γ−1
γ

2

. (4.34)

The limit behavior of these probabilities is

lim
γ→0−

p1(m1,m2,γ) = ⎧⎪⎪⎨⎪⎪⎩
1, m1 < m2

0, m1 > m2

,

lim
γ→0+

p1(m1,m2,γ) = ⎧⎪⎪⎨⎪⎪⎩
0, m1 < m2

1, m1 > m2

,

and analogously for p2(m1,m2,γ). Figure 4.C.1 shows p1(m1,m2,γ) (dashed

line) and p2(m1,m2,γ) (solid line) for the case m1 > m2. We will focus on

p1(m1,m2,γ) in the following. The graph starts at 0.5 at γ = 1. This is the

well-known case where group size has no impact on the winning probability

(Baik, 2008). p1(m1,m2,γ) steadily rises to 1 as γ converges to 0. At this

point it jumps to 0 and increases to 0.5 again as γ converges to −∞. In this
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Figure 4.C.1: Equilibrium probabilities for different values of γ .

case, group-size again does not matter because only the minimum contribution

counts (Lee, 2012). As evident from the left panel of Figure 4.C.2, for the
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Figure 4.C.2: Effort levels (left) and impacts (right) for different values of γ.

smaller group the efforts are larger over the whole range of γ. Therefore, the

changes in the winning probability at γ = 0 are due to a changing productivity

of the larger and the smaller group with γ. This is evident from the right panel

of Figure 4.C.2, where the impact of group 2 is consistently higher than the

one of group 1 for γ < 0 and vice versa for γ > 0. The driving force behind
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these results is thus the CES function which for∑ ak
i ≠ 1 changes not only the

degree of complementarity with γ but also the efficiency as becomes apparent

when inserting xki = xi and γi = γ into the impact function:

qi(xi , ..., xi) = gi ⋅ xi ⋅ (mi∑
k=1

ak
i )

1/γ
. (4.35)

Whenever ∑ ak
i > 1, the function becomes infinitely large for γ → 0+ and

infinitely small for γ → 0−. The rate of convergence depends on the sum of

all ak
i , which was smaller for group 2 in the above case. Therefore it had a

disadvantage for positive γ and an advantage for negative γ.



5 Determinants of the Group-Size Paradox1

Martin Kolmar

Hendrik Rommeswinkel

This paper analyzes the occurrence of the group-size paradox in situations in

which groups compete for rents, allowing for degrees of rivalry of the rent

among group members. We provide two intuitive criteria for the group-impact

function which for groups with homogeneous valuations of the rent deter-

mine whether there are advantages or disadvantages for larger groups: social-

interactions effects and returns to scale. For groups with heterogeneous valua-

tions, the complementarity of group members’ efforts and the composition of

valuations are shown to play a role as further factors.

1We thank Stefan Bühler, Philipp Denter, Jörg Franke, Reto Föllmi, Magnus Hoffmann, Nick
Netzer, Marco Runkel, Dana Sisak, and Felix Várdy for very helpful comments.
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5.1 Introduction

The group-size paradox is perceived as being a result of an unresolved free-

rider problem between group members that becomes the more accentuated the

larger the group is. Olson (1965) already discussed the alleged advantage of

small interest groups over larger ones. His arguments gave rise to a debate

about the so-called group-size paradox, which Esteban and Ray (2001) define

as: “larger groups may be less successful than smaller groups in furthering

their interests” (p.663).

The starting point of our paper is to ask which properties of a conflict en-

vironment between groups explain the relative advantage or disadvantage of

larger compared to smaller groups. We focus on three properties of the group

impact function:2 social-interactions effects, returns to scale, and complemen-

tarities between group-members’ efforts. As will become clear throughout the

paper, all three technological factors are independent. Since we also allow

group members to differ in valuations within the group, a fourth crucial prop-

erty will be the heterogeneity of the valuations of a group. In order to analyze

the impact of group size on group performance we use a comparative-static

approach where we ask for the effect of adding an additional set of group

members to a given group.3 The main contribution of the paper is the com-

plete characterization of the influence of the above factors on the group-size

paradox.

Whereas returns to scale, complementarities in efforts and heterogeneity of

valuations are standard concepts, the use of the term social-interactions effects

has to be clarified.4 We say that (positive or negative) social-interactions effects

2Impact functions are defined as the functions with which individuals transform effort into
relative chance of success in a contest (Wärneryd, 2001). Group impact functions correspondingly
play the role of production functions with which group members jointly “produce” a higher relative
chance of their group winning the contest.

3In Appendix K we show that this approach yields the same results as a comparison between
groups and argue that it is slightly more general.

4The term “social-interactions effect” has a number of different meanings in the literature.
Definitions reach from the very narrow concept of direct interdependencies between preferences
(Scheinkman, 2008; Bernheim, 1994; Akerlof, 1997) to the very wide concept of aggregative
games (e.g. Manski, 2000).
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exist if group impact changes in group size while holding the total group effort

constant. There are diverse causes for social-interactions effects in contests

such as returns to the division of labor, network effects among group members,

or learning between group members.

If group members have equal valuations of winning the contest (which

may still differ between groups), returns to scale and social-interactions effects

completely determine whether the group-size paradox occurs or not.5 Social-

interactions effects work in the predictable way: positive social-interactions

effects ceteris paribus make it less likely that the group-size paradox occurs.

Returns to scale play the role of the discriminatory power of the contest and

may thus favor either smaller or larger groups, depending on whether the valu-

ation of winning the contest decreases or increases with group size.

Empirical research emphasizes that within-group heterogeneity is an im-

portant mediator for the impact of group size on group success (Hardin, 1982;

Ostrom, 1997). Despite the fact that there is a growing interest in the influence

of heterogeneity within and between groups6, with only a few exceptions the

literature on group contests7 has either focused on homogenous individuals or

on situations where the effort levels of group members are perfect substitutes,

i.e. are aggregated by summation.

For the analysis of the case of heterogeneous individuals, this paper em-

ploys CES-impact functions with varying degrees of complementarity. In order

to analyze this case, we were able to characterize two useful technical proper-

ties that help to simplify future research on group conflicts and comparative

statics for CES production functions in general. First, the generalized-mean

structure of the impact functions maps onto a generalized mean structure of

the valuations of group members that explains equilibrium behavior. This is a

quite useful technical property because it allows to analyze the impact of the

5This claim may appear to be at odds with Esteban and Ray (2001) who focus on convexities
in the cost-of effort functions. However, their model is isomorphic to a model with linear costs and
nonlinear impact functions that is a special case of our model.

6See Esteban and Ray (2008, 2010).
7The literature on contests between groups has recently been surveyed by Corchón (2007, Sec-

tion 4.2), Garfinkel and Skaperdas (2007, Section 7), and Konrad (2009, Chapters 5.5 and 7).
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composition of valuations within a group on group performance using proper-

ties of generalized means. Second, we derive a theorem for comparative statics

of the elasticity of substitution for a ratio of two generalized means over vectors

that differ in heterogeneity. This theorem helps us perform comparative statics

in the present model, but is applicable in any other setting where such ratios

occur, for example New Keynesian models of inflation, where the inflation rate

is a ratio of two CES aggregates.

The effect of adding additional individuals to a group (“new” group mem-

bers as opposed to “old” ones) depends on the relationship between social-

interactions effects and returns to scale on the one hand, and the ratio of power

means of the valuations of the group with smaller and larger group size on

the other hand. The latter effect is new, and we further explore how adding

new group members influences this power mean. The above findings give a

precise theoretical underpinning for the results by Hardin (1982) and Ostrom

(1997): heterogeneity plays an important role for group success if effort levels

are imperfect substitutes. As a general conjecture that follows from the above

results one would expect that the group-size paradox becomes more likely for

higher levels of complementarity between group-members’ efforts if adding

new group members to an additional group makes the extended group weakly

more heterogeneous.

Our paper is most closely related to Esteban and Ray (2001) who argue that

in a contest between groups of different sizes, larger groups may profit from

cost advantages if the costs of effort are sufficiently convex. In this case, ceteris

paribus, members of larger groups face sufficiently lower marginal costs that

reverse the group-size paradox. This is a very important insight that helps to ex-

plain the prevalence of groups in conflicts.8 Our model differs from the model

by Esteban and Ray (2001) in several ways. First, we take a comparative-statics

view on the group-size paradox instead of a comparison between groups. As

we show in Appendix K, this approach is slightly more general. Moreover, it

allows us to transfer our results and methods to other collective action prob-

8See also Marwell and Oliver (1993); Pecorino and Temini (2008); Nitzan and Ueda (2009,
2010).
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lems as we show in Appendix L. Second, we allow for heterogeneous valua-

tions within a group. Third, given that the model by Esteban and Ray (2001) is

isomorphic to a specific contest model with linear costs and impact functions

which are sums of concave functions of efforts (Siegel, 2009), their model is a

special case of the model analyzed in this paper. In addition, our results are di-

rectly relevant for models of Cournot-competition in oligopolistic markets with

hyperbolic demand if firms consist of teams (Raab & Schipper, 2009) and team

output is some (in general nonadditive) function of team-members’ efforts.

The paper is organized as follows. We introduce the model in Section 5.2

and cover the case of homogeneous group members in Section 5.3. In Section

5.4 we allow for heterogeneity of agents and use a CES type impact function

to aggregate group members’ efforts. We characterize the simultaneous Nash

equilibrium and we show the effect of complementarity on the group-size para-

dox for heterogeneous agents. Section 5.5 concludes.

5.2 The model

Assume that n groups compete for a given rent. Let m ∈ N be the maximum

possible number of group members and let mi ∈ 2, . . . ,m be the number of

individuals in group i where k is the index of a generic member of this group.

We refer to the set of group members by Mi = {1, . . . ,mi}. The rent can be

completely rival or completely non-rival between group members, and every

intermediate case where additional group members dilute the value of the rent

for the remaining group are also taken into consideration. To cover these cases

it suffices to assume that the valuation of the rent for each individual k of

group i is a function of the size of the group, vki (mi) > 0. If vki (m̂i) < vki (mi),
whenever m̂i > m̃i , then the rent is partly rival among group members as some

degree of crowding is involved as group size is increased. If vki (m̂i) = vki (mi)
for all m̂i ,mi the rent is a group-specific public good9. In the following it will

9See Cornes and Sandler (1996) for a precise and ample discussion of different types of pub-
lic goods with crowding. Note that the linear case (as for example in Esteban & Ray, 2001)
vki = α

w
mi
+ (1 − α)w′ , where w is the utility from the rival dimensions (with an equal-sharing
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be assumed that vki (m̂i) ≤ vki (mi) whenever m̂i > mi . 10

Sometimes it will be necessary to refer to vectors of valuations of (subsets

of) the group members: v⃗i,M(mi) ≡ (vk1
i (mi), . . . ,vk♯Mi (mi)) where M ⊂ Mi

and v
k1
i (mi) refers to the valuation of the first element of M.11 This somewhat

elaborate notation is necessary since later on we will analyze comparative stat-

ics if sets of individuals are added to a group. It is the easiest to think of

v⃗i,M(mi) as the vector of valuations of a subset of group members M of group

i if the total group size is mi .

pi represents the probability of group i = 1, ...,n to win the contest. Indi-

viduals can influence the winning probability by contributing effort xki . The

group members’ efforts are then aggregated by a function qi(x1
i , ..., x

mi

i ) =
qi(x⃗i) ≥ 0. Following the literature, it will be called impact function. Since

we are most of the time interested in comparative statics with respect to the

size of a single group, we define a class of impact functions for this group

to specify the impact functions which are used at different sizes of the group{qi,mi
(x1

i , ..., x
mi

i )}mmi=2. The winning probability pi is a function of these im-

pacts. pi(.) is called a contest-success function. We focus on Tullock-form

contest-success functions where the winning probability of a group i is defined

as:12

Assumption 5.1.

pi(q1, ...,qn) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

qi∑n
j=1 qj

,i = 1, ...n, ∃ j ∶ qj > 0

1

n
, ∀ j ∶ qj = 0

.

rule being applied) of the rent and w′ the utility from the non-rival part, is a special case of our
formulation.

10It is also possible to consider other cases, but for reasons of space these will only shortly be
discussed.

11To illustrate this notation assume that group i has three members, mi = 3 and Mi = (1, 2, 3)
with valuations v1

i (3) = 5, v2
i (3) = 10, v1

i (3) = 15. Let M ′ = (1, 2) and M ′′ = (2, 3) be two
subsets of group members. Then, v⃗i,M ′(3) = (5, 10) and v⃗i,M ′′(3) = (10, 15).

12An axiomatic foundation for the Tullock function for group contests can be found in Münster
(2009). An interpretation of the Tullock contest as a perfectly discriminatory noisy ranking contest
can be found in Fu and Lu (2008).
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Further, we impose the following assumptions on the individuals:

Assumption 5.2. Individuals are risk neutral, face linear costs, and maximize

their net rent.

Assumptions 5.1 and 5.2 imply that we can write expected utility as:

πki (xki , x⃗−xk
i
) = qi(x1

i , ..., x
mi

i )∑n
j=1 qj(x1

j , ..., x
m j

j )vki (mi) − xki . (5.1)

We are looking for Nash equilibria of this game where individuals choose their

effort xki simultaneously to maximize their expected utility,

xk∗i ∈ arg max
xk
i

πki (xki , x⃗∗−xk
i

) ∀i,k. (5.2)

where “∗” refers to equilibrium values and x⃗∗
−xk

i

to the vector of efforts by all

individuals except k in group i. In order to facilitate the analysis, we will focus

on situations where a unique Nash equilibrium with respect to the total effort

produced by each group exists. Formally,

Assumption 5.3. qi(.) is at least twice continuously differentiable,

∀k, x⃗i :
∂q(x⃗i )
∂xk

i

> 0,

∀k, x⃗i :
∂

2
q(x⃗i )

∂(xk
i
)2 ≤ 0, and

∀λ ≥ 1,k, x⃗i : qi(λ x⃗i) ≤ λqi(x⃗i).13
Assumption 5.4. qi(.) has symmetric partial derivatives at {x, ..., x}, i.e.

∂qi(x, ..., x)/∂xki = ∂qi(x, ..., x)/∂xli ∀x ∀ k, l ∀ i

Assumption 5.5. If x⃗i is such that xki > xli , then ∂qi (x⃗i )
∂xk

i

<
∂qi (x⃗i )
∂xl

i

.

13These assumptions rule out impact functions with for example hyperbolic (Cobb-Douglas) or
L-shaped (perfect complements) indifference curves. Impact functions with ∂qi (0, ..., 0)/∂xki =
0 usually lead to multiple equilibria because {0, ..., 0} at the group as well as as the aggregate level
is always a Nash equilibrium. See Skaperdas (1992) for an extensive discussion in a somewhat
different context. This would cause additional and merely technical problems that would divert
attention from the main focus of the paper.
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In some of the below results we also need the assumption that the impact

functions are homogeneous.

Assumption 5.6. qi(.) is homogeneous of degree ri , i.e. ∀λ ≥ 0, x⃗i : qi(λ x⃗i) =
λri ⋅ qi(x⃗i).
5.3 Homogeneous valuations within groups

Before we turn to the analysis of the effects of group size on winning prob-

abilities, we establish that a unique equilibrium exists. A proof of existence

of a Nash equilibrium cannot rely on standard fixed-point arguments because

with a Tullock lottery contest the best-response function for an individual k of

group i are not well defined if all other groups exert zero effort, and the alterna-

tive approach to make use of the aggregative nature of contests does not work

because group contests lack such an aggregative structure.14 The proof of this

and all of the following results can be found in the appendix.

Theorem 5.1. Suppose a contest fulfills Assumptions 5.1, 5.2, 5.3, and 5.4 for

all groups i. Then, a Nash equilibrium exists where the equilibrium efforts

are symmetric such that ∀i,k ∶ xk∗i = x∗i . There exists only one symmetric

equilibrium given ∀i,k ∶ xk∗i = x∗i .

Therefore, under the given assumptions there may exist other, nonsym-

metric equilibria. Using a stronger assumption instead of Assumption 5.4 we

obtain a unique equilibrium:

Theorem 5.2. Suppose a contest fulfills Assumptions 5.1, 5.2, 5.3, and 5.5 for

all groups i. Then, there exists a unique Nash equilibrium.

Since Assumption 5.4 is weaker than 5.5, some cases are of course not

covered by the latter theorem. Most prominent is the case of additive impact

functions where infinitely many equilibria exist in which only the level of total

effort of each group is fixed.

14See Acemoglu and Jensen (2009) for a definition of aggregative games.
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In some cases, a group may decide to exhibit zero effort, which implies that

it makes sense to distinguish between active and inactive groups:

Definition 5.1. (Participation) An individual k of group i is said to participate

if xk∗i > 0. A group i is said to participate if there exists some k such that

xk∗i > 0. A group is said to fully participate if ∀k ∶ xk∗i > 0.

The group-size paradox was first discussed by Olson (1965), who stated

that “the larger the group, the farther it will fall short of providing an optimal

amount of a collective good” (p. 35). One particular interpretation of the

statement has been given by Esteban and Ray (2001): In a contest environment

in which different groups compete for a rent, larger groups should win with

lower probability if the group-size paradox was true. We take a comparative-

static perspective on the group-size paradox:

Definition 5.2. (Group-size paradox) Suppose there are n groups competing

for a prize and each group j ≠ i consists of a set Mj = {1, . . . ,m j} of individu-

als with equal valuations v j . Let group i have either members Mi = {1, . . . ,mi}
or M̂i = {1, . . . ,m̂i} with mi < m̂i with valuations vi(mi) and vi(m̂i), respec-

tively. Let the corresponding equilibrium winning probabilities be p∗i and p̂∗i .

Then the group-size paradox holds strictly (weakly) for group i at sizes mi and

m̂i if and only if p∗i > (≥)p̂∗i .

In order to have a simple language we will refer to Mi as the “old” group

members and to Ξi = M̂i/Mi as the “new” group members in the following.

The definition of the group size paradox is therefore local with respect to the

original group size mi and the size of the group after the increase in group

members, m̂i . We will give precise conditions under which the group-size

paradox occurs but it may well be the case that an impact function is such

that the group size paradox only occurs for small group sizes but not for large

ones or vice versa. One can naturally also take the perspective of a compar-

ison across groups of different size in the same contest. In Appendix K, we

show for all propositions in this paper that the comparative static perspective

on the group size paradox yields the same results as a comparison of winning
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probabilities across groups. However, for some cases that can be analyzed via

the comparative-static perspective, no corresponding contest exists which can

be analyzed by comparing groups of different size in the same contest. More-

over, using our approach one can also analyze the group-size paradox in other

collective action problems, as we show in Appendix L.

We will also consider welfare effects and their relation to the group size

paradox.

Definition 5.3. (Group Welfare) The total group welfare is defined as the sum

of expected utilities πTi = ∑k∈Mi
πki (xk∗i , x⃗∗

−xk
i

) and the average group welfare

is defined as πA
i =

1
mi
πTi .

Next we formulate two intuitive criteria that will turn out to be able to

explain the occurrence of the group-size paradox if individuals of a group have

identical valuations of the rent. The first one defines the concept of social-

interactions effects for within-group symmetric effort contributions.

Definition 5.4. (Symmetric Social-interactions effects (SSIE)) A class of

impact functions {qmi
(x1

i , . . . , x
mi

i )}mmi=2 with mi being the number of group

members is said to have absent (positive, negative) symmetric social-interactions

effects at effort level xi for an increase in group size from mi to m̂i if it holds

that qm̂i
( ximi

m̂i
. . . ximi

m̂i
) = (>,<) qmi

(xi , . . . , xi).
Definition 5.4 can be used to define a measure of SSIE:

Definition 5.5. For a class of impact functions, {qmi
(x1

i , . . . , x
m
i )}mmi=2, SSIE

are measured by si(xi ,mi ,m̂i) = qm̂i
(ximi/m̂i , . . . , ximi/m̂i)/qmi

(xi , . . . , xi).
SSIE are absent (positive, negative), if and only if si(xi ,mi ,m̂i) = (>,<) 1.

Note that SSIE are defined as a local measure and may change for different

values of xi , mi , and m̂i . If impact functions are homogeneous, then si(. . . )
does not depend on xi and can be written as si(mi ,m̂i).

To gain intuition it is instructive to look at an impact function that is the

sum of efforts of all group members, ∑mi

k=0 xki . This function has absent SSIE:
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If all group members k exert the same effort xki = xi , then ∑mi

k=1 xi = mi ⋅ xi =∑m̂i

k=1 ximi/m̂i . In this case, adding additional group members has no influence

on the productivity of the group, social-interactions effects are absent.

Another property of an impact function is its returns to scale:

Definition 5.6. (Returns to scale (RTS)) A class of impact functions{qmi
(x⃗i)}mmi=2 is said to have constant (increasing, decreasing) returns to

scale if ∀mi ∶ qmi
(λ x⃗i) = (>,<) λ ⋅ qmi

(x⃗i) where λ > 0.

Based on this definition, it is plausible to measure returns to scale in the

following way:

Definition 5.7. For a class of homogeneous impact functions, {qmi
(x⃗i)}mmi=2,

returns to scale are measured by the degree of homogeneity ri , such that for all

mi : qmi
(λ x⃗i) = λri ⋅ qmi

(x⃗i)
Note that Definition 5.7 immediately implies that if we speak of a class of

impact functions having certain returns to scale, each of the impact functions

of this class has the same returns to scale. Further, since we focus on concave

impact functions (see Assumption 5.3), the results will only be stated for de-

creasing or constant returns to scale. However, our results also hold in those

cases where even with increasing returns to scale there still exists a unique inte-

rior equilibrium. One example would be the case of two groups with symmetric

valuations vi = v j and ri = r j < 2.

Both properties, SSIE and RTS are independent: Assume that the impact

functions have the generalized CES-form

qmi
(x⃗i) = m

si+ri
i ⋅ ( 1

mi
∑(xki )γi)ri /γi . (5.3)

In this case, we get qm̂i
( ximi

m̂i
, . . . , ximi

m̂i
) = (m̂i/mi)si ⋅ qmi

(xi , . . . , xi) for the

SSIE and qmi
(λxi , . . . , λxi) = λri qmi

(xi , . . . , xi) for the RTS, which shows

that RTS and SSIE can be chosen independently.

Before presenting the main results of this section it makes sense to discuss

them informally. In the graphs in Figure 1, RTS are measured along the or-
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dinate and SSIE, which are independent of efforts under Assumption 5.6, are

measured along the abscissa. At the point {1,1}, SSIE are absent and RTS are

constant. Moving right from this point creates positive and moving left creates

negative SSIE, moving downwards reduces RTS.
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Figure 5.1: Group-size paradox for the case of a non-rival rent (left) and for
the case of crowding (right).

The left panel of Figure 1 focuses on the special case that the rent is a pure

public good among group members. In the case of a perfectly non-rival rent,

only SSIE turn out to be relevant for the occurrence of the group-size paradox:

the winning probability decreases in group-size in the left quadrant (shaded

gray) whereas it increases in group size in the right quadrant (shaded white).

Allowing for crowding makes the group-size paradox more likely, due to

the dilution of per-capita rents that follows from increases in group-size. The

separating line moves to the right compared to the case of a pure public good

and is given by the upward-sloping line in the right panel of Figure 1. The

group-size paradox again holds in the gray shaded areas of the figure, which

means the RTS now also play a role. The adverse effect of crowding must be

compensated by an increase in SSIE, and the increase has to be the stronger,

the larger the RTS. This is due to the fact that the RTS of the impact function

control the discriminatory power of the contest with respect to the average

valuation of that group. If due to crowding there is an inherent disadvantage

from larger group size, then this disadvantage is amplified by higher RTS.
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Figure 5.2: Group-size paradox for increasing rivalry of the rent.

Though unlikely, we can also imagine cases where an increase in group

size leads to an increase in the valuation. In this case, the RTS will favor the

larger group, as evident from the dotted line in Figure 2.

This is again due to the role of the RTS as the discriminatory power, which

amplifies the effect of differences in valuation on the winning probabilities.

Since larger groups have higher valuations than smaller ones, they are favored

by large RTS and therefore the larger the RTS, the lower the SSIE must be

in order for the group-size paradox to occur. Figure 2 also shows the effect

of an increase in rivalry on the occurrence of the group-size paradox. The

dividing line pivots clockwise around the point of zero RTS and absent SSIE.

The more rival the rent becomes, the higher the level of SSIE that is necessary

to compensate for the increase in the dilution of the rent.

We now turn to the formal presentation of the results.

Proposition 5.1. Consider two contests fulfilling Assumptions 5.1, 5.2, 5.3,

and 5.4 for all groups, which differ only in the group size of group i, mi and

m̂i > mi . For all j,k: v
k
j = v j and let the equilibrium winning probabilities

in the symmetric equilibrium be p∗i and p̂∗i , respectively. Group i participates

at group size mi with effort level x∗i . The class of impact functions of group

i has si(x∗i ,mi ,m̂i) = 1 and constant or decreasing RTS. If vi(mi) = vi(m̂i),
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then p∗i = p̂∗i , πA
i < π̂

A
i , and πTi < π̂

T
i . If vi(mi) > vi(m̂i), then p∗i > p̂∗i and

∃vi(m̂i) ∶ πTi ≥ π̂Ti .

The case of a pure public good establishes a link between our model and

the special case of additively linear impact functions which have been standard

in the literature so far (e.g. Baik, 2008; Konrad, 2009, Chapters 5.5 and 7).

For the case of non-rival rents, the equilibrium group impact and the winning

probability are independent of group size as long as the valuation remains un-

changed. This leads to a welfare advantage for larger groups. If rents are rival,

the increasing dilution of rents (and therefore lower marginal returns) for larger

group sizes, bring larger groups into a worse position. If the rent is sufficiently

rival, both total and average welfare will decrease after an increase in group

size.

The results on the group-size paradox can be strengthened if we assume that

the impact functions are homogeneous and allow for SIE. However, welfare

effects will be less clear in this case:

Proposition 5.2. Consider two contests fulfilling Assumptions 5.1, 5.2, 5.3,

and 5.4 for all groups, which differ only in the group size of group i, mi and

m̂i > mi . For all j,k: v
k
j = v j and let the equilibrium winning probabilities

in the symmetric equilibrium be p∗i and p̂∗i , respectively. The class of impact

functions {qmi
(.)}mmi=2 fulfills Assumption 5.6 with si(mi ,m̂i) as the measure

of SSIE. Suppose group i participates at group size mi . Then:

p∗i R p̂∗i ⇔ vi(mi)
vi(m̂i) R si(mi ,m̂i)1/ri (5.4)

πA
i R π̂A

i ⇔ p∗i vi(mi)
p̂∗i vi(m̂i) R

(1 − (1 − p̂∗i ) ri
m̂i
)

(1 − (1 − p∗i ) ri
mi
) (5.5)

πTi R π̂Ti ⇔ p∗i mivi(mi)
p̂∗i m̂ivi(m̂i) R

(1 − (1 − p̂∗i ) ri
m̂i
)

(1 − (1 − p∗i ) ri
mi
) . (5.6)

In other words, if for some class of impact functions the group-size paradox
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holds, then increasing the RTS or decreasing the SSIE further will imply that

the group-size paradox still holds if the rent is partly rival. The reverse holds

for classes of impact functions for which the group-size paradox does not hold:

With crowding, decreasing the RTS or increasing the SSIE will imply that for

the new class of impact functions, the group-size paradox also does not hold.

It also follows from the proposition as a corollary that RTS play no role in the

case of non-rival rents, since in that case the LHS of (5.4) equals one. In the

case of vi(mi) < vi(m̂i), the effect of the SSIE remains the same, but the effect

of the RTS is opposite: If for some class of impact functions the group-size

paradox holds, then it will ceteris paribus continue to hold under lower RTS,

but not necessarily under higher RTS. An example where vi(mi) < vi(m̂i)
is meaningful is the case when groups can rely on mechanisms to internalize

within-group externalities.15

Solving (5.4) for ri further reveals that (a) the locus of RTS–SSIE pairs

that constitute the dividing line between group-size paradox and no group-size

paradox has a positive slope in Figures 5.1 and 5.2 and (b) an increase in the

privateness of the rent shifts this dividing line in the direction of either more

increasing SSIE and/or lower returns to scale as seen in Figure 5.2.

The above analysis shows that SSIE and RTS fully explain the occurrence

of the group-size paradox if individuals of the same group have the same val-

uation of the rent. They enable us to understand how the technological and

cultural determinants of group impact influence the relative success of larger

or smaller groups.16 For the non-rival case, the case of absent SSIE is the wa-

tershed for the existence of the group-size paradox so that this very simple rule

is easy to check empirically. In case that dilution is important, empirical tests

15Suppose a group has access to a mechanism solving its collective action problem. In this case,
agents fully internalize their effect on the payoff of others and thus optimize as if their valuation
of the rent were vi(mi) = ∑mi

k=1 v
k
i (mi). Therefore, equilibrium efforts (and thus winning

probabilities) will be equal to those obtained in a contest with a homogeneous group and valuations
vi(mi). If the rent is not too rival and the new group members’ valuations are not too low, we will
further have vi(mi) < vi(m̂i) and thus the described case. For details see Kolmar and Wagener
(2011).

16In Appendix L we show that this also holds for voluntary contriution games as Bergstrom et
al. (1986).
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are more difficult because the quantitative extent of SSIE becomes important,

but it nevertheless gives a clear guideline.

The welfare effects do not follow such a clear pattern, since we cannot solve

for them explicitly. While it is obvious that an increase in winning probability

ceteris paribus increases average and total group welfare, it becomes clear from

setting p∗i = p̂∗i in (5.6), that even for equal winning probabilities it is not clear

whether πTi > π̂
T
i or the opposite holds. Also, the public good case where in

Proposition 5.1 larger groups still held an advantage may have πTi > π̂
T
i if SIE

are sufficiently low.

5.4 Heterogeneous valuations within groups

While the literature on the group-size paradox has focused on the case of ho-

mogeneous groups, we will now proceed to examine the heterogeneous case.

Naturally then, the above mentioned connection between an analysis relying on

cost functions and one allowing for more general impact functions with SSIE

and RTS as the main properties no longer holds. Since individuals may have

different valuations, they may end up with different marginal returns on im-

pact to effort. The following analysis however establishes that SSIE and RTS

continue to play the same role, thus generalizing the results from the previ-

ous section. We also introduce a further parameter that will gain importance,

the complementarity between members’ efforts, whose effect depends on the

heterogeneity of the new and old group members.

To simplify the analysis, we concentrate on a CES impact function with

SSIE given by si(mi ,m̂i) = ( m̂i

mi
)si and RTS ri . These properties are fulfilled

by the following CES-type impact function:17

17It could be argued that a class of impact functions should fulfill a condition such as ∀mi, m̂i ∶
qmi (x1

i , . . . , x
mi
i
) = qm̂i

(x1
i , . . . , x

mi
i
, 0, . . . , 0). We do not require (and indeed violate)

this for the following reason: Consider 100 farmers participating in a demonstration. It may matter
for their impact on policies a lot whether they belong to a group of 100 or 1000 farmers. The
notion of complementarity captures this: High complementarity means that an interest group of
1000 farmers will only have an impact if all farmers demonstrate and not only a subset. The above
condition however violates this intuition.
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Assumption 5.7. qi(x1
i , ..., x

mi

i ) = m
si+ri
i ⋅ (∑mi

l=1
1
mi
(xli)γi )ri /γi , γi ∈ (0,1),

ri ∈ (0,1], si ∈ R i = 1, ...n.

γi accounts for different elasticities of substitution of the group members’ ef-

forts.18 Since the CES-type impact function is essentially a power mean of the

contributions, and power means will play an important role in the following, it

is useful to introduce them formally:

Definition 5.8. (Power Mean) If a⃗ is a vector with s elements a1,a2, . . . ,as,

then the θ-power mean of a⃗ is defined as:

M(a⃗,θ) ≡ ( s∑
i=1

aθi

s
)1/θ

. (5.7)

Therefore, we can express the CES-type impact function as: qi(x⃗i) = m
si+ri
i ⋅

M(x⃗i ,γi)ri . To analyze the interplay of γi and the heterogeneity of a group,

one needs a tractable definition of heterogeneity. The most common idea asso-

ciated with higher heterogeneity is that of a mean-preserving spread:

Definition 5.9. A vector v⃗ = (v(1), . . . ,v(m)) is a θ-power mean preserving

spread of a vector v⃗
′
= (v′(1), . . . ,v′(m)) if there exist i, j such that v(i) >

v
′(i)
≥ v
′( j)
> v
( j) withM(v⃗) =M(v⃗′) and v

(k)
= v
′(k) for all k ≠ i, j.

The definition of a power mean preserving spread differs from mean preserving

spreads by Rothschild and Stiglitz (1970) in two important ways: First, it is

generalized to power means since – as discussed before – an arithmetic mean

preserving spread of valuations is not always neutral to the winning probability

of a group. Second, it is restricted by the assumption of equal weights of each

element, since in the CES impact function employed here, all individual efforts

have equal weights. We may want to compare groups with different average

18We restrict attention to γi ∈ (0, 1) to guarantee uniqueness of the equilibrium. If γi ≤ 0
multiple equilibria can occur because of a within-group coordination failure: If at least one group
member exerts zero effort, group impact is zero and it is rational for the other group members to
also exert zero effort. However, Propositions 5.3 and 5.4 continue to hold for γi ≤ 0 in all but the
extreme equilibrium where all members of all groups exert zero effort.
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effort levels and thus employ a slightly more general definition of heterogeneity

than power mean preserving spreads:

Definition 5.10. v⃗
′ is more heterogeneous than v⃗ at mean parameter θ if v⃗′ is

a permutation of v⃗′′ ⋅ω where ω ∈ R+ and v⃗′′ can be obtained from a sequence

of θ-power mean preserving spreads of v⃗.

According to this definition, a vector is more heterogeneous if it can be ob-

tained from another vector via the application of power mean preserving spreads

and multiplying it with a positive constant. From the definition of heterogene-

ity, the following theorem follows.

Theorem 5.3. Suppose v⃗
′ is more heterogeneous than v⃗ at power mean pa-

rameter θ, then:

θ R φ ⇔ M(v⃗′,θ)
M(v⃗,θ) R M(v⃗′,φ)

M(v⃗,φ)
While this theorem will be applied in the context of contests in this paper, it

is applicable in many other settings with heterogeneity and CES aggregates.

For example, it also applies to ratios of price indices Pt+1/Pt in models with

monopolistic competition and heterogeneous producers (e.g. New Keynesian

models such as Yun, 1996). Theorem 5.3 can be used in these contexts to

analyze the effects of changes in the elasticity of substitution on the inflation

measure if heterogeneity differs across periods. Similarly, growth rates of con-

sumption in models with CES production functions can be analyzed.

It follows from Assumptions 5.1, 5.2, and 5.7 that the individual expected

utility functions are as follows:

πki (x1
1, ..., x

mn
n ) = vki (mi) m

si+ri
i ⋅M(x⃗i ,γi)ri∑ j m
s j+r j
j ⋅M(x⃗ j ,γ j)r j − xki . (5.8)

The Nash equilibrium of this model can only be obtained explicitly for the

case ri = 1.19 For ri < 1 it turns out that comparative statics results can still be

19These results are given in Chapter 4. For our purposes, explicit results are not necessary.
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derived. We proceed as follows: First, existence and uniqueness of the Nash

equilibrium will be proven. Second, it will be shown that the winning probabil-

ity of a group is strictly increasing in an aggregate valuation Vi of the group (to

be determined). This reduces the question of whether the group-size paradox

holds to the question whether Vi increases or decreases after adding a set of

individuals to the group. Third, we will examine how various combinations of

heterogeneity and complementarity affect Vi .

Theorem 5.4. Suppose a contest fulfills Assumptions 5.1, 5.2, 5.7 for all groups.

Then, a unique Nash equilibrium exists in which ∀ri < 1 all groups fully par-

ticipate and ∀ri = 1, n∗ ≥ 2 groups fully participate.

Having established existence and uniqueness of the Nash equilibrium, we can

now turn to the comparative-static analysis. It follows from the proof of The-

orem 5.4 that if Q∗ is the equilibrium total impact, the following equilibrium

relation must hold for all participating groups i with members Mi :

Vi ⋅ (1 − p∗i ) = (Q∗)1/ri ⋅ (p∗i )1/ri−1, (5.9)

where Vi ≡ rim
si /ri
i ⋅M(v⃗i,Mi

(mi), γi
1−γi
). Notice that (as discussed in Section

5.2) v⃗i,Mi
(mi) is a vector valued function of total group size mi . For example,

if there are three members in Mi , then v⃗i,Mi
(5) would give the vector of valu-

ations which these three members would have if the actual group size was five.

M(v⃗i,Mi
(mi), γi

1−γi
) is then a power mean of these valuations.

In the following the term “average valuation” will refer to this power mean

(which does not have to coincide with the arithmetic mean). There is a tight

relation between changes in p∗i and Vi which we can use for comparative statics

of our model:

Theorem 5.5. Consider two contests fulfilling Assumptions 5.1, 5.2, 5.7 for

all groups, which differ only by the set of group members of group i, Mi and

M̂i and their valuations v⃗Mi
, v⃗M̂i

,. Let the equilibrium winning probabilities

in each equilibrium be p∗i and p̂∗i , respectively. Then, p∗i ≥ p̂∗i if and only if

Vi ≥ V̂i .



5.4. HETEROGENEOUS VALUATIONS WITHIN GROUPS 181

The above theorem holds for changes in valuations and group size from Mi to

M̂i . Hence, we can obtain comparative-static results on p∗i by only examining

the effect of a change in group size on Vi . The question whether a change in

group size increases or decreases the winning probability of that group reduces

to whether the change in group size increases or decreases Vi . This is a note-

worthy result because it implies that the strategic interaction between groups

has no qualitative influence on the comparative-static properties of the model.

We show this in Appendix L by extending our results to voluntary contribution

games with linear costs of effort.

The following proposition summarizes the effect of adding a set of individ-

uals Ξi to group i on its winning probability:

Proposition 5.3. Consider two contests fulfilling Assumptions 5.1, 5.2, 5.7 for

all groups, which differ only by the set of group members Mi and M̂i = Mi ∪Ξi .

Let the equilibrium winning probabilities in each equilibrium be p∗i and p̂∗i ,

respectively. Suppose group i participates at group size mi . Then p∗i R p̂∗i iff:

M(v⃗i,Mi
(mi ),

γi
1−γi

)

⎛
⎜
⎝

mi
m̂i
⋅M(v⃗i,Mi

(m̂i ),
γi

1−γi
)
γi

1−γi +(1−mi
m̂i
)⋅M(v⃗i,Ξi (m̂i ),

γi
1−γi

)
γi

1−γi
⎞
⎟
⎠

1−γi
γi

Rsi (mi ,m̂i )1/ri .

(5.10)

The proposition shows that the results for heterogeneous groups are very sim-

ilar to the ones derived for the case of homogeneous groups given in Proposi-

tion 2. However, because of the heterogeneity of the group, there is no longer

an obvious choice for the valuation of the new group members. The LHS of

the above expression may therefore be smaller than one even with crowding

if high-valuation individuals join the group and the crowding effect is not too

strong. In this case, the effect of the RTS is opposite to the effect we have

observed for homogeneous groups: The higher the RTS, the lower the minimal

SSIE such that the group-size paradox does not occur. The addition of new

group members with high valuations may therefore compensate for average

valuation losses due to crowding. With this exception, all other results from
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the homogeneous valuation analysis carry over to the heterogeneous case.

The relaxation of the assumption of homogeneous valuations introduces

another important property which has an influence on the performance of large

and small groups and that is somewhat hidden in Proposition 5.3. The com-

plementarity of efforts influences the degree to which the new group members

influence group effort.

To better understand the interplay of group heterogeneity and complemen-

tarity, we impose a further assumption to simplify the LHS of (5.10):

Assumption 5.8. The valuation of an individual k in group i is given by

v
k
i (mi) = wk

i αi(mi), where αi ∶ N+ → R is a weakly decreasing function.

This assumption encompasses the often used functional form v
k
i = αw

k
i + (1 −

α)wk
i /mi by setting αi(mi) = α + (1 − α)/mi , where α denotes the fraction

of the rent that is a public good. Other functional forms are also possible, for

example αi(mi) = 1/m1−α
i corresponds to Cobb-Douglas preferences of the

form v
k
i = (wk

i )α(wk
i /mi)1−α . It is however restrictive in the sense that it does

not allow for heterogeneity in the way group members’ valuations respond to

additional group members which join the group: All valuations in the group

are reduced by a common factor.

Assumption 5.8 yields a natural measure for the degree of rivalry in the

rent:

Definition 5.11. The degree of rivalry of the rent is measured by:

Ri(mi ,m̂i) = αi(mi)
αi(m̂i) . (5.11)

Notice that Ri(mi ,m̂i) ≥ 1 if we focus the analysis on public goods and rents

that are partly rival. Also, under homogeneous valuations, this ratio is equiva-

lent to the LHS ratio in (5.4), which neatly extends the homogeneous case.

Assumption 5.8 allows us to simplify (5.10) and obtain comparative statics

on γi for cases where new and old group members can clearly be ranked in

their heterogeneity:
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Proposition 5.4. Consider two contests fulfilling Assumptions 5.1, 5.2, 5.7

for all groups, which differ only by the set of group members Mi and M̂i =

Mi ∪ Ξi . The valuations of Mi fulfill Assumption 5.8. Let the equilibrium

winning probabilities in each equilibrium be p∗i and p̂∗i , respectively. Suppose

group i participates for the set of group members Mi .

a) Then:

p∗i R p̂∗i ⇔ Γ(γi ,mi ,m̂i ,Ri(mi ,m̂i), si ,ri) R M(w⃗i,Ξi ,
γi

1−γi
)

M(w⃗i,Mi
,
γi

1−γi
) . (5.12)

where Γ(. . . ) ≡ ( m̂i

m̂i−mi
( Ri(mi ,m̂i )
si(m̂i /mi)1/ri )

γi
1−γi − mi

m̂i−mi
)

1−γi
γi

.

b) Suppose w⃗Ξi is more heterogeneous than w⃗Mi
at mean parameter

γi
1−γi

.

Then:

γi R γ′i ⇔ M(w⃗i,Ξi ,
γi

1−γi
)

M(w⃗i,Mi
,
γi

1−γi
) R

M(w⃗i,Ξi ,
γ′i

1−γ′
i

)
M(w⃗i,Mi

,
γ′
i

1−γ′
i

)
c) Then Γ(γi ,mi ,m̂i ,Ri , si ,ri) is weakly decreasing in γi , increasing in Ri , and

decreasing in si . It is strictly decreasing in γi if Ri ≠ s
1/ri
i .

The occurence of the group-size paradox is therefore dependent on the behavior

of Γi and the ratio of power means on the RHS of (5.12). Γ(.) captures the

complex interplay between the rivalry of the rent Ri , social interaction effects

si , returns to scale ri , and the complementarity in efforts γi . Obviously, the

SSIE and the rivalry of the rent have opposite effects, with high SSIE making

the group-size paradox less likely and higher rivalry making it more likely. This

is in line with our results from the first part. Γ(.) is decreasing in γi , which

makes the group-size paradox more likely under lower γi when not considering

the effect on the RHS.

The effects on the RHS can easily be derived from Theorem 5.3. If Ξi is

more heterogeneous than Mi , the RHS of (5.12) will increase for a discrete

increase in γi . We therefore know that in case the new group members are less

heterogeneous than the old group members, the effects of γi the RHS of (5.12)
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and Γi will work in opposite directions and the total effect remains undeter-

mined. However, if the new group members are equally or more heterogeneous

than the former group members, a higher level of complementarity will make

the group-size paradox more likely to occur.

5.5 Concluding remarks

Some empirical findings support the existence of a group-size paradox, but as

noted by Marwell and Oliver (1993), it also stands in contrast to a significant

body of empirical findings pointing to a positive relationship between group

size and group performance in conflicts. Oliver (1993) has complained that in

most theoretical studies, the results on the group-size paradox depend on some

implicit assumptions that drive the result and that the theoretical understanding

of the problem is too weak to permit confident conclusions, especially in light

of the fact that empirical results reveal complex interactions that prevent sim-

ple generalizations. According to our model one can expect that four crucial

factors determine the effect of group size on the outcome of a group contest:

social-interactions effects, returns to scale, complementarity between group

members’ efforts, and the composition of their valuations in case of heteroge-

neous valuations within groups. We are confident that our analysis helps to

clarify the different dimensions that contribute to the logic of collective action.



Appendix

5.A Proof of Theorem 5.1

For ease of notation, define Q−i = ∑ j≠i qj(x⃗ j) and Q = ∑ j qj(x⃗ j). The first

order conditions (FOCs) for all i,k are:

Q−i

Q2
⋅
∂qi

∂xki
⋅vi(mi)−1 ≤ 0 ∧ xki ≥ 0 ∧ (Q−i

Q2
⋅
∂qi

∂xki
⋅ vi(mi) − 1)⋅xki = 0.

(5.13)

We start by showing that the first order conditions are sufficient conditions for

an equilibrium. The second order conditions for a local maximum are:

Q−i ⋅ vi(mi)
Q2

(∂2qi(x⃗i)
∂(xki )2 −

∂qi(x⃗i)
∂xki

2

Q
) < 0

which holds for Q−i ≥ 0 and ∂
2
qi(x⃗i )
∂(xk

i
)2 ≤ 0, which holds by Assumption 5.3.

Since the above concavity condition holds for all xki ∈ [0,∞) we only need to

verify that π(∞, x⃗/xk
i
) ≤ π(xk∗i , x⃗/xk

i
) and π(0, x⃗/xk

i
) ≤ π(xk∗i , x⃗/xk

i
). Since

the FOC is strictly decreasing in xki , we must have for all xki ∈ [0, x∗i ):
∂πki (xki , x⃗/xk

i
)

∂xki
>

∂πki (x∗i , x⃗/xk
i
)

∂xki
.
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This means profits are strictly increasing in xki over the interval [0, x∗i ) and thus

π(0, x⃗/xk
i
) < π(xk∗i , x⃗/xk

i
). Further, since π(∞, x⃗/xk

i
) = −∞ < 0 ≤ π(0, x⃗/xk

i
)

the solution to the FOCs indeed yields a global maximum of the expected pay-

off for each player.

What is left to show is that there exists a unique solution to the system of

FOCs given that ∀i,k ∶ xk∗i = x∗i .20 By Assumption 5.4 we have for all k, l:
∂qi (xi , ...,xi )

∂xk
i

=
∂qi (xi , ...,xi )

∂xl
i

. Therefore, if ∀i,k ∶ xk∗i = x∗i , then the system of

FOCs can be reduced to for all i:

Q−i

Q2
⋅
∂qi(x∗i , . . . , x∗i )

∂x1
i

⋅ vi(mi) − 1 ≤ 0

∧

x∗i ≥ 0 (5.14)

∧

(Q−i

Q2
⋅
∂qi(x∗i , . . . , x∗i )

∂x1
i

⋅ vi(mi) − 1) ⋅ x∗i = 0 .

We furthermore have the following relation between Q, pi and xi :

pi =
qi(xi , . . . , xi)

Q
∧ p

i
(Q) = qi(0, . . . ,0)

Q

where p
i
(Q) is the lower bound on the winning probability given a specific Q.

Since qi(xi , . . . , xi) is strictly increasing in xi , we can solve this for xi(Q,pi)
as long as Q > 0 and pi ≥ p

i
(Q). Finally, we can rewrite

∂qi(xi(Q,pi), . . . , xi(Q,pi))
∂xki

= ρ(Q,pi), ∀pi ≥ p
i
(Q)

which by Assumption 5.3 is weakly decreasing in Q and pi . The left equation

20In a contest with qi(0, . . . , 0) = 0 at least two groups participate. Since we do no make this
assumption, it may be that all groups contribute zero effort because the starting advantage of one
group is too large. However, then at least one group will have qi(0, . . . , 0) > 0.
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of the Kuhn-Tucker conditions then becomes:

1 − pi

Q
⋅ vi(mi) ⋅ ρ(Q,pi) − 1 ≤ 0, ∀i. (5.15)

Since ρ is weakly decreasing in Q and pi , the LHS of (5.15) is strictly de-

creasing in pi and Q. Further, for pi → ∞, the LHS is negative while for

pi = qi(0, . . . ,0)/Q it can be negative or positive. Therefore, for each strictly

positive Q there exists a unique pi ∈ [0,∞)which solves the Kuhn-Tucker con-

ditions where pi = qi(0, . . . ,0)/Q if vi(mi)/Q ⋅ ρ(Q,0) ≤ 1 and pi = 1 if Q = 0.

We can therefore form the function pi(Q) as the solution to the FOC of each

group i.

What remains to be shown is that a unique strictly positive Q∗ exists such

that the winning probabilities pi(Q∗) sum to one. Notice that pi(Q) has the

following properties: It is continuous, limQ→0 pi(Q) = 1 and limQ→∞ pi(Q) =
0 and it is strictly decreasing. Therefore, ∑i pi(Q) is also strictly decreasing,

continuous and has limQ→0∑i pi(Q) > 1 as well as limQ→∞∑i pi(Q) = 0. It

follows by the intermediate value theorem that a Q∗ ∈ (0,∞) exists such that

∑i pi(Q∗) = 1. Since∑i pi(Q) is strictly decreasing, this Q∗ is unique. Given

a unique Q∗, we can obtain unique solutions for pi(Q∗) and thus x∗i and via

∀i,k ∶ xk∗i = x∗i also for all xk∗i .

5.B Proof of Theorem 5.2

First notice that Assumption 5.5 implies Assumption 5.4, i.e. we are only

considering a subset of the impact functions, therefore the results from the

proof of Theorem 5.1 carry over. Since we thus know that the equilibrium

is unique given ∀i,k ∶ xk∗i , we only need to show that under the more strict

Assumption 5.5, any equilibrium must fulfill ∀i,k ∶ xk∗i .

From Assumption 5.5 we have that

xki > xli ⇔ ∂qi(x⃗i)
∂xki

<
∂qi(x⃗i)
∂xli

.
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Therefore, in equilibrium it can never be that case that xl∗i = 0 if xk∗i > 0 since

then the above FOC (5.13) does not hold for at least one group member. Thus,

either∀k ∶ xk∗i = 0 or ∀k ∶ xk∗i > 0. If x
k∗
i > 0 then inserting the FOC for player

k into the FOC for player l yields xk∗i = xl∗i and thus the desired condition.

5.C Proof of a useful Lemma

Lemma 5.1. Suppose a contest fulfills Assumptions 5.1, 5.2, 5.3, and 5.4 for

all groups. Further, ∀ j,k ∶ vkj (m j) = v j(m j). Consider two within-group

symmetric equilibria, which only differ by the group sizes mi ≠ m̂i and/or the

impact functions, qmi
(. . . ) ≠ qm̂i

(. . . ). Suppose group i participates under

group size mi and impact function qmi
(. . . ) with winning probability p∗i . Let

the winning probability under group size m̂i and impact function qm̂i
(. . . ) be

p̂∗i . Then the following equivalence holds:

p∗i R p̂∗i ⇔ vi(mi)∂qmi
(x∗i , . . . , x∗i )
∂xki

R vi(m̂i)∂qm̂i
(x̂i , . . . , x̂i)
∂xki

(5.16)

where x̂i is defined such that

qmi
(x∗i , . . . , x∗i ) = qm̂i

(x̂i , . . . , x̂i).
This Lemma has a very intuitive explanation: Iff for a switch from mi

to m̂i while holding the winning probability constant the LHS of the FOC is

too low, the group will respond by increasing the effort from which a higher

winning probability results. The only complication in the proof is that one has

to address the possibility of a response by other groups which overcompensates

this effect.

Proof. The first-order condition for an interior solution, evaluated at the solu-

tion, becomes after rearranging terms:

∀i,k ∶ vi(mi)∂qmi
(x∗i , . . . , x∗i )
∂xki

=
Q∗(1 − p∗i ) . (5.17)
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We first show that

p∗i R p̂∗i ⇒ vi(mi)∂qmi
(x∗i , . . . , x∗i )
∂xki

R vi(m̂i)∂qm̂i
(x̂i , . . . , x̂i)
∂xki

(5.18)

and since the cases are exhaustive, the reverse implication is then automatically

proven.

p∗i > p̂∗i : This implies that either qmi
(x∗i , . . . , x∗i ) > qm̂i

(x̂∗i , . . . , x̂∗i ) or

Q∗ < Q̂∗. We first show that Q∗ < Q̂∗ yields a contradiction: If p∗i > p̂∗i then

there exists a group j: p∗j < p̂∗j . Together with Q∗ < Q̂∗, this implies that

Q∗

1 − p∗j
<

Q̂∗

1 − p̂∗j
.

By (5.17) this is equivalent with:

v j

∂qj(x∗j , . . . , x∗j )
∂xkj

< v j

∂qj(x̂∗j , . . . , x̂∗j )
∂xkj

(5.19)

Since qj(. . .) has constant or decreasing RTS, this implies qj(x∗j , . . . , x∗j ) ≥
qj(x̂∗j , . . . , x̂∗j ). But since Q∗ < Q̂∗, we have p∗j > p̂∗j and thus a contradic-

tion. From this follows that if p∗i > p̂∗i , then Q∗ ≥ Q̂∗ and qmi
(x∗i , . . . , x∗i ) >

qm̂i
(x̂∗i , . . . , x̂∗i ). The latter implies x̂i > x̂∗i via the definition of x̂i . Since qi

has constant or decreasing RTS, we have:

∂qm̂i
(x̂i , . . . , x̂i)
∂xki

≤
∂qm̂i

(x̂∗i , . . . , x̂∗i )
∂xki

(5.20)

From p∗i > p̂∗i and Q∗ ≥ Q̂∗ follows Q∗/(1 − p∗i ) > Q̂∗/(1 − p̂∗i ). Using the

FOCs, we have:

vi(mi)∂qmi
(xi , . . . , xi)
∂xki

> vi(m̂i)∂qm̂i
(x̂∗i , . . . , x̂∗i )
∂xki

.

Combining this equation with 5.20, immediately yields the p∗i > p̂∗i part of
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(5.18). The proof for p∗i < p̂∗i follows the same steps with reverse inequalities

and is therefore omitted.

p∗i = p̂∗i : This implies that either qmi
(x∗i , . . . , x∗i ) = qm̂i

(x̂∗i , . . . , x̂∗i ) and

Q∗ = Q̂∗ or qmi
(x∗i , . . . , x∗i ) ≶ qm̂i

(x̂∗i , . . . , x̂∗i ) and Q∗ ≶ Q̂∗.

Suppose Q∗ = Q̂∗ and qmi
(x∗i , . . . , x∗i ) = qm̂i

(x̂∗i , . . . , x̂∗i ) hold. Then it

immediately follows from the FOCs that

vi(mi)∂qmi
(x∗i , . . . , x∗i )
∂xki

= vi(mi)∂qm̂i
(x̂∗i , . . . , x̂∗i )
∂xki

.

By definition of x̂i we then have the symmetric part of (5.16).

For the case qmi
(x∗i , . . . , x∗i ) ≶ qm̂i

(x̂∗i , . . . , x̂∗i ) and Q∗ ≶ Q̂∗ we can

show that this yields a contradiction. It follows from these assumptions that

there exists a group j with p∗j T p̂∗j such that:

qj(x∗j , . . . , x∗j ) ≷ qj(x̂∗j , . . . , x̂∗j ). (5.21)

Furthermore,
Q∗

1 − p∗j
≷ Q̂∗

1 − p̂∗j
.

Applying the FOCs gives us:

∂qj(x∗j , . . . , x∗j )
∂xkj

≷
∂qj(x̂∗j , . . . , x̂∗j )

∂xkj
.

But from this follows x∗j < x̂∗j and thus

qmi
(x∗j , . . . , x∗j ) ≶ qm̂i

(x̂∗j , . . . , x̂∗j ) (5.22)

which contradicts (5.21).

Since the cases considered are exhaustive, it follows that the implication

holds in both directions. �
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5.D Proof of Proposition 5.1

Proof. We employ the total differential:

∆qmi
(x⃗i) =∑

k

∆xki
∂q(x⃗i)
∂xki

(5.23)

For equal inputs we can write qmi
(xi , . . . , xi) = g(xi ,mi). The total differen-

tial then becomes for symmetric efforts:

∆g(xi ,mi) = mi ⋅ ∆xi
∂q(xi , . . . , xi)

∂xki
, (5.24)

and thus
∂q(xi , . . . , xi)

∂xki
=
g(xi ,mi) − g(xi ,mi)

mi ⋅ (xi − x′i) (5.25)

for xi − x′i → 0. Similarly, we have:

∂qm̂i
(xi mi

m̂i
, . . . , xi

mi

m̂i
)

∂xki
=

g(xi mi

m̂i
,m̂i) − g(x′i mi

m̂i
,m̂i)

mi ⋅ (xi − x′i) ⋅ mi

m̂i

(5.26)

for xi − x′i → 0. It follows from (5.25) and (5.26) that:

∂q(xi , . . . , xi)
∂xki

=

∂qm̂i
(xi mi

m̂i
, . . . , xi

mi

m̂i
)

∂xki
(5.27)

since by absent SSIE it holds that g(xi ,mi) = g(xi mi

m̂i
,m̂i) and g(xi ,mi) =

g(x′i mi

m̂i
,m̂i).

To apply Lemma 5.1, we need to know what the symmetric effort level

x̂i of the group after the increase in size would need to be in order to obtain

qmi
(x∗i , . . . , x∗i ) = qm̂i

(x̂i , . . . , x̂i). With absent SSIE we have:

x̂i =
x∗i mi

m̂i

.
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Lemma 5.1 then yields:

p∗i R p̂∗i ⇔ vi(mi)∂qmi
(x∗i , . . . , x∗i )
∂xki

R vi(m̂i)∂qm̂i
( x∗i mi

m̂i
, . . . ,

x∗i mi

m̂i
)

∂xki

which given (5.27) reduces to the desired condition:

p∗i R p̂∗i ⇔ vi(mi) R vi(m̂i)
Therefore, if the rent is a public good, the winning probability is independent

of group size for an impact function with absent SSIE at the equilibrium effort

x∗i for group size mi . If the rent is partly private, it is strictly decreasing in

group size.

For the welfare effects, we have:

vi(mi) = vi(m̂i): It follows from p∗i = p̂∗i and si(x∗i ,mi ,m̂i) that x∗i > x̂∗i .

Inserting this into π∗i − π̂
∗
i we get: (p∗i − p̂∗i )(vi(mi))−(x∗i − x̂∗i ). Since the first

term is equal to zero and the second term negative, we get that πk∗i < π̂
k∗
i from

which the statements for average and total utility follow for vi(mi) = vi(m̂i).
vi(mi) > vi(m̂i): Let vi(m̂i) → 0. Then π̂k∗i → 0. Since πk∗i > 0, and π̂k∗i

is continuous in v̂i(mi) the existence of vi(m̂i) follows.

We cannot specify vi(m̂i) more precisely under the very general assump-

tions. Especially, we cannot know, whether vi(m̂i) ⋚ mivi(mi)/m̂i which is

the private good case. �

5.E Proof of Proposition 5.2

Proof. We assume throughout that we are in a symmetric, interior equilibrium.

By homogeneity of degree ri , we have from Euler’s theorem

ri ⋅ qmi
(xi , . . . , xi) = mi ⋅ xi ⋅

∂qmi
(xi , . . . , xi)
∂xki

, (5.28)
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and further

∂qmi
(xi , . . . , xi)
∂xki

=
ri ⋅ qmi

(xi , . . . , xi)
mi ⋅ xi

=
ri ⋅ qmi

(1, . . . ,1)
mi ⋅ (xi)1−ri . (5.29)

Using homogeneity of the impact function and the above expression for the

partial derivative, we get for the measure of SSIE:

si(mi ,m̂i) = qm̂i
(1, . . . ,1) ⋅mri

i

qmi
(1, . . . ,1) ⋅ m̂ri

i

. (5.30)

Lemma 5.1 now tells us that

p∗i R p̂∗i ⇔ vi(mi)∂qmi
(x∗i , . . . , x∗i )
∂xki

R vi(m̂i)∂qm̂i
(x̂i , . . . , x̂i)
∂xki

(5.31)

where x̂i is defined such that

qmi
(x∗i , . . . , x∗i ) = qmi

(x̂i , . . . , x̂i).
We can make use of homogeneity of degree ri and solve for x̂i :

x̂i =
x∗i mi

m̂i

(qmi
(1, . . . ,1) ⋅ m̂ri

i

qm̂i
(1, . . . ,1) ⋅mri

i

)1/ri
=

x∗i ⋅mi

si(mi ,m̂i)1/ri ⋅ m̂i

(5.32)

where the last step follows from (5.30). Plugging this definition back into

(5.31), we get using (5.29):

p∗i Rp̂∗i ⇔ vi(mi ) ri ⋅qmi
(x∗

i
, ...,x∗

i
)

mi ⋅x
∗
i

Rvi(m̂i ) ri ⋅qm̂i
(x̂i , ..., x̂i )si (mi ,m̂i )1/ri

mi x
∗
i

(5.33)

By canceling terms, this simplifies to:

p∗i R p̂∗i ⇔ vi(mi)
vi(m̂i) R si(mi ,m̂i)1/ri (5.34)

For the welfare effects, we have:
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πA
i R π̂A

i ⇔ p∗i vi(mi) − x∗i R p̂∗i vi(m̂i) − x̂∗i . We furthermore have:

x∗i =
rivi(mi)

mi

p∗i (1 − p∗i )
from inserting (5.29) into (5.13). Inserting this into the above equation for x∗i

and x̂∗i and rearranging terms yields the result. The total welfare effects follow

by multiplying with mi and m̂i on the LHS and RHS, respectively.

�

5.F Proof of Theorem 5.3

A useful result will be the following:

Lemma 5.2. If a1 ≥ a2 > a3 or a3 > a2 ≥ a1 and f is a convex function, then

f (a1 + a2 − a3) > f (a1) + f (a2) − f (a3) (5.35)

Proof. Case a3 < a1: From convexity of f , we have for all h

f ′(a1 − a3 + h) > f ′(h) ⇔ a3 < a1 (5.36)

Integrating both sides gives:

∫
a2

a3

f ′(a1 − a3 + h)dh > ∫
a2

a3

f ′(h)dh (5.37)

which yields the desired condition:

f (a1 + a2 − a3) − f (a1) > f (a2) − f (a3). (5.38)

Case a3 > a1: From convexity of f , we have for all h

f ′(a1 − a3 + h) < f ′(h) ⇔ a3 > a1 (5.39)
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Integrating both sides gives:

∫
a3

a2

f ′(a1 − a3 + h)dh > ∫
a3

a2

f ′(h)dh (5.40)

which yields the desired condition:

f (a1) − f (a1 + a2 − a3) < f (a3) − f (a2). (5.41)

�

The above Lemma can be used to derive the following result:

Lemma 5.3. Suppose v⃗
′′ is obtained from a sequence of θ-power mean pre-

serving spreads of v⃗. Then

θ R φ ⇔ M(v⃗,φ) RM(v⃗′′,φ) (5.42)

Proof. Suppose v⃗(1), . . . v⃗(n) is a sequence of vectors generated by a sequence

of θ-power mean preserving spreads. If for all i it holds that

θ R φ ⇔ M(v⃗(i),φ) RM(v⃗(i+1),φ) (5.43)

then it clearly also holds that:

θ R φ ⇔ M(v⃗(1),φ) RM(v⃗(n),φ) (5.44)

We therefore only need to show this property for vectors which differ by a

single power mean preserving spread. Notice that for any φ:

M(v⃗(i),φ)RM(v⃗(i+1),φ) ⇔ M((v(i)
H
,v
(i)
L
),φ)RM((v(i+1)

H
,v
(i+1)
L

),φ) (5.45)

where (v(i)H ,v
(i)
L ) refers to the vector of the two elements that are changed by

the spreading operation and (v(i+1)
H ,v

(i+1)
L ) to the vector of these two elements

after application of the spreading operation. Let w.l.o.g. v
(i)
H ≥ v

(i)
L from
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which immediately follows v
(i+1)
H > v

(i)
H ≥ v

(i)
L > v

(i+1)
L by the properties of

the power mean preserving spread. That is, v(i)H refers to the element of v⃗(i)
which is increased to v

(i+1)
H and v

(i)
L to the decreased element of v⃗(i).

From the power mean preserving spread also follows via evaluating (5.45)

at equality:

(1

2
(v(i+1)

H )θ + 1

2
(v(i+1)

L )θ)1/θ
= (1

2
(v(i)H )θ + 1

2
(v(i)L )θ)1/θ

, (5.46)

which – after solving for v(i+1)
H – yields:

(v(i+1)
H )θ = ((v(i)H )θ + (v(i)L )θ − (v(i+1)

L )θ)1/θ
. (5.47)

Combining this condition with (5.45) and (5.43), what is left to show is:

θRφ ⇔ ((v(i)
H
)φ+(v(i)

L
)φ)1/φ

R(((v(i)
H
)θ+(v(i)

L
)θ−(v(i+1)

L
)θ)φ/θ+(v(i+1)

L
)φ)1/φ

(5.48)

which is implied by the following, more general condition:

∀ ψ>η∶ ((v(i)
H
)η+(v(i)

L
)η−(v(i+1)

L
)η)1/η>((v(i)

H
)ψ+(v(i)

L
)ψ−(v(i+1)

L
)ψ)1/ψ

(5.49)

Notice that standard mean inequalities or the reverse Jensen inequality from

the previous appendix do not apply to prove (5.49). This would also be coun-

terintuitive as then the proof would not rely on v
(i)
H ≥ v

(i)
L > v

(i+1)
L . We have to

distinguish the cases ψ > 0 and ψ < 0.

ψ > 0: Define f (a) = aψ/φ , which is strictly convex and a1 = (v(i)H )φ ,

a2 = (v(i)L )φ , and a3 = (v(i+1)
L )φ . If φ > 0, we have a1 ≥ a2 > a3, while if

φ < 0, we have a3 > a2 ≥ a1. In both cases Lemma 5.2 applies. Employing

these definitions in Lemma 5.2 gives:

((v(i)
H
)φ+(v(i)

L
)φ−(v(i+1)

L
)φ)ψ/φ>((v(i)

H
)φ)ψ/φ+((v(i)

L
)φ)ψ/φ−((v(i+1)

L
)φ)ψ/φ , (5.50)

which simplifies to (5.49).
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ψ < 0: Define f (a) = aφ/ψ , which is strictly convex and a1 = (v(i)H )ψ , a2 =(v(i)L )ψ , and a3 = (v(i+1)
L )ψ . Since φ < 0, we have a3 > a2 ≥ a1. Employing

these definitions in Lemma 5.2 gives us:

((v(i)
H
)ψ+(v(i)

L
)ψ−(v(i+1)

L
)ψ)φ/ψ>((v(i)

H
)ψ)φ/ψ+((v(i)

L
)ψ)φ/ψ−((v(i+1)

L
)ψ)φ/ψ (5.51)

which is equivalent with (5.49) since φ is negative and the inequality sign thus

changes direction once we exponentiate both sides with φ. �

We now turn to the main proof of the theorem.

Proof. Suppose v⃗
′ is more heterogeneous than v⃗ at mean parameter θ. Then

∃ω ∶ ω ⋅v⃗′′ = v⃗′ and v⃗
′′ is obtained from a sequence of θ-power mean preserving

spreads of v⃗. Thus by Lemma 5.2,

θ R φ ⇔ M(v⃗,φ) RM(v⃗′′,φ) (5.52)

By definition of a θ-power mean preserving spread we have equal θ-power

meansM(v⃗,θ) =M(v⃗′′,θ). We therefore obtain:

θ R φ ⇔ ωM(v⃗′′,θ)
M(v⃗,θ) R ωM(v⃗′′,φ)

M(v⃗,φ) (5.53)

Making use of the homogeneity of degree 0 of M and the definition of ωv⃗′′

we have:

θ R φ ⇔ M(v⃗′,θ)
M(v⃗,θ) R M(v⃗′,φ)

M(v⃗,φ) (5.54)

�

5.G Proof of Theorem 5.4

Proof. The proof proceeds similarly to the one for single player contests Cornes

and Hartley (2005), with the main difference that first one has to obtain equi-

librium conditions that fix relative efforts within each group. The optimality
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condition for individual k in group i yields:

∂qi

∂xki

Q−i ⋅ v
k
i

Q2
≤ 1 (5.55)

with equality if xki > 0. Notice first that in equilibrium it can never be the case

that Q−i = 0, since then some individual will have an incentive to provide effort

xki = ǫ with ǫ → 0 to win the rent with probability 1. The expression for the

partial derivative of the impact function becomes after rearranging terms:

∂qi

∂xki
=

ri ⋅Q
1−γ/ri
i ⋅ (xki )γ−1

m
1−(si+ri)γ/ri
i

(5.56)

From this expression can already be derived that if one group member partic-

ipates in equilibrium, all group members do: Notice that if some group mem-

ber l of group i participates in equilibrium, Qi > 0 and therefore at xki = 0,
∂qi

∂xk
i

= ∞. But then the first order condition cannot hold for individual k in

that equilibrium, since we have Q > 0 and Q−i > 0 and thus the RHS of the

optimality condition is infinite, which is greater than the RHS.

Since either all group members participate or none, we can express the

following relationship among efforts within a group:

(xki )γ−1 ⋅ vki = (xli)γ−1 ⋅ vli ∀l,k (5.57)

Notice that this relation trivially also holds for groups that do not participate.

Rearranging and summing over all l yields:

( 1

mi
∑(xli)γ)1/γ

=
xki(vki ) 1

1−γ

( 1

mi
∑(vli ) γ

1−γ )1/γ
(5.58)

Substituting this relation into the optimality condition yields:

Q
1− 1

ri

i ⋅Q−i ⋅Vi ≤ Q2 (5.59)
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where Vi = rim
si/ri
i ⋅ ( 1

mi
∑l(vli ) γ

1−γ ) 1−γ
γ

. We now differentiate our analysis

between the cases ∀i ∶ ri < 1 and ∀i ∶ ri = 1.

Notice that for ∀i ∶ ri < 1 we have that Qi = 0 can never be a best response

to any positive Q−i , since then the LHS of the above optimality condition is

infinite. Therefore, if there exists a Nash equilibrium, it must be such that all

groups fully participate. We rewrite the optimality condition therefore in terms

of winning probabilities pi = Qi/Q:

Vi ⋅ (1 − pi) = Q1/ri ⋅ p1/ri−1
i (5.60)

It is now easy to see that for all Q there exists a pi(Q) such that the optimality

condition is fulfilled: Notice that for pi = 1, the LHS is strictly smaller than

the RHS, while for pi = 0, the RHS is strictly smaller than the LHS. Since both

are continuous functions of pi , by the intermediate value theorem there then

exists at least one pi(Q) such that the optimality condition holds with equality.

Further, this point is unique, since the LHS is strictly decreasing in pi , while

the RHS is strictly increasing in pi . This proves that there exists a unique

best response pi(Q) to any level of Q. pi(Q) corresponds to a share function

of a single player contest (Cornes & Hartley, 2005), only with the change of

interpretation that it is the share of the whole group on which the within-group

equilibrium condition (5.57) has been imposed.

Naturally, the remainder of the proof proceeds similarly. pi(Q) is decreas-

ing in Q as can be verified from the following argument: Suppose Q increases,

then the RHS is larger than the LHS of the optimality condition. Since the

RHS is strictly increasing in pi and the LHS strictly decreasing, pi must de-

crease in order to maintain equality. A Nash equilibrium is now given by a Q∗

such that ∑i pi(Q∗) = 1. Notice that for Q = 0, the solution to the optimality

condition is pi(0) = 1, while for Q → ∞, we have that pi(∞) → 0. There-

fore, ∑i pi(0) > 1 > ∑i pi(∞). Since ∑i pi(Q) is strictly decreasing in Q

and continuous, there must then exist exactly one Q∗ such that the equilibrium

condition is fulfilled. Thus, there exists a unique Nash equilibrium, where all
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groups fully participate.

For the case of ri = 1, we instead have the simplified optimality condition:

Q−i ⋅Vi ≤ Q2 (5.61)

We can therefore directly solve for the best response winning probability:

pi(Q) = max[0,1 −Q/Vi] (5.62)

Which has the properties pi(0) = 1 and pi(Vi) = 0. Noticing that the best

response pi(Q) is weakly decreasing in Q, we can repeat a similar argument

as above to prove that there exists a unique Nash equilibrium: Without loss of

generality reorder the groups such that V1 > V2 > ⋅ ⋅ ⋅ > Vn . We have

∑
i

pi(0) = n > 1 > 0 =∑
i

pi(V1) (5.63)

Since p1(Q) is strictly decreasing in Q for Q ∈ [0,V1] and strictly decreasing

if , we have that∑i pi(Q) is also strictly decreasing in Q, since it is the sum of

a strictly decreasing function and weakly decreasing functions in Q. From this

then readily follows existence and uniqueness of a Q∗ such that∑i pi(Q∗) = 1.

Depending on the level of this Q∗, it may very well be for some low enough

Vi , that 0 ≥ 1 −Q∗/Vi , such that group i does not participate. Define n∗ as the

index of the group with the lowest Vi such that 0 > 1−Q∗/Vi , which completes

the proof. �

5.H Proof of Theorem 5.5

Proof. The proof goes by contradiction. Suppose we have that Vi ≥ V̂i and

p∗i < p̂∗i . Then it follows that Vi ⋅ (1 − p∗i ) > V̂i ⋅ (1 − p̂∗i ). By (5.9) this is

equivalent to:

(Q∗)1/ri ⋅ (p∗i )1/ri−1
> (Q̂∗)1/ri ⋅ (p̂∗i )1/ri−1
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and thus Q∗ > Q̂∗.

Since p∗i < p̂∗i there must exist at least one group j such that: p∗j > p̂∗j .

Therefore, Vj ⋅ (1 − p∗j ) > Vj ⋅ (1 − p̂∗j ), since Vj does not differ between both

equilibria. Using (5.9) for group j gives us:

(Q∗)1/r j ⋅ (p∗j )1/r j−1
< (Q̂∗)1/r j ⋅ (p̂∗j )1/r j−1.

and thus Q∗ < Q̂∗ which yields a contradiction. By an analogous proof for

Vi ≤ V̂i and p∗i > p̂∗i then follows the theorem.

�

5.I Proof of Proposition 5.3

Proof. From Theorem 5.5, we have that:

p∗i Rp̂∗i ⇔ rim
si /ri
i

⋅M(v⃗i,Mi
(mi), γi

1−γi
)Rri (m̂i)si /ri ⋅M(v⃗i,Mi∪Ξi

(m̂i ), γi
1−γi

).
(5.64)

Rearranging terms, using the definition of si(mi ,m̂i) and writing out the power

meanM(v⃗i,Mi∪Ξi (m̂i), γi
1−γi
) gives us:

p∗i Rp̂∗i ⇔

M(v⃗i,Mi
(mi ),

γi
1−γi

)

⎛
⎜⎜⎜⎜⎜
⎝

∑
mi
k=1
(vk

i
(m̂i ))

γi
1−γi +∑

m̂i
k=mi+1

(vk
i
(m̂i ))

γi
1−γi

m̂i

⎞
⎟⎟⎟⎟⎟
⎠

1−γi
γi

Rsi (mi ,m̂i )1/ri ,

(5.65)

which yields:

p∗i Rp̂∗i ⇔
M(v⃗i,Mi

(mi ),
γi

1−γi
)

⎛
⎜⎜⎜⎜
⎝

mi
m̂i

∑
k∈Mi

(vk
i
(m̂i ))

γi
1−γi

mi
+(1−mi

m̂i
) ∑
k∈Ξi

(vk
i
(m̂i ))

γi
1−γi

m̂i−mi

⎞
⎟⎟⎟⎟
⎠

1−γi
γi

Rsi (mi ,m̂i )1/ri

(5.66)

from which follows (5.10), since mi = ∣Mi ∣ and m̂i −mi = ∣Ξi ∣ . �
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5.J Proof of Proposition 5.4

Proof. a) Inserting Ri(mi ,m̂i) into (5.10) and simplifying gives the desired re-

sult.

b) Follows directly from Theorem 5.3 and the assumption that w⃗i,Ξi is more

heterogeneous than w⃗i,Mi
at γi/(1 − γi). Note that we only consider cases

with γi < 1 and thus γi/(1 − γi) <∞.

c) It is immediately obvious that Γ(γi ,mi ,m̂i ,Ri , si ,ri) is increasing in Ri

and decreasing in si . The only difficulty is thus the proof of the behavior of

Γ(γi ,mi ,m̂i ,Ri , si ,ri)with changes in γi . A useful result on which the proof is

based is the reverse Jensen inequality (for a more general version and its proof,

see Bullen, 2003, p. 43):

Lemma 5.4. If f is convex, ̺1 > 0 and ̺i < 0 for all 2 ≥ i ≥ n and∑n
j=1 ̺j = 1,

then f (∑n
j=1 ̺ja j) ≥ ∑n

j=1 ̺j f (a j) for all ∑n
j=1 ̺ja j ∈ I, and the inequality

holds strictly, if f is strictly convex and ∃i, j ∶ ai ≠ a j .

We now show that the following term is decreasing in γi :

Γ(γi ,mi ,m̂i ,Ri , si ,ri) = ⎛⎜⎝
m̂i

m̂i −mi

⋅ ( Ri(mi ,m̂i)
si(m̂i/mi)1/ri )

γi
1−γi

−
mi

m̂i −mi

⎞⎟⎠
1−γi
γi

.

(5.67)

Define θi =
γi

1−γi
, which is increasing in γi . What is to be shown is that the

above term is decreasing in θi , thus:

( m̂i

m̂i −mi

Ψ
θi −

mi

m̂i −mi

)1/θi
> ( m̂i

m̂i −mi

Ψ
φi −

mi

m̂i −mi

)1/φi

(5.68)

whenever φi > θi and where Ψ = Ri(mi ,m̂i )
si (m̂i/mi )1/ri . Note that φi ,θi ∈ (−1,∞) and

therefore we will distinguish the cases 0 < φi , and φi < 0. We will furthermore

assume that θi and φi are not zero (which is equivalent to assuming that γi ≠ 0.
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0 < φi : Since φi is positive, we can rewrite condition (5.68) to:

( m̂i
m̂i−mi

Ψ
θi−

mi
m̂i−mi

(1θi ))φi /θi >( m̂i
m̂i−mi

(Ψθi )φi /θi − mi
m̂i−mi

(1θi )φi /θi ). (5.69)

Setting f (a) = aφi/θi (which is strictly convex also for negative θi ) and ̺1 =

m̂i

m̂i−mi
, ̺2 = −

mi

m̂i−1 , and a1 = (Ψ)θi , a2 = 1θi in the above reverse Jensen

inequality directly yields equation (5.69).

φi < 0: Since θi is negative, we can rewrite condition (5.68) to:

( m̂i
m̂i−mi

Ψ
φi −

mi
m̂i−mi

(1φi ))θi /φi >( m̂i
m̂i−mi

(Ψφi )θi /φi − mi
m̂i−mi

(1φi )θi /φi ). (5.70)

Setting f (a) = aθi/φi (which is strictly convex since the absolute value of φi

is smaller than that of θi ) and ̺1 =
m̂i

m̂i−mi
, ̺2 = −

mi

m̂i−mi
, and a1 = (Ψ)φi ,

a2 = 1φi in the above reverse Jensen inequality directly yields equation (5.70).

Therefore, condition (5.68) follows, which concludes the proof of part c) of the

proposition. �

5.K Relation between comparative statics analysis and inter-

group comparisons

Theorem 5.6. Consider two contests fulfilling Assumptions 5.1, 5.2, 5.3, and

5.4 for all groups, which differ only in the group size of group i, mi and m̂i .

Moreover, let m j = m̂i , qj = qi,m̂i
, and vi(m̂i) = v j(m j). For all h,k: vkh = vh

and let the equilibrium winning probabilities in the symmetric equilibria be p∗i ,

p∗j and p̂∗i , p̂∗j respectively. Group i participates at group size mi with effort

level x∗i .

Then:

p∗i R p∗j ⇔ p∗i R p̂∗i

The theorem shows that the comparative static interpretation of the group-

size paradox and the interpretation of inter-group comparisons yield the same
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results for equal valuations within groups.

Proof. Define first x̂ as the solution to qmi
(x∗i , . . . , x∗i ) = qm̂i

(x̂, . . . , x̂). By

the first order conditions (5.13) evaluated at the equilibrium effort of group i,

we have for arbitrary group members k and l of groups i and j, respectively:

p∗i > p∗j iff

vi(mi)∂qi,mi
(x∗i , . . . , x∗i )
∂xki

< v j(m j)∂qj(x̂, . . . , x̂)
∂xlj

(5.71)

since ∂qj(x j , . . . , x j)/∂xlj is weakly decreasing in x j . (5.71) is equivalent

with:

vi(mi)∂qi,mi
(x∗i , . . . , x∗i )
∂xki

< vi(m̂i)∂qi,m̂i
(x̂, . . . , x̂)
∂xki

. (5.72)

This is by Lemma 5.1 equivalent with p∗i > p̂∗i . The proof for p∗i = p̂∗i and

p∗i < p̂∗i is analogous. �

For the heterogeneous case, a similar statement can be made:

Theorem 5.7. Consider two contests fulfilling Assumptions 5.1, 5.2, 5.7 for

all groups, which differ only by the set of group members Mi and M̂i = Mi ∪

Ξi . Moreover, let Mj = M̂i , ri = r j , γi = γ j . Let the equilibrium winning

probabilities in each equilibrium be p∗i , p∗j and p̂∗i , p̂∗j respectively. Suppose

group i participates with group members Mi . Then,

p∗i R p∗j ⇔ p∗i R p̂∗i .

To show this, note the following Lemma:

Lemma 5.5. Consider a contest fulfilling Assumptions 5.1, 5.2, 5.7 for all

groups. Suppose ri = r j . Let the equilibrium winning probabilities in equilib-

rium be p∗i , p∗j . Then,

p∗i R p∗j ⇔ Vi R Vj .



5.L. EXTENSIONS TO VOLUNTARY CONTRIBUTION GAMES 205

Proof. Suppose Vi > Vj , then from (5.9) of groups i and j and ri = r j we have:

(p∗i )1/ri−1

(1 − p∗i ) >
(p∗j )1/ri−1

(1 − p∗j ) (5.73)

Since the RHS is increasing in pi (note that 1/ri − 1 ≥ 0 by assumption) and

the LHS in pj , it follows that pi > pj . By the symmetry of the problem, for

Vi < Vj it follows that pi > pj . Next suppose Vi = Vj , then by (5.9) of groups i

and j and ri = r j we directly have:

(p∗i )1/ri−1

(1 − p∗i ) =
(p∗j )1/ri−1

(1 − p∗j ) (5.74)

which only holds for p∗i = p∗j . Since the considered cases are exhaustive, it

directly follows that: p∗i R p∗j if and only if Vi R Vj . �

From here the proof of Theorem 5.7 directly follows from Theorem 5.5 and

Lemma 5.5 and the fact that Vj = V̂i .

5.L Extensions of Propositions 5.2 and 5.3 to voluntary con-

tributions games

It turns out that the key properties which have been examined for the group-

size paradox in a contest setting are also at work in collective action problems

without the contest environment. In this appendix we show that for two col-

lective action problems without the contest environment, our methods and to

some extent even the results can be transfered.

We use the model by Bergstrom et al. (1986) with the simplification of

identical preferences across players and the generalization of allowing vi(mi)
to depend on group size.

Assumption 5.9. Individuals k maximize:

πki (xki , x⃗−xk
i
)) = u(w − xki ,vi(mi)qmi

(x⃗i)) (5.75)
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where u is a binormal utility function increasing in both arguments.

(We could drop the group index i here since there is only one group, but

leave it for cross-referencing to our results on group contests.) As discussed

in Bergstrom et al. (1986) and Cornes and Hartley (2007), binormality implies

that the marginal rate of substitution MRSk
i (xki ,vi(mi)qmi

(x⃗i)) = ∂u(...)
∂vi (mi )qmi

(x⃗i )
∂u(...)
∂wi−x

k
i

is decreasing in vi(mi)qmi
(x⃗i) and non-increasing in xki . Equilibrium exis-

tence has been proven by Cornes and Hartley (2007). Symmetry of the equi-

librium follows from Assumption 5.4.

We can now obtain similar results to Proposition 5.2:

Proposition 5.5. Consider two voluntary contribution games fulfilling Assump-

tions 5.9, 5.3, and 5.4, which differ only in the group size of group i, mi and

m̂i > mi . For all k: v
k
i = vi and the class of impact functions {qmi

(.)}mmi=2

fulfills Assumption 5.6 with si(mi ,m̂i) as the measure of SSIE. Suppose group

i contributes 0 < x∗i < wi at group size mi and 0 < x̂∗i < wi at group size m̂i .

Then:

(di)ri vi(mi)qi (x∗i , ...,x∗i )Rvi(m̂i )qi(x̂∗i , ..., x̂∗i ) ⇔ 1Rsi (mi ,m̂i )1/ri
⋅d

ri
i

(5.76)

where

di R 1 ⇔ 1 R vi(mi)
vi(m̂i) 1

si(mi ,m̂i) (mi

m̂i

)ri (5.77)

In this proposition we used the value-adjusted consumption of the public

good as the criterion for the group-size paradox. Results on group welfare

are naturally even more difficult to obtain than in the contest case, since they

strongly depend on the shape of u(. . .). Since we assumed a very general form

of preferences, we also do not obtain a closed form solution for di . However,

both SSIE and the rivalness in the rent still work in the predictable manner of

making the group-size paradox less and more likely, respectively.21 We also

21An increase in di is unanimously good for a larger group: It helps fulfilling the
1 R si(mi, m̂i)1/r i ⋅ dri

i
condition and at the same time increases the critical level

(di)ri vi(mi)qi(x∗i ) which will be surpassed if the former condition is met.
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see that the term mi/m̂i (in the expression determining the orientation of di)

provides a starting advantage for larger groups. The larger the returns to scale,

the more pronounced this starting advantage is.

Proof. We will prove the result only for the case of MRS(. . . ) being strictly

decreasing in the first argument. The extension to the case where the utility

function can be locally linear in the first argument is trivial, but would require

many case distinctions.22 The method of the proof is similar to the contest case.

We first find an effort level x̆i of the group with size m̂i such that the RHS of

the FOC is identical to the RHS of the FOC under the equilibrium efforts x∗i

and then compare the LHS of the FOC to determine whether x̆i R x̂∗i .

The first order condition yields for all k:

∂q(x⃗i)
∂xki

vi(mi) = (MRS(xki ,vi(mi)q(x⃗i)))−1
(5.78)

Evaluated in a symmetric equilibrium, we have

∂q(x∗i , . . . , x∗i )
∂xki

vi(mi) = (MRS(x∗i ,vi(mi)q(x∗i , . . . , x∗i )))−1
. (5.79)

Define x̂i such that qmi
(x∗i , . . . , x∗i ) = qm̂i

(x̂i , . . . , x̂i). A simplification in

comparison to the contest model is that we do not need to consider the re-

sponses of other groups to a change in efforts after a change in group size.

Instead, we face the difficulty that the RHS of the FOC under group size mi

given efforts x∗i is not identical to the RHS of the FOC under group size m̂i

given efforts x̂i . To obtain an identical RHS we define x̆i such that:

MRS(x∗i ,vi(mi)q(x∗i , . . . , x∗i )) = MRS(x̆i ,vi(mi)q(x̆i , . . . , x̆i)). (5.80)

We need to determine how x̆ compares with x̂. For this, define di such that

x̆i = di ( vi(mi )
vi(m̂i ))1/ri

x̂i . Note that due to homogeneity of qi , we have that:

22u being linear in wi − xki implies di = 0.
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vi(mi)qmi
(x∗i , . . . , x∗i ) = vi(m̂i)qm̂i

( x̆i
di
, . . . , x̆i

di
).

Next, we have:

x̆i
di

Rx∗i ⇔ MRS( x̆i
di
,vi(m̂i )qm̂i

( x̆i
di
, ...,

x̆i
di
))RMRS(x∗i ,qmi

(x∗i , ...,x∗i )), (5.81)

since the second argument of the two MRS is identical and the MRS is strictly

decreasing in the first argument. Since MRS(x,v(m̂i)qm̂i
(x, . . . , x)) is strictly

decreasing in x and (5.80), we have that:

x̆i

di

R x∗i ⇔ 1 R di . (5.82)

Using (5.32), which holds in virtue of Assumption 5.6, and our definition of di

we can solve for the left condition as:

vi(mi)
vi(m̂i) 1

si(mi ,m̂i) (mi

m̂i

)ri R 1 ⇔ 1 R di . (5.83)

Switching gears, we can now look at what determines whether x̆i R x̂∗i .

Since the RHS of the FOC is strictly increasing in xi and the LHS is strictly

decreasing in xi , we have that:

x̆i R x̂∗i ⇔ ∂qm̂i
(x̆i , . . . , x̆i)
∂xki

vi(m̂i) R (MRS(x̆i ,qmi
(x̆i , . . . , x̆i)))−1

(5.84)

Substituting the MRS(. . .) term:

x̆i R x̂∗i ⇔ ∂qm̂i
(x̆i , . . . , x̆i)
∂xki

vi(m̂i) R ∂qmi
(x∗i , . . . , x∗i )
∂xki

vi(mi) (5.85)

Making use of the results up to (5.34), we get via homogeneity of qmi
:

x̆i R x̂∗i ⇔ vi(mi)
vi(m̂i) R si(mi ,m̂i)1/ri ( x̆i

x̂i
)ri (5.86)
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Finally, cancelling terms:

di x̂i ( vi(mi)
vi(m̂i))

1/ri
R x̂∗i ⇔ 1 R si(mi ,m̂i)1/ri (di)ri (5.87)

By using (5.32) and homogeneity of qi , we can simplify the left condition:

(di)ri vi(mi)qmi
(x∗i ) R vi(m̂i)qm̂i

(x̂∗i ) ⇔ 1 R si(mi ,m̂i)1/ri (di)ri
(5.88)

�

Using a utility function u which is homogeneous in each argument, we

could also obtain similar results for the case of heterogeneous valuations. In-

stead, for a variant of Proposition 5.3 as a voluntary contributions game we

assume individuals maximize the following utility function:

Assumption 5.10. Individuals k maximize:

πki (xki , x⃗−xk
i
) = g(qmi

(x⃗i))vki (mi) − xki (5.89)

where g is twice continuously differentiable and ∂g(x)
∂x
> 0 and ∂2g(x)

∂x2 < 0.

Note that this model is not covered by Assumptions 5.9 and 5.6, since

g(q(x⃗i)) is allowed to be non-homogeneous in efforts. However, it assumes

linear costs instead. The model can be understood as a voluntary contributions

game to some intermediate impact qi , from which some final good g(. . .) with

value vi(mi) is produced. A characterization of the group-size paradox just by

the properties of qi is helpful in case we have a clear idea how the intermediate

good is produced (e.g. media impact of demonstrations), but not how the final

good is produced (e.g. political influence).

Proposition 5.6. Consider two voluntary contribution games fulfilling Assump-

tions 5.10, 5.2, 5.7 which differ only by the set of group members Mi and

M̂i = Mi ∪ Ξi . Let the equilibrium efforts in each equilibrium be x⃗∗i ≥ 0 and
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⃗̂x∗i , respectively. Then:

g(qmi
(x⃗∗i ))Rg(qm̂i

(⃗̂x∗i )) ⇔

M(v⃗i,Mi
(mi ),

γi
1−γi

)

⎛
⎜
⎝

mi
m̂i
⋅M(v⃗i,Mi

(m̂i ),
γi

1−γi
)
γi

1−γi +(1−mi
m̂i
)⋅M(v⃗i,Ξi (m̂i ),

γi
1−γi

)
γi

1−γi
⎞
⎟
⎠

1−γi
γi

Rsi (mi ,m̂i )1/ri .

(5.90)

It can easily be verified that the game has a unique Nash equilibrium. For

ease of comparison, we again keep the index i for the group even though there

is just one group in this game.

Proof. The first order conditions are for all k:

(g′(qmi
(x⃗∗i ))msi+ri−1

i riM(x⃗i ,γ)ri−γvki ) = (xk∗i )1−γ (5.91)

Taking the γ mean over all xki gives us:

(∑
k

1

mi

(g′(qmi
(x⃗∗i ))msi+ri−1

i riM(x⃗∗i ,γ)ri−γvki ) γ
1−γ )1/γ

=M(x⃗∗i ,γ)
(5.92)

Cancelling terms and rearranging yields:

m
si /ri
i riM(v⃗i , γ

1 − γ
) = qmi

(x⃗∗i )1/ri−1 (g′(qmi
(x⃗∗i )))−1

(5.93)

We now compare the production of the good between two groups consisting of

members Mi and Mi ∪Ξi . Noting that the RHS of the above equation is strictly

increasing in qmi
(x⃗∗i ) and g(qmi

(x⃗∗i )) is also strictly increasing in qmi
(x⃗∗i ),

we have:

g(qmi
(x⃗∗i ))Rg(qm̂i

(⃗̂x∗i ))⇔m
si /ri
i

M(v⃗i,Mi
(mi ), γ

1−γ )Rm̂
si /ri
i

M(v⃗i,Mi∪Ξi
(m̂i ), γ

1−γ )
(5.94)
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Which using the definition of si(mi ,m̂i) can be rewritten as:

g(qmi
(x⃗∗i )) R g(qm̂i

(⃗̂x∗i )) ⇔ M(v⃗i,Mi
(mi), γ

1−γ )
M(v⃗i,Mi∪Ξi (m̂i), γ

1−γ ) R si(mi ,m̂i)1/ri
(5.95)

�

Since the condition for the occurrence of the group-size paradox in this

voluntary contribution game is identical to the one from the contest, it follows

that also Proposition 5.4 continues to hold in the voluntary contribution game.

It should be noted that the interpretation of the RTS is not as straightfor-

ward as in the contest model, where it represented the discriminatory power

of the contest. For example, the function g may be of the form g(x) = xti in

which case the RTS of the overall model are ri + ti instead of ri . This result

must therefore be understood as a decomposition property. If one can rewrite

the production function of the collective good as a concave function g applied

to the impact produced via a CES aggregate, then equation 5.90 determines

whether the group-size paradox occurs. As mentioned above, such a decom-

position may be helpful in many cases where we observe the impact of groups

(e.g. media attention) but not final outcomes (e.g. political influence).
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