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Summary

A large body of empirical evidence suggests that the dependence structure

between financial variables is neither symmetric nor time-stable. Consequen-

tially, forecasts of portfolio risks which neglect asymmetries and time variation

in the interdependence of portfolio constituents might yield misleading results.

This thesis investigates the impact of modeling such asymmetries and time

variations by means of multivariate copulas firstly with regards to in-sample

fit and secondly with regards to predictive power when employed to forecast

the return distribution of multi-dimensional portfolios. To this end, univari-

ate models which capture asymmetries in volatility and distribution are linked

by both symmetric and asymmetric copula models to forecast the risk of in-

vestment portfolios. In order to investigate the adequacy of the models for

portfolios with different risk/return characteristics, they are applied to an eq-

uity index portfolio, a portfolio of commodity futures indices and a multi asset

classes index portfolio. To broaden the limited choice of multivariate copu-

las, scalable copulas are combined into mixture models. To account for time

variation in the interdependencies of the portfolio constituents, regime switch-

ing and fully dynamic multivariate copulas are constructed. The models are

employed in a comprehensive backtesting procedure covering out-of-sample

one-week forecasts over 15 years and their predictive power is analyzed. A

particular emphasis in the analysis is put on the models’ performance during

the last financial crisis. Overall, it is found that fully dynamic asymmetric

copula models provide superior predictions for the lower tail of the portfolios’

return distributions compared to both static and regime switching alterna-

tives.





Zusammenfassung

Umfangreiche empirische Evidenz weist darauf hin, dass die Dependenzstruk-

tur zwischen Finanzvariablen weder symmetrisch, noch zeitstabil ist. Dies

lässt vermuten, dass Portfoliorisiko Vorhersagen unter Vernachlässigung von

Asymmetrien und zeitlichen Variationen der Interdependenz irreführend sind.

Diese Dissertation untersucht, wie sich diese Charakteristiken, wenn model-

liert mit multivariaten Copula Modellen, auf die Passgenauigkeit und Vorher-

sagekraft der Modelle auswirken, wenn letztere zur Risikoprognose von multi-

dimensionalen Portfolios eingesetzt werden. Zu diesem Zweck werden uni-

variate Modelle, welche die Asymmetrien in der Volatilitäten und Rand-

verteilungen abbilden, sowohl mit symmetrischen als auch asymmetrischen

Copulas verbunden. Um die Adäquanz der Modelle für Portfolios mit un-

terschiedlichen Ausprägungen zu untersuchen, werden sie zur Prädiktion der

Renditen eines Aktienportfolios, eines Rohstoff-Futures-Portfolios und eines

Portfolios aus verschiedenen Anlageklassen eingesetzt. Zur Erweiterung der

beschränkten Auswahl an multivariaten Copulas, werden skalierbare Copulas

in Konvexkombinationen verbunden. Um der Zeitinstabilität in den Inter-

dependenzen der Portfoliobestandteile Rechnung zu tragen, werden Regime-

Switching- und volldynamische Copulas konstruiert. Die Modelle werden zur

Vorhersage der einwöchigen Portfoliorenditen verwendet, deren Genauigkeit

in einem 15 Jahre überspannenden Testverfahren überprüft und mit beson-

derem Fokus auf die Performance während der Finanzkrise analysiert wird.

Insgesamt zeigt sich, dass die Voraussagen für das untere Ende der Rendite-

Verteilung der volldynamischen asymmetrischen Copula Modelle sowohl den-

jenigen der statischen, als auch der Regime-Switching-Modelle überlegen sind.
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Chapter 1

Introduction

Financial risks emerge from the volatilities and the dependence structure of

the assets comprised in a portfolio. Both elements are often estimated si-

multaneously in a historical covariance matrix, which in standard statistical

approaches is mostly assumed to be constant over time. The interdependence

is therewith captured by Pearson’s linear correlation, which is the optimal

measure in case each of the variables is normally distributed. However, there

is strong evidence that the univariate distributions of many financial risk fac-

tors are non-normal and significantly fat-tailed (see e.g. Christoffersen, 2012;

McNeil et al., 2005). Furthermore, there is basically no reason for different

marginal variables to have the identical degree of fat-tailedness or even share

the type of univariate distribution (Dias and Embrechts, 2010). Assuming a

multivariate normal distribution in a non-elliptical world thus neglects or at

least substantially underestimates the joint extreme events due to the symme-

try and incapability of said distribution to capture tail dependence (Braun,

2011; Embrechts et al., 2002).

With regards to volatility, it is recognized in the literature that financial

return series are often heteroscedastic showing alternating clusters of high and

low volatility over time. Many scholars further provide evidence of volatility

asymmetries, which means that negative news have a larger impact on volatil-

ity than positive news (see e.g. Brandt and Kang, 2004; Liu, 2007; Schwert,

1989). Choosing GARCH processes to model the univariate risk factor evolu-
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tion ensures by construction that the conditional variances of the univariate

distributions are time-varying (Bollerslev, 1986). In addition, extensions of

the original GARCH specification allow to account for asymmetries in volatil-

ity as well as for excess kurtosis and skewness in the univariate distribution.

With regards to dependence, there is substantial evidence suggesting asym-

metries in the dependence structure, as negative returns are found to be more

dependent than positive returns. This phenomenon has been reported by

many previous studies including Patton (2004), Emekter et al. (2009), Erb

et al. (1994), Longin and Solnik (2001), Ang and Bekaert (2002b), Ang and

Chen (2002) and Das and Uppal (2004). A large body of literature further

suggests that the dependence structure of financial variables is not constant

over time, but changes in shape and intensity (see e.g. Ang and Bekaert,

2002b; Christoffersen, 2009; Hamilton, 2008; Hsieh and Huang, 2012; Longin

and Solnik, 2001; Patton, 2006a). These features are of prime concern for

risk management, since inappropriate models for the relationships between

financial variables have been identified as an important element of the last

financial crisis (Financial Services Authority, 2009; Stöber and Czado, 2012).

Yet, the best way to model asymmetries and time variations of the dependence

structure is still an open question (Dias and Embrechts, 2010; Embrechts and

Hofert, 2014).

The approach of this thesis to account for the outlined characteristics of

the financial assets in a portfolio is based on copulas. The use of copula theory

allows to separately specify the dependence structure and the marginals and

provides entire freedom in combining different marginal distributions (Sklar,

1959). Accordingly, the marginals can be modeled to individually capture the

features of each univariate series, while the copula is set to characterize the

dependence among them. In contrast to Pearson’s linear correlation, copula

functions are further capable of capturing nonlinear dependencies and provide

a more complete description of the dependence structure.

Even though copula theory dates back to the seminal work of Sklar (1959),

the first applications to financial problems did not appear until the beginning
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of the 21st century. One of the most influential early publications on copulas

in finance is that of Embrechts et al. (2002). Since then, the number of

contributions on copulas in finance has increased tremendously. Some of the

more extensive examples include Cherubini et al. (2004), McNeil et al. (2005)

and Nelsen (2006). Most of the studies applying copulas to financial time

series data however assume the dependence structure to be constant over time

(Manner and Reznikova, 2012; Silva Filho et al., 2013). This seems unrealistic

in the light of the empirical evidence of time-instable dependencies.

Patton (2006a) was among the first to address this issue by allowing copu-

las to be time-varying and therewith triggered a new and fast-growing line of

research. Some of the recent contributions aimed at capturing time instabili-

ties with copulas are Okimoto (2008), Ng (2008), Guégan and Zhang (2010),

Dias and Embrechts (2010), Silva Filho et al. (2012) and De Lira Salvatierra

and Patton (2013).

However, these studies and with them the majority of research on copulas

are conducted on the bivariate level.1 This may be attributed to the lim-

ited choice of multivariate copulas compared to the large number of available

copula functions for two dimensions and the latter’s ease of application. Nu-

merical issues with bivariate copulas are mostly non-severe and their density

function can still be graphically depicted without the loss of information.

Yet, most portfolios of financial assets contain more than two constituents.

With higher dimensions, the situation drastically changes, as it becomes in-

creasingly complicated to find a numerically tractable model that is flexible

enough to capture real data behavior (Embrechts and Hofert, 2014). Accord-

ing to Patton (2009), the perhaps most difficult direction for research in this

area is the extension of bivariate copula-based time series models to higher

dimensions.

1Note that some authors refer to bivariate copulas as multivariate copulas. In this thesis,
the latter designation is reserved for models exceeding two dimensions.
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This thesis contributes to find multivariate copula models which are ca-

pable of accurately capturing and forecasting real portfolio dynamics. To

broaden the limited choice of copulas for higher dimensions, available mul-

tivariate copulas are amalgamated into multivariate mixture copulas. The

idea is based on Nelsen (2006) and Hu (2006), who created ”new” depen-

dence models with convex combinations of existing bivariate copulas. Uniting

the diverse features of the enclosed copulas, these mixture models provide an

increased flexibility to adapt to the data.

To account for time variations in the dependence structure, two different

modeling approaches are followed in this thesis. The first approach is based on

Chollete et al. (2009), who proposed a regime switching copula to capture the

variations of the dependencies over time. In this setting, the copulas are static

within one regime, but differ across the regimes. Since the switches between

the regimes cannot be known in advance, they are assumed to be governed by

a latent Markov process. The flexibility of this structure is further enhanced

firstly by modeling regimes with multivariate mixture copulas and secondly

by extending the two-state framework to include a third regime.

The second approach to model time-instable dependencies consists of fully

dynamic copulas whose parameters are allowed to vary with every time step.

To create dynamic elliptical copulas, the dynamic conditional correlation

model (DCC) of Engle (2002) is applied to multivariate elliptical copulas.

To build dynamic Archimedean copulas, this thesis follows Braun (2011) in

extending Patton’s (2006a) dynamic bivariate Archimedean copula model to

higher dimensions. Finally, dynamic convex combinations of different dy-

namic copulas yield multivariate mixture models which are capable to vary

the dependence structure in both intensity and shape over time.

In order to scrutinize the suitability of the models for portfolios with dif-

ferent risk/return characteristics, they are applied to a first portfolio of inter-

national equity indices, a second one consisting of commodity futures indices

and a third portfolio containing indices from multiple asset classes. For each
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of these portfolios, the importance of accounting for asymmetries and time-

variation in the dependence structure is analyzed with regards to fit and

predictive power of the different models.

The empirical analysis is divided into two parts: in a first part, the ap-

propriateness of static, regime switching and fully dynamic copulas is inves-

tigated in an in-sample setting by ranking the fit of the different structures

to the data. In a second part, a comprehensive out-of-sample backtest is con-

ducted to investigate the models’ predictive power with regards to forecasting

the portfolios’ risks during the last 15 years. Finally, the focus of the analysis

is narrowed to the performance of the models during the last financial crisis.

Thesis Structure

Taking advantage of copula theory, a two-step approach is followed in order

to model the multivariate distribution function: in the first step, the univari-

ate marginals are specified; in the second step, their dependence structure is

modeled. The chapters are organized as follows:

The second chapter introduces the models for the univariate time series.

Since the univariate models set the basis for the calibration of the multi-

variate copulas, their suitability for capturing the dynamics of each portfolio

constituent plays an important role. To be capable of capturing the char-

acteristics of every financial time series under consideration, three different

GARCH processes and a flexible model for the residual distributions are in-

troduced.

In the third chapter, copula theory is outlined and the models for the de-

pendence structures are introduced. At first, the static elliptical and Archime-

dean copulas are presented as well as their convex combinations into static

mixture models. Then, regime switching copulas as a first way to account

for time variations in the dependence structure are described. Fully dynamic

multivariate elliptical and Archimedean copulas are illustrated next before

finally it is shown how these dynamic copulas may be combined into dynamic



6 Chapter 1. Introduction

mixture copula models.

Chapter four lays out the multi-step estimation procedure and the com-

putation of the model parameters’ standard errors.

The fifth chapter introduces the three portfolios under consideration and

contains the descriptives of the data sets under scrutiny. Furthermore, sta-

tionarity and heteroscedasticity of the different return series is investigated.

In the sixth chapter, the in-sample analysis is performed where firstly the

univariate processes are estimated and their appropriateness is tested. Sec-

ondly, based on the resulting residuals, the static, regime switching and fully

dynamic copula models are calibrated and their fit to the data is analyzed.

In chapter seven, the different models are employed to issue forecasts for

the risks of the three portfolios whose accuracy is evaluated in a compre-

hensive backtesting procedure. Since the copula models used to forecast the

portfolio profit and loss distribution for a specific time t are based on the same

univariate models, differences in the forecast accuracy are only attributable to

the differences of the copula functions. This allows for a direct comparison of

the dependence models’ impact on the forecast accuracy. To investigate the

performance of the models in times of distress, their forecast accuracy during

the last financial crisis is focused on in a separate section.

Finally, chapter eight draws conclusions on the findings and finalizes this

thesis.



Chapter 2

Univariate Models

This chapter presents the models employed to capture the characteristics of

the univariate time series. Bollerslev et al. (1994), Christoffersen (2012) and

McNeil et al. (2005) point out that financial time series display a number of

so-called stylized facts representing a collection of empirical observations and

according implications that may be summarized as follows:

1. The time series tend to be uncorrelated although dependent.

2. The autocorrelation function of absolute or squared returns decays very

slowly and volatility is stochastic.

3. The series are likely to be asymmetric and tend to have heavy tails. Out-

sized returns appear in clusters and materialize with a higher frequency

than the normal distribution would expect.

Stylized fact number one proposes that the linear relation between consecutive

observations is not large. Models which are traditionally utilized in time series

analysis to capture (linear) serial dependence in the returns yt = log(Pt) −
log(Pt−1), such as AR(p) models of the form

yt = µ+

p∑
i=1

φiyt−i + εt (2.1)
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and according extensions to capture movements of the average over time

yt = µ+

p∑
i=1

φiyt−i +

q∑
j=1

ξjεt−j+εt (2.2)

are thus (as standalone models) not expected to perform well in terms of fore-

cast accuracy. Stylized fact two indicates that the assumption of conditional

homoscedasticity is too constricting as financial time series usually display

clusters of volatility.

2.1 GARCH Processes

To model volatility clusters within the autoregressive models of equations

(2.1) and (2.2), the residuals εt are decomposed such that

εt = ztσt. (2.3)

To capture the dynamics of σ2
t , Bollerslev (1986) introduced the GARCH class

of models, where the acronym stands for Generalized Autoregressive Condi-

tional Heteroscedasticity. ”Autoregressive” points to a feedback mechanism

that includes past observations to a certain degree into the present; ”condi-

tional” in the GARCH case means that variance is dependent on the imme-

diate past, while ”heteroscedasticity” stands for a volatility which is varying

over time. In Bollerslev’s GARCH(P,Q) model, the conditional variance is

given by

σ2
t = α0 +

P∑
i=1

αiε
2
t−i +

Q∑
j=1

βjσ
2
t−j . (2.4)

Since its introduction in 1986, many different versions and extensions of

the original GARCH have been developed.1 Note that the model in equation

(2.4) is symmetric, meaning that positive and negative news have identical in-

1See e.g. Bollerslev (2010) or Bauwens et al. (2006) for a survey on GARCH models.
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fluence on volatility. However, broad empirical evidence suggests that positive

(negative) innovations to volatility correlate with negative (positive) innova-

tions to returns. The first to document this phenomenon were Black (1976)

and Christie (1982). More recent empirical evidence can be found for example

in Bekaert and Wu (2000), Nyström and Skoglund (2002), Selcuk (2005) and

Hens and Steude (2009).

This thesis considers two extensions of Bollerslev’s original model to ac-

count for this asymmetry. Glosten et al. (1993) proposed to introduce a

Boolean indicator in the GARCH equation (2.4). The outcome is known as

GJR-GARCH and results in

σ2
t = α0 +

P∑
i=1

αiε
2
t−i +

P∑
i=1

γiψ (εt−i) ε
2
t−i +

Q∑
j=1

βjσ
2
t−j , (2.5)

where ψ (εt) = ψ (zt) = 1 in case zt < 0 and 0 if zt ≥ 0. In addition to

the previous symmetrical model in (2.4), a shock is thus also captured by

the term γiψ (εt−1). Note that the original GARCH model is nested in the

GJR model: if all coefficients γi are zero, then the GJR model collapses to

the GARCH model. The GJR specification is the most common version of a

threshold GARCH or T-GARCH with the threshold set at level zero (McNeil

et al., 2005).

To ensure stationarity and positivity of the above GARCH specifications

the parameters α0, αi, βj and (αi + γi) are constrained to be non-negative.

Nelson and Cao (1992) argue that the non-negativity constraints are too re-

strictive, advocating Nelson’s (1991) model to include the asymmetric volatil-

ity response to innovations with an exponential GARCH (EGARCH) setup:

log(σ2
t ) = α0 +

P∑
i=1

αi|zt−i|+
P∑
i=1

γizt−i +

Q∑
j=1

βj log(σ2
t−j). (2.6)

Since the logarithm of the conditional variance is being modeled, the EGARCH

conditional variance is constrained to be non-negative regardless of the sign
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of the parameter estimates. Hence, the non-negativity constraints are not

needed in the estimation of the EGARCH model. The asymmetry is captured

with the parameters γi: with negative γi, negative innovations have a larger

impact on volatility than positive innovations. To complete the univariate

model specifications it remains to specify the marginal distributions of the

standardized residuals, zt.

2.2 Marginal Distributions

Chen and Fan (2006) propose to use the empirical distribution of the inno-

vations. While the strength of their non-parametric approach lies in the fact

that no assumption regarding the nature of the empirical distribution has to

be made, its drawback is located in the tails. Since data in the tails is usually

scarce, the resulting tail estimates are unsatisfactory and cannot be used to

solve for out of sample quantiles. For risk forecasting purposes this handicap

appears to be rather extensive.

Among others, McNeil and Frey (2000) and Kuester et al. (2006) advocate

the use of a semiparametric approach. Accordingly, the center of the innova-

tion distribution is modeled with the kernel smoothed empirical distribution

while the tails are parametrized based on extreme value theory. However,

Patton (2013) as well as De Lira Salvatierra and Patton (2013) emphasize

that inference methods for models where nonparametric or semiparametric

marginal distributions are combined with dynamic copulas are not yet avail-

able in the literature. The applicable univariate models for this thesis are thus

constrained to contain fully parametric innovation distributions. To mitigate

the impact of this constraint, a flexible model for the marginal distributions

is required.

Assuming the distribution of zt to be a normal distribution, still a widely

observed practice, obviously stands in contradiction to stylized fact number

three. Whether one considers the model residuals εt or the filtered residuals

zt, stylized fact number three remains valid; this means that there is neither
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empirical support for the symmetry of normal distributions nor for their ex-

ponentially decaying tails. While the latter can be accounted for by using

the Student-t distribution, Hansen (1994) further generalizes the Student-t

distribution to allow for skewness. In comparison to other generalizations

aiming to capture skewness, Hansen’s version stands out due to its simplicity

and its proven track record of successfully modeling economic variables (see

e.g. De Lira Salvatierra and Patton (2013); Fantazzini (2008); Jondeau and

Rockinger (2003, 2006); Patton (2004, 2006a)).

Hansen’s (1994) skewed Student-t distribution with mean zero and vari-

ance one is defined by

f(z|ν, λ) =


bc

(
1 +

1

ν − 2

(
bz + a

1− λ

2))− ν+1
2

if z < −a/b,

bc

(
1 +

1

ν − 2

(
bz + a

1 + λ

2))− ν+1
2

if z ≥ −a/b,

(2.7)

where the constants are

a = 4λc
ν − 2

ν − 1
, b2 = 1 + 3λ2 − a2, c =

Γ
(
ν+1

2

)√
π(ν − 2)Γ(ν2 )

. (2.8)

The density of the skewed-t distribution is meaningful for ν > 2 and −1 <

λ < 1. Given ν > 2 the distribution is well defined and its second moment

exists, while skewness exists if ν > 3 and kurtosis is defined if ν > 4.2 The

parameter λ controls for skewness: a positive λ indicates that the mode of

the density is to the left of the mean and the variable thus positively skewed,

while a negative λ corresponds to a left-skewed density signaling that there is

more probability of observing large negative than large positive variables.

The skewed-t distribution has the advantage of being very flexible, nesting

a large set of conventionally used distributions such as:

2For the empirical applications, the lower bound of ν in the estimation procedure is
set to 2, such that the data itself indicates for a particular time period whether a specific
moment exists or not.
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- The traditional Student-t distribution if λ = 0.

- The skewed normal distribution for ν →∞.

- The normal distribution if λ = 0 and ν →∞.

Figure 2.1 gives a visual impression of the versatility of Hansen’s skewed-t dis-

tribution depicting the density function subject to different parameters ν and

λ. Modeling the dependence structure with copulas involves marginal cumu-

−3 −2 −1 0 1 2 3
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0.2

0.3
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)
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ν=20, λ=0.5

ν=30, λ=0

Figure 2.1: Hansen’s skewed Student-t density subject to different ν and λ.

lative distribution functions rather than densities. To specify the cumulative

distribution function of the skewed-t distribution recall that the traditional

Student-t distribution is defined by

t(y, ν) =
Γ
(
ν+1

2

)
Γ
(
ν
2

) 1√
πν

(
1 +

y2

ν

)− ν+1
2

. (2.9)

With the cumulative distribution function of the traditional Student-t distri-

bution with the degrees of freedom parameter ν given by

A(y, ν) =

∫ y

−∞
t(y)dy, (2.10)

the cumulative distribution function of Hansen’s (1994) skewed-t distribution
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is

F (z|ν, λ) =


(1− λ)A

(
bz + a

1− λ

√
ν

ν − 2
; ν

)
if z < −a/b,

(1− λ)A

(
bz + a

1− λ

√
ν

ν + 2
; ν

)
− λ if z ≥ −a/b.

(2.11)

Note that throughout this thesis, the cumulative distribution (cdf) of a ran-

dom variable is denoted using an uppercase letter, and the corresponding

density (pdf) using the lowercase letter.

The choice of Hansen’s (1994) skewed Student-t distribution for the stan-

dardized innovations zt completes the models for the univariate risk factor

evolutions:

zt =
εt
σt

i.i.d.∼ skewed-t (ν, λ). (2.12)

The three univariate models considered in this thesis can thus be summa-

rized as the ARMA specification in equation (2.2) combined with either the

GARCH, the GJR-GARCH or the EGARCH model in equations (2.4), (2.5)

respectively (2.6) with the standardized innovation distribution modeled with

the skewed-t distribution. The next step to construct a valid multivariate dis-

tribution is to specify the dependence structure between the zt of the different

return series.





Chapter 3

Dependence Structure

While there are several methods to quantify and model dependence, tradition-

ally the most widely used measure in theoretical finance is Pearson’s correla-

tion coefficient. This is partly based on the pivotal role of multivariate normal

distributions in statistics and of the Capital Asset Pricing Model (CAPM) in

finance. Pearson’s linear correlation is a natural measure of dependence for el-

liptical distributions but comes with several limitations and pitfalls. Among

other shortcomings, correlation is dependent on the marginal distributions

and is not invariant under nonlinear strictly increasing transformations of the

marginals. Furthermore, as a scalar measure of linear relations, correlation is

unable to capture the entire dependence structure, misses non-linear relations

and does not allow for dependency asymmetries.1

Copula functions are capable to overcome these limitations and provide

an accessible way to model joint distributions, especially for non-normal vari-

ables. This chapter gives a short introduction to copula theory and presents

the different copula models to be used in the empirical analysis.

1See Embrechts et al. (2002) or McNeil et al. (2005) for other limitations and pitfalls of
Pearson’s linear correlation.
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3.1 Copula Fundamentals

The term copula is derived from the Latin word copulare which means to

join respectively to connect. It was first mentioned in statistics literature

by Sklar (1959) even though comparable ideas and outcomes may be tracked

back to Fréchet (1935) and Hoeffding (1940). A number of contributions in

the field of copula theory and applications have appeared in more recent liter-

ature. Nelsen (2006) and Joe (2001) are two reference works on copula theory,

providing comprehensive introductions to copulas and dependence modeling,

while emphasizing the statistical foundations. In McNeil et al. (2005) and

Denuit et al. (2006), copula methods are presented from a risk management

perspective. Cherubini et al. (2004) and Cherubini et al. (2012) use meth-

ods from mathematical finance to introduce copulas. Choroś et al. (2010)

provide a succinct overview of parametric and nonparametric copula estima-

tion methods for time series and i.i.d. data. Genest and Favre (2007) describe

semiparametric inference methods for independent and identically distributed

data including a detailed empirical illustration.

Jondeau and Rockinger (2002, 2006) were among the first to propose the

combination of GARCH-models and copulas. Recent financial applications of

the copula-GARCH model are for example Riccetti (2012), Cai et al. (2012)

and Min and Czado (2012). Patton (2013) provides an overview of methods

for economic forecasting with copulas also encompassing empirical examples

and Patton (2012) reviews copula-based models for economic time series.

3.1.1 Sklar’s Theorem

All copula theory is based on the contribution of Sklar (1959), who showed

that a multivariate distribution can be divided into its dmarginal distributions

and a d-dimensional copula, which completely characterizes the dependence

between the variables. His theorem provides an accessible way to build valid

multivariate distributions from known marginals. Consider F (y1, . . . , yd) to
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be a continuous d-variate cumulative distribution function with univariate

margins Fi (yi). Sklar’s theorem states that there exists a function C named

a copula, which maps [0, 1]d into [0, 1] such that

F (y1, . . . , yd) = C(F1 (y1) , . . . , Fd (yd)). (3.1)

The product of the marginals and the copula density yields the joint density

function

f(y1, ..., yd) =
d∏
i=1

fi (yi)
∂C (F1 (y1) , ..., Fd (yd))

∂F1 (y1) ...∂Fd (yd)
. (3.2)

This allows to define a d-dimensional copula as a cumulative distribution

function with uniform [0,1] marginal distributions

C (u1, ..., ud) = F (F−1
1 (u1) , . . . , F−1

d (ud)), (3.3)

where ui = Fi (yi), i = 1, ..., d are the probability integral transformations

(PIT) of the marginal models. Copulas thus allow to map the univariate

marginal distributions of d random variables, each supported in the [0, 1] in-

terval, to their d-variate distribution, supported on [0, 1]d. This methodology

is applicable regardless of the type and degree of dependence among the vari-

ables (Chollete et al., 2009).

Given any set of marginal distributions (F1, ..., Fd) and any copula C, one

may obtain a valid joint distribution with the given marginals using equation

(3.1). An important implication of this result is that the marginal distribu-

tions are not required to be in any way similar to each other, nor does the

choice of marginal distributions constrain the choice of copula (Patton, 2009).

A variety of copulas has been developed until today.2 However, the ma-

jority of them are limited to a bivariate setting and since this thesis focuses

on multivariate dependence models, the focus lies on copula models which

are scalable to the multivariate level.3 The eligible scalable models are rep-

2See e.g. Nelsen (2006) for a detailed compilation.
3Notably, pair-copula constructions (also known as vine copulas), which are constructed
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resentatives of both of the major copula families: Archimedean copulas and

elliptical copulas.

3.1.2 Conditional Copulas

Forecasting in a multivariate setting is based on an extension of Sklar’s the-

orem (3.1) for conditional joint distributions presented in Patton (2006a).

Considering some information set Ft−1, Patton shows that the conditional dis-

tribution F (y1, . . . , yd|Ft−1) can be decomposed into its conditional marginal

distributions and the conditional copula such that

F (y1, . . . , yd|Ft−1) = C(F1 (y1|Ft−1) , . . . , Fd (yd|Ft−1) |Ft−1). (3.4)

The d-dimensional conditional copula is:

C (u1,t, ...ud,t|Ft−1) = F (F−1
1 (u1,t|Ft−1) , . . . , F−1

d (ud,t|Ft−1)). (3.5)

A valid conditional multivariate distribution based on Sklar’s theorem and

Patton’s extension can thus be created by first estimating the models for each

of the conditional marginal distributions, Fi(yi|Ft−1), i = 1, .., d, construct

the probability integral transformed variables ui,t = Fi(yi,t|Ft−1), i = 1, .., d

and then consider copula models for the joint distribution of these variables.

In analogy to the construction of unconditional copulas, this procedure yields

a valid d-dimensional model without the intricacy of a simultaneous specifi-

cation and estimation.

Note that in equation (3.5) the identical information (Ft−1) appears in

each of the marginals and the copula. Fermanian and Wegkamp (2012) point

out that using different information sets results in a function F (·|·) which is

not generally a joint distribution with the specified conditional marginal dis-

tributions. Patton (2013) however emphasizes that in empirical applications

by sequentially applying bivariate copulas, are therewith not covered - see Acar et al. (2012)
for an important critique of vine copulas.
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not the entire information set Ft−1 might be required for every marginal distri-

bution. For example, let F (1)
t−1 denote the information generated by (y1,t−1, ...

, y1,t−n) and Ft−1 be the information set generated by (yi,t−1, ..., yi,t−n),

i = 1, ..., d. For some processes, one may find that each variable uniquely

depends upon its own lags, i.e. yi,t|Ft−1
d
= yi,t|F (i)

t−1. Models for marginal

distributions are thus not explicitly required to make use of the entire in-

formation set, as long as they comply with the restriction that all marginal

models and the copula utilize the same information set.

3.2 Static Copulas

This section presents the static multivariate copulas employed in this thesis

including the according simulation algorithms.

3.2.1 Elliptical Copulas

Sklar’s theorem (3.1) indicates that typical multivariate distributions describe

central dependence structures which is why elliptical copulas are also known

as implicit copulas: A multivariate normal distribution entails a Gaussian

copula CGa whereas a multivariate t-distribution entails a Student-t copula

Ct. The advantage of implicit copulas is their ability to easily extend to

multiple dimensions and their parameter plurality (Nelsen, 2006).

Gaussian Copula

Based on (3.3), the d-dimensional Gaussian copula for a correlation matrix Σ

is given by

CGaΣ (u1, ...ud) = ΦΣ(Φ−1 (u1) , . . . ,Φ−1 (ud))

=

∫ Φ−1(u1)

−∞
· · ·
∫ Φ−1(ud)

−∞

1

(2π)
d
2 |Σ| 12

exp

(
−1

2
y′Σ−1y

)
dy1 · · · dyd, (3.6)
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where Φ is the cumulative distribution function of a standard normal distri-

bution whereas ΦΣ is the cumulative distribution function of the multivariate

normal distribution having a mean of zero and a covariance matrix Σ. The

density of any copula which proves to be adequately differentiable may be

computed with

c (u1, ...ud) =
f(F−1

1 (u1) , . . . , F−1
d (ud))

f1(F−1
1 (u1)), ..., fd(F

−1
d (ud))

, (3.7)

where f is the joint density and f1, ..., fd are the marginal densities (McNeil

et al., 2005; Schmidt, 2007).

Simulation from the Gaussian copula is straightforward. Step number one

is to generate random variables according to the underlying multivariate dis-

tribution. Step two then consists of transforming them to uniform marginal

distributions by quantile transformation. The resulting algorithm is the fol-

lowing (McNeil et al., 2005; Schmidt, 2007):

1. Obtain the correlation matrix Σ from any covariance matrix Σ by scaling

each component to variance 1.

2. Compute the Cholesky-decomposition Σ = A′A

3. Generate independent and identically distributed standard normal ran-

dom variables X̃1, . . . , X̃d

4. From X̃ = (X̃1, . . . , X̃d)
′ calculate (X1, . . . , Xd)

′ = X = AX̃.

5. Return U = (Φ(X1), . . . ,Φ(Xd))
′ where Φ equals the cumulative stan-

dard normal distribution function.

Student-t Copula

Identical to the multivariate normal distribution one may obtain an implicit

copula from any other distribution with continuous marginal distribution

functions. For t-distributions the d-dimensional t-copula with ν degrees of
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freedom is given by

Ctν,Σ (u1, ...., ud) = tν,Σ(t−1
ν (u1) , . . . , t−1

ν (ud))

=

∫ t−1
ν (u1)

−∞
· · ·
∫ t−1

ν (ud)

−∞

Γ
(
ν+d

2

)
|Σ|− 1

2

Γ
(
ν
2

)
(νπ)

d
2

(
1 +

1

ν
y′Σ−1y

)− ν+d2

dy1 · · · dyd,

(3.8)

where Σ is a correlation matrix, tν is the cumulative distribution function of

the one dimensional tν-distribution and t(ν,Σ) is the cumulative distribution

function of the multivariate t(ν,Σ)-distribution.

The density of the multivariate Student-t copula has the form

ctν,Σ(u) =
fν ,Σ

(
t−1
ν (u1), ..., t−1

ν (ud)
)∏d

i=1 fν
(
t−1
ν (ui)

) , (3.9)

where u ∈ (0, 1)
d
, fν,Σ is the joint density of a td(ν, 0,Σ)-distributed random

vector and fν is the density of the univariate standard Student-t distribution

with ν degrees of freedom (Demarta and McNeil, 2005).

Simulation from the Student-t copula can be done using the following

algorithm (McNeil et al., 2005):

1. Use steps 1 to 4 of the algorithm for the Gaussian copula to generate

multivariate normal X with covariance Σ.

2. Generate independent ξχ̃2
ν by e.g. using ξ =

∑ν
i=1 Y

2
i , where Yi are

independent and identically N(0, 1) distributed.

3. Return U = (tν(X1/
√

(ξ/ν)), ..., tν(Xd/
√

(ξ/ν)))′ where tν denotes the

cumulative distribution function of a univariate t-distribution with ν

degrees of freedom.

While both the Gaussian and the Student-t copula are dependence struc-

tures implied by elliptical distributions, they differ with regards to tail de-

pendence. Lower (upper) tail dependence refers to the density in the lower
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(upper) tail of the copula function and represents the probability of observing

joint negative (positive) extremes (see section 6.2.1). The Student-t copula

is capable of capturing equal lower and upper tail dependence, whereas the

Gaussian copula has no tail dependence implying independence of the ex-

treme realizations. The level of tail dependence of the Student-t copula is

governed by ν: the greater the degrees of freedom, the lower the level of tail

dependence, converging in the limit ν →∞ to the Gaussian copula.

3.2.2 Archimedean Copulas

The name Archimedean refers to the copulas’ algebraic property which re-

sembles the Archimedean axiom for real numbers. In contrast to elliptical

copulas, Archimedean copulas are given explicitly and capture all informa-

tion about the dependence structure in the univariate generator function φ.

There exists a wide selection of different bivariate Archimedean copulas, how-

ever, choices on the multivariate level are limited. While Schweizer and Sklar

(1983) prove that the generator φ creates a bivariate copula if and only if it

is convex, McNeil and Něshlehovà (2009) show that in case φ : [0, 1]→ [0,∞]

is a strict Archimedean copula generator, then

C(u1, ..., ud) = φ−1(φ(u1) + ...+ φ(ud)) (3.10)

induces a copula in any dimension d if and only if the generator inverse φ−1 :

[0,∞]→ [0, 1] is d-monotone. Accordingly, the strictly decreasing function φ

has to be continuous on [0,∞], admit derivatives up to the order d − 2 and

satisfy

(−1)k
dk

dtk
φ(t) ≥ 0, k ∈ {0, ..., d− 2}, t ∈ (0,∞). (3.11)

Mostly, it is assumed, that φ is completely monotonic, meaning that k ∈ N0

(Hofert et al., 2013).

With the Clayton and the Frank copula, this thesis includes two copulas
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of the Archimedean family. Both have completely monotonic generators and

are thus well-defined for multiple dimensions. While the Frank copula is

symmetric exhibiting no tail dependence, the asymmetric Clayton copula is

particularly interesting for risk forecasting purposes, since it is capable of

modeling lower tail dependence.

Clayton Copula

The generator function of the Clayton copula is defined as

φCl(u) =
1

θ

(
u−θ − 1

)
, (3.12)

where the permissible parameter range is θ ∈ (0,∞). A d-dimensional Clayton

copula is given by

C (u1, ..., ud) =

(
d∑
i=1

u−θi − d+ 1

)− 1
θ

. (3.13)

As the copula parameter θ tends to infinity, the dependence becomes maximal

while the limiting case θ = 0 should be interpreted as the d-dimensional

independence copula (McNeil et al., 2005).

The density of the multivariate Clayton copula is

∂dC

∂u1...∂ud
= θd

Γ
(

1
θ + d

)
Γ
(

1
θ

) (
d∑
i=1

u−θi − d+ 1

)− 1
θ−d( d∏

i=1

u−θ−1
i

)
, (3.14)

where Γ denotes the usual Euler Γ function.

The contribution of Marshall and Olkin (1988) can be used to elegantly

simulate from multivariate Archimedean copulas. The simulation algorithm

exploits the fact that every completely monotonic function mapping from

[0,∞] to [0, 1] can be expressed in terms of Laplace-Stieltjes transforms of

distribution functions on R+ and therewith provide a way of describing mul-
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tivariate Archimedean copulas.

Let G be a distribution function on R+ which satisfies G(0) = 0 with Laplace-

Stieltjes transform

Ĝ (t) =

∫ +∞

0

e−txdGγ (x) . (3.15)

For Ĝ(∞) := 0 it is clear that Ĝ : [0,∞] → [0, 1] is a continuous, strictly de-

creasing function with the property of complete monotonicity (McNeil et al.,

2005). It can thus serve as a candidate of a multivariate Archimedean copula

generator inverse which leads to the following simulation procedure for the

Clayton copula (Hofert, 2008; McNeil et al., 2005):

1. Generate a gamma variable γ ∼ Gamma (1/θ, 1) with θ ∈ (0,∞). The

distribution function of γ thus has Laplace transform Ĝ (t) = (1 + t)
− 1
θ

2. Generate independent uniform variates (X1, ..., Xd) ∼ U [0, 1].

3. Return (U1, ..., Ud) = (Ĝ(− log(X1)/γ), ..., Ĝ(− log(Xd)/γ))′

Frank Copula

The Frank copula generator is given by

φFr(u) = log

(
exp(−θu)− 1

exp(−θ)− 1

)
, (3.16)

hence

φ−1
Fr(u) =

1

θ
log
(
1 + eu(e−θ − 1)

)
(3.17)

is completely monotonic if θ ∈ (0,∞). The multivariate Frank copula is

C (u1, ..., ud) = −1

θ
log

(
1 +

∏d
i=1(e−θui − 1)

(e−θ − 1)d−1

)
. (3.18)

The independence copula is attained for θ = 0 whereas with θ →∞ maximal

dependence is achieved. The density of the multivariate Frank copula is given
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by

∂dC

∂u1...∂ud
=

(
θ

1− e−θ

)d−1

Li−(d−1)(hθ(u))
exp(−θ

∑d
i=1 ui)

hθ(u)
, (3.19)

where Li−s(z) =
∑∞
k=1

zk

ks is the polylogarithm of order s at z and hθ(u) =

(1 − e−θ)1−d∏d
i=1(1 − exp(−θui)) (Hofert et al., 2013). The following algo-

rithm describes the simulation procedure for the Frank copula:

1. Generate a discrete variable V with probability mass function p(k) =

P (V = k) = (1− exp(−θ))k/(kθ) for k = 1, 2, ...n and θ ∈ (0,∞).

2. Generate independent uniform variates (X1, ..., Xd) ∼ U [0, 1].

3. Return (U1, ..., Ud) = (Ĝ(− log(X1)/V ), ..., Ĝ(− log(Xd)/V ))′

As for the Clayton copula simulation, the algorithm is especially efficient

in large dimensions, as only d + 1 random numbers are required for the

generation of a d-dimensional observation.

3.2.3 Mixture Copulas

Nelsen (2006) demonstrates that a convex combination of different copulas

is yet again a copula. Mixing copulas with different dependence features

provides an appealing flexibility in constructing dependence characterizations

and broadens the range of copula structures applicable on the multivariate

level. Mixture copulas were applied e.g. by Hu (2006), Dias and Embrechts

(2010), Weiss (2011) and Ruenzi and Weigert (2013) in a bivariate setting and

by Braun (2011) in a multivariate context. This thesis constructs dependence

structures which are capable of capturing asymmetries by amalgamating the

lower tail dependence feature of the Clayton copula with the symmetric de-

pendence structure of the other copulas under consideration by combining

them into mixture structures. The applied static mixture copulas consist of

two different copulas but of d dimensions and have distribution functions of
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the form

C (u1, ..., ud;w, θ) = wC1(u1, ..., ud, θ1) + (1− w)C2(u1, ..., ud, θ2) (3.20)

where θ1 and θ2 are the parameter sets of the different copulas. The density

of the static mixture construct is simply the convex combination of the copula

densities involved in the mixture:

c (u1, ..., ud;w, θ) = wc1(u1, ..., ud, θ1) + (1− w)c2(u1, ..., ud, θ2). (3.21)

While the degree of dependence is carried by the parameters of the copu-

las within the mixture, the shape of the dependence is summarized by the

weight of each individual copula. Compared to the standalone static copulas,

the mixture copula provides increased flexibility to adapt to different depen-

dence structures, since it unites the diverse features of the enclosed copulas.

Combining an elliptical copula with an Archimedean copula means that two

different copulas describe the dependence structure of the data according to

their proportion in the mixture construct. As a consequence, each copula is

adjusted solely to the share of the data set it represents. Such a partition

of the dependence structure should allow a more precise calibration of the

copula parameters, as they only have to accommodate their fraction of the

data set. In contrast, the parameters of standalone copulas are required to

cover the entire data set which may entail larger compromises and inaccura-

cies in the calibration. Figure 3.1 gives a visual illustration of the mixture

concept on the bivariate level. The density of the Gaussian copula is depicted

on the left, the Clayton copula density on the right and the plot in the cen-

ter shows the density of the combination of these two copulas in a mixture

copula with w = 0.5. This mixture copula has the advantage of accommodat-

ing the parameter plurality of the Gaussian copula (with increasing number

of dimensions) and the asymmetric dependence feature of the Clayton cop-

ula. While static mixture copulas aim at a more precise representation of the
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dependence structure compared to standalone copulas, they are not capable

of capturing dependence shifts over time, since their shapes, parameters and

mixture weights remain stable over time.
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Figure 3.1: Gaussian (left), Gauss-Clayton mixture with equal weights (center) and Clay-
ton copula density (right).

3.3 Regime Switching Copulas

The copulas laid out so far assume the dependence structure to be constant

over time. Even though copulas provide a more general specification of the de-

pendence structure than Pearson’s linear correlation, the assumption of time

invariant dependence appears to be rather unrealistic, given the broad empir-

ical evidence of time-varying correlations (see e.g. Boyer et al., 1999; Engle,

2002; Loretan and Phillips, 1994; Pritsker, 2006; Ramchand and Susmel, 1998;

Tse and Tsui, 2002). The Basel Committee on Banking Supervision (2011,

p.10) concludes that for calculating value-at-risk-measures ”time-varying cor-

relations should be taken into account.”

Stöber and Czado (2012) and Hsieh and Huang (2012) show that there are

structural breaks in the dependence structure of financial variables similar to

the clusters in univariate volatilities. In times of crises, dependence between

the assets seems to be significantly increased, compared to ”normal” times.

One approach to account for the different levels of dependence is to switch
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between different copula models of dependence. Since the switches between

the regimes cannot be known in advance they are assumed to be governed by

a latent Markov process.

Allowing for regime switches, this thesis follows a long tradition in eco-

nomics. Since their introduction by Hamilton (1989), regime switching models

have experienced numerous applications in the field of finance. Among others

Ang and Bekaert (2002a), Guidolin and Timmermann (2006a) and Guidolin

and Timmermann (2006b) use regime switching models for interest rates. Ang

and Bekaert (2002b) and Guidolin and Timmermann (2008) employ a regime

switching model for international financial returns.

A few years ago, combinations of regime switching models with bivariate

copulas were proposed for example by Okimoto (2008), Rodriguez (2007) and

Silva Filho et al. (2012), who estimate regime-switching copulas for bivariate

international stock index data. While Rodriguez focuses on index pairs of

Latin American as well as Asian countries, Okimoto investigates a US-UK

pair and Silva Filho et al. concentrate on pairs between a US, a UK and a

Brazilian stock market index.

However, the thesis at hand covers dependence structures exceeding the bi-

variate level. The methodology of Chollete et al. (2009), Garcia and Tsafack

(2011) and Braun (2011) is thus chosen as a basis for the thesis at hand.

These authors employ two dependence regimes, which are different in inten-

sity and/or shape. The marginal distributions are modeled separately from

the dependence structure and are thus not dependent on the regime. This

approach allows to model separate copulas for different dependence regimes.

Accordingly, the parameters and the families of the copulas remain constant

within a regime but differ across the regimes. Switching between the regimes

is governed by a latent Markov process which determines the regime proba-

bilities.

Applications of the multivariate regime switching copula models in litera-

ture to date are limited to two regimes. While covering different two regime

cases, this thesis further extends the model to three regimes. The regime
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switching copula model thus contains as many different copulas as regimes,

where the copulas differ in intensity and/or shape. However, the variation

over time is limited to the probabilities of the copula to describe the depen-

dence, while the copulas and their according parameters remain constant. As

a consequence, since different parts of the time series are modeled by different

copulas, the shapes of regime switching copulas change over time.

3.3.1 Hamilton Filter

To model the dynamics of the data, this thesis follows Hamilton (1989), who

switched between different density functions. While Hamilton considered uni-

variate time series, this thesis focuses on the joint density of multiple time

series as described by the copula functions. Since the modeled copulas only

diverge with regards to their dependence characteristics, the impact of the

different regimes is concentrated on the dependence structure. The model

thus expresses different fractions of the joint data density by separate copula

functions.

Conditional on being in regime j, the data density is

f (Yt|Yt−1,st=j) = cj
(
F1y1,t, . . . , Fdyd,t; θ

(j)
c

) d∏
i=1

fi (yi,t; θm,i) , (3.22)

where Yt = (y1,t, ..., yd,t), st represents the state variable for the regime, c(j)(.)

is the copula density function in the regime j with the according parameter

set θm,i, Fi is the distribution and fi the according density function of the

marginal yt with the parameters θm,i. Note that j is an index of the copula,

but not of the marginal densities. The model assumes the unobserved state

variable to be governed by the transition probability matrix

P = Pr(st = i|st−1 = j) = pi|j , (3.23)
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where pi|j derives the probability that state j will be followed by state i. As

the Markov chain is latent and thus not observable, Hamilton’s (1989) filter

is applied. Accordingly, the transition probability matrix drives the regime

probabilities which in turn define the density function of the complete dataset.

Explicitly, the filtered process for k regimes obeys

ξt|t =
ξt|t−1

⊙
δt

1′(ξt|t−1

⊙
δt)′

(3.24)

ξt+1|t = P ′ξt|t (3.25)

δt =


c(1)(F1

(
y1,t|yt−1

1

)
, . . . , Fd

(
yd,t|yt−1

d

)
; θ

(1)
c

...

c(k)(F1

(
y1,t|yt−1

1

)
, . . . , Fd

(
yd,t|yt−1

d

)
; θ

(k)
c

 (3.26)

where ξt|t is a (k x 1) vector with all the regime probabilities at time t,

conditional on the observations until time t; 1 is a (k x 1) vector of ones and⊙
stands for the Hadamard product. The regime probabilities ξt+1|t at time

t+1 conditional on all information until time t are captured by the transition

probability matrix P . The copula densities at time t, conditional on being in

each one of the two regimes are contained in the vector δt. While equation 3.24

represents a Bayesian updating of the probability to be in a specific regime

given all observations δt up to the current time, equation 3.25 comprises one

forward iteration of the Markov chain. With this recursive procedure it is

straightforward to forecast the regime probabilities (ξt+1|t).

The filtered system needs initial values for the regime probabilities ξ1|0

from which the optimization procedure is started.4 Iterations over the two

equations 3.24 and 3.25 yield the likelihood value

logL(θ) =
T∑
t=1

log(1′(ξt|t−1

⊙
δt)). (3.27)

4Gray (1996) points out that for a long enough data set the particular choice of initial
values for the regime probabilities becomes irrelevant.
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Naturally one would like to test the null hypothesis that there are k regimes

versus the alternative of k + 1 regimes. Using for example k = 1 would

answer whether there are any regime switches at all while using k = 2 would

determine whether the existence of more than two regimes is supported by

the data. However, Hamilton (2008) points out that likelihood ratio tests of

these hypotheses do not comply with the usual regularity conditions. Given

for example that there is truly only one regime, the maximum likelihood

estimate for the probability of staying in regime one fails to converge to a

well-defined population value. The likelihood ratio test does therewith not

have the χ2 limiting distribution. As a solution, Hamilton (2008) proposes to

establish model comparisons based on their ability to forecast, which is the

approach adopted in this thesis.

3.3.2 Kim Filter

With the estimated transition probabilities, one can form an inference about

the dependence regime at date t based on the realized observations at a later

date T . In order to calculate these inferences for the regime probabilities, the

Kim filter may be used, which represents a combination of the Kalman filter

and the Hamilton filter, particularly designed for Markov-switching models

(Hamilton, 1988, 1989, 1994).

Accordingly, the inference of the state variable ξt|T is performed by considering

the entire data obtained until date T (ξt|T ). When T < t, a forecast about

the regimes in the future is made, but when T > t, the probabilities for the

regime at time t are ex post probabilities. According to Kim (1994), these

inferences may be calculated with the following iterative algorithm

ξt|T = ξt|t
⊙(

P ′ × [ξt+1|T (÷)ξt+1|t]
)
, (3.28)

where
⊙

and (÷) stand for the Hadamard multiplication respectively division.

Initiating with the probability ξT |T , obtained from equation (3.24) for t = T ,

the process iterates backwards on equation (3.28). This procedure is valid only
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with first-order Markov chains such as the one at hand. With the estimated

transition probability matrix (3.23), the inference may be computed based on

the entire information in the sample.

3.4 Dynamic Copulas

The restriction to a limited number of different static dependence structures

as put forward with the regime switching copulas may still be too constricting.

To increase the adaptability of the dependence specification one might think

of simply increasing the number of regimes. However, a more flexible approach

consists in allowing the dependence structure to be fully dynamic i.e. vary

with every discrete time step. Engle and Sheppard (2001) and Engle (2002)

established the basis for models with dynamic dependence by introducing

dynamic correlation coefficients. In the field of copulas, the seminal work

of Patton (2006a) was among the first to allow copulas to be time-varying

and therewith opened a new and fast-growing line of research. Some of the

contributions to this field on the bivariate level include Ng (2008), Fantazzini

(2008), Guégan and Zhang (2010), Dias and Embrechts (2010) and De Lira

Salvatierra and Patton (2013) and on the multivariate level Jin and Lehnert

(2011), Braun (2011) and Christoffersen et al. (2012).

This section firstly introduces the dynamic versions of the elliptical copu-

las before outlining the dynamic multivariate Archimedean copulas and finally

describing the dynamic multivariate mixture copulas employed in the empir-

ical applications.

3.4.1 Dynamic Elliptical Copulas

Since the elliptical copulas presented in section 3.2.1 are specified by a correla-

tion matrix (and the degrees of freedom parameter for the Student-t copula),

the dynamic conditional correlation (DCC) specification proposed by Engle

(2002) sets a well defined basis to model the changes of the correlations over



3.4. Dynamic Copulas 33

time. Transferring the DCC approach to multivariate copulas is a research

topic of current interest. While the applications of Fantazzini (2009), Jin and

Lehnert (2011) and Christoffersen et al. (2012) aim at handling observations

from heavy-tailed stock market return distributions, Braun (2011) employs

dynamic copulas to estimate the evolution of stocks and bond yields. Ig-

natieva et al. (2010) and Diks et al. (2010) utilize dynamic copulas to model

the dependence structure of currencies and Ignatieva and Trück (2012) are

working on the application of time varying copulas to model the spot price

dependence in Australian electricity markets. Whilst very recently, the DCC

specification has been criticized to cause spurious conditional correlation dy-

namics (see Füss et al., 2012), the model is still regarded as state-of-the-art

approach in empirical finance to capture correlation behavior over time.

Dynamic Gaussian Copula

Based on Engle (2002), the correlation matrix Σt of the dynamic Gaussian

copula is set to evolve through time as follows:

Qt = (1− α− β)× Q̄+ αzt−1 × z′t−1 + β ×Qt−1 (3.29)

Σt = Q̃−1
t QtQ̃

−1
t , (3.30)

where zt is the vector of transformed standardized residuals zi,t = skewed−
t−1
ν,λ(ui,t), Q̄ is the sample correlation of zt and Q̃t = [q̃ii,t] = [

√
qii,t] is the

diagonal square matrix with the square root of the ith diagonal element of Qt

on its ith diagonal position. The constraints for the parameters α and β are

α+ β < 1, with α, β ∈ (0, 1).

The dynamic Gaussian copula is therewith defined as:

CGaΣt (u1, ...ud) = ΦΣt(Φ
−1 (u1) , . . . ,Φ−1 (ud)). (3.31)
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Dynamic Student-t Copula

The Student-t copula parameters are the correlations and the degrees of free-

dom, ν. The dynamic process which drives the correlations is identical to the

one defined for the Gaussian copula in equations (3.29) and (3.30). This the-

sis further allows the degrees of freedom parameter to vary over time.5 The

Student-t copula is therewith not only provided with the capability to adapt

the level of dependence, but also the strength of tail dependence over time.

Fantazzini (2008) proposes to model the evolution of the degrees of freedom

parameter of a bivariate Student-t copula as

νt = Λ(ς + ϕ× |ut−1 − vt−1|), (3.32)

where Λ is a logistic transformation designed to keep the conditional degrees

of freedom in (2, 100) at all times. Recalling that the Student-t converges

in distribution to a normal distribution when ν → ∞, the Student-t copula

nests the Gaussian copula when ν → ∞. However, it is hard to distinguish

a Student-t distribution with ν > 30 from a normal distribution, such that

a Student-t copula Ctν,Σ with ν = 100 is very close to a Gaussian copula

CGaΣ . Note that the Student-t copula with constant degrees of freedom is

nested with ϕ = 0. The specification (3.32) is limited to the bivariate setting

through the absolute difference term |ut−1 − vt−1|. As this thesis focuses on

multivariate models, an extension of equation (3.32) is called for.

For the extension to the multivariate setting this thesis follows Braun

(2011), who in a similar situation identified the K-Means clustering algorithm

as being able to provide a valid scalar measure for the absolute difference in

the multidimensional space. Generally, the K-Means clustering algorithm is

used to partition N points into k clusters by minimizing the sum of point-

to-centroid distances, aggregated over all clusters. While there are a number

5To the best of the author’s knowledge, the only other work allowing the degrees of
freedom parameter of a multivariate dynamic Student-t copula to be time varying is Jin
and Lehnert (2011).
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of distance measures, the closest to a multivariate analogon of the bivariate

absolute distance used in (3.32) is the `1-norm where the distance between

point and centroid equals the sum of the absolute differences of their Cartesian

coordinates. Each centroid is defined as the component-wise median of the

points in that cluster.

The aim for the application at hand, however, is not to partition the

observations into multiple clusters but to compute the absolute distance (AD)

between all observations in time t. Therefore, the number of clusters is set

to k = 1, which means that the `1-norm is the sum of absolute differences

between the observations ut and their median ũt in time t

AD`1 =
k∑
j=1

d∑
i=1

|ui,t − ũj,t| =
d∑
i=1

|ui,t − ũt|. (3.33)

Replacing the bivariate absolute difference in equation (3.32) with the multi-

variate absolute difference AD`1 in (3.33) yields the dynamic process of the

degrees of freedom of a multivariate Student-t copula

νt = Λ(ς + ϕ×
d∑
i=1

|ui,t−1 − ũt−1|). (3.34)

The mapping into the authorized domain (Lν = 2, Uν = 100) is ensured by

the logistic transformation

Λ(x) = Lν +
(Uν − Lν)

1 + e−x
. (3.35)

Even if x is permitted to vary over the entire real line, Λ(x) will be constrained

to lie in the domain [Lν , Uν ]. The dynamic multivariate Student-t copula is

therewith defined as

Ctνt,Σt(u1, ..., ud) = tνt,Σt(t
−1
νt (u1), ..., t−1

νt (ud)), (3.36)
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with the dynamics of Σt given in (3.29) respectively (3.30) and the evolution

of νt modeled with (3.34) and (3.35).

3.4.2 Dynamic Archimedean Copulas

Patton (2006a) adapts the idea of Engle (2002) to model the dynamics of

bivariate Archimedean copulas with an ARMA-type process. He assumes

that the functional form of the copula stays fixed over the sample, whereas

the transformed copula parameter as Kendall’s tau varies according to the

evolution equation

ρτt = Λ

ω + β × ρτt−1
+ α× 1

10

10∑
j=1

|ut−j − vt−j |

 (3.37)

where Λ(x) = (1 + e−x)−1 is the logistic transformation to keep ρτt ∈ [0, 1] at

all times and (ut, vt) are two observations at time t.6 The Clayton respectively

the Frank copula parameter in time t can then be obtained using the functional

relationship between Kendall’s tau and the Archimedean copula parameter

Copula ρτ

CClθ θ/(θ + 2)

CFrθ 1− 4θ−1(1−D1(θ))

(3.38)

where D1(θ) is the Debye function of order one D1(θ) = θ−1
∫ θ

0
t/(exp(t)−1)dt

(Hofert et al., 2013).

The dynamic process of Patton (2006a) in (3.37) is yet again limited to

bivariate applications through the absolute difference term |ut−1 − vt−1|. To

extend (3.37) to the multidimensional world, this difference term is substi-

tuted with the multivariate absolute distance AD`1 in (3.33). This yields a

6Kendall’s tau is the rank correlation for two vectors of random variables Y1 and Y2,
defined as ρτ = E(sign((Y1 − Ỹ1)(Y2 − Ỹ2))) where (Ỹ1, Ỹ2) is an independent copy of
(Y1, Y2) (McNeil et al., 2005).
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multivariate extension of Patton’s (2006a) parameter evolution process

ρτt = Λ

ω + β × ρτt−1 + α× 1

10

10∑
j=1

d∑
i=1

|ui,t−j − ũt−j |

 , (3.39)

where ũt is the median of u1, ..., ud in time t and Λ(x) = (1 + e−x)−1. With

(3.39), the parameter of the multivariate Clayton copula in time t, θClt , is

then given in closed form through (3.38). The Frank copula parameter θFrt

in terms of Kendall’s tau however is not available in closed form but has to

be determined numerically. This is computationally burdensome since the

numerical optimization has to be done for every time step t in every iteration

of the overall calibration procedure of the dynamic Frank copula. To achieve

an efficient calibration of the dynamic Frank copula, this thesis directly models

the dynamics of θFrt as

θFrt = ω + β × θFrt−1 + α× 1

10

10∑
j=1

d∑
i=1

|ui,t−j − ũt−j |, (3.40)

where the constraint θFrt ≥ 0 ensures that the parameter remains in the

permissible range. Stationarity and invertibility is accounted for with the

constraints |α| < 1 and |β| < 1.

3.4.3 Dynamic Mixture Copulas

Ng (2008) adopts the dynamic process of Patton (2006b) to create a time

varying specification of the weight in the mixture copula depending on the

natural filtration of the process. He suggests a dynamic bivariate mixture

copula model, where the parameters of the copulas are constant, but the

weighting parameter is stochastic, following an ARMA-type model for the

mixture weight:

wi,t = ωi + αi × hi,t−1(.) + β × wi,t−1. (3.41)
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He therewith establishes a linear relationship between the mixture weight wi

in time t and the according lagged value in t−1 and h(.), which is a stochastic

explanatory variable or a special function. In particular, Ng (2008) proposes

to model wi,t with the special function being

hi,t−1(.) =
1

10

10∑
p=1

|ut−p − vt−p|. (3.42)

However, also this model is limited to the bivariate setting due to the abso-

lute distance measure |ut−p − vt−p|. Braun (2011) suggests an extension of

Ng’s (2008) concept to higher dimensions by replacing the absolute distance

measure with the copula density relative to the sum of all copula densities

during the lag period. This results in a special function of the following type:

hi,t−1(.) =
1

10

10∑
p=1

(
ci(u1,t−p, ..., ud,t−p; θi)∑n
j=1 cj(u1,t−p, ..., ud,t−p; θj)

)
. (3.43)

To generate weight forecasts with equation 3.43 plugged into 3.41, Braun

(2011) has to impose six different constraints on the weight process parameters

in order to keep the resulting weights wi,t within the unit interval. In contrast,

this thesis makes use of the logistic function Λ(x) = (1 + e−x)−1 which in

combination with 3.43 and 3.41 results in:

wi,t−1 = Λ

(
ωi + αi ×

1

10

10∑
p=1

(
ci(u1,t−p, ..., ud,t−p; θi)∑n
j=1 cj(u1,t−p, ..., ud,t−p; θj)

)
+ βi × wi,t−1

)
(3.44)

The weight parameters are therewith bounded on the unit interval without

the need to impose any constraints on the parameters. Note that equation

(3.44) also nests the static mixture copula with α = β = 0. Employing the

dynamic weights of equation 3.44 in the mixture copula construct in equation
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3.20 yields the complete multivariate dynamic mixture copula model:

C (u1, ..., ud;w1,t, ..., wn,t; θ1, ..., θn) =

n∑
j=1

[wj,t, Cj(u1, ..., ud, θj)]. (3.45)

It has to be emphasized that the parameters θj and wj,t have different func-

tions within the mixture copula construct, allowing a very flexible way of

modeling dependence structures. While the association parameter θ controls

the degree of dependence, the weight parameter w determines the structure

of the dependence.

The advantage of linking the weight parameter to the copula densities

lies in the difference of the copula density functions. The Clayton copula for

example is capable of modeling lower tail dependence and exhibits its largest

density in the lower tail (see figure 3.1). Thus, the weight parameter in the

dynamic mixture structure is directly coupled with the capabilities of the

mixture copula constituents to describe the dependence structure during the

lag period.

Shifts in the dependence structure are expected to have an immediate ef-

fect on the dynamic weights. A rise of one copula’s relative density signalizes

its enhanced fit to the current dependence pattern. Through the dynamic

weight process in 3.44, this copula’s weight in the mixture construct and its

impact on the overall mixture density therewith extends. Calibrating this

model using maximum likelihood estimation ensures that the parameters of

each copula in the mixture are fitted most accurately to those data fractions,

where the dependence structure naturally concurs with the copula’s charac-

teristics. Every individual copula thus only captures the dependence in a

specific part of the data set in a optimal way, but merging the copulas into a

mixture structure governed by the dynamic weight process yields an overall

accurate and flexible dependence model.

To employ the introduced static, regime switching and fully dynamic mul-
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tivariate copulas in empirical applications, the model parameters have to esti-

mated. To this end, this thesis makes use of a multi-stage maximum likelihood

estimation procedure whose description is the subject of the following chapter.



Chapter 4

Multi-Stage Maximum Likelihood Esti-

mation

The first part of this chapter outlines the estimation procedure for the model

parameters and the second part explains how the according standard errors

are computed.

4.1 Estimation Procedure

The model estimation takes advantage of the fact that the copula is indepen-

dent of the marginal distributions and separates the procedure into different

stages (see e.g. Chollete et al., 2009; Joe, 2001; McNeil et al., 2005).

The overall log likelihood depends on all the data Y = (Y ′1 , ..., Y
′
T ), and is

given by

logL(Y ; θm, θc) =
T∑
t=1

log f(Yt|Y t−1; θm; θc), (4.1)

where Y t−1 = (Y1, ..., Yt) represents the history of the entire process. The like-

lihood can thus be decomposed into one part logLm containing the marginal

densities and a second part logLc which contains the copula densities

logL(Y ; θm, θc) = logLm(Y ; θm) + logLc(Y ; θm, θc) (4.2)
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logLm(Y ; θm) =
T∑
t=1

d∑
i=1

log fi(yi,t|yt−1
i ; θm,i) (4.3)

logLc(Y ; θm, θc) =

T∑
t=1

log c(F1(y1,t|yt−1
1 ; θm,1), ..., Fd(yd,t|yt−1

d , θm,d); θc),

(4.4)

where yt−1
i = (yi,1, ..., yi,t) is the entire history of variable i.

The marginal models’ likelihood logLm is a function of the parameter vector

θm = (θm,1, ..., θm,d) which collects the parameters for each of the d marginal

density functions fi. The likelihood of the copula logLc directly depends on

vector θc. For the estimation of singular static copulas, θc contains the cop-

ula parameters. In case of the static mixtures, θc = (θ
(1)
c , θ

(2)
c , w) comprises

the parameters of both copulas in the mixture copula and the mixture weight.

For the estimation of regime switching copula containing singular copulas, the

vector θc = (θ
(1)
c , ..., θ

(k)
c , P ) collects the copula parameters over all regimes

plus the parameters of the transition probability matrix P while regime switch

copulas comprising mixtures, the mixture weight parameter w is also collected

θc = (θ
(1a)
c , θ

(1b)
c , θ

(2)
c , P, w1a). Through the distribution function Fi this pa-

rameter vector θc also indirectly depends on the parameters of the marginal

densities, since Fi transforms the observations into uniform [0, 1] variables

based on which the copula is estimated.

The models in this thesis accommodate a number of parameters such that

a full single-step likelihood maximization is numerically rather intricate and

time consuming. Maximizing the parameters separately for the margins and

the copula is also referred to as ”inference functions for margins” or IFM (see

e.g. Joe, 2001; McNeil et al., 2005), though more generally it is known as multi-

stage maximum likelihood estimation (MSMLE) (Patton, 2013). Compared

to a one-stage estimation it represents a much more tractable procedure whose

properties have been studied by Chen and Fan (2006); Joe (2005) and Patton

(2006b) and which has repeatedly been applied in the context of copulas (see

e.g. Chollete et al., 2009; Dias and Embrechts, 2010; Garcia and Tsafack, 2011;
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Patton, 2006b). While the multi-stage estimation generally entails some loss

of efficiency in comparison to estimating the entire joint distribution in one

single step, it substantially simplifies the computational burden and comes

with a low loss of efficiency. (Joe, 2005; Patton, 2006b)

In the first step, it is assumed that the marginals are independent from

each other and depend only on their own history:

θ̂m = argmax
θm

Lm(Y ; θm). (4.5)

This estimation can further be simplified since the univariate model parame-

ters of each time series can be calibrated separately:

θ̂m,i = argmax
θm,i

T∑
t=1

log fi(yi,t|yt−1
i ; θm,i). (4.6)

For the second step, the marginal parameters are bundled in a vector θ̂m =

(θ̂m,i, ..., θ̂m,n) and are considered as given in order to calibrate the copula:

θ̂c = argmax
θc

Lc(Y ; θ̂m, θc). (4.7)

This procedure tremendously reduces the computational effort and time, firstly

because a numerical optimization with lots of parameters is much more time

consuming compared with several numerical optimizations, each with fewer

parameters. Secondly, the multi-stage method reduces the overall computa-

tional burden since different copulas are estimated given the same univariate

models, which means that the parameter vector θ̂m can be reused.

To guarantee positive semi-definiteness of the correlation matrices Σ con-

tained in the elliptical copula models, the numerical optimization is effectively

carried out for the lower triangular matrix A of Cholesky factors, such that

Σ = AA′. All maximum likelihood estimation procedures require starting

values for the optimization to initialize. With the plurality of the parame-



44 Chapter 4. Multi-Stage Maximum Likelihood Estimation

ters to be estimated in the more elaborated dependence models, the choice of

initial values can have a direct impact on the overall estimation time. Nat-

urally the closer the starting values are to the final parameters, the faster

the optimization algorithm converges. For the correlation parameters of the

Gaussian copulas, the Cholesky factors of the quantile transformed uniform

values’ correlation matrix are used as initial values. For the Student-t cop-

ula’s correlation parameters, the fact that sample rank correlations can be

used to partially calibrate Student-t copulas is exploited (see McNeil et al.,

2005). The relationship between Kendall’s tau and the t-copula’s correlation

is

ρτ (yi, yj) =
2

π
arcsin ρci,j , (4.8)

such that a possible estimator of the Student-t copula correlation matrix is

given by a matrix with the components

ρci,j = sin(
1

2
πρτi,j). (4.9)

For the Archimedean copulas, in a first step the
(
d
2

)
pairwise Kendall’s tau esti-

mators are computed. Using the arithmetic average over all these estimators,

the functional relationship between Kendall’s tau ρτ and the Archimedean

copula parameter θ presented in (3.38), is exploited. The usage of these ini-

tial values was found to decrease estimation time supporting the findings of

Hofert et al. (2013), who in contrast to some statements in literature (see

e.g. Berg and Aas (2009) or Weiss (2010)) find that maximum-likelihood

estimation is feasible in higher dimensions and performs well.

4.2 Standard Error Computation

To calculate the standard errors within the MSMLE framework, Joe (2001)

and Durrleman et al. (2000) show that the vector of parameter estimates,

θ̂MSMLE = [θ̂m,1, ..., θ̂m,d, θ̂c] verifies the property of asymptotic normality
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such that

√
T (θ̂MSML − θ0)

d−→ N (0,G−1(θ0)) as T→∞, (4.10)

where G(θ0) is the asymptotic variance-covariance matrix known as the infor-

mation matrix of Godambe. It is based on the theory of inference functions

which imposes optimality criteria on the score functions of the estimating

equations rather than on the estimators received from them (Godambe, 1960,

1976, 1991).

Following Joe (2001) in defining a score function g:

g(θ) = (∂θ1 logLm,1, ..., ∂θm,d logLm,d, ∂θc logLc), (4.11)

the Godambe information matrix takes the form

G(θ0) = D−1M(D−1)′, (4.12)

where

D = E

[
∂g(θ)′

∂θ

]
, M = E [g(θ)′g(θ)] . (4.13)

For the models at hand, the estimation of the Godambe information matrix

requires the computation of a number of derivatives (i.e. score functions for

likelihood functions) which can be computationally demanding. Moreover,

the main issue in implementing the multi-stage estimation method compared

to a one-step maximum likelihood method is its loss of performance in the esti-

mation of the parameters since the marginal estimation procedure in the first

step neglects the possible dependence between θm,1, ..., θm,d when estimating

θc (Liu and Luger, 2009).

In order to adequately compute standard errors for the models, this thesis

therefore follows Silva Filho et al. (2012) and De Lira Salvatierra and Patton

(2013) in employing a bootstrap approach to calculate the covariance matrix

of the parameters. To asymptotically preserve the cross-sectional dependence
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in the time series data, the block bootstrap method of Politis and Romano

(1994) is applied.1 The optimal block size is determined based on the au-

tomatic block-length selection of Politis and White (2004) and Patton et al.

(2009). The standard error computation procedure is as follows:

1. Estimate parameters θ̂ as described in section 4.1.

2. Generate a block bootstrap sample of the same size as the data set.

3. Estimate the parameters θ̂(r) on the simulated data.

4. Repeat steps (2) and (3) R times.

5. Compute standard errors using the covariance matrix

R−1
∑R
r=1(θ̂(r) − θ̂)(θ̂(r) − θ̂)′,

where θ̂(r) is the column vector of the estimated parameters for every

replication r.

Before deploying the multi-step estimation and standard error computa-

tion procedures for the models presented in chapter 2 and 3, the next chapter

presents the data sets under investigation.

1See Gonçalves and White (2004) for theoretical justification.



Chapter 5

Data Description

This chapter introduces the three data sets used for the empirical analysis and

presents descriptive statistics. With either purely equities or commodities,

the first two data sets focus on portfolios of assets from the same asset class,

while the third set contains assets from multiple asset classes. Each portfolio

is therewith expected to reflect different characteristics in terms of risk and

return and allows to investigate the forecast accuracy of the different copula

models for different types of portfolios. All portfolios contain only indices

as opposed to individual stocks. Based on the central limit theorem, such

portfolios are more likely to exhibit elliptical dependence than are individual

stocks.1 Hence, the analysis is biased against the empirical tests of return

forecasts incorporating asymmetric dependence. The data have been collected

from Bloomberg. All returns are computed with log(Pt/Pt−1) where Pt is the

value of the index at time t.

5.1 Equity Index Portfolio

With the first data set, this thesis investigates the interactions between inter-

national equity indices. The utilized sample reaches back to the initialization

of the Swiss Market Index (SMI) and covers the period from June 30, 1988

1Note that the prices of some indices in the data sets are market capitalization-weighted
averages while the classical Central Limit Theorem is based on equally weighted averages.
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until June 5, 2013, yielding 1300 weekly returns. Besides the Swiss index,

the data covers the following indices: the German DAX 30, the French CAC

40, the British FTSE 100, the US S&P 500, the Canadian TSX 60, the Chi-

nese Hang Seng and the Japanese Nikkei 225. To take into account the fact

that stock exchanges around the globe have different trading hours and to

avoid introducing artificial dependence due to the differences in closing times,

the data consists of weekly returns from Wednesday to Wednesday. For the

analyses in this thesis, a currency hedged USD investor is assumed in order

to eliminate exchange rate effects and concentrate on the interactions of the

assets.

The descriptive statistics of the weekly returns of each equity index under

consideration are summarized in table 5.1. Each of the equity index return

series displays a negative skewness, indicating that the tail on the left side

of the probability density function is longer compared to the right side and

the majority of the values are located to the right of the mean. Every series

further shows a leptokurtic distribution, with excess kurtosis ranging from

2.8 to 4.4. Unsurprisingly, the test of Jarque and Bera (1987) rejects the null

hypothesis that the sample returns come from a normal distribution for every

continuous return series on the significance level of 1%. The largest uncondi-

tional correlation occurs between the DAX 30 and the CAC 40 (0.851) while

the smallest correlation is between the SMI and the Nikkei 225 (0.414). The

test of Leybourne and McCabe (1999) (LMC) and the Augmented Dickey-

Fuller (ADF) test (Dickey and Fuller, 1979) both indicate that each of the

return series is stationary. The first by not rejecting the null hypothesis of

a stationary AR(k) against a nonstationary ARIMA(k,1,1) and the latter by

rejecting the null hypothesis of a unit-root against a trend-stationary alterna-

tive augmented with k lagged difference terms on the usual significance levels

for all orders k = (1, ..., 20).2

To identify whether conditional heteroscedasticity effects are present in

2To conserve space, table 5.1 only reports the test statistics for the orders one, five and
ten.
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the data, an indirect and a direct test is conducted. The indirect approach

is the portemanteau test of Ljung and Box (1978) applied to the squared

residuals of the de-meaned return series. Engle’s (1982) Lagrange multiplier

statistic LM(k) on the other hand directly assesses the significance of the

ARCH effects by testing whether the squared returns are serially correlated

up to lag k. Both statistics clearly indicate that ARCH effects are likely to be

found in all of the equity index returns series. The univariate models for the

equity index returns thus have to account for conditional heteroscedasticity.

5.2 Commodity Futures Index Portfolio

The second data set consists of commodity futures indices. In the past decade,

the number of open contracts in commodity exchanges almost doubled result-

ing in volumes of exchange-traded derivatives of 20 to 30 times the physical

production for many commodities (Silvennoinen and Thorp, 2013). Whilst

hedge fund activity tripled between 2004 and 2007, capital flows from insti-

tutional investors increased thirteenfold. (Commodity Futures Trading Com-

mission, 2008)

Commodities exhibit certain risk characteristics which differ from tradi-

tional assets such as equities. On the one hand, some commodities like agri-

cultural products are not storable while others such as energy and livestock

commodities may only be stored at very high costs. Changes in demand

or supply thus translate directly into price changes which results in greater

volatility of the commodity investments in comparison to investments in tra-

ditional assets. On the other hand, shocks of demand and supply are more

extensive and observed more often as frost, drought or natural disasters have

an immediate effect on some commodity prices. Additionally, the political

instability of oil-exporting countries and the lack of governmental control

account for further variation in commodity prices. (Füss et al., 2010) An

appropriate model to forecast commodity portfolio risks must be capable to

capture these characteristics.
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Table 5.1
Summary statistics: Equity portfolio

SMI DAX CAC UKX SPX TSX HSI NKY

Mean 0.001 0.002 0.001 0.001 0.001 0.001 0.002 -0.001
Std 0.026 0.031 0.030 0.023 0.023 0.022 0.035 0.031
Max 0.148 0.172 0.166 0.136 0.102 0.087 0.156 0.148
Min -0.140 -0.168 -0.148 -0.127 -0.165 -0.141 -0.210 -0.211
Skew -0.469 -0.715 -0.376 -0.250 -0.615 -0.625 -0.592 -0.398
Kurt 7.022 6.640 6.024 6.351 7.412 5.887 5.847 6.204
JB 902.6a 808.3a 514.2a 607.3a 1109.0a 522.4a 502.9a 576.0a

Correlations

SMI 0.764 0.770 0.750 0.660 0.539 0.445 0.414
DAX 0.851 0.748 0.709 0.597 0.504 0.475
CAC 0.798 0.705 0.599 0.499 0.477
UKX 0.724 0.614 0.542 0.466
SPX 0.760 0.489 0.453
TSX 0.464 0.419
HSI 0.448

Stationarity Tests

LMC (1) 0.084c 0.063c -0.248c 0.054c 0.081c 0.178a 0.037c 0.042c

LMC (5) 0.087c 0.057c 0.049c 0.056c 0.077c 0.040c 0.036c 0.042c

LMC (10) 0.109c 0.071c 0.073c 0.089c 0.091c 0.033c 0.035c 0.037c

ADF (1) -38.6a -39.6a -41.0a -39.0a -38.9a -36.2a -35.5a -36.4a

ADF (5) -15.7a -15.5a -15.9a -16.3a -15.8a -15.1a -15.8a -15.5a

ADF (10) -11.0a -10.7a -11.3a -12.2a -11.3a -10.4a -11.1a -11.1a

Heteroscedasticity Tests

LBQ (1) 167.7a 74.9a 113.6a 109.5a 54.3a 87.0a 51.0a 18.6a

LBQ (5) 228.2a 174.6a 225.8a 188.1a 181.3a 293.1a 212.8a 152.9a

LBQ (10) 292.3a 238.5a 302.6a 284.4a 264.0a 398.8a 311.0a 162.0a

ELM (1) 164.4a 74.7a 111.9a 105.8a 52.7a 84.5a 51.1a 18.8a

ELM (5) 179.0a 116.6a 152.1a 129.6a 114.8a 170.9a 120.6a 110.4a

ELM (10) 191.4a 124.7a 162.1a 150.3a 149.4a 185.4a 142.3a 119.8a

Summary statistics of the weekly returns over the full sample period from June 30, 1988 to
June 5, 2013 for the SMI, DAX 30, CAC 40, FTSE 100 (UKX), S&P 500 (SPX), S&P/TSX 60,
Hang Seng (HSI) and Nikkei 225 (NKY) index. Mean, Std, Skew and Kurt denote the mean,
standard deviation, skewness and kurtosis. JB is the test statistic of the Jarque-Bera test for
normality of the unconditional distribution of the returns. The correlations report Pearson’s
linear unconditional sample correlations between the weekly returns over the full sample period.
LMC(k) is the statistic of Leybourne and McCabe’s (1999) test assessing the null hypothesis
of a trend stationary AR(k) process against the alternative of a nonstationary ARIMA(k,1,1)
process. ADF(k) is the statistic of the augmented Dickey-Fuller (1979) test for a unit root
against a trend-stationary alternative augmented with k lagged difference terms. LBQ (k) is
the statistic of the Ljung-Box (1978) portmanteau Q-test assessing the null hypothesis of no au-
tocorrelation in the squared (mean-subtracted) residuals at k lags. ELM (k) is Engle’s (1982)
Lagrange multiplier statistic for heteroscedasticity obtained by regressing the squared returns
on k lags. Significance is denoted by superscripts at the 1% (a), 5% (b) and 10% (c) levels.
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The growing importance of commodities as an asset class along with its

particularities have attracted the interest of scholars in the last few years.

Recent contributions applying copula models include Weiss (2011), who in-

vestigates the use of goodness-of-fit tests for static copulas applied to stocks,

commodities and FX futures. Gronwald et al. (2011) study the dependence

structure between carbon emission allowances and commodities, equity and

energy indices. Constrained to bivariate copulas, Delatte and Lopez (2013)

investigate the linkages between commodity and equity markets. To the best

of the author’s knowledge, this thesis is the first work to apply higher dimen-

sional dynamic copula models to a commodity portfolio.

Financial investors primarily take positions in commodity futures since

their interest is not to own the physical asset, but rather to gain exposure

to commodity risk (Gonzalez-Pedraz et al., 2012). The most popular strat-

egy to invest in commodities is to invest in given commodity futures indices

(Tang and Xiong, 2012). The commodity data set used in this thesis consists

of subindices of the Standard & Poors Goldman Sachs Commodity Index

(SPGSCI), which together with the DJ-UBSCI is by far the most influential

commodity index. The series were chosen based on the length of their data

history and their weight in the main index. The data set contains the follow-

ing commodity futures excess return indices: crude oil, heating oil, unleaded

gasoline, gold, silver, copper, wheat as well as corn and therewith covers the

commodity sectors energy, precious metals, industrial metals and agriculture.

The excess return measures the return from investing in nearby commodity

futures and rolling them forward each month to avoid the cost of holding phys-

ical commodities. In this way, the selected commodity indices yield returns

comparable to passive long positions in listed commodity futures contracts.3

To ensure consistency with the utilized equity index data, Wednesday to

3More precisely, the return consists of a spot and a roll element. The spot return is the
percentage change in the near-month futures contract. To keep a long future position the
futures contracts are rolled forward to the next-month futures contract. The roll return is
positive when the market is in backwardation and negative when the market is in contango.
The roll return therewith comes from rolling up or down the term structure of futures
prices.
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Wednesday weekly returns over the identical period ranging from June 30,

1988 until June 5, 2013 are used, yielding 1300 returns. Table 5.2 presents

the descriptive statistics of the commodity future data. The energy sector

index returns display the largest standard deviations while gold returns have

the smallest standard deviation among the commodity indices. With the

exception of wheat and corn, all commodity returns are negatively skewed.

All series display excess kurtosis ranging from 2.399 to 4.638. The Jarque-Bera

test clearly rejects the hypothesis of a normal distribution for all commodity

index returns.

The largest unconditional sample correlations are detected between the

fossil fuel returns, followed by the correlation between the agricultural returns.

For all lags k = (1, ..., 20), the test of Leybourne and McCabe cannot reject

the null hypothesis of a stationary AR(k) process. Stationarity of all the

series is confirmed by the results of the augmented Dickey-Fuller tests which

reject the null of a unit-root against a trend-stationary alternative for all k =

(1, ..., 20). Engle’s (1982) Lagrange multiplier test rejects the null hypothesis

of no conditional heteroscedasticity for every commodity futures index such

that one may conclude that there are significant ARCH effects in all the

commodity return series.

5.3 Multi Asset Classes Index Portfolio

Based on modern portfolio theory, investors should not allocate the entire

capital in one asset class such as equities but seek diversification. According

to Lombardi and Ravazzolo (2013), most fund managers have begun to advise

their customers to allocate a share of their portfolios to commodity-related

products as a part of the diversification strategy. This is frequently motivated

by studies of e.g. Gorton and Rouwenhorst (2006), Büyükşahin et al. (2010) or

Cheung and Miu (2010), who show that commodities display low correlation

with other asset classes, specifically with equities. Following this advice, two

commodity indices are added to a selection of four international equity indices.



5.3. Multi Asset Classes Index Portfolio 53

Table 5.2
Summary statistics: Commodity portfolio

OIL HOL GAS GLD SLV CPP WHT CRN

Mean 0.001 0.001 0.002 0.000 0.000 0.002 -0.002 -0.002
Std 0.046 0.044 0.047 0.022 0.039 0.035 0.037 0.035
Max 0.232 0.205 0.241 0.129 0.148 0.170 0.190 0.153
Min -0.318 -0.276 -0.266 -0.132 -0.295 -0.171 -0.177 -0.169
Skew -0.498 -0.278 -0.286 -0.242 -0.660 -0.109 0.297 0.001
Kurt 6.774 5.667 5.891 7.518 7.638 5.399 4.734 5.411
JB 825.0a 401.9a 470.6a 1118.2a 1259.8a 314.4a 182.0a 315.0a

Correlations

OIL 0.882 0.858 0.261 0.264 0.246 0.113 0.163
HOL 0.833 0.243 0.244 0.225 0.123 0.164
GAS 0.212 0.217 0.231 0.104 0.140
GLD 0.731 0.284 0.157 0.193
SLV 0.331 0.164 0.220
CPP 0.174 0.171
WHT 0.594

Stationarity Tests

LMC(1) 0.067c 0.059c 0.047c 0.050c 0.050c 0.144b 0.051c 0.062c

LMC(5) 0.043c 0.043c 0.036c 0.090c 0.058c 0.112b 0.054c 0.059c

LMC(10) 0.038c 0.057c 0.039c 0.196a 0.073c 0.082c 0.060c 0.045c

ADF(1) -37.2a -36.4a -36.9a -36.7a -37.1a -36.3a -36.2a -36.5a

ADF(5) -14.3a -15.1a -14.5a -18.6a -17.6a -14.2a -16.0a -15.5a

ADF(10) -9.6a -10.1a -11.2a -13.2a -12.7a -9.9a -11.5a -10.0a

Heteroscedasticity Tests

LBQ(1) 67.8a 72.5a 107.4a 31.5a 11.5a 69.3a 60.6a 29.4a

LBQ(5) 140.0a 154.7a 184.2a 181.2a 75.5a 356.8a 239.3a 129.3a

LBQ(10) 312.9a 237.1a 297.9a 272.4a 132.9a 463.3a 288.8a 241.0a

ELM(1) 67.8a 72.5a 107.4a 31.5a 11.5a 69.3a 60.6a 29.4a

ELM(5) 140.0a 154.7a 184.2a 181.2a 75.5a 356.8a 239.3a 129.3a

ELM(10) 312.9a 237.1a 297.9a 272.4a 132.9a 463.3a 288.8a 241.0a

Summary statistics of the weekly returns over the full sample period from June 30, 1988 to
June 5, 2013 for the Standard & Poors Goldman Sachs Commodity excess return subindices:
crude oil (OIL), heating oil (HOL), unleaded gasoline (GAS), gold (GLD), silver (SLV), copper
(CPP), wheat (WHT) and corn (CRN). Mean, Std, Skew and Kurt denote the mean, standard
deviation, skewness and kurtosis. JB is the test statistic of the Jarque-Bera test for normality
of the unconditional distribution of the returns. The correlations report Pearson’s linear uncon-
ditional sample correlations between the weekly returns over the full sample period. LMC(k)
is the statistic of Leybourne and McCabe’s (1999) test assessing the null hypothesis of a trend
stationary AR(k) process against the alternative of a nonstationary ARIMA(k,1,1) process.
ADF(k) is the statistic of the augmented Dickey-Fuller (1979) test for a unit root against a
trend-stationary alternative augmented with k lagged difference terms. LBQ (k) is the statistic
of the Ljung-Box (1978) portmanteau Q-test assessing the null hypothesis of no autocorrela-
tion in the squared (mean-subtracted) residuals at k lags. ELM (k) is Engle’s (1982) Lagrange
multiplier statistic for heteroscedasticity obtained by regressing the squared returns on k lags.
Significance is denoted by superscripts at the 1% (a), 5% (b) and 10% (c) levels.
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As for the portfolio in section 5.2, the added commodity futures indices are

part of the Standard & Poors Goldman Sachs Commodity Index family. With

the S&P GSCI Non Energy Index and the S&P GSCI Energy Index, the two

selected indices for the multi asset classes portfolio are on a higher level of

aggregation. The two indices cover all commodity sectors while accounting

for the different characteristics of energy and non-energy commodities.

Along with commodities, an important non-traditional asset class expected

to provide a defensive component to a stock market portfolio is real estate

(Chang et al., 2011). Ghysels et al. (2013) emphasize that the importance

of real estate as an asset class cannot be overstated: at the end of 2011 the

total value of this asset class in the United States was about USD 25 trillion,

while the capitalization of the U.S. stock market amounted to roughly USD

18 trillion. With the expansion of the modern real estate investment trust

(REIT) in the 1990s, investors became increasingly able to add a wider choice

of property assets to their portfolio, which overcome many drawbacks of direct

real estate investment. (Chang et al., 2011) Whilst the residential housing

market decline and the collapse of subprime mortgage derivatives questioned

the expectation of a diversification effect, the recent study of Chang and Chen

(2014) of the period from 2006 to 2010 shows that REITs are an effective

method of international diversification. The addition of a real estate exposure

to a portfolio of equities and commodities should thus enhance the risk-return

profile and create a multi-faceted dependence structure.

Aiming to test the predictive power of the presented models for an ac-

cordingly diversified portfolio, the third data set utilized for the empirical

analysis consists of a portfolio of four equity indices enriched with the two

commodity indices introduced above and two real estate indices. With the

FTSE EPRA/NAREIT North America Index and the FTSE EPRA/NAREIT

Europe Index, the choice of REITs covers two distinctly different parts of the

world, taking into account the contribution of Adams et al. (2014) who high-

light the importance of geographical diversification when investing in REITs.

The indices of the European Public Real Estate Association (EPRA) and
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National Association of Real Estate Investment Trusts (NAREIT) in collab-

oration with the Financial Times Stock Exchange (FTSE) are considered to

be the leading benchmarks for listed real estates and serve as the basis for

many investment products, such as derivatives and Exchange Traded Funds

(ETFs).

In analogy with the previous two portfolios, weekly returns from Wednes-

day to Wednesday are used. The available data history for the chosen real

estate indices is almost as extensive as for the equities and commodities. The

data series for the multi asset classes portfolio contain 1222 weekly returns

covering the time frame from January 3, 1990 to June 5, 2013. Table 5.3

presents the summary statistics of the multi asset classes portfolio. The real

estate investment trust indices reveal similar mean and standard deviations

compared to the equity indices. The REIT index series are left skewed - the

NAREIT North America Index even shows the most skewed return distribu-

tion of all considered return series in this thesis. The REITs further show

excess kurtosis of more than 7 (EPR) and 12 (NAR). The Jarque-Bera test

rejects the null hypothesis of normally distributed REIT returns with the

largest JB test statistics of all series under consideration.

The combination of indices of three different asset classes results in a di-

verse unconditional sample correlation matrix containing values from 0.002

to 0.776. The highest correlations are observed between the European eq-

uity index returns, followed by the correlations between the S&P 500 and the

European equity indices. The NAREIT North America Index returns corre-

late more with the S&P 500 returns than with the returns of the European

REIT index. The commodity indices clearly depict the lowest correlation

to both other asset classes. The S&P GSCI Energy index seems to be al-

most uncorrelated to the returns of the continental European equity index

returns. Note that the overall sample of the multi asset classes portfolio is

one and a half years shorter than both the commodities and the equities sam-

ple. The small differences in the statistics for the equity indices in table 5.3

compared to the values in table 5.1 are attributable to the somewhat differ-
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ent lengths of the data sets. Failing to reject the null of a stationary AR(k)

process, the tests of Leybourne and McCabe suggest that all series in the

multi asset classes portfolio are stationary. This is underpinned by the re-

sults of the augmented Dickey-Fuller test, which rejects the null of a unit root

against a trend-stationary alternative for every return series. Assessing the

null hypothesis that the squared demeaned series exhibit no autocorrelation

for k = 1, ..., 20 lags against the alternative that some autocorrelation coeffi-

cient ρ(k), k = 1, ..., 20, is nonzero, the portmanteau tests of Ljung and Box

(1978) reject the null hypothesis for every return series and every lag k. The

results of Engle’s (1982) Lagrange multiplier test state that there is enough

evidence to conclude that the returns on each of the indices in the portfolio

are heteroscedastic. Capturing this time-varying volatility is at the core of

the univariate models presented in chapter 2, which are hence well equipped

to model these characteristics of the time series.
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Table 5.3
Summary statistics: Multi asset classes portfolio

SMI DAX UKX SPX NAR EPR CNE CEN

Mean 0.001 0.001 0.001 0.001 0.001 0.000 -0.000 0.000
Std 0.026 0.032 0.023 0.023 0.029 0.023 0.018 0.043
Max 0.148 0.172 0.136 0.102 0.202 0.123 0.073 0.197
Min -0.140 -0.168 -0.127 -0.165 -0.246 -0.161 -0.094 -0.290
Skew -0.445 -0.709 -0.252 -0.607 -0.924 -0.688 -0.407 -0.433
Kurt 6.946 6.626 6.434 7.429 15.025 10.447 6.360 6.456
JB 833.3a 771.9a 613.5a 1073.8a 7536.3a 2920.1a 608.4a 646.5a

Correlations

SMI 0.776 0.770 0.672 0.448 0.548 0.183 0.002
DAX 0.763 0.718 0.463 0.570 0.235 0.046
UKX 0.730 0.512 0.620 0.244 0.116
SPX 0.683 0.544 0.284 0.108
NAR 0.546 0.283 0.126
EPR 0.250 0.122
CNE 0.320

Stationarity Tests

LMC(1) 0.099c 0.083c 0.061c 0.094c 0.210a -1.335c 0.090c 0.066c

LMC(5) 0.074c 0.086c 0.059c 0.070c 0.037c 0.122b 0.088c 0.048c

LMC(10) 0.082c 0.103c 0.083c 0.101c 0.046c 0.108c 0.058c 0.043c

ADF(1) -37.7a -38.5a -38.1a -37.7a -35.8a -36.5a -35.3a -35.2a

ADF(5) -15.2a -15.2a -16.0a -15.3a -14.3a -12.8a -14.9a -13.8a

ADF(10) -10.5a -10.3a -11.5a -11.0a -12.2a -9.6a -9.5a -9.6a

Heteroscedasticity Tests

LBQ(1) 168.5a 70.5a 103.1a 50.5a 199.8a 255.6a 80.8a 66.0a

LBQ(5) 229.6a 162.3a 176.7a 169.6a 588.4a 494.0a 325.5a 147.7a

LBQ(10) 293.9a 220.6a 266.9a 247.5a 1038.4a 872.5a 451.6a 272.0a

ELM(1) 165.2a 70.3a 100.0a 49.1a 197.5a 254.9a 80.8a 65.9a

ELM(5) 179.8a 109.0a 122.8a 107.8a 321.0a 304.9a 169.2a 98.6a

ELM(10) 192.7a 116.6a 142.0a 140.4a 354.1a 379.6a 172.9a 136.2a

Summary statistics of the weekly returns over the full sample period from January 3, 1990 to
June 5, 2013 for the SMI, DAX 30, FTSE 100 (UKX), S&P 500 (SPX), FTSE EPRA/NAREIT
North America Index (NAR), FTSE EPRA/NAREIT Europe Index (EPR), S&P GSCI Non
Energy Index ER (CNE) and the S&P GSCI Energy Index ER (CEN). Mean, Std, Skew and
Kurt denote the mean, standard deviation, skewness and kurtosis. JB is the test statistic of the
Jarque-Bera test for normality of the unconditional distribution of the returns. The correlations
report Pearson’s linear unconditional sample correlations between the weekly returns over the
full sample period. LMC(k) is the statistic of Leybourne and McCabe’s (1999) test assessing the
null hypothesis of a trend stationary AR(k) process against the alternative of a nonstationary
ARIMA(k,1,1) process. ADF(k) is the statistic of the augmented Dickey-Fuller (1979) test for a
unit root against a trend-stationary alternative augmented with k lagged difference terms. LBQ
(k) is the statistic of the Ljung-Box (1978) portmanteau Q-test assessing the null hypothesis
of no autocorrelation in the squared (mean-subtracted) residuals at k lags. ELM (k) is Engle’s
(1982) Lagrange multiplier statistic for heteroscedasticity obtained by regressing the squared re-

turns on k lags. Significance is denoted by superscripts at the 1% (a), 5% (b) and 10% (c) levels.





Chapter 6

In-Sample Analysis

This chapter estimates the models using the complete data sets and analyzes

their goodness-of-fit. Firstly, the models for the univariate risk factor evolu-

tions are estimated and their appropriateness is evaluated. In the second part

the different dependence models are calibrated, the dependence structures of

the different portfolios is assessed and the model fit to the data is discussed.

6.1 Univariate Models

The marginal models play an important role for dependence modeling since

they filter the univariate risk factor evolutions from autocorrelation, het-

eroscedasticity and leverage and yield the input data for the copula estimation.

Misspecification of the marginals can thus result in biased copula parameter

estimates which in turn yields inadequate portfolio risk forecasts. In order to

compare the fit of the models presented in chapter 2 and choose the most ap-

propriate model specification for each of the return series, the likelihood ratio

test is not applicable since the different models are not nested. Instead, the

information criterion of Akaike (1973) (AIC) and the Bayesian Information

Criterion (BIC) of Schwarz (1978) can be used to find a suitable univariate

model. Given the m models M1, ...,Mm for the n-dimensional return vec-

tor Y , where model j has kj parameters denoted θj = (θj1, ..., θjk)′ with the
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likelihood function Lj , the criteria are defined as

AIC(Mj) = −2 logLj(θ̂j ;Y ) + 2kj , (6.1)

BIC(Mj) = −2 logLj(θ̂j ;Y ) + kj log(n), (6.2)

where θ̂j denotes the maximum likelihood estimation of θj . Each of these

criteria has two terms; the first term measures the goodness-of-fit and the

second term penalizes model complexity. The model favored is the one for

which the respective criterion is minimized. Since the penalty of the BIC is

a function of the sample size of Y , it is more severe for the applications at

hand. The BIC thus favors more parsimonious models which is why it is the

model selection criterion of choice in case the two information criteria favor

different model specifications. The univariate model for each index return

series was found by selecting the AIC and BIC optimal model considering

ARMA(p,q) specifications for the conditional mean up to order (p=3, q=3)

and GARCH(P,Q), EGARCH(P,Q), and GJR-GARCH(P,Q) volatility models

up to order (P=3, Q=3).

The parameters of the accordingly selected univariate models for the eq-

uity index portfolio are listed in table 6.1. Note that the automatic model

selection by AIC / BIC yields parsimonious specifications, as no model is of

an order higher than one. The results in table 6.1 show that a moving aver-

age parameter is not part of any optimal model for the return series. With

the DAX 30, the CAC 40 and the S&P 500 three out of the eight series con-

tain an autoregressive part for the conditional mean, while the mean of the

other series is simply characterized by a constant. Leverage appears to be

a feature in all of the return series as the information criteria favor a lever-

aged conditional volatility model over the standard GARCH model for all

indices. The EGARCH specification is selected by the information criteria

to be more suitable than the GJR model for every equity return series. All

leverage parameters are negative which is in line with the economic interpre-
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Figure 6.1: Quantile-quantile plots of the empirical versus the fitted skewed-t quantiles of
the equity models’ standardized innovations. If the standardized univariate model residuals
adhere to the skewed-t distribution (with parameters for each series listed in table 6.1) then
the data markers will fall on the dashed 45◦ line.

tation, as in the EGARCH a negative parameter captures the phenomenon of

negative innovations to returns having a more significant impact on volatility

than positive return innovations. The estimated skewness parameters λ are

all negative and the degrees of freedom parameters range from 7.731 to 15.069

both with significantly low standard errors.1 Recalling that the skewed-t dis-

tribution converges to a Student-t distribution when λ = 0 and to a normal

distribution when λ = 0 and ν →∞, one may conclude that the skewed-t is a

more suitable model for the residual distribution than either the Gaussian or

the standard Student-t. The negative skewness parameters indicate that the

residual distributions exhibit longer left tails compared to the right tails em-

phasizing the importance of accounting for asymmetric return distributions.

The DAX 30 reveals the most prominent left tail incorporating the lowest

degrees of freedom and the third largest skewness. In case the fat tails are

neglected or underestimated, the respective quantiles are inadequate which in

1The usual t-statistic α̂/σ̂α̂ is used to gauge the significance of a parameter α.
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turn distorts the risk forecasts.

A first inspection of the quality of the fittings is done graphically through

quantile-quantile plots. Figure 6.1 shows the plots of the empirical versus the

fitted skewed-t quantiles for the equity data set and points to a fairly good fit

since the pairs of quantiles lay almost all very close to the main diagonal. The

skewed-t distribution seems to be particularly capable of adequately capturing

the lower tails of the residual distributions. To formally test whether the

estimated models are appropriate, three goodness-of-fit tests are applied: The

Kolmogorov-Smirnov (KS), the Cramer-von Mises (CvM) and the Anderson-

Darling (AD) test with the test statistics defined as:

KSi = max
t

∣∣∣∣Ûi,(t) − t

T

∣∣∣∣ , (6.3)

CvMi =
T∑
t=1

(
Ûi,(t) −

t

T

)2

, (6.4)

AD = −T − 1

T

T∑
t=1

(
(2t− 1) log(Ûi,(t)) + (2T + 1− 2t) log(1− Ûi,(t))

)
,

(6.5)

where Ûi,(t) is the tth order statistic of
{
Ûi,j

}T
j=1

, i.e. the tth largest value of{
Ûi,j

}T
j=1

. The test statistics are based on the estimated probability integral

transformations Ûi,(t) ≡ Fskewed−t(ε̂it; ν̂i, λ̂i) and have asymptotic distribu-

tions that are known in the absence of parameter estimation errors. However,

these asymptotic distributions cannot be applied here as the univariate mod-

els are based on a number of estimated parameters. Since the parametric

models for the mean, variance and error distribution completely characterize

the conditional distribution, this can be overcome by obtaining critical values

using the following simulation-based method (Genest and Rémillard, 2008;

Patton, 2013):

1. Simulate T returns from a univariate model using the estimated param-
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eters.

2. Estimate the model on the simulated returns.

3. Compute the test statistics on the estimated probability integral trans-

forms of the simulated returns.

4. Repeat steps (1) to (3) R = 1′000 times.

5. Use the upper 1-α quantile of {(KS(r), CvM(r), AD(r))}Rr=1 as the crit-

ical value for the tests.

The implementation of this procedure yields the p-values of the three test

statistics listed in the tables 6.1, 6.2 and 6.3. For the equity indices, the low-

est p-values for all three tests are found for the model of the DAX 30 which

yields 0.377 (KS), 0.382 (CvM) and 0.441 (AD). The three tests therewith

cannot reject the null hypothesis that the skewed-t models are well-suited for

the equity index return series. The magnitude of the p-values further confirms

the conclusion suggested by the quantile-quantile plots, that the skewed-t dis-

tribution adapts very well to the empirical data.
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Figure 6.2: Autocorrelation functions of the squared standardized residuals of the uni-
variate models for the equity returns.
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The standardized residuals, obtained by filtering each of the returns series

with its AIC / BIC-optimal model, should be independent and identically

distributed. This means that the series of squared standardized residuals must

also be independent and identically distributed. Figure 6.2 shows a graphical

display for the estimates of serial correlation at different lags together with

95% confidence bounds. The visual inspection of these correlograms indicates

that an independent and identical distribution seems to be given for all series,

as the autocorrelation remains within the confidence bounds for all lags k =

1, ..., 20. In order to formally test the null hypothesis of zero autocorrelation,

the portmanteau test of Ljung and Box (1978) is performed on the squared

standardized residuals using lags up to the twentieth order. To account for

the estimated parameters, the degrees of freedom of the statistic’s limiting χ2

distribution is adjusted for the number of estimated parameters p (excluding

constants): LBQ(k)
d−→ χ2

k−p. Table 6.1 lists the p-values of the tests at lags

7, 10, 15 and 20 for the equity indices.2 The test results for all tested orders

indicate that there is not enough evidence to reject the null hypothesis of

zero correlation in the squared standardized residuals of any of the univariate

models. The Ljung-Box test therewith supports the findings of the goodness-

of-fit tests and contributes to the conclusion that the univariate models are

well fitted.

Next, the outcome of the estimation of the univariate models of the com-

modities are analyzed. Table 6.2 lists the parameter estimates for the AIC /

BIC optimal models. Neither an autoregressive parameter nor a moving aver-

age parameter for the conditional mean is supported by the criteria for any of

the series. The information criteria favor the exponential volatility model (E)

for every commodity return series. Except for one index, the EGARCH(1,1)

is the optimal model. For the return series of the wheat futures index, the op-

2Note that with the adjustment for the number of estimated parameters, the test is valid
only for k > p. Tsay (2005) finds evidence of increased test power by setting k ≈ log(T );
for the equity and the commodity return series k = log(1300) ≈ 7 and for the multi asset
classes portfolio returns k = log(1222) ≈ 7.
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Figure 6.3: Commodity portfolio: Quantile-quantile plots of the empirical versus the
fitted skewed-t quantiles of the standardized innovations. If the standardized univariate
model residuals adhere to the skewed-t distribution (with parameters for each series listed
in table 6.2) then the data markers will fall on the dashed 45◦ line.
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Figure 6.4: Autocorrelation functions of the squared standardized residuals of the uni-
variate models for the commodity returns.
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timal specification is the EGARCH(1,0), i.e. an exponential ARCH. The low

degrees of freedom parameters for the standardized innovation distribution

for all commodities and particularly for the metals and the grains indicate

that the normal distribution is not a suitable model for these assets. Note

that in comparison to the equity data set, the average innovation distribution

for the commodity models is not as skewed. While the skewness parameter

is negative for the energy and the metal futures indices, it is positive for the

two grains futures indices which indicates that their right tails are longer than

their left tails.

All three goodness-of-fit tests indicate with high p-values that the selected

models adapt very well to the commodity data. This is confirmed by the

quantile-quantile plots in figure 6.3 which shows that with the exception of

two or three outliers in the lower tails of the models for the crude oil futures

index and the silver futures index, the residuals adhere very closely to the

diagonal. Given a well fitting model, the standardized residuals should not

display any autocorrelation. The according plots of the autocorrelation func-

tions are depicted in figure 6.4 and show that for all lags k = 1, ..., 20 and for

all indices in the commodity portfolio, the autocorrelation is inside the 95%

confidence bounds. Additionally, the statistical tests of the null hypothesis of

no autocorrelation in the squared standardized residuals of the models cannot

be rejected for any index series on any lag k = 1, ..., 20. One may thus con-

clude that the univariate models are well capable of capturing the dynamics

in the commodity series.

Table 6.3 presents the estimated univariate model parameters for the multi

asset classes portfolio. The information criteria select the EGARCH volatility

model for all portfolio constituents. The results for the four equity indices do

not differ much in comparison to those for the one and a half years longer

equity data set (see table 6.1). While for the European REITs index an

AR(1)-EGARCH model is AIC / BIC-optimal, no autoregressive component

is supported for the North American REITs index and the two commodity
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indices. The ν parameters are rather low also for the indices of the non-

traditional asset classes which shows that all distributions of the standardized

residuals are fat-tailed. Furthermore, all latter distributions are negatively

skewed, even though significantly less than the ones of the equity index series.
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Figure 6.5: Multi asset classes portfolio: Quantile-quantile plots of the empirical versus
the fitted skewed-t quantiles of the standardized innovations. If the standardized univariate
model residuals adhere to the skewed-t distribution (with parameters for each series listed
in table 6.3) then the data markers will fall on the dashed 45◦ line.
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Figure 6.6: Autocorrelation functions of the squared standardized residuals of the uni-
variate models for the additional multi asset classes portfolio return series.

Figure 6.5 depicts the quantile-quantile plots for the REITs and com-

modity index models which point to a fairly good fit, as the pairs of quan-

tiles lay almost all very close to the main diagonal. The high p-values of

the three goodness-of-fit tests underpin the conclusion of well-fitted marginal

models. The autocorrelation functions of the squared standardized residuals

depicted in figure 6.6 show no ρ(k) outside the confidence bounds for any lag

k = 1, ..., 20. The results for the tests of Ljung and Box further confirm that

there is not enough statistical evidence to reject the null hypothesis of no
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autocorrelation in the squared standardized residuals of the univariate multi

asset classes portfolio models. One may thus conclude that the EGARCH

models are properly calibrated and capable of accurately capturing the fea-

tures of the univariate time series.

Having found well-fitting models for each individual time series, one may

now turn to the dependence structure which links the univariate series to form

a joint distribution.
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Table 6.1
Univariate model parameters: Equity portfolio

Index SMI DAX CAC UKX SPX TSX HS Nik
Model E E E E E E E E

µ 0.002 0.002 0.001 0.001 0.001 0.001 0.002 0.000
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

φ -0.073 -0.088 -0.104
(0.034) (0.034) (0.037)

α0 -0.873 -0.576 -0.583 -0.511 -0.519 -0.311 -0.306 -0.583
(0.382) (0.332) (0.316) (0.451) (0.328) (0.326) (0.234) (0.379)

α1 0.257 0.243 0.224 0.176 0.174 0.194 0.266 0.212
(0.085) (0.078) (0.079) (0.080) (0.075) (0.082) (0.065) (0.085)

γ1 -0.186 -0.133 -0.144 -0.174 -0.162 -0.067 -0.041 -0.109
(0.053) (0.051) (0.049) (0.052) (0.054) (0.046) (0.047) (0.048)

β1 0.884 0.919 0.919 0.934 0.933 0.960 0.955 0.917
(0.125) (0.122) (0.138) (0.123) (0.102) (0.129) (0.081) (0.137)

ν 8.840 7.731 13.784 11.707 9.394 15.069 14.837 8.464
(0.901) (0.912) (1.463) (1.263) (0.696) (1.194) (1.081) (1.257)

λ -0.218 -0.269 -0.272 -0.204 -0.275 -0.186 -0.215 -0.137
(0.040) (0.036) (0.037) (0.038) (0.037) (0.037) (0.043) (0.043)

KS 0.418 0.377 0.996 0.935 0.938 0.782 0.991 0.657
CvM 0.506 0.382 0.962 0.985 0.974 0.706 0.918 0.671
AD 0.589 0.441 0.968 0.973 0.968 0.752 0.843 0.710

LBQ(7) 0.668 0.332 0.152 0.557 0.247 0.412 0.187 0.473
LBQ(10) 0.678 0.629 0.216 0.725 0.264 0.138 0.242 0.631
LBQ(15) 0.793 0.910 0.275 0.459 0.074 0.154 0.368 0.841
LBQ(20) 0.762 0.648 0.247 0.458 0.218 0.085 0.436 0.846

Parameter estimates for the models of the weekly returns over the full sample period from June
30, 1988 to June 5, 2013 for the SMI, DAX 30, CAC 40, FTSE 100 (UKX), S&P 500 (SPX),
S&P/TSX 60, Hang Seng (HSI) and Nikkei 225 index. The Model line indicates the volatility
model selected by the AIC / BIC, where E stands for the EGARCH specification. KS, CvM and
AD report the p-values of the parameter estimation error adjusted results (based on 1,000 simu-
lations) of the Kolmogorov-Smirnov (KS), Cramer-von Mises (CvM) and Anderson-Darling (AD)
goodness-of-fit tests for the models of the conditional marginal distributions. LBQ(k) reports
the p-value of the Ljung-Box Q-statistics (adjusted for the number of estimated parameters) as-
sessing the null hypothesis of no autocorrelation of the squared standardized residuals for k lags.
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Table 6.2
Univariate model parameters: Commodity portfolio

Index OIL HOL GAS GLD SLV CPP WHT CRN
Model E E E E E E E E

µ 0.001 0.001 0.002 -0.000 -0.001 0.001 -0.002 -0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

α0 -0.193 -0.248 -0.167 -0.227 -0.155 -0.249 -6.579 -0.262
(0.843) (0.627) (0.546) (0.367) (0.478) (0.556) (0.094) (0.623)

α1 0.195 0.225 0.197 0.208 0.143 0.222 0.282 0.238
(0.093) (0.062) (0.074) (0.075) (0.062) (0.077) (0.076) (0.057)

γ1 -0.013 0.022 0.014 0.063 0.055 -0.003 0.050 0.034
(0.047) (0.040) (0.048) (0.043) (0.038) (0.045) (0.057) (0.041)

β1 0.969 0.961 0.973 0.970 0.976 0.963 0.960
(0.134) (0.099) (0.088) (0.048) (0.073) (0.082) (0.092)

ν 11.976 18.413 13.272 5.434 5.709 9.664 8.853 6.290
(2.836) (5.586) (2.466) (0.482) (0.544) (1.715) (3.862) (0.677)

λ -0.141 -0.050 -0.069 -0.033 -0.059 -0.034 0.102 0.040
(0.039) (0.038) (0.040) (0.040) (0.040) (0.042) (0.041) (0.035)

KS 0.914 0.971 0.786 0.833 0.421 0.750 0.592 0.204
CvM 0.932 0.977 0.743 0.708 0.455 0.564 0.816 0.413
AD 0.937 0.968 0.731 0.732 0.437 0.475 0.835 0.451

LBQ(7) 0.676 0.145 0.326 0.583 0.912 0.295 0.085 0.096
LBQ(10) 0.788 0.178 0.457 0.792 0.993 0.547 0.229 0.094
LBQ(15) 0.277 0.155 0.369 0.974 0.990 0.572 0.260 0.155
LBQ(20) 0.483 0.219 0.598 0.887 0.998 0.448 0.172 0.078

Parameter estimates for the models of the weekly returns over the full sample period from June
30, 1988 to June 5, 2013 for the crude oil (OIL), heating oil (HOL), unleaded gasoline (GAS),
gold (GLD), silver (SLV), copper (CPP), wheat (WHT) and corn (CRN) futures index. The
Model line indicates the volatility model selected by the AIC / BIC, where E stands for the
EGARCH specification. KS, CvM and AD report the p-values of the parameter estimation er-
ror adjusted results (based on 1,000 simulations) of the Kolmogorov-Smirnov (KS), Cramer-von
Mises (CvM) and Anderson-Darling (AD) goodness-of-fit tests for the models of the conditional
marginal distributions. LBQ(k) reports the p-value of the Ljung-Box Q-statistics (adjusted for
the number of estimated parameters) assessing the null hypothesis of no autocorrelation of the
squared standardized residuals for k lags.
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Table 6.3
Univariate model parameters: Multi asset classes portfolio

Index SMI DAX UKX SPX NAR EPR CNE CEN
Model E E E E E E E E

µ 0.002 0.002 0.001 0.001 0.002 0.000 -0.000 0.000
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.001)

φ -0.077 -0.108 0.913
(0.036) (0.038) (0.557)

α0 -0.782 -0.575 -0.563 -0.525 -0.268 -0.192 -0.058 -0.250
(0.352) (0.356) (0.433) (0.468) (0.847) (0.865) (0.825) (1.146)

α1 0.248 0.249 0.179 0.184 0.268 0.266 0.139 0.217
(0.094) (0.078) (0.083) (0.073) (0.109) (0.087) (0.082) (0.083)

γ1 -0.183 -0.136 -0.196 -0.166 -0.054 -0.056 0.021 0.012
(0.056) (0.053) (0.063) (0.054) (0.076) (0.054) (0.049) (0.055)

β1 0.896 0.919 0.927 0.932 0.963 0.975 0.993 0.961
(0.143) (0.137) (0.140) (0.120) (0.116) (0.114) (0.102) (0.179)

ν 9.946 7.764 11.540 9.414 5.227 8.581 8.854 14.056
(0.993) (0.951) (0.793) (0.675) (0.291) (0.517) (0.415) (1.848)

λ -0.227 -0.282 -0.229 -0.274 -0.071 -0.099 -0.043 -0.091
(0.041) (0.034) (0.034) (0.033) (0.039) (0.047) (0.039) (0.038)

KS 0.301 0.347 0.811 0.984 0.882 0.991 0.575 0.990
CvM 0.413 0.381 0.970 0.981 0.779 0.987 0.640 0.993
AD 0.512 0.416 0.968 0.976 0.797 0.983 0.694 0.998

LBQ(7) 0.624 0.312 0.628 0.197 0.160 0.029 0.039 0.559
LBQ(10) 0.657 0.662 0.765 0.308 0.433 0.083 0.053 0.665
LBQ(15) 0.860 0.886 0.566 0.167 0.433 0.176 0.075 0.286
LBQ(20) 0.848 0.604 0.642 0.369 0.571 0.150 0.235 0.460

Parameter estimates for the models of the weekly returns over the full sample period from Jan-
uary 3, 1990 to June 5, 2013 for the SMI, DAX 30, FTSE 100 (UKX), S&P 500 (SPX), FTSE
EPRA/NAREIT North America Index (NAR), FTSE EPRA/NAREIT Europe Index (EPR),
S&P GSCI Non Energy Index ER (CNE) and the S&P GSCI Energy Index ER (CEN). The
Model line indicates the volatility model selected by the AIC / BIC, where E stands for the
EGARCH specification where E stands for the EGARCH specification. KS, CvM and AD report
the p-values of the parameter estimation error adjusted results (based on 1,000 simulations) of
the Kolmogorov-Smirnov (KS), Cramer-von Mises (CvM) and Anderson-Darling (AD) goodness-
of-fit tests for the models of the conditional marginal distributions. LBQ(k) reports the p-value
of the Ljung-Box Q-statistics (adjusted for the number of estimated parameters) assessing the
null hypothesis of no autocorrelation of the squared standardized residuals for k lags.
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6.2 Static Dependence

A central characteristic often observed in financial time series data is asym-

metric dependence. This asymmetry refers to the observation that in times

of crisis returns have a tendency to be more dependent than in normal times.

There are multiple approaches to quantify this characteristic. For financial

applications it is interesting to measure the ordinary sort of dependence be-

tween returns in the center of the distribution, as well as dependence amongst

extreme events. While the normal distribution is well capable of capturing the

former, it fails with the latter. Risk management, however, mostly deals with

the latter, as it identifies the negative extremes in the return distributions as

critical (Chollete et al., 2009).

6.2.1 Exceedance Correlation and Tail Dependence

Among the recent literature that focuses on extremal dependence, a widely

used measure introduced by Longin and Solnik (2001) is exceedance correla-

tion. The left exceedance correlation between two random variables (z1,t, z2,t)

for a threshold q is defined as the correlation between the realizations that

are below the q-quantiles, denoted by F−1
1 (q) and F−1

2 (q), respectively, with

q ∈ (0, 0.5) and Fi the cumulative distribution function of zi,t, for i = 1, 2.

The right exceedance correlation therewith is the correlation between the real-

izations that are above the (1−q)-quantile, q ∈ (0, 0.5). Formally, exceedance

correlation is

ρ−(q) = Corr (z1,t, z2,t|F1(z1,t) < q, F2(z2,t) < q) ,

ρ+(q) = Corr (z1,t, z2,t|F1(z1,t) ≥ 1− q, F2(z2,t) ≥ 1− q) . (6.6)

In the case of symmetric distributions, one expects ρ−(q) = ρ+(q), ∀ q ∈
(0, 0.5). A main finding of studies employing this measure is that in con-

trast to bull markets financial return series have a tendency to display excess
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Figure 6.7: Exceedance correlations of 100,000 bivariate random numbers simulated from
each of the four copula models. The transformation of all copula parameters to Kendall’s
tau equals 0.4, with Student-t ν = 5.

correlation in bear markets (see e.g. Jondeau, 2010; Longin and Solnik, 2001;

Patton, 2006a). The normal distribution, however, is not capable of capturing

this characteristic. This is shown in figure 6.7, which visualizes the different

exceedance correlation patterns of the four standalone copula models under

consideration. The plot is based on 100,000 bivariate random numbers drawn

from the different copula models, which all imply the identical level of depen-

dence, as measured by a Kendall’s tau of 0.4. For the Student-t, the Frank

and the Gaussian copula, the simulated data confirms that ρ−(q) = ρ+(q).

The data simulated from the Clayton copula, however, implies a very different

pattern of exceedance correlation which reflects the asymmetric dependence

structure of the Clayton copula.

To investigate whether the portfolios under consideration exhibit asymme-

tries in their dependence structures, the concept of the exceedance correlation

is applied to the three data sets. Since this statistic is bivariate in nature,

the average pairwise empirical exceedance correlation is computed across all

return series in one portfolio. Figure 6.8 depicts the average exceedance cor-

relation for the equity index portfolio, while figures 6.9 and 6.10 visualize the

measures for the commodity futures and multi asset classes index portfolio,
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Figure 6.8: Average pairwise exceedance correlations of the international equity index
portfolio. The left side presents the exceedance correlation of the returns, standardized
by their unconditional means and standard deviation. The plot on the right depicts the
exceedance correlations of the standardized innovations obtained by filtering with the ac-
cording univariate GARCH models.

respectively. The left hand side of the plots reports the statistics computed

using the portfolio’s returns, which were standardized by their unconditional

means and standard deviation. The right hand side shows the exceedance

correlations of the standardized innovations of the corresponding AIC / BIC

optimal univariate ARMA-GARCH filter. The statistics are computed for

the thresholds from 0.1 to 0.9 by increments of 0.01. The dashed line shows

exceedance correlations implied by a Gaussian distribution using the average

linear correlation estimated from the data. The graphs give a visualization

of the fact that asymmetric exceedance correlations cannot be captured by a

normal distribution: the threshold correlations in the normal distribution are

symmetric, and also decrease quite rapidly in the tails. The plots however

show that the empirical exceedance correlation patterns are asymmetric: the

downside exceedance correlations are substantially larger than the upside ex-

ceedance correlations. The comparison of the left-hand plots based on returns

with the right-hand plots based on innovations illustrates one advantage of

using copulas. If the univariate models for the marginals were capable of

sufficiently capturing all the asymmetries and nonnormalities in the data, no
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Figure 6.9: Average pairwise exceedance correlations of the commodity futures index
portfolio. The left side presents the exceedance correlation of the returns, standardized
by their unconditional means and standard deviation. The plot on the right depicts the
exceedance correlations of the standardized innovations obtained by filtering with the ac-
cording univariate GARCH models.

asymmetries would be observable in the plots on the right. This is evidently

not the case. Even though the level of the empirical exceedance correlations is

shifted downwards when comparing the right-hand side plot with the left, the

asymmetry pattern seems to be rather similar. This points to a limited role

of the marginal models in capturing multivariate asymmetries, and indicates

the need for copula models which incorporate asymmetries.

Exceedance correlation, however, is not without issues. Firstly, as it is a

bivariate concept, the averaging of empirical exceedance correlations may in-

duce biases. Secondly, the statistic is calculated only from those observations

that are below respectively above the threshold. This means that exceedance

correlation becomes more and more imprecise, the further out into the tails it

is computed. Thirdly, like Pearson’s linear correlation, exceedance correlation

is not independent of the marginal distributions.

While the exceedance correlation is a function of the dependence structure

and of the marginal distributions, the tail dependence is uniquely a function

of the dependence structure, regardless of the marginal distributions (Garcia

and Tsafack, 2011). The concept of tail dependence was first introduced by
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Figure 6.10: Average pairwise exceedance correlations of the multi asset classes index
portfolio. The left side presents the exceedance correlation of the returns, standardized
by their unconditional means and standard deviation. The plot on the right depicts the
exceedance correlations of the standardized innovations obtained by filtering with the ac-
cording univariate GARCH models.

Sibuya (1960) and advanced by Ledford and Tawn (1996). The coefficient of

tail dependence between two assets is the probability that one of the two assets

undergoes a large loss (or gain) given that the other asset also undergoes a

large loss (or gain). To forecast the risk of a portfolio, lower tail dependence

is of particular interest. For two random variables (z1,t, z2,t) with cumulative

distribution functions F1 and F2, the coefficient of lower tail dependence is

given by

λl := limq→0+P
(
z2,t ≤ F−1

2 (q)|z1,t ≤ F−1
1 (q)

)
, (6.7)

provided that a limit λl ∈ [0, 1] exists. If λl > 0, (z1,t, z2,t) are lower tail

dependent and in case λl = 0, the variables are asymptotically independent

in the lower tail. For continuous distributions F1 and F2, Bayes’ rule may be

applied to obtain a simple expression for the population lower tail dependence:

λl = limq→0+

P
(
z2,t ≤ F−1

2 (q)|z1,t ≤ F−1
1 (q)

)
P (z1,t ≤ F−1

1 (q))
. (6.8)

Note that sample tail dependence cannot be taken simply as the limit in (6.8),
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since by setting q close enough to zero one is assured that the estimate will

be zero. The estimation of the lower tail dependence coefficient of a finite

sample thus requires an alternative approach. McNeil et al. (2005) show that

the coefficients of tail dependence are measures that depend only on the copula

of (z1,t, z2,t), such that (6.8) becomes

λl = limq→0+

C(q, q)

q
. (6.9)

The calculation of these lower tail dependence coefficients is straightforward

if the copula C has a simple closed form, like for example the Clayton copula.

While the asymmetric Clayton copula is asymptotically independent in the

upper tail, its lower tail dependence coefficient is

(2q−θ − 1)
−1/θ

q
= (2− qθ)−

1
θ ,

−→ 2−1/θ = λl. (6.10)

For the Student-t copula, McNeil et al. (2005) show that the lower tail de-

pendence coefficient is (equal to the upper one) given by

λ = 2tν+1

(
−

√
(ν + 1)(1− ρ)

1 + ρ

)
. (6.11)

Provided that ρ > −1, the copula of the bivariate Student-t distribution thus

exhibits both upper and lower tail dependence. The t-copula is tail dependent

even for negative or zero correlation. Among the copulas considered in this

thesis, the Frank and the Gaussian copula do not exhibit neither lower nor

upper tail dependence being asymptotically independent in both tails (Mc-

Neil et al., 2005). The illustration of the mixture copula concept in figure

3.1 visualizes the differences in tail behavior between the Gaussian and the

Clayton copula. The pronounced density of the Clayton copula at the lower

left corner depicts its lower tail dependence. To determine the tail depen-
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dence coefficients given by (6.10) or (6.11) of the data sets under scrutiny, the

according copula parameters first have to be estimated.

6.2.2 Static Copulas

To calibrate the static copulas, the filtered standardized residuals from the

univariate models are transformed to uniform variates by inversion using the

corresponding cumulative skewed-t distribution function. According to the

multi-stage estimation procedure, the same uniform variates are used for the

estimation of the different copulas. In this chapter, the copulas are estimated

using the data of the entire sample period. Besides the four standalone static

copulas presented in chapter 3, three static mixture copulas are constructed by

combining the asymmetric Clayton copula with the other three (symmetric)

copulas. The combination of the two Archimedean copulas into a mixture

construct yields a parsimonious model which is able of capturing lower tail

dependence. Mixing the Clayton with the Gaussian copula combines the

parameter plurality of the elliptical copula with the lower tail dependence

feature of the Clayton copula and creates a flexible model which is capable of

capturing asymmetries in the dependence structure. Adding the Clayton to

the Student-t copula finally results in an adaptive model capable of modeling

different degrees of upper and lower tail dependence.

Table 6.4 lists the parameter estimates for all static copulas for the eq-

uity indices. The standard errors, which are displayed in parentheses are

computed as outlined in section 4.2 with 1,000 bootstrap replications. The

Archimedean copulas capture the dependence structure each with a single

parameter θF (Frank copula) and θC (Clayton copula). The θ parameters of

the two Archimedean copulas seem very different at first sight, but as their

impact depends on each generator function, a direct comparison is not very

meaningful. Using the functional relationship between the two copula param-

eters and Kendall’s tau outlined in section 4.1, the according rank correlation

measures are τF = 0.3455 and τC = 0.2631, which can be seen as the av-
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erage bivariate rank correlation. With the calibrated Clayton copula, lower

tail dependence can be quantified by inserting θC into equation (6.10). The

resulting tail dependence coefficient of 0.379 indicates that there is substantial

dependence among the extreme negative returns of the different equity index

series. Since the Frank copula is not capable of capturing tail dependence,

it has to account for this relation between the extreme losses by an overall

higher dependence reflected in the larger average rank correlation τF .

To gauge how well the different copula models fit the data, standard

goodness-of-fit tests based on the comparison with the empirical copula em-

ploying the test statistics in equations (6.3), (6.4) and (6.5) are not applica-

ble. Patton (2013) emphasizes that such tests rely on the empirical copula to

serve as a non-parametric estimate of the true conditional copula, but when

the true conditional copula is not constant, the empirical copula cannot be

used for such tests. Therefore, following Dias and Embrechts (2010), Guégan

and Zhang (2010) and Chollete et al. (2011), the information criteria outlined

in section 2 are used to rank the fit of the different models.

The higher log likelihood value and therewith - as both copulas have a

single parameter - lower AIC and BIC indicate that the Clayton copula pro-

vides a better fit to the data among the two standalone Archimedean copulas.

The Clayton’s superiority is due to its ability to capture the returns’ lower tail

dependence. The mixture of the two Archimedean copulas proves to be better

capable to adapt to the returns, based on the analysis of both information

criteria. Intuitively, the Frank-Clayton mixture model improves the adapt-

ability of the Frank dependence structure by creating a possibly asymmetric

structure allowing for lower tail dependence. With 58.7% and a low stan-

dard error of 6.5%, the Clayton copula has the larger weight in the mixture

structure. Clayton’s θC is further substantially higher in the mixture than in

the standalone Clayton copula, which reflects the increased flexibility of the

mixture copula to adapt to the data. The Clayton proportion of the mix-

ture copula captures the asymmetric dependence, while the Frank proportion

captures symmetric dependence. The higher standard errors of the Clayton



80 Chapter 6. In-Sample Analysis

and particularly of the Frank copula parameter shows that the increase in

flexibility comes at a price of less reliable parameters.

With their correlation matrices, the elliptical copulas contain a multiple

of the number of parameters in the Archimedean copulas. Their increased

likelihood value thus reflects the additional number of parameters. However,

both information criteria account for the number of parameters, and both

indicate a better fit of the standalone elliptical copulas compared to both the

standalone and the mixture Archimedean copulas. The degrees of freedom

parameter ν = 10.655 of the Student-t copula is to be considered as rather

low which confirms tail dependence in the return data. However, the Student-

t copula implies the same degree of lower and upper tail dependence, even if

only the former is present, as insinuated by figure 6.8. This drawback is ad-

dressed by mixing the asymmetric Clayton with one of the symmetric elliptical

copulas. The weight of the Clayton in the Gaussian-Clayton mixture amounts

to 19.9%, however θC is rather low. Furthermore, the uncertainty in the Clay-

ton copula parameter indicated by the according standard error is high. As

one might expect, the Student-t-Clayton mixture displays a higher ν, since

the Clayton copula fraction of the mixture accounts for lower tail dependence.

However, for both the Gaussian-Clayton and the Student-t-Clayton mixture

copula, the standard errors do not allow to conclude with certainty that θC is

different from zero. Using the information criteria to rank the fit of the static

models, the Student-t-Clayton mixture fits best according to both AIC and

BIC, followed by the Student-t copula and the Gauss-Clayton mixture.

Next, the parameters of the copulas for the commodity indices which are

listed in table 6.5 are analyzed. Comparing the fit of the two Archimedean

copulas the Clayton is more suitable to describe the dependence compared to

the Frank copula which indicates that the commodity index returns are lower

tail dependent. The lower tail dependence coefficient amounts to 0.115, which

points to a substantially lower probability of joint negative extreme returns of

the commodity indices compared to the equity indices. There is a large differ-
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ence in likelihood value and in both information criteria values between the

purely Archimedean copulas and the other dependence models which contain

an elliptical copula. The Archimedean copulas’ likelihood values range from

661 for the Frank copula to 788 for the Frank-Clayton mixture while the other

copulas’ likelihood are more than three times as large, all exceeding 2746.

This substantial difference can be attributed to the fact that the standalone

Archimedean copulas have to capture the dependence structure with only one

parameter and the pure Archimedean mixture only contains three parameters.

While for the equity indices this also results in a lower likelihood compared

to the elliptical models, for the commodity indices the difference is more pro-

nounced. The reason lies in the dependence structure which is much more

diverse for the commodities compared to the equities. This diversity can be

seen for example in the range of the Gaussian copula correlation matrix which

for the equities includes values from 0.381 (SMI:NIK) to 0.793 (DAX:CAC),

while for the commodities the values span from 0.082 (OIL:WHT) to 0.875

(OIL:HOL). The low likelihood values of the Archimedean copulas express the

difficulty of these dependence models to capture such a diverse structure with

only one respectively three parameters. Containing a correlation matrix, the

rest of the models have at least 28 parameters to characterize the dependence

structure among the eight indices. This allows a more precise fit which ma-

terializes in higher likelihood values and in lower values of both information

criteria.

The ranking of the model fit based on both the AIC and BIC is as follows:

the Student-t-Clayton mixture is best capable to characterize the commod-

ity indices’ dependence followed by the Student-t copula and in third place

the Gaussian-Clayton mixture. This ranking is in analogy to the one for the

equity index data. The degrees of freedom of the Student-t copula of 16.804

indicate tail dependence which is substantiated by the improved fit (i.e. lower

AIC and BIC values) of the Student-t copula compared to the Gaussian one.

In the Student-t-Clayton mixture ν amounts to 18.579 which shows that the

Clayton copula, even though it only accounts for 2.7% of the overall mixture,
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covers a part of the lower tail dependence allowing for the increased degrees of

freedom in the Student-t fraction. Even though θC is lower compared to the

Student-t-Clayton mixture, the Gaussian-Clayton mixture substantiates the

conclusion of lower tail dependence in the data with a higher mixture weight

wC .

The analysis of the static copula parameters for the multi asset classes

portfolio, listed in table 6.6, is done next. Clayton’s θC implies a lower tail

dependence coefficient of 0.191. This insinuates that there is a higher proba-

bility of observing a joint negative return in the multi asset classes portfolio

than in the commodity portfolio. Compared to the equity index portfolio,

which has the largest tail dependence coefficient of the three data sets, this

probability is about half as large. Both the larger likelihood value as well as

the lower values for both information criteria corroborate the conclusion that

the returns of the multi asset classes portfolio are lower tail dependent.

Similar to the commodity index portfolio, the dependence structure is

quite heterogeneous with values of the Gaussian copula correlation matrix

ranging from close to independence with 0.030 (SMI:CEN) to rather strong

dependence between the SMI and the DAX: 0.704. The low likelihood values

and the comparably large AIC and BIC values of the standalone Archimedean

copulas reflect their difficulty of capturing this heterogeneity in the depen-

dence with only one parameter. The best fit among the purely Archimedean

copulas is shown by the Frank-Clayton mixture, which is not surprising, as it

comes with two additional parameters and nests both Archimedean copulas.

About three quarters of the Archimedean mixture are formed by the Clayton

copula with a rather high θC of 0.708 while the rest is accounted for by a

Frank copula with a very low θF of 0.106.

The dependence models containing an elliptical copula are much more ca-

pable to characterize the dependence structure as their likelihood values are

about twice as large compared to the purely Archimedean models and their

AIC / BIC values are about twice as low. The Student-t copula accounts
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for the tail dependence in the returns with a rather low degrees of freedom

parameter of 13.905. The joint negative extreme returns are captured in the

Gaussian-Clayton mixture copula by the Clayton fraction of 16.1% with a

θC of 0.237 while in the Student-t-Clayton mixture both the ν of 16.876 and

the Clayton part of the mixture amounting to 12.8% capture the lower tail

dependence in the series. According to both information criteria, the best

fitting model is the Student-t-Clayton mixture. The AIC ranks the Gaussian-

Clayton in the second place and the Student-t copula in the third. According

to the BIC, which imposes a larger penalty for additional parameters, the

Student-t is ranked second and the Gaussian-Clayton is third. However, the

differences in AIC respectively BIC values for the copulas on ranks two and

three are negligibly small.

Overall, the in-sample analysis shows that the best fitting static depen-

dence model for each of the three data sets is the Student-t-Clayton mixture

copula. The two models with the second-best fit are the Gaussian-Clayton

mixture copula and the Student-t copula. All Archimedean copulas rank far

behind with the standalone Archimedean copulas having the largest AIC /

BIC values and the lowest likelihood value, respectively. With a lower tail

dependence coefficient of 0.379, the equity index portfolio has the highest

probability of a joint extreme negative return, followed by the multi asset

class portfolio with λl = 0.191. With a lower tail dependence coefficient of

0.115, the commodity futures index portfolio displays the lowest probability

of a joint crash of the portfolio constituents.
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6.3 Time-Varying Dependence

A plethora of evidence suggests that correlations between asset returns vary

over time.3 To visualize the evolution of the dependence level between the

asset returns over time, time series plots of rolling six months rank correlation

are presented. For the international equity index portfolio, figure 6.11 shows a

plot of the six months rolling Kendall’s tau computed via the one-to-one map-

ping of Frank’s multivariate copula parameter θF and Kendall’s tau stated in

(3.38). The plot further includes 90% bootstrap confidence intervals obtained

from 500 bootstrap replications of the data. The visualization confirms that

the level of dependence between the equity indices measured by the multi-

variate Frank copula is not constant but displays some rather abrupt changes

over time. Furthermore, dependence seems to have increased substantially

over the time horizon under scrutiny: starting at 0.2 the measure hovered

around 0.2 to 0.3 in the first third of the sample period and rose to about 0.5

in the last third of the sample. The structure of the dependence also does not

appear to be constant. This is visualized by the lower tail dependence of the

international equity index portfolio in figure 6.11. The plot shows the evolu-

tion of the lower tail dependence coefficient computed with equation (6.10).

In the first half of the observation period, lower tail dependence fluctuated

around 0.1 while in the second half it increased to about 0.3. One of the most

prominent surges in tail dependence is in the year 2001 coinciding with the

market turmoil around the events of 09/11 and a second one goes along with

the outbreak of the financial crisis post 2007.

Figure 6.12 depicts the level of dependence of the commodity data set

over time. The evolution can be fragmented into two distinct periods: from

1988 until about 2005, the level of dependence remained very low hovering

around 0.1 with little variation. From the year 2005 onwards, variations in

the level of dependence surged, along with a significant increase of the rank

correlation. The two periods are also clearly shown by the lower tail depen-

3See references in section 3.3.
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dence coefficient over time, depicted in figure 6.12. Until about 2005, there

was virtually no lower tail dependence among the returns of the commodity

futures indices. Starting in 2005, substantial spikes in tail dependence can be

observed, indicating that along with the level of dependence, the structure of

dependence was as well subject to change.
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τ
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90% Confidence Interval
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Lower Tail Dependence

90% Confidence Interval

Figure 6.11: Kendall’s tau implied by the multivariate Frank copula (upper graph) and
lower tail dependence implied by the multivariate Clayton copula (lower graph) of the inter-
national equity index portfolio over a six months rolling window along with 90% bootstrap
confidence intervals obtained from 500 bootstrap replications of the data.

The recent literature on the financialization of commodities ascribes this

change to the emergence of commodities as an asset class, which has become

increasingly held by institutional investors in search for diversification benefits

(see e.g. Basak and Pavlova, 2013; Büyükşahin and Robe, 2014; Singleton,

2014). Indeed, beginning in the year 2004, institutional investors have been

building up substantial positions in commodity futures. The U.S. Commodity

Futures Trading Commission (CFTC) estimates in its staff report (2008) that

institutional holdings have increased from USD 15 billion in 2003 to over USD
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200 billion in 2008. Many of the institutional investors hold commodities

through commodity futures indices, such as the Standard & Poors Goldman

Sachs Commodity Indices (SPGSCI) (Basak and Pavlova, 2013).

The level of dependence of the multi asset classes index portfolio over time,

visualized by the multivariate Frank copula implied Kendall’s tau in figure

6.12, also varies substantially over the entire sample period. There seem to

be two distinct periods of dependence: before the year 2001, Kendall’s tau

remained around 0.2 with little variation. After 2001, the level of dependence

is increasing, reaching peaks of more than 0.5. Tail dependence over time is

depicted in the bottom graph of figure 6.12 and underpins the segmentation

into two different periods separated around the year 2001. During the first

period, one cannot say with certainty that there was any tail dependence at

all, as the confidence bands almost always included a coefficient of zero. After

2001, the returns of the equity, commodity and REIT indices display some

tail dependence which then increases significantly with the propagation of the

financial crisis in 2008. The crisis seems to emphasize the link between the

equity, commodity and real estate market, which is expressed by surges in tail

dependence and overall level of dependence.

The analysis of the dependence over time confirms that there are substan-

tial changes in both structure and level of dependence during the observation

period for all the portfolios under scrutiny. Neglecting this time variation

might result in inaccurate risk forecasts. To capture the dynamics of the vari-

ations in level and structure of the dependence, two approaches are followed

in this thesis: a regime switching model and fully dynamic copulas.

6.3.1 Regime Switching Copulas

This section presents the results of the estimation of the two-regime and

three-regime switching copula models calibrated to the entire sample data.

All copula models are estimated using the same residuals which result from
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Figure 6.12: Kendall’s tau implied by the multivariate Frank copula and lower tail depen-
dence implied by the multivariate Clayton copula of the commodity futures index portfolio
(upper part) and the multi asset classes portfolio (lower part) over a six months rolling win-
dow along with 90% bootstrap confidence intervals obtained from 500 bootstrap replications
of the data.
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the filtering with the univariate models listed in tables 6.1 to 6.3. The first

three regime switching models combine the elliptical copulas into a two-regime

setup. While the Gaussian/Gaussian (G/G) model allows for two regimes

with different levels of dependence, it does not capture tail dependence in

any of them whereas the Gaussian/Student-t (G/T) copula allows for tail de-

pendence in one regime. The underlying idea for the latter is that returns

may have (presumably tranquil) periods without tail dependence, which may

be well described with a Gaussian copula, while the other (presumably tur-

bulent) periods with tail dependence are described by the Student-t copula.

The Student-t/Student-t (T/T) regime switching model then allows for tail

dependence in both regimes.

As the purely elliptical models are symmetric, the Gaussian/Student-t

model is enhanced by mixing either one with the asymmetric Clayton which

firstly results in the Gaussian/Student-t-Clayton mixture (G/TC). This setup

is thus capable of capturing different levels of lower and upper tail dependence

in one regime. Secondly, the Student-t/Gaussian-Clayton mixture copula

(T/GC) allows for equal (lower and upper) tail dependence in one regime

and an asymmetric dependence with a probability of joint negative extreme

returns in the other regime.

In addition to the two-state models, regime switching copulas with three

separate regimes are constructed. Firstly, the Gaussian/Clayton/Frank cop-

ula (G/C/F), which has an elliptical and an Archimedean regime modeling

the interrelation between the returns without tail dependence and one asym-

metric regime with lower tail dependence. Secondly, the Gaussian/Student-

t/Clayton copula (G/T/C), which has one regime with asymptotic indepen-

dence in the tails (Gaussian), a second regime with equal lower and upper tail

dependence (Student-t) and a third regime with only lower tail dependence

(Clayton). Note that the number of possible combinations of the standalone

copulas presented in chapter 3.2 into regime switch structures exceeds the

amount of models presented in this thesis. In particular, models with three

regimes consisting of all elliptical copulas are not considered, as with the in-
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crease in the number of parameters these models are far from parsimonious

and would require an even larger calibration period.

The regime switching copula estimation results for the equity index port-

folio is discussed next. Table 6.8 presents the parameter estimates for the

equity indices. The first five models are two-regime models of which three

contain only elliptical copulas. The regimes’ parameters are listed in table 6.8

in the order indicated by the abbreviated name, i.e. for the G/T regime switch

copula, the Gaussian regime parameters are listed under Regime 1 and the

Student-t copula parameters under Regime 2. The results for the two-regime

models indicate that the maximum likelihood estimation procedure identifies

a high and a low dependence regime, which is consistent with the findings of

Chollete et al. (2009) and Braun (2011). Note that the labeling of high respec-

tively low dependence regimes is done ex post, i.e. by analyzing the results

of the maximum likelihood estimation. The copula correlation coefficients in

the more dependent regime are larger for all index pairs which means that

all returns in the portfolio are more dependent when the economy is in that

regime. The high dependence regime features some very large correlations

such as for example between the German DAX and the French CAC, where

it exceeds 0.9 in every model. In contrast, the DAX:CAC copula correlation

in the low dependence regime is as low as 0.5. Generally, the highest copula

correlations are between the returns of the European equity indices.

The Student-t copula appears to be particularly well capable of describing

periods of high dependence, as it is responsible for the high dependence regime

in every structure it is a part of. This also holds for the three-regime struc-

tures, where the comparison of the level of dependence can be made using the

transformations in (3.38). For the G/T/C copula, the according Kendall’s tau

for the average copula correlation amounts to 0.456 for the Student-t, 0.232

for the Gaussian and Kendall’s tau corresponding to the Clayton copula with

θC = 1.179 equals 0.371. For the G/C/F regime switch copula, the average

Gaussian copula correlation translates to a Kendall’s tau of 0.458, while the
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parameters of the Clayton and the Frank copula correspond to Kendall’s tau

of 0.197 and 0, respectively. The fact that the Student-t copula consistently

models the high dependence regimes reflects its versatility due to the parame-

ter plurality (in comparison to the Archimedean copulas) and its capability to

model tail dependence (in contrast to the Gaussian copula). Indeed, the de-

grees of freedom of the Student-t copulas in the mixture structures is between

8.884 and 10.434, which clearly indicates that the returns are tail dependent

in the high dependence regimes.

In the G/T/C model, besides a high and a low dependence state, the

third regime seems to model some middle or ”normal” state of the economy

with a dependence level midway between the ones of the extreme states. In

contrast to what one might expect, this ”normal” state is not modeled by the

Gaussian copula but by the Clayton copula. The low probability of staying

in the third regime conditional on being in regime three suggests that this

regime is more of a pass-through between the other regimes which both display

much higher probabilities p1|1, p2|2. Following Hamilton (1989), the transition

probabilities can be used to compute the probability to stay k weeks in regime

j as P (Dj = k) = pk−1
j|j (1−pj|j), where Dj denotes the number of periods the

Markov chain is in state j. This implies that the expected duration of this

state is

E(Dj) =
∞∑
k=1

kpk−1
j|j (1− pj|j) =

1

1− pj|j
. (6.12)

Table 6.7 lists the expected durations of the regimes in the different models.

The top part refers to the equity data set and shows that for the two-regime

models, the high dependence regime (marked in bold) has a much longer

expected duration compared to the other regime(s) in every copula model.

The table illustrates that although the transition probabilities p1|1 and p2|2

are high probabilities (exceeding 0.82 for every two-state model), they reflect a

very different regime persistence. The additional length in expected duration

in the two-regime setups range from one third in the T/T model to more

than two thirds in the T/GC structure. The differences in the three-regime



94 Chapter 6. In-Sample Analysis

Table 6.7
Expected regime durations E(DRj ) in weeks

G/G G/T T/T T/GC G/TC G/T/C G/C/F

Equities

E(DR1
) 13 8 8 22 11 5 17

E(DR2
) 9 13 6 13 13 11 5

E(DR3
) 1 3

Commodities

E(DR1
) 4 6 8 9 10 7 24

E(DR2
) 4 5 8 13 8 5 1

E(DR3
) 1 1

Multi Asset Classes

E(DR1
) 8 10 7 16 8 5 8

E(DR2
) 9 14 6 14 11 8 1

E(DR3
) 2 6

This table presents the expected regime durations under the regime switching models for
all three data sets under consideration. The durations are computed by applying (6.12)
to the transition probabilities listed in the tables 6.8, 6.9 and 6.10. The expected du-
ration of the high dependence regime is marked in bold. The copulas are abbreviated:
Gaussian (G), Student-t (T), Clayton (C), Frank (F), Gaussian-Clayton mixture (GC)
and Student-t-Clayton mixture (TC). The forward slash indicates the separation of the
regimes.

models are even larger. However, the minimal expected duration of the third

regime in the G/T/C model suggests that this regime may be irrelevant. In

the G/C/F model, the regime modeled by the Frank copula has a parameter

θF of virtually zero, which means that in this setup there are times when the

returns are independent. Even though the transition probability p3|3 is not

as low as in the other three regime model, it has the second lowest expected

duration (three weeks).

Comparing the fit of the models based on the information criteria, it is evi-

dent that the differences between the AIC / BIC values of the regime switching

models are much smaller compared to the static copulas. The setup that all

regime switching models contain at least one correlation matrix and there-

with have a higher average number of parameters explains the higher average

likelihood of the regime switch models compared to the static copulas. Ac-

cording to both AIC and BIC, the best fitting model is the T/GC followed
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by the G/G and the G/T. Both information criteria further clearly indicate

that despite having more than twice the number of parameters, the Gaus-

sian/Gaussian regime switch copula fits the data much better than the static

Gaussian copula. However, adding a third regime as done with the G/T/C

and G/C/F model does not improve the fit. To the contrary, amalgamating

the Clayton copula into a mixture with an elliptical copula to model one of

two regimes (as done in the G/TC and T/GC models) yields a better fit than

letting each of the involved copula separately model one regime (as done in

the G/T/C). Based on the lower values of both information criteria and on

the small expected duration of a third regime, one may conclude that two-

regime models are more suitable to capture the dynamics of the equity index

portfolio.

Figure 6.13 depicts the Kim filtered evolution of the state probabilities

over the entire sample period (see (3.28)) for the equities. All seven models

depict a shift from low to high dependence over the observation period. After

the year 2001, all models remain in the high dependence regime (marked with

the solid black line) for the rest of the time. Comparing the Kim filtered

regime paths with the rolling Kendall’s tau in figure 6.11, one can identify

the intermediate heights of the average rank correlation around 1991, 1995

and before the turn of the millennium in the Kim filtered regime probabilities

of each model, since these heights are captured by a high dependence regime

probability of close to one in every model. Furthermore, for the second half

of the period under scrutiny, the high dependence regime clearly takes over

in every regime switching model, having a regime probability of close to one

for the vast majority of the time.

The regime probability path of the G/T/C model confirms the finding of

the expected regime duration that the Clayton regime is not relevant, since

the according regime probability remains close to zero at all times. The regime

probabilities of the G/C/F copula over time show that while the third regime

has a few short spikes in probability in the first half of the observation time,

it remains at zero for the rest which indicates that this third regime is overall
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of subordinate importance. Taken as a whole, the Kim filtered regime prob-

abilities show that most usually it is quite clear which regime the system is

in at every point in time as the Kim filtered probabilities are close to either

zero or one most of the time.

Next, the results for the commodity futures portfolio are analyzed. The

according parameter estimates are listed in table 6.9. In all commodity regime

switching models with two states, the parameter estimates indicate one high

and one low dependence regime. Some copula correlations which are low al-

ready in the static Gaussian copula (see table 6.5) are now close to zero in

the low dependence regime. This is the case for example for the copula corre-

lation between crude oil (OIL) and wheat (WHT) in the Gaussian regime of

the G/T model, where it is as low as 0.025. The degrees of freedom of 9.557

in the high dependence Student-t regime of the G/T copula suggests that tail

dependence is a feature of this state of the economy. This is consistent with

the impression one obtains by analyzing figure 6.12. However, in the T/T

model both ν parameters are equally low suggesting tail dependence in both

regimes. Then again, the weights of the Clayton copula in the mixture struc-

tures of the T/GC and G/TC models and the according values of θc are lower

compared to the models for the equity indices, indicating that asymmetries

in the dependence structure may be a less prominent feature for commodity

futures index returns.

To compare the levels of dependence in the different regimes of the models

with three regimes, the mapping in equation 3.38 is used. For the G/C/F

model, the θC of 0.304 transformed into a rank correlation measure yields

a Kendall’s tau of 0.1319, the Frank copula parameter of θF = 0.506 corre-

sponds to 0.056 while the average Gaussian copula correlation translates to a

Kendall’s tau amounting to 0.184. The second regime (Clayton) thus forms

the midpoint dependence regime. However, the importance of the Clayton

regime is negligible which can be seen in both the probability p2|2 of virtually

zero and the according minimal expected regime duration listed in table 6.7.
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This suggests that the Clayton regime in the G/C/F structure is irrelevant

and that the other two regimes would be sufficient to capture the depen-

dence structure of the commodity futures indices. This finding is substan-

tiated by both information criteria, which display the highest values for the

G/C/F model. The ranking of the model fit according to both BIC and AIC

is: Student-t/Gaussian-Clayton mixture in the first, the Gaussian/Student-

t-Clayton mixture in the second and the Gaussian/Student-t/Clayton in the

third place.

The expected regime durations in the mid-section of table 6.7 show that

the persistence of the regimes in the purely elliptical models is identical for

the G/G and the T/T while being only one week apart in the G/T copula.

As soon as asymmetric dependence is introduced to the model, the differences

in expected duration become larger. Analogous to the models for the equity

data, the high dependence regime in these models has a higher persistence.

Except for the G/T model, the high dependence regime for the commodities

is modeled by the Gaussian copula, which in contrast to the equity returns

points to insignificant tail dependence in the high dependence regime of the

commodity returns.

The Kim filtered regime probabilities over time are depicted in figure 6.14.

At first sight it becomes apparent that the plot for the G/C/F model is dif-

ferent to the other six, as the probability of the Gaussian regime is close to

one almost all the time. The Clayton and the Frank copula probabilities in

this G/C/F model are virtually zero, which is also reflected by their minimal

expected regime duration in table 6.7. With two of three regimes being in-

significant, the G/C/F regime switch copula is evidently an inadequate model

for the data at hand. The G/T regime probability paths in figure 6.14 differ-

entiates itself as it gives the least clear idea about which regime the system

was in at any point in time until about 2007. However, all regime probability

paths capture the spikes in dependence identified in figure 6.12 by the high

dependence regime. In contrast to the corresponding plot 6.13 for the equi-

ties, the regime switching models do not show a consensus shift from the low
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to the high dependence regime over the observation period even if such a shift

could be expected from analyzing figure 6.12.

Table 6.10 shows the regime switching models’ parameter estimates for

the multi asset classes portfolio, which are now put into focus. In accordance

with the results for the commodity and the equity data set, the models with

a two-state Markov chain contain a high dependence and a low dependence

regime. The copula correlations in the latter regimes attain negative values

for the pairs containing the energy futures index (CEN), which suggests that

this index provides interesting diversification potential in this state of the

economy. Also in the high dependence regimes, the SPGSCI energy futures

index displays the lowest correlation with the other indices. Congruent with

the results for the equity data set, the Student-t copula models the high de-

pendence regime in every dependence structure it is included in. The rather

low ν parameters of these Student-t copulas indicate the tail dependence in

this state of the economy. The Gaussian copula is incapable of capturing this

tail dependence. As a result, the Gaussian copula modeling the high depen-

dence regime in the G/G structure (regime 2) displays higher correlations than

the Student-t copula, which models the high dependence regime in the G/T

setup and captures the dependencies of the extreme movements with its low

degrees of freedom parameter. However, the T/T model suggests that there

is tail dependence also in the low dependence regime, since the ν parameters

of both regimes are equally low. The results for the T/GC model corroborate

this interpretation, as the weight of the Clayton copula which captures lower

tail dependence with θC = 0.443 in the Gaussian-Clayton mixture construct

amounts to 15.9%. In the G/TC model both the Student-t and the Clay-

ton copula capture lower tail dependence in the same regime. The according

mixture weight of the Clayton copula wC is smaller with a larger θC , which

shows that the Clayton fraction models the dependence of the rare but highly

dependent extreme negative returns.

To compare the level of dependence in the regimes of the three-regime
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models, the transformation of the average G/T/C copula correlation yields a

Kendall’s tau of 0.174 for the Gaussian, 0.324 for the Student-t copula, while

the mapping of Clayton’s θC to Kendall’s tau yields 0.141. Interestingly, the

regime with the lowest level of dependence is modeled by the Clayton copula.

This could mean that despite a low level of dependence in that state of the

economy, there is lower tail dependence. It could however also be that with

the larger number of parameters, the Student-t and the Gaussian are simply

better equipped to adapt to the periods of higher dependence. Comparing the

Kendall’s tau transformations of the G/C/F model shows that the Gaussian

copula models the higher (ρτ = 0.256), the Clayton is responsible for the

average (ρτ = 0.132) and the Frank captures the low dependence periods

(ρτ = 0.056).

As for the commodity data set, the second regime in the G/C/F copula

governed by the Clayton copula can be classified as irrelevant based on its

transition probability p2|2 of zero. This evidently translates into the minimal

expected regime duration of 1, as depicted in the bottom part of table 6.7.

Table 6.7 further shows that the high dependence regimes are more persistent

in every regime switching model for the multi asset classes portfolio, as the

according expected regime durations are larger than the ones for the lower,

respectively average dependence regimes. Based on the values of the AIC /

BIC, the dependence model that best fits the returns of the multi asset classes

portfolio is the Student-t / Gaussian-Clayton mixture copula, followed by the

G/T regime switch copula. The third best fit, according to the AIC is the

G/T/C. However, the BIC - which imposes a larger penalty for additional

parameters - ranks the T/T model in third place as it attains the identical

likelihood value as the G/T/C with less parameters.

The Kim filtered regime probability paths over time for the multi asset

classes portfolio are depicted in figure 6.15. All probability evolutions share

two distinguishable periods which are segmented around the year 2001. While

in the first part of the observation period the low dependence regime (marked
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in gray) prevailed, the post 2001 era appears to be dominated by the high

dependence regime. The high dependence probability of the G/C/F copula

remains close to one for the post millennium period but has the noisiest evo-

lution of all before that. However, the G/C/F has the lowest likelihood, the

highest information criteria values and a transition probability p2|2 = 0 for

the Clayton regime all indicating an inferior fit compared to the other six

regime switching models.

The five models containing two regimes ascribe the same time frames to

the high respectively low dependence regimes. The clearest idea about which

regime the system was in at any point in time is given by the T/GC copula,

which shows clear-cut regime switches with regime probabilities of close to

either zero or one most of the time.
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Figure 6.14: Commodity portfolio: Kim filtered regime probabilities of the various regime
switching copula models over the entire sample period. The copulas are abbreviated: Gaus-
sian (G), Student-t (T), Frank (F), Clayton (C), Gaussian-Clayton mixture (GC) and
Student-t-Clayton mixture (TC). The solid black line marks the high dependence regime.
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Figure 6.15: Multi Asset Classes Portfolio: Kim filtered regime probabilities of the various
regime switching copula models over the entire sample period. The copulas are abbreviated:
Gaussian (G), Student-t (T), Frank (F), Clayton (C), Gaussian-Clayton mixture (GC) and
Student-t-Clayton mixture (TC). The solid black line marks the high dependence regime.
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6.3.2 Dynamic Copulas

The fully dynamic copula models presented in section 3.4 are calibrated to

each of the three portfolios based on the same residuals obtained by filtering

the entire sample period with the univariate models in 6.1. In contrast to the

regime switching models in the previous section, where the copula parameters

remain static and time variation in the dependence structure is induced by

the latent Markov chain, the parameters of the dynamic copulas are allowed

to change in every time step. The considered time-varying models are the

dynamic versions of the static copulas applied in section 6.2.2, i.e. dynamic

versions of both Archimedean and elliptical copulas and dynamic mixtures

of these dynamic copulas. This allows for a direct comparison of a copula

versus its dynamic counterpart with regards to in-sample fit and predictive

power (see section 7). In this section, the results of the in-sample parameter

estimation of the dynamic models are discussed. Table 6.12 lists the results for

the equity index data set. Figure 6.16 visualizes the evolution of the dynamic

Clayton copula parameter θc governed by its parameter estimates listed in

table 6.12.
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Figure 6.16: Equities: Smoothed evolution of the dynamic Clayton copula parameter
(solid line) versus the static Clayton copula parameter (dashed line) over the entire sample
period.

The plot illustrates the adaption of the dynamic Clayton copula to the

changes of the equity indices’ dependence over time, as found in figure 6.11.

As a comparison, figure 6.16 further shows the parameter estimate of the static
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Clayton (see table 6.4) as an overlaid dashed line. The parameter of the static

Clayton can be seen as the average of the dynamic θC . The comparison with

the static Clayton parameter indicates that without allowing for time varia-

tion in the parameter, the static copula overestimates the magnitude of the

parameter in most of the first half of the sample period while underestimating

it most of the time in the second half. Specifically, this means that during

the unfolding of the financial crisis, the parameter of the dynamic Clayton

reaches peaks in excess of 1.5 which is more than twice the magnitude of the

static Clayton parameter of 0.714. The values of both the AIC and the BIC

for the dynamic Clayton copula are substantially lower than for the static

version which confirms that allowing for time variation in the Clayton param-

eter results in an improved fit to the data. The same conclusion holds for all

dynamic copulas in table 6.12, whose AIC / BIC values indicate a remarkably

better fit, compared to their static versions in table 6.4.
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Figure 6.17: Equities: Smoothed evolution of the dynamic Student-t copula’s degrees
of freedom parameter (solid line) versus the ν parameter of the static Student-t copula
(dashed line) over the entire sample period.

Figure 6.17 allows a comparison of the degrees of freedom of the dynamic

Student-t copula with the ν parameter of its static counterpart. The evolution

of the dynamic degrees of freedom follows a downward trend over the sample

period, indicating that tail dependence has increased over time. In contrast

to the findings for the Clayton copula parameter θC , the static degrees of

freedom parameter (dashed line) is nowhere near the average of the dynamic
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ν as it remains below the dynamic parameter (solid line) at all times. This

is consistent with Dias and Embrechts (2010), who find on the bivariate level

that the degrees of freedom of the dynamic Student-t copulas is always larger

than for the static Student-t copula. One may conclude that ignoring time

variation in the copula parameters might induce spurious heavier conditional

tails.

Within the dynamic mixture copulas, time variation in the dependence

structure can be captured in the evolution of each of the two copula models

as well as with the process for the dynamic mixture weight. Figure 6.18 de-

picts the evolution of the three dependence parameters of the dynamic Frank-

Clayton mixture copula, induced by the parameter estimates in 6.12, over

the entire sample period. While the Frank copula parameter shows a rather

steady evolution capturing the overall increase in the level of dependence over

time, θC also captures the variations in lower tail dependence. Clayton’s mix-

ture weight largely remains at the level of the static mixture weight of 0.587

(see table 6.4) showing some short-lived spikes, whose magnitude is larger for

the second half of the observation period. Based on the observation that the

dynamic mixture weight mostly remains close to the static one and further

considering the large standard errors for the parameters of the dynamic mix-

ture weight process, one may conclude that combining a dynamic Frank and

a dynamic Clayton copula with a static weight would even be sufficient to

capture the equity index returns’ dependence structure over time. Accord-

ing to the information criteria, the most suitable dynamic dependence model

for the equity data is the dynamic Student-t-Clayton mixture copula, followed

by the dynamic Student-t copula and the dynamic Gaussian-Clayton mixture.

The dynamic copula models’ estimation results for the commodity futures

index returns are listed in table 6.13. The comparison of the Akaike and

Bayesian information criteria values with the ones of their counterparts in

table 6.5 reveals that the dynamic version of each of the copulas has a better

fit to the commodity future portfolio than the version with constant param-
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Figure 6.18: Equities: Smoothed evolution of the dynamic Frank-Clayton mixture cop-
ula’s (DFC) parameters over the entire sample period. The top figure depicts the evolution
of the mixture’s dynamic Frank parameter θF . In the center, the variations in the mixture
weight of the dynamic Clayton copula over time are depicted and the bottom graph shows
the evolution of the mixture’s dynamic Clayton copula parameter θC .
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eters. As with the static versions, the purely Archimedean copulas attain

significantly lower likelihood values compared to the models with elliptical

copulas. This results in higher AIC and BIC values indicating an inferior fit.

Furthermore, the standard errors of the Archimedean copulas in the dynamic

dependence models are larger for the commodity futures data than for the

equity portfolio pointing towards difficulties of the Archimedean copulas to

capture the dependence evolution of the commodity futures index portfolio.

The lower standard errors of the elliptical copulas and their lower AIC

/ BIC values indicate that the elliptical copulas are better models for the

commodities futures index portfolio. The size of the standard errors of the

dynamic mixture weight parameters shows that one cannot say with certainty

that the parameters are different from zero. Mixing the dynamic copulas with

a static weight may hence be sufficient to capture the dependence dynamics.

The dynamic Student-t copula is identified as the best fitting dynamic

model for the commodity data by both information criteria, which further

rank the dynamic Student-t-Clayton mixture copula in second and the dy-

namic version of the Gaussian copula in third place. The parameters for

the dynamic Student-t copula’s degrees of freedom induce an evolution rang-

ing between ν = 16.493 and ν = 21.870 with a mean of 18.703. The static

Student-t copula’s ν is with 16.804 (see table 6.5) below the average dynamic

ν providing support for the conclusion that ignoring time variation in the cop-

ula parameters might induce spuriously increased conditional tail dependence.

Table 6.14 lists the parameter estimates of the dynamic copulas for the

multi asset classes portfolio. As with the equity and the commodity data set,

all dynamic models attain higher likelihood and lower information criteria

values than the static versions (see table 6.6), which indicates the dynamic

models’ superior fit. While the dynamic models including an elliptical copula

attain information criteria values below -4500, the according values of the dy-

namic Archimedean copulas are on average less than half that size. This shows

that also for the multi asset classes data set, dependence models comprising
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elliptical copulas yield a better fit to the data. The model with the best fit

is the dynamic Student-t-Clayton mixture. In addition to the adaptability of

the dynamic Student-t copula, this mixture can further adjust to the structure

of dependence and its changes over time with the mixture weight process and

the parameters of the dynamic Clayton copula. The versatility of this model

is depicted in figure 6.19, which shows the evolution of the dynamic Student-

t-Clayton mixture copula’s parameters induced by the estimates in table 6.14

over the entire sample period. The top plot visualizes the progression of the

average Student-t copulas correlation with a clearly recognizable increase af-

ter 2008. The second graph shows the Student-t copula’s degrees of freedom,

which reach the lowest values during the propagation of the financial crisis

after the year 2008. In addition to the increase in the level of dependence

this copula hence also identifies an augmentation of tail dependence after the

outbreak of the crisis. While the lower ν parameter value signifies an increase

in both lower and upper tail dependence, the enormous spikes and overall rise

in the θC parameter of the Clayton fraction of the mixture (depicted in the

bottom graph of figure 6.19) starting with the outbreak of the financial crisis

specifically imply a heavier lower tail. Note that the peaks of Clayton’s θC af-

ter 2005 coincide with the plunges of the Student-t’s ν. The increase in lower

tail dependence is thus captured by both copulas in the mixture. The weight

of the Clayton copula inside the mixture structure remains almost constant

with only a few and short-term departures from the long-run average, which is

depicted in the third graph (from the top) of figure 6.19. Combined with the

large standard errors of the dynamic weight process, one may conclude that

a static mixture weight would be sufficient. The second and third lowest AIC

and BIC values and therewith best fitting models after the dynamic Student-

t-Clayton mixture copula are the Dynamic Student-t that ranks second and

the dynamic Gaussian-Clayton mixture copula that ranks third.

Table 6.11 shows the overall ranking of the in-sample model fit among

the static, regime-switching and dynamic copulas according to the two infor-
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mation criteria. For the equity index portfolio, the AIC favors the regime

switching models while the BIC indicates that the fully dynamic copulas are

more adequate. Compared to the dynamic copulas, the regime switching

models contain on average more parameters which entails a larger penalty for

model complexity in the BIC than in the AIC. For the commodity and the

multi asset classes data sets, both criteria agree on the first four ranks. The

rankings indicate the superiority of the time-varying copulas’ in-sample fit

compared to the static versions for all three portfolios. The only static copula

to attain a top five ranking is the static Student-t-Clayton mixture, which

ranks fifth according to the BIC for the commodity portfolio. The dynamic

Student-t and the dynamic Student-t-Clayton mixture stand out as they dom-

inate the top two ranks for the equity portfolio (according to the BIC) and for

the commodity and the multi asset classes portfolio (according to both AIC

and BIC). The best-ranked copulas indicate the importance of accounting for

time variation, highlight that positive tail dependence is a crucial feature of

a well-fitting model for each of the three portfolios and that the capability of

capturing asymmetries in the dependence structure yields the winning edge

for the equity and the multi asset classes portfolio.

While this chapter concentrated on the in-sample fit of the models, the

focus is now shifted to their out-of-sample forecast performance, which is the

subject of the following chapter.
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Table 6.11
In-sample model fit ranking

1. 2. 3. 4. 5.

AIC

Equity Indices T/GC G/G G/T DTC G/T/C

Commodity Futures Indices DT DTC DG DGC T/GC

Multi Asset Classes DTC DT DGC T/GC G/T

BIC

Equity Indices DTC DT DGC DG T/GC

Commodity Futures Indices DT DTC DG DGC TC

Multi Asset Classes DTC DT DGC T/GC G/T

This table presents the top in-sample model fit rankings for the static, regime-
switching and fully dynamic copulas for the three portfolios under considera-
tion according to the Akaike (AIC) and the Bayesian (BIC) information crite-
ria. The copulas are abbreviated: Gaussian (G), Student-t (T), Clayton (C),
Gaussian-Clayton mixture (GC) and Student-t-Clayton mixture (TC). The for-
ward slash indicates the separation of the regimes in the Markov switching
models while the prefixed D denotes fully dynamic copula models.
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Figure 6.19: This figure visualizes the smoothed evolution of the dynamic Student-t-
Clayton mixture copula (DTC) parameters for the Multi Asset Classes data: The first
graph (on top) depicts the average Student-t copula correlation over time. The second
plot shows the evolution of the Student-t copula’s degrees of freedom. The weight of the
dynamic Clayton copula in the mixture structure over time is shown in the third graph and
the bottom plot depicts the θC of the dynamic Clayton copula over time.
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Table 6.12
Equity portfolio: Dynamic copula parameters.

Copula DC DF DG DT DFC DGC DTC

α 0.012 0.011 0.013 0.013
(0.006) (0.006) (0.011) (0.010)

β 0.986 0.986 0.985 0.985
(0.129) (0.146) (0.195) (0.175)

αC -1.199 -2.650 -4.418 -3.608
(0.351) (0.682) (3.131) (1.587)

βC 0.917 -1.035 -0.745 -0.969
(0.436) (2.468) (4.170) (1.007)

ωC 0.031 1.867 4.492 3.896
(0.014) (1.223) (4.121) (1.935)

αF -0.472 -0.074
(0.138) (0.552)

βF 0.908 0.990
(0.069) (0.284)

ωF 0.837 0.140
(0.328) (0.513)

αW -0.932 1.680 0.012
(21.275) (0.924) (5.588)

βW -1.098 -0.249 -6.460
(2.377) (7.370) (7.217)

ωW 0.243 2.008 7.780
(1.038) (6.942) (6.696)

ς -1.435 -2.270
(0.241) (0.273)

ϕ 0.526 0.568
(0.219) (0.258)

logL 2427 2369 3476 3546 2705 3540 3581
AIC -4848 -4732 -6948 -7084 -5392 -7064 -7142
BIC -4833 -4717 -6938 -7063 -5346 -7023 -7090

Standard errors are listed in parentheses. The prefixed D stands for ’dynamic’ and the cop-
ula models are abbreviated as follows: F (Frank), C (Clayton), G (Gaussian), T (Student-t),
FC (Frank & Clayton mixture), GC (Gaussian & Clayton mixture) and TC (Student-t &
Clayton mixture). The subscript W indicates the parameters of the dynamic mixture weight
process. ς and ϕ are the parameters of the dynamic Student-t copula’s degrees of freedom
process.
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Table 6.13
Commodity portfolio: Dynamic copula parameters.

Copula DC DF DG DT DFC DGC DTC

α 0.019 0.019 0.019 0.020
(0.005) (0.005) (0.006) (0.005)

β 0.948 0.951 0.947 0.951
(0.051) (0.045) (0.056) (0.048)

αC -0.542 -0.659 -2.221 -2.032
(0.295) (0.661) (3.089) (3.364)

βC -0.385 -8.581 2.691 1.737
(1.073) (4.964) (3.830) (3.859)

ωC -0.987 -0.411 2.212 0.519
(0.516) (1.103) (4.643) (4.618)

αF -0.078 -0.054
(0.862) (1.987)

βF 0.981 0.850
(0.848) (0.530)

ωF 0.143 0.965
(0.273) (0.227)

αW -2.746 6.081 0.321
(22.250) (7.048) (30.436)

βW -1.024 0.415 -3.036
(1.678) (14.788) (31.267)

ωW -0.891 4.464 7.926
(1.497) (14.443) (28.447)

ς -0.862 -1.748
(0.432) (0.412)

ϕ 0.162 0.153
(0.278) (0.264)

logL 737 686 2856 2910 889 2853 2907
AIC -1468 -1365 -5708 -5811 -1759 -5689 -5795
BIC -1452 -1350 -5698 -5791 -1713 -5648 -5743

Standard errors are listed in parentheses. The prefixed D stands for ’dynamic’ and the copula
models are abbreviated as follows: F (Frank), C (Clayton), G (Gaussian), T (Student-t), FC
(Frank& Clayton mixture), GC (Gaussian & Clayton mixture) and TC (Student-t & Clayton
mixture). The subscript W indicates the parameters of the dynamic mixture weight process.
ς and ϕ are the parameters of the dynamic Student-t copula’s degrees of freedom process.
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Table 6.14
Multi asset classes portfolio: Dynamic copula parameters.

Copula DC DF DG DT DFC DGC DTC

α 0.011 0.012 0.015 0.014
(0.006) (0.006) (0.007) (0.007)

β 0.983 0.980 0.979 0.977
(0.154) (0.158) (0.160) (0.169)

αC -1.031 -1.377 -5.296 -4.704
(0.383) (0.737) (2.234) (2.001)

βC 2.195 2.427 -2.095 -1.787
(2.241) (3.949) (3.683) (3.043)

ωC -0.623 -0.413 6.200 5.496
(0.498) (1.205) (3.327) (2.888)

αF -0.138 -0.078
(0.402) (1.883)

βF 0.971 0.982
(0.320) (0.431)

ωF 0.241 0.193
(0.357) (0.358)

αW -40.007 0.014 0.004
(13.882) (5.620) (7.538)

βW -1.129 4.208 4.472
(1.372) (5.966) (6.961)

ωW 1.242 -1.575 -1.727
(0.778) (5.463) (6.456)

ς -2.673 -3.585
(0.419) (0.436)

ϕ 1.549 1.691
(0.335) (0.351)

logL 1113 970 2254 2311 1244 2300 2337
AIC -2220 -1935 -4504 -4615 -2471 -4584 -4653
BIC -2205 -1919 -4494 -4594 -2425 -4543 -4602

Standard errors are listed in parentheses. The prefixed D stands for ’dynamic’ and the cop-
ula models are abbreviated as follows: F (Frank), C (Clayton), G (Gaussian), T (Student-t),
FC (Frank & Clayton mixture), GC (Gaussian & Clayton mixture) and TC (Student-t &
Clayton mixture). The subscript W indicates the parameters of the dynamic mixture weight
process. ς and ϕ are the parameters of the dynamic Student-t copula’s degrees of freedom
process.





Chapter 7

Forecast Evaluation

To test the predictive power of the different copula models, this chapter

presents the methodology and results of out-of-sample backtests. To this end,

the univariate models are linked by means of the different copula dependence

structures in order to perform Monte Carlo simulations to obtain forecasted

profit and loss distributions. Since the same univariate models are coupled

with different copulas, differences in the return distribution forecasts are at-

tributable to the copula functions only. The most accurate forecasts are thus

produced by the model whose copula function is best capable of describing

the multivariate dependence structure. The models’ performance is evaluated

in a comprehensive backtesting scheme by comparing their forecasts with the

observed historical portfolio returns.

The remainder of this chapter is organized as follows: firstly, the back-

testing procedure and the different approaches to evaluate the predictive per-

formance of the copula models are presented. Secondly, the results of the

backtest evaluations over the entire out-of-sample period are discussed be-

fore, finally, the focus is narrowed to the performance of the models during

the last financial crisis.
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7.1 Backtesting Procedure

The backtesting procedure is based on a rolling window scheme with 520 re-

turns.1 Specifically, to compute a one-week forecast of the portfolios’ profit

and loss distribution in time t, the univariate models and the copula functions

are calibrated to the information from t− 520 until t− 1 with the multi-stage

maximum likelihood estimation outlined in section 4.1. Thereafter, depen-

dent uniform variates with the specified copula are simulated with the algo-

rithms described in chapter 3 and subsequently transformed by inversion of the

according marginal cumulative distribution function to obtain standardized

residuals. These standardized residuals are then employed as the independent

and identically distributed noise processes of the respective GARCH models

outlined in chapter 2, which reestablish the heteroscedasticity and the auto-

correlation of the original returns. Using 10,000 accordingly simulated weekly

returns for each portfolio constituent, the forecasted profit and loss distri-

bution of the equally weighted portfolio in time t is computed and compared

with the historical portfolio return in time t. The portfolio with equal weights

ensures that the impact of each univariate model is limited to the same extent.

Taking advantage of the entire forecasted portfolio return distributions, both

risk measure forecasts and density forecasts are evaluated.

The univariate models employed in the backtesting procedure differ from

the ones outlined in chapter 6. While the latter were found using the entire

data set, the univariate models for the backtesting procedure are determined

by choosing those specifications which reveal the lowest AIC / BIC value for

the first 520 returns in the respective data set. Table 7.1 shows the resulting

AIC / BIC optimal models employed in the backtesting process. For six of

the eight equity indices, EGARCH is still the optimal model. While for five

of them, the EGARCH (1,1) is most suitable, for the Hang Seng index, the

1Note that the rolling window scheme (as opposed to the expanding window method)
provides some ”shield” for the static copula models against changing market conditions.
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Table 7.1
Univariate model specifications in the backtesting procedure

Equities SMI DAX CAC UKX SPX TSX HS Nik
Model E E E G E GJR E E

AR 0 0 0 0 1 0 0 0

MA 0 0 0 0 0 0 0 0

P 1 1 1 0 1 1 1 1

Q 1 1 1 1 1 1 3 1

Commodities OIL HOL GAS GLD SLV CPP WHT CRN
Model E GJR GJR E GJR GJR GJR E

AR 0 0 0 0 0 0 0 0

MA 0 0 0 0 0 0 0 0

P 1 1 1 1 1 1 1 1

Q 1 1 1 1 1 1 1 1

Multi AC SMI DAX UKX SPX NAR EPR CNE CEN
Model E E G E E E E E

AR 0 0 0 1 0 1 0 0

MA 0 0 0 0 0 1 0 0

P 1 1 1 1 1 1 1 1

Q 1 1 0 1 2 1 1 1

Univariate model specifications used in the backtesting procedure. The models are the AIC /
BIC optimal models for the training period consisting of the first 520 returns. AR and MA are
the number of autoregressive respectively moving average parameters in the mean equation. P
and Q the number of parameters of the conditional volatility models, which are abbreviated with
G for GARCH, GJR for the GJR-GARCH and E for the EGARCH model. Multi AC is the multi
asset class portfolio.

EGARCH (1,3) has the lowest BIC value. For the UKX, the optimum turns

out to be an ARCH process (i.e. GARCH (1,0)). For the TSX, the Bayesian

information criterion selects the GJR specification to be optimal.

For the commodity data set, the GJR specification replaces the EGARCH

as optimal specification for the heating oil, unleaded gasoline, silver, copper

and wheat series. The information criteria select a lag of one to be optimal

for all univariate commodity series. The multi asset classes data reaches back

to January 3, 1990, which is 1.5 years less than the pure equity portfolio.

Still, the AIC / BIC optimal univariate models for the equity indices used in

the backtests of the multi asset classes portfolio are identical to the ones used
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for backtesting the pure equity portfolio. For the non energy and the energy

index, the backtesting models turn out to be equal to the ones in the in-sample

analysis (see section 6.1). While the AIC / BIC optimal volatility model for

the REIT indices based on the first training period still is the EGARCH, the

information criteria indicate a superiority of the EGARCH(1,2) specification

for the NAREIT. For the EPRA index, the ARMA(1,1)-EGARCH(1,1) is the

optimal model based on the first 520 returns.

7.1.1 Backtesting Risk Measures

The most common reported risk measure is the Value-at-Risk (VaR) as it

represents the industry and regulatory standard for the calculation of risk

capital in banking and insurance (Embrechts et al., 2013). The VaR for a

given confidence level α is defined as (Christoffersen, 2012)

Pr(−yt > V aRt(α)) = 1− α ⇔ Pr(yt < −V aRt(α)) = 1− α. (7.1)

Hence, VaR(α) is the negative return that will not be exceeded with proba-

bility α. Formally, the VaR(α) corresponds to the (1 − α) percentile of the

portfolio return distribution. The most widely used alternative to VaR is

expected shortfall (ES), also known as Conditional VaR (CVaR), which is

defined as

ES(α) = E[yt | yt < −V aRt(α)] (7.2)

and possesses some advantages over VaR as it is a coherent risk measure

representing the expected return conditional on VaR being violated.2 Despite

theoretical advantages, the vast majority of financial institutions uses VaR

and not ES. This may be due to problems with the backtesting procedure of

ES, as it requires estimates of the tail expectation to be compared with the

forecast of ES. Dańıelsson (2011) points out that in a backtest, forecasted ES

2See Artzner et al. (1999) or McNeil et al. (2005) for a detailed discussion on the property
of coherence.
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can only be compared to a model output while VaR can be compared with

real observations. The resulting complete profit and loss functions allow to

calculate VaR forecasts at arbitrary significance levels α. The most common

confidence levels 90%, 95% and 99% are deployed in the thesis at hand. If

the actual return of the portfolio over the forecast period falls short of the

forecast, then the VaR limit is said to have been violated. In a backtesting

procedure, violations over time are a sequence of zeros and ones, also called

”hit sequence”, denoted ηt. Formally, a violation of the VaR(α) forecast is an

event such that

ηt,α =

1, if yt ≤ −V aRt(α)

0, if yt > −V aRt(α),
(7.3)

where yt is the portfolio return in time t. A judgment on the quality of

the models forecast can then be made by calculating the hit ratio, which re-

flects the percentage of times when the portfolio return exceeds the forecasted

VaR(α) in a sample with size T :

Hit Ratio(α) =

∑T
t=1 ηt,α
T

. (7.4)

Backtesting for example the VaR(α = 99%) means that one expects to observe

a VaR violation in 1% of the time. Naturally, the closer the hit ratio is to

the expected value (1− α), the better the forecasts of the risk model. If the

hit ratio is greater than the expectation, then the model underforecasts the

portfolio risk; with a hit ratio smaller than (1 − α), the model overforecasts

risk.

To formally test whether the difference between observed and expected hit

ratio is significant, statistical tests are called for. According to Christoffersen

(1998), the measurement of the accuracy of a VaR forecast model can be

reduced to determining whether the hit sequence ηα satisfies two properties:

the unconditional coverage property and the independence property.
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Unconditional Coverage Test

The unconditional coverage test was introduced by Kupiec (1995). The prop-

erty of unconditional coverage ensures that the empirical hit ratio corresponds

with the theoretical significance level p = (1− α). If a violation on day t oc-

curred, then variable ηt takes the value 1 and 0 otherwise (see (7.3)). ηt is thus

a sequence of Bernoulli-distributed random variables. The unconditional cov-

erage test is used to determine the violations’ proportion. For VaR violations,

the null hypothesis is

H0 : η
i.i.d.∼ B(p), (7.5)

where B stands for the Bernoulli distribution with density

f(ηt; p) = (1− p)1−ηt(p)ηt , ηt = 0, 1. (7.6)

To test whether a hit ratio π obtained by a risk model is equal to the expected

fraction p, the likelihood of an i.i.d. Bernoulli(π) hit sequence is used:

L(π) =
T∏
t=1

(1− π)1−ηt+1πηt+1 = (1− π)T0πT1 , (7.7)

where T1 =
∑T
t=1 ηt and T0 = T − T1 are the number of zeros and ones in

the hit sequence η and π = T1

T . The test statistic for the null hypothesis

H0 : π = p is given by the likelihood ratio

LRuc = −2 log
(1− p)T0pT1

(1− π)T0πT1
, (7.8)

which is asymptotically χ2 distributed with one degree of freedom. Since the

unconditional coverage test does not assume a distribution for the returns, it

is an nonparametric test which commonly provides good benchmarks for the

assessment of the accuracy of VaR models (Dańıelsson, 2011).
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Independence Test

Theoretically, violations should spread out over time such that an adequate

risk model would not yield VaR violation clusters. Based on this idea, Christof-

fersen (1998) generalized the approach of Kupiec (1995) to include a test of

independence. To fulfill the property of independence, any two observations

in the hit sequence must be independent of one another. The fact that a

violation has been observed in time t should thus not yield any information

about the likelihood of observing a violation in t+1. In case previous VaR vi-

olations foretell a future VaR violation, this indicates a general inadequacy of

the reported risk measure. In order to establish a test of the independence of

the VaR violations, Christoffersen (1998, 2012) assumes that the hit sequence

is dependent over time and that it can be described by a first-order Markov

chain with the transition probability matrix analogous to the one defined in

(3.23) with 2 states. The probability of a violation in t+1, given a violation in

t is defined by p1|1 = Pr(ηt+1 = 1|ηt = 1), while the probability of a violation

in t + 1, given there is no violation in t is p0|1 = Pr(ηt+1 = 1|ηt = 0). The

probability of no violation in t+ 1 following no violation in t is 1− p0|1. With

a sample of T observations, the likelihood function of the first-order Markov

process is given by

L = (1− π01)T00πT01
01 (1− π11)T10πT11

11 , (7.9)

where Tij , i, j = 0, 1 equals the number of observations with a j following

an i. By taking the first derivatives with respect to π01 and π11 and setting

them equal to zero, one may obtain the maximum likelihood estimates π̂01 =

T01/(T00 + T01) and π̂11 = T11/(T10 + T11). The matrix of the estimated

transition probabilities is therewith:

Π̂1 =

[
1− π̂01 π̂01

1− π̂11 π̂11

]
=

[
T00

(T00+T01)
T01

(T00+T01)
T10

(T10+T11)
T11

(T10+T11)

]
. (7.10)
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If the violations are independent over time, then π̂01 = π̂11 = π̂ such that the

transition probability matrix is

Π̂0 =

[
1− π̂ π̂

1− π̂ π̂

]
. (7.11)

To test the null hypothesis of independence of the violations H0 : π̂01 = π̂11

the likelihood ratio test is used:

LRind = −2 log
L(Π̂0)

L(Π̂1)
. (7.12)

The statistic is asymptotically χ2 distributed with one degree of freedom

(Christoffersen, 2012).

Joint Test

An accurate VaR forecast has to feature both the independence and uncon-

ditional coverage property. A test that jointly examines the unconditional

coverage and independence properties thus gives an opportunity to identify

VaR measures which are defective in one way or the other. One may con-

clude, that the joint test should generally be preferred to the individual tests

of coverage or independence. However, this is usually not the case since the

joint test entails less power to reject a model which only satisfies either one

of the properties (Dańıelsson, 2011). To jointly test if the observed violations

are significantly different from the expected ones and if the violations are in-

dependent over time, the joint test also known as conditional coverage test is

applied. The test statistic of the joint test is the sum of the test statistics for

the individual properties

LRjoint = LRunc + LRind, (7.13)

which is asymptotically χ2 distributed with two degrees of freedom.
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Basel Three-Zone Approach

The Basel regulatory framework provides a categorization of risk models based

on their performance in the backtesting procedure. Accordingly, a model is

categorized into one of the three traffic light zones ”green”, ”yellow” and

”red” based on the probability of obtaining up to the observed number of x

exceedances of the 1% VaR when the true coverage level is 99%. Formally,

this corresponds to the binomial cumulative distribution

Pr(X ≤ x;T, p) =
x∑
i=0

(
T

i

)
pi(1− p)T−i, (7.14)

where x is the number of observed exceedances of the model’s 1% VaR in the

backtesting period, p = 1% and T equals the size of the backtesting sample.

Models, whose backtesting performance is such that Pr(X ≤ x) < 95% are

categorized as green, which means that the backtesting results do not suggest a

problem with the quality or accuracy of the model. Models with x exceedances

such that 95% ≤ Pr(X ≤ x) ≤ 99.99% are categorized as yellow, which is to

be interpreted as a model that raises questions but no definitive conclusion

is possible. Finally, a model with a backtesting performance such that the

probability of obtaining up to the backtested number of x exceptions equals or

exceeds 99.99%, i.e. Pr(X ≤ x) > 99.99% is classified as red, which indicates

that there is almost certainly a problem with the risk model (Basel Committee

on Banking Supervision, 2013).

Expected Shortfall Evaluation

A backtest of the expected shortfall is a rather intricate task, because the

aim is to test an expectation rather than a single quantile. As the expected

shortfall is the expected loss, given a violation of VaR, Dańıelsson (2011)

proposes to compare for all points in time t when the VaR is violated, to

which extent on average the ES corresponds to the realized return. This
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indicates how much of the realized return, given a VaR violation, is on average

forecasted by the model:

ES Ratio(α) = T−1
1

(
T∑
t=1

ηt,α × ESt,α
yt

)
, (7.15)

where T1 is the number of ones in the hit sequence η. Naturally, the closer

the ES ratio is to one, the more accurate the forecasts. In case the ES ratio is

larger than one, the model overforecasts the expected shortfall and if the ES

ratio is smaller than one, the model underestimates the loss given a violation

of the VaR. Since ES ratio takes the average over all those times when the

VaR forecast of a model is violated, this measure hinges on the model’s hit

ratio. While it gives a further insight into the predictive power of a single

model, it only allows for a direct comparison of competing forecast models if

their hit ratios are identical.

Ziegel (2014) points out that other procedures for evaluating ES forecasts

such as the one proposed by McNeil and Frey (2000) do not permit a di-

rect comparison of the predictive performance of the competing forecasting

methods either. Gneiting (2011) introduces the notion of elicitability, where

elicitable broadly means that a measure is ”properly” backtestable. He shows

that in general, VaR is elicitable whereas ES is not. Specifically, Gneiting

(2011) proves that the existence of convex level sets is a necessary condition

for the elicitability of a risk measure and disproves the existence of convex

level sets for the ES. This provides a potential explanation for the lack of

literature on backtesting ES. As a simple option, the Basel Committee on

Banking Supervision (2011) suggests to backtest the VaR instead of the ES -

if VaR is inaccurate, the corresponding ES can hardly be correct.

Gneiting and Ranjan (2011), however, propose to compare density fore-

casts with emphasis on different regions of interest, such as the tails of the

distributions. Given that with the ES the goal is to accurately predict a

functional focused on the tails, this approach seems promising (Ziegel, 2014).
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Testing density forecasts means that the object of interest is shifted from a

particular risk measure to the entire profit and loss distribution, respectively

its entire tail.

7.1.2 Backtesting the Entire Distribution

Instead of focusing on particular risk measures from the profit and loss distri-

bution such as the Value-at-Risk or the Expected Shortfall, one might instead

decide to backtest the entire forecasted profit and loss distribution from the

risk model. This has the benefit of potentially further increasing the power to

reject bad risk models. The idea of testing the entire predictive distribution

goes back to Berkowitz (2001) and has the appeal that it makes use of the

entire predictive distribution, compared to the approaches in section 7.1.1,

which effectively throw away information. The attractiveness of the approach

of Berkowitz is also based on the use of the probability integral transformation,

which allows conducting much more powerful tests than otherwise possible.

In time t the portfolio risk forecast models produce a cumulative profit and

loss distribution forecast Ft(·) for t+ 1. At the end of t+ 1, with the realized

portfolio return yt+1, the risk model’s probability of observing a return below

the actual one can be computed with

p̂t+1 = Ft(yt+1). (7.16)

Under the null hypothesis that the forecast model is accurate, the time series

of observed probabilities p̂t+1 should then be independently and identically

uniform (0,1) distributed:

H0 : p̂t+1
i.i.d.∼ U(0, 1). (7.17)

A visual evaluation of the distribution can be made by constructing a his-

togram of p̂t+1 to determine if the distribution is reasonably flat (Christof-

fersen, 2012). While visual evaluations are less precise in comparison to statis-



134 Chapter 7. Forecast Evaluation

tical tests, they are constructive in the sense that they can provide guidance

as to why and where a statistical test is rejected. The model adequacy can be

statistically examined by testing whether p̂t+1 is uniform as predicted. This

uniformity is tested by conducting Pearson’s χ2-test, which compares the ob-

served with the expected number of values in different sub-intervals of the

unit interval. The test statistic for k sub-intervals is given by

Q =

k∑
i=1

(N(li,ui) −N(ui − li))2

N(ui − li)
, (7.18)

where N(li,ui) refers to the number of observations in the ith sub-interval and

N refers to the total number of observations being used to construct the test.

Also, li and ui refer to the lower and upper bound of each sub-interval. The

test statistic is approximately distributed according to the χ2 distribution

with k − 1 degrees of freedom.

In order to apply powerful normality tests, Berkowitz (2001) suggests to fur-

ther transform the i.i.d. uniform p̂t+1 into standard normally distributed

variables under the null by using the inverse cumulative normal distribution

function Φ−1:

H0 : p̂t+1
i.i.d.∼ U(0, 1)⇔

H0 : ẑt+1 = Φ−1(p̂t+1) = Φ−1(Ft(yt+1))
i.i.d.∼ N (0, 1). (7.19)

To investigate whether the ẑt+1 are i.i.d. normally distributed, the Kolmogorov-

Smirnov (KS) test and the Anderson-Darling (AD) test, introduced in (6.3)

and (6.5), are employed.

7.1.3 Backtesting the Entire Lower Tail

While it is useful to backtest the estimate of the whole predictive distribution

to obtain additional information, the primary interest of financial risk man-

agement lies in the lower tail of the profit and loss distribution (McNeil et al.,
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2005). Testing the entire density as in section 7.1.2 might lead to a rejection

of risk models which capture the lower tail of the profit and loss distribution

well, but are not accurate for the rest of the distribution. Instead, Christof-

fersen (2012) proposes to construct a test that directly focuses on assessing

the risk model’s capability to capture the lower tail of the distribution, which

contains the largest losses. Christoffersen (2012) restricts the attention to the

tail of the distribution below the 10% quantile. His test consists of examin-

ing whether the probability integral transformations below this threshold are

themselves uniform, constructing a rescaled probability integral transformed

variable as

p̂∗t+1 =

10× Ft(yt+1) if yt ≤ −V aRt

Else not defined.
(7.20)

The null hypothesis that the risk model provides the correct tail distribution

is given by

H0 : p̂∗t+1
i.i.d.∼ U(0, 1) (7.21)

or equivalently

H0 : ẑ∗t+1 = Φ−1(p̂∗t+1)
i.i.d.∼ N (0, 1). (7.22)

To do formal statistical testing, the alternative hypothesis is constructed

as

ẑ∗t+1 = b0 + b1ẑ
∗
t + σzt+1, with zt+1

i.i.d.∼ N (0, 1). (7.23)

Then the log-likelihood of a sample of T observations of z̃∗t+1 under the alter-

native hypothesis conditioned on an initial observation is

logL = −T
2

log(2π)− T

2
log(σ2)−

T∑
t=1

(
(z̃∗t+1 − b0 − b1z̃∗t )2

2σ2

)
. (7.24)

With the parameter estimates b̂0, b̂1, σ̂
2 obtained by the maximum likeli-

hood estimation, the likelihood ratio test of a correct lower tail distribution
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is given by

LRlt = −2
(

logL(0, 0, 1)− logL(b̂0, b̂1, σ̂
2)
)
, (7.25)

which is asymptotically χ2 distributed with three degrees of freedom (Christof-

fersen, 2012).

7.2 Overall Forecast Performance

This section presents the results of the backtest evaluation methods presented

in the previous section sorted after portfolio. The predictive power of the dif-

ferent models is evaluated using the entire sample period. To put the backtest

results of the presented models into perspective, they are compared to the re-

sults of a multivariate normal model which serves as a benchmark. Multivari-

ate normal means that the model makes use of the same univariate GARCH

processes but assumes the resulting standardized residuals to be distributed

according to a multivariate normal distribution. In this model, each series of

standardized residuals of the univariate filters is hence normally distributed

and the dependence structure between the different series is described by a

static Gaussian copula.

7.2.1 Equity Index Portfolio

Table 7.2 lists the backtest results for the benchmark multivariate normal

model while 7.3 shows the results for the static copula models applied to the

equity index data. The risk measure tests are conducted on three levels of

confidence α: 90%, 95% and 99%. The hit ratios of the static models are

materially different. On the three levels of α, all static mixture models’ hit

ratios are out of an acceptable range representing a multiple of the ones of

the standalone copulas. This firstly stands in contrast to the theoretically

promising setup of those models and secondly in contrast to their in-sample

model fit. In fact, the static Student-t-Clayton mixture and the Gaussian-

Clayton mixture, which were found to have the best and third-best in-sample
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fit according to both information criteria (see section 6), together with the

Frank-Clayton mixture display the worst hit ratios among the static models.

The results of the expected shortfall ratio substantiate the inferiority of the

static mixture models compared to the standalone copulas. Naturally the

Basel three-zones framework classifies these models as red. These results are

consistent with the evidence for static bivariate copulas provided by Weiss

(2011, p.186), who finds that mixture copulas yield ”by far the worst VaR-

and ES-estimates”. In fact, the predictive power of the static mixture mod-

els proves to be considerably lower than the one of the multivariate normal

benchmark model. One explanation for these results is that it is difficult to

find numerically stable parameters for the static Archimedean copulas in the

mixture due to the time variation in the dependence structure. While the vio-

lations of the mixture models’ VaR forecasts are independent over time, they

all clearly fail the unconditional coverage and the joint test. The inferiority of

the static mixture models is further reflected by the test results for the entire

forecasted profit and loss distributions.

Whilst the test statistics document the magnitude of the test failure, the

histograms of the probability integral transforms of the historical returns

taken with respect to the forecasted profit and loss distribution depicted in

figure 7.2 allow to identify which parts of the distribution are particularly

inaccurate. Figure 7.2 shows the histograms of the normalized frequency

of probability integral transformed portfolio returns, divided into 50 bins of

equal size. The overlaid dashed lines indicate the 95% percent confidence

interval. Note that if a model’s forecasts of the profit and loss distribution

were accurate, all bars in a histogram would be equally high at exactly one.

Clearly, none of the static mixture models yields suitable forecasts for either

tail of the return distribution. The large bars for the lowest and the high-

est 2% quantiles of their histograms indicate that the copula mixture models

severely underestimate the probability of joint extreme returns of the equity

indices in the portfolio. The strong underestimation of the joint tails of the

index returns entails an overestimation of the probability mass in the center
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of the distribution, manifested by multiple bars below the lower confidence

level in the center of the histogram.

The Frank copula is the fourth static model that is classified as red by the

Basel traffic light system yielding an unsatisfactory hit ratio and a relatively

low ES ratio. While the violations of the VaR forecasted with the Frank

copula model are independent over time, the model fails the joint test due

to its inaccurate unconditional coverage. The model further fails the density

tests altogether owing to its incapacity to forecast the lower tail of the portfolio

profit and loss distribution, visualized by the bar of the lowest 2% quantile in

the histogram in figure 7.2. Lacking the ability to model lower tail dependence,

the Frank copula function proves to be incapable of adequately capturing the

dependence structure with its single parameter θF .

The Clayton, Gaussian and Student-t copula models all reach a yellow

traffic light classification. While the three dependence functions (just) pass

the independence coverage test for all α levels, the Clayton is the only static

model to pass the unconditional coverage test and the joint test for α = 99%.

Interestingly, the hit ratios of the Gaussian model are identical to the ones

for the Student-t. The capability of the Student-t copula to capture tail

dependence hence does not produce better VaR forecasts, but yields a su-

perior prognosis of the expected shortfall as documented by the ES ratio on

α = (99%, 95%) being closer to 1 and a lower test statistic for the Lower

Tail test compared to the Gaussian model results. The χ2-test shows that

the Gaussian copula is the most suitable static model to forecast the profit

and loss distribution in its entirety. However, the forecasts are not accurate

enough to pass neither the Kolmogorov-Smirnov nor the Anderson-Darling

test. Comparing the 99% hit ratios of the Gaussian and the multivariate

benchmark model shows the importance of incorporating fat tails and skew-

ness in the marginal distributions, as the hit ratio of the latter model exceeds

the former’s by 1.9%.

Among the three yellow static models, the asymmetric Clayton copula

model is most suitable to forecast the joint extreme negative returns of the
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portfolio constituents based on its hit ratio being closest to the expectation

of 1%. Compared to the multivariate normal benchmark, the static Clayton

model’s forecasts for the 99% VaR are a staggering 2.6% closer to the ex-

pected hit ratio of 1%. The Clayton model’s output further yields the most

accurate forecasts for the entire lower tail of the portfolio return distribution

as it is the only static model to pass the Lower Tail test. Note that in the

in-sample analysis (see section 6), the static Clayton copula yields the sec-

ond poorest model fit, while the Gaussian-Clayton and the Student-t-Clayton

mixture copulas were ranked top three. The backtesting results at hand show

that the ranking of the in-sample model fit does not contain much information

about the out-of-sample predictive power.

Next, the results of the regime switching models, listed in table 7.4 are

analyzed. Figure 7.3 indicates that four out of seven regime switching cop-

ula models have difficulties to forecast both tails of the portfolio profit and

loss distribution: both regime switching models with three regimes and both

structures where one regime is modeled by a mixture copula display large

bars at the lowest and highest quantiles of the histograms. All four models

yield enormous hit ratios, low ES ratios, classify as red according to the Basel

regulatory framework and fail the unconditional coverage and the joint tests

on all levels of α. Adding a third regime hence does not improve the forecasts;

to the contrary, the G/T/C yields significantly worse results than the G/T.

The static mixtures prove to be unsuccessful in forecasting also as a part of

the regime switching setup.

The two-regime models G/G, G/T and T/T fare considerably better, all

attaining a yellow classification. However, with hit ratios being substantially

larger than the expected value, they fail the unconditional coverage and the

joint test on all levels of α. While in particular the G/G regime switching

model seems to produce acceptably accurate forecasts for the center of the

profit and loss distribution based on the histogram in figure 7.3 and based on

both χ2 and KS test results, all regime switching models fail the Lower Tail
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test. The best fitting regime switching model according to the in-sample anal-

ysis (T/GC) produces some of the worst profit and loss distribution forecasts

among the regime switching models. However, ranks two and three according

to the in-sample information criteria are attributed to the G/G and the G/T

copulas, which in fact belong to the regime switching models with the best

out-of-sample forecast power.

A comparison of the backtesting results of the Gaussian/Gaussian regime

switching model with those of the static Gaussian copula shows that the for-

mer does produce slightly more accurate forecasts in terms of hit ratio and

expected shortfall ratio on all levels of α. The improved results for the Lower

Tail test further indicate that the G/G issues better forecasts than the static

Gaussian. Note that the regime switching Gaussian copula is the only model

among both static and regime switching structures to pass the Kolmogorov-

Smirnov test. According to the test results of the χ2-test, the T/T regime

switching copula yields better profit and loss density forecasts compared to

the static Student-t copula. However, neither model passes the unconditional

coverage or joint test and the hit ratios as well as the ES ratios are virtually

the same which menas, underpinned by an even worse Lower Tail test statistic

of the Markov switching setup, that one may spare the computational effort

for the two-state Student-t model.

The results of the backtests with the dynamic models are shown in table

7.5 and figure 7.4. Even though the results for the dynamic Frank copula

are better in nearly all backtest measures compared to its static counterpart,

they are far from satisfactory, which means that the standalone Frank copula

is neither in static nor dynamic form a suitable model for the equity index

returns. The histogram of the dynamic Frank copula’s results in figure 7.4

illustrates that the incapability to capture the dependencies of the lower ex-

treme returns is the cause of the dynamic Frank copula’s failure. This is

substantiated by its failure to pass any of the density tests.

With a substantially elevated bar for the highest 2% quantile in the his-
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togram, the dynamic Clayton is not a good model to forecast the upper part

of the portfolio return distribution. The strengths of the dynamic Clayton

model lie in its capability to capture lower tail dependence which results in

the best forecasts for the lower tail of the equity portfolio’s return distribution

showing the highest p-value for the Lower Tail test among all static, regime

switching and dynamic copula models. The dynamic version of the Clayton

further provides lower hit ratios than the static Clayton for all tested α; in

fact, it yields the overall lowest hit ratio on α = 99% for the equity portfolio.

The dynamic Clayton is furthermore the only model to qualify as green in the

Basel three-zones approach.

Note that all dynamic mixture copulas yield substantially better results

compared to their static counterparts. While the static mixtures proved to

be virtually useless in terms of forecast power, the dynamic Gaussian-Clayton

mixture and the Dynamic Student-t-Clayton mixture classify as yellow. The

dynamic Student-t-Clayton mixture copula even yields the second-best hit

ratio for the equity data on α = 99% and passes the joint test on this level of

significance. This shows the fundamental importance of accounting for time

variation in mixture copula models. In the in-sample analysis of the dynamic

models, the dynamic Student-t-Clayton mixture stood out with the lowest

AIC and BIC values indicating a good fit which is underpinned by the results

of the backtesting procedure. The dynamic Clayton copula, however, has the

second poorest in-sample fit among the dynamic models but yields the best

forecasts of the lower tail of the equity portfolio’s profit and loss distribu-

tion. This shows that the in-sample model fit criteria might be too focused

on the center of the distribution whereas the risks are located in the lower tail.
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Table 7.2
Static multivariate normal out-of-sample backtest results

α Equities Commodities Multi Asset Classes

Hit Ratio 99% 0.045 0.037 0.046
95% 0.108 0.078 0.101
90% 0.165 0.122 0.152

ES Ratio 99% 0.911 0.902 0.806
95% 0.917 0.918 0.891
90% 0.942 0.943 0.912

Traffic Light Red Red Red

Ind. Cov. 99% 1.241 2.567 1.401
(0.265) (0.109) (0.237)

95% 5.947 3.806 0.596
(0.015) (0.051) (0.440)

90% 2.948 3.131 1.195
(0.086) (0.077) (0.274)

Unc. Cov. 99% 51.655 34.351 48.035
(0.000) (0.000) (0.000)

95% 41.689 11.232 30.204
(0.000) (0.001) (0.000)

90% 31.599 3.877 18.783
(0.000) (0.049) (0.000)

Joint Test 99% 52.897 36.918 49.436
(0.000) (0.000) (0.000)

95% 47.636 15.038 30.801
(0.000) (0.001) (0.000)

90% 34.547 7.008 19.978
(0.000) (0.030) (0.000)

χ2-Test 57.040 42.118 53.652
(0.004) (0.088) (0.010)

AD Test 8.706 5.441 8.703
(0.000) (0.002) (0.000)

KS Test 0.068 0.056 0.057
(0.001) (0.014) (0.021)

Lower Tail 93.783 97.262 173.604
(0.000) (0.000) (0.000)

This table reports the backtest evaluation results for the multivariate normal benchmark
model applied to the three index data sets. α denotes the significance level of VaR(α).
The hit ratio reflects the percentage of times when the portfolio return exceeds VaR(α).
ES ratio shows whether the mean of the returns when VaR(α) is violated corresponds to
the average expected shortfall in these weeks. The traffic light is the model classifica-
tion of the Basel regulatory framework. The mid and lower panel lists test statistics and
p-values (in parentheses) for multiple backtesting evaluation tests. Independence (un-
conditional) coverage is abbreviated with Ind. Cov. (Unc. Cov.). Joint Test is the joint
test for conditional coverage. The lower panel reports the test statistics with p-values
in parentheses of density forecast evaluation tests. χ2-Test is Pearson’s χ2-test with
10 evenly spaced bins. AD and KS are the tests of Anderson-Darling and Kolmogorov-
Smirnov. Lower Tail is the test of Christoffersen (2012) assessing the models’ ability to
forecast the entire lower tail (losses below the 10% quantile) of the P&L distribution.
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Figure 7.1: Relative frequency of occurrence of the probability integral transforms of the
three portfolio returns taken with respect to the multivariate normal models’ forecasted
probability density distribution. The histogram is segmented into 50 bins of equal size. The
overlaid dashed lines indicate the 95% confidence interval for the heights of the individual
bins under the null hypothesis that the probability integral transforms are (0, 1) uniform
distributed.
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Table 7.3
Static models out-of-sample backtest results: Equity portfolio

α F C G T FC GC TC

Hit Ratio 99% 0.078 0.019 0.026 0.026 0.186 0.185 0.187
95% 0.121 0.101 0.097 0.097 0.250 0.258 0.258
90% 0.169 0.178 0.165 0.165 0.295 0.299 0.303

ES Ratio 99% 0.855 0.962 0.910 0.941 0.732 0.726 0.728
95% 0.821 1.063 0.968 0.997 0.680 0.693 0.691
90% 0.850 1.078 1.013 1.028 0.658 0.663 0.669

Traffic Light Red Yellow Yellow Yellow Red Red Red

Ind. Cov. 99% 2.328 0.589 2.702 2.702 2.778 2.344 4.098
(0.127) (0.443) (0.100) (0.100) (0.096) (0.126) (0.043)

95% 4.678 6.571 4.603 6.227 1.065 0.401 0.200
(0.031) (0.010) (0.032) (0.013) (0.302) (0.526) (0.654)

90% 2.089 4.942 2.948 2.948 0.339 0.379 0.094
(0.148) (0.026) (0.086) (0.086) (0.560) (0.538) (0.759)

Unc. Cov. 99% 148.28 5.285 13.458 13.458 599.12 592.89 605.37
(0.000) (0.022) (0.000) (0.000) (0.000) (0.000) (0.000)

95% 59.577 33.729 29.289 29.289 351.11 373.50 373.50
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

90% 35.153 44.080 31.599 31.599 229.01 237.02 245.14
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Joint Test 99% 150.60 5.874 16.160 16.160 601.90 595.24 609.46
(0.000) (0.053) (0.000) (0.000) (0.000) (0.000) (0.000)

95% 64.255 40.301 33.892 35.516 352.17 373.90 373.70
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

90% 37.242 49.022 34.547 34.547 229.35 237.40 245.23
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

χ2-Test 126.76 76.345 27.349 48.076 172.43 182.79 149.24
(0.000) (0.000) (0.701) (0.026) (0.000) (0.000) (0.000)

AD Test 20.297 28.984 8.248 7.652 298.13 297.89 301.21
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

KS Test 0.077 0.094 0.068 0.071 0.211 0.211 0.216
(0.000) (0.000) (0.002) (0.001) (0.000) (0.000) (0.000)

Lower Tail 359.10 11.174 52.457 33.593 1325.6 1287.8 1309.5
(0.000) (0.011) (0.000) (0.000) (0.000) (0.000) (0.000)

This table reports the backtest evaluation results for the static copula models applied to the eq-
uity index data set. The copula models are abbreviated with F (Frank), C (Clayton), G (Gaus-
sian), T (Student-t), FC (Frank-Clayton mixture), GC (Gaussian-Clayton mixture) and TC
(Student-t-Clayton mixture). α denotes the confidence level of VaR(α). The hit ratio reflects
the percentage of times when the portfolio return exceeds VaR(α). ES ratio shows whether
the mean of the returns when VaR(α) is violated corresponds to the average expected shortfall
in these weeks. The traffic light is the model classification of the Basel regulatory framework.
The mid and lower panel lists test statistics and p-values (in parentheses) for multiple back-
testing evaluation tests. Independence (unconditional) coverage is abbreviated with Ind. Cov.
(Unc. Cov.). Joint Test is the joint test for conditional coverage. The lower panel reports the
test statistics with p-values in parentheses of density forecast evaluation tests. χ2-Test A is
Pearson’s χ2-test with 10 evenly spaced bins. AD and KS are the tests of Anderson-Darling
and Kolmogorov-Smirnov. Lower Tail is the test of Christoffersen (2012) assessing the models’
ability to forecast the entire lower tail (losses below the 10% quantile) of the P&L distribution.
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Figure 7.2: Relative frequency of occurrence of the probability integral transforms of the
equity index portfolio returns taken with respect to the static copula models’ forecasted
probability density distribution. The histogram is segmented into 50 bins of equal size. The
overlaid dashed lines indicate the 95% confidence interval for the heights of the individual
bins under the null hypothesis that the probability integral transforms are (0, 1) uniform
distributed.
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Table 7.4
Regime switching models out-of-sample backtest results: Equity portfolio

α G/G G/T T/T T/GC G/TC G/T/C G/C/F

Hit Ratio 99% 0.024 0.027 0.026 0.119 0.056 0.185 0.182
95% 0.092 0.088 0.099 0.177 0.138 0.254 0.253
90% 0.147 0.154 0.164 0.228 0.208 0.305 0.299

ES Ratio 99% 0.936 0.955 0.942 0.767 0.805 0.726 0.710
95% 0.990 0.971 1.010 0.735 0.880 0.685 0.674
90% 0.999 1.006 1.022 0.757 0.921 0.680 0.666

Traffic Light Yellow Yellow Yellow Red Red Red Red

Ind. Cov. 99% 3.041 6.019 6.290 9.923 9.254 3.094 2.941
(0.081) (0.014) (0.012) (0.002) (0.002) (0.079) (0.086)

95% 4.593 5.826 2.894 4.346 1.484 0.859 0.701
(0.032) (0.016) (0.089) (0.037) (0.223) (0.354) (0.403)

90% 6.204 7.803 3.269 6.258 0.578 0.367 0.379
(0.013) (0.005) (0.071) (0.012) (0.447) (0.545) (0.538)

Unc. Cov. 99% 11.595 15.424 13.458 300.363 81.570 592.893 580.489
(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

95% 23.779 19.966 30.740 164.638 88.645 362.242 358.517
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

90% 17.277 21.952 30.451 108.701 79.286 250.612 237.021
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Joint Test 99% 14.636 21.442 19.748 310.286 90.824 595.987 583.430
(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

95% 28.372 25.793 33.635 168.983 90.129 363.101 359.217
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

90% 23.480 29.755 33.720 114.959 79.864 250.979 237.401
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

χ2-Test 31.129 33.684 23.663 86.816 40.081 160.511 172.617
(0.409) (0.339) (0.856) (0.000) (0.378) (0.000) (0.000)

AD Test 5.086 6.274 7.599 102.487 38.557 299.779 300.721
(0.003) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

KS Test 0.055 0.061 0.065 0.136 0.108 0.212 0.214
(0.017) (0.006) (0.003) (0.000) (0.000) (0.000) (0.000)

Lower Tail 35.271 37.175 37.432 714.824 276.925 1271.40 1317.26
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

This table reports the backtest evaluation results for the regime switch copula models applied to
the equity index data set. The copula models are abbreviated with G (Gaussian), T (Student-t),
F (Frank), C (Clayton), GC (Gaussian-Clayton mixture) and TC (Student-t-Clayton mixture).
G/T/C and G/C/F are three-regime models. α denotes the confidence level of VaR(α). The
hit ratio reflects the percentage of times when the portfolio return exceeds VaR(α). ES ratio
shows whether the mean of the returns when VaR(α) is violated corresponds to the average ex-
pected shortfall in these weeks. The traffic light is the model classification of the Basel regulatory
framework. The mid and lower panel lists test statistics and p-values (in parentheses) for multi-
ple backtesting evaluation tests. Independence (unconditional) coverage is abbreviated with Ind.
Cov. (Unc. Cov.). Joint Test is the joint test for conditional coverage. The lower panel reports
the test statistics with p-values in parentheses of density forecast evaluation tests. χ2-Test is
Pearson’s χ2-test with 10 evenly spaced bins. AD and KS are the tests of Anderson-Darling and
Kolmogorov-Smirnov. Lower Tail is the test of Christoffersen (2012) assessing the models’ ability
to forecast the entire lower tail (losses below the 10% quantile) of the P&L distribution.
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Figure 7.3: Relative frequency of occurrence of the probability integral transforms of
the equity index portfolio returns taken with respect to the regime switching (RS) copula
models’ forecasted probability density distribution. The histogram is segmented into 50 bins
of equal size. The overlaid dashed lines indicate the 95% confidence interval for the heights
of the individual bins under the null hypothesis that the probability integral transforms are
(0, 1) uniform distributed.
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Table 7.5
Dynamic models out-of-sample backtest results: Equity portfolio

α DF DC DG DT DFC DGC DTC

Hit Ratio 99% 0.072 0.015 0.026 0.024 0.041 0.023 0.017
95% 0.114 0.099 0.097 0.095 0.100 0.095 0.096
90% 0.158 0.164 0.160 0.162 0.164 0.156 0.155

ES Ratio 99% 0.850 0.928 0.915 0.950 0.977 1.356 0.877
95% 0.828 1.086 0.982 0.972 0.924 1.028 1.021
90% 0.854 1.070 1.001 1.003 0.970 1.025 1.026

Traffic Light Red Green Yellow Yellow Red Yellow Yellow

Ind. Cov. 99% 2.286 1.862 6.290 0.497 7.203 0.626 0.441
(0.131) (0.172) (0.012) (0.481) (0.007) (0.429) (0.507)

95% 3.959 2.894 3.200 5.406 3.871 1.492 3.522
(0.047) (0.089) (0.074) (0.020) (0.049) (0.222) (0.061)

90% 5.131 3.269 4.333 2.223 1.720 4.432 2.843
(0.024) (0.071) (0.037) (0.136) (0.190) (0.035) (0.092)

Unc. Cov. 99% 127.451 1.962 13.458 11.595 42.710 9.840 2.917
(0.000) (0.161) (0.000) (0.001) (0.000) (0.002) (0.088)

95% 50.316 30.740 29.289 26.474 32.221 26.474 27.867
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

90% 24.995 30.451 27.121 28.212 30.451 23.962 22.947
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Joint Test 99% 129.737 3.824 19.748 12.092 49.913 10.466 3.358
(0.000) (0.148) (0.000) (0.002) (0.000) (0.005) (0.187)

95% 54.274 33.635 32.489 31.881 36.091 27.966 31.389
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

90% 30.126 33.720 31.454 30.435 32.171 28.394 25.790
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

χ2-Test 123.620 67.379 33.151 37.737 35.672 26.825 30.809
(0.000) (0.001) (0.411) (0.223) (0.390) (0.632) (0.425)

AD Test 16.561 24.169 7.239 7.928 13.480 5.935 6.319
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001)

KS Test 0.071 0.088 0.066 0.065 0.065 0.058 0.064
(0.001) (0.000) (0.002) (0.003) (0.003) (0.010) (0.003)

Lower Tail 331.268 8.352 39.353 34.571 107.550 18.414 18.510
(0.000) (0.039) (0.000) (0.000) (0.000) (0.000) (0.000)

This table reports the backtest evaluation results for the dynamic copula models applied to the
equity index data set. The models are abbreviated with D (Dynamic), F (Frank), C (Clayton),
G (Gaussian), T (Student-t), FC (Frank-Clayton mixture), GC (Gaussian-Clayton mixture) and
TC (Student-t-Clayton mixture). α denotes the confidence level of VaR(α). The hit ratio re-
flects the percentage of times when the portfolio return exceeds VaR(α). ES ratio shows whether
the mean of the returns when VaR(α) is violated corresponds to the average expected shortfall
in these weeks. The traffic light is the model classification of the Basel regulatory framework.
The mid and lower panel lists test statistics and p-values (in parentheses) for multiple back-
testing evaluation tests. Independence (unconditional) coverage is abbreviated with Ind. Cov.
(Unc. Cov.). Joint Test is the joint test for conditional coverage. The lower panel reports the
test statistics with p-values in parentheses of density forecast evaluation tests. χ2-Test is Pear-
son’s χ2-test with 10 evenly spaced bins. AD and KS are the tests of Anderson-Darling and
Kolmogorov-Smirnov. Lower Tail is the test of Christoffersen (2012) assessing the models’ abil-
ity to forecast the entire lower tail (losses below the 10% quantile) of the P&L distribution.



7.2. Overall Forecast Performance 149

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

Dynamic Clayton

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

Dynamic Frank

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

Dynamic Gaussian

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

Dynamic Student−t

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

Dynamic Gaussian−Clayton Mixture

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

Dynamic Student−t−Clayton Mixture

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

Dynamic Frank−Clayton Mixture

Figure 7.4: Relative frequency of occurrence of the probability integral transforms of
the equity index portfolio returns using the dynamic copula models’ forecasted probability
density distribution. The histogram is segmented into 50 bins of equal size. The overlaid
dashed lines indicate the 95% confidence interval for the heights of the individual bins under
the null hypothesis that the probability integral transforms are (0, 1) uniform distributed.
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7.2.2 Commodity Futures Index Portfolio

This section discusses the outcomes of the backtesting procedure for the com-

modity data over the entire out-of-sample time frame from 1998 until 2013.

The results for the static models are listed in table 7.6 and figure 7.5 depicts

the histograms of the probability integral transforms of the empirical portfolio

returns taken with respect to the forecasted profit and loss distribution.

According to the hit ratios and the expected shortfall ratios, the static

mixture copulas are ranked in the rearmost positions. None of the mixture

passes the unconditional coverage and the joint test and all static mixture

models classify as red. Figure 7.5 shows the static mixtures’ failure to ade-

quately forecast both lower and upper tail of the profit and loss distribution.

Despite the Frank-Clayton and the Student-t-Clayton mixture copulas passing

both χ2 tests, the comparatively high test statistics of the Anderson-Darling,

Kolmogorov-Smirnov and Christoffersen’s Lower Tail test confirm the impres-

sion given by figure 7.5, that for a commodity futures index portfolio the static

mixture copulas are not suitable models to forecast neither for the entire profit

and loss distribution nor its lower tail, which is identical to the findings for

the equity data. The static Frank and the Gaussian copula are two further

models with no predictive power of the commodity data’s return distribution.

Both traffic lights are red and even though the violation of their VaR forecasts

are independent in time according to the independence coverage tests, they

both fail the remaining tests altogether.

The backtest comparison of the static Gaussian model with the multi-

variate normal benchmark model indicates that modeling the standardized

residuals with a skewed-t distribution does not improve the hit ratios on any

of the three confidence levels. The benefit of the more elaborate marginals

comes forward with the improved expected shortfall ratios, which are partic-

ularly meaningful on α = 99% and α = 95% since the two compared models

have identical hit ratios for these confidence levels.

Among the two yellow models Clayton and Student-t, the former is sub-
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stantially more successful in forecasting the lower tail of the portfolio’s return

distribution, documented by the hit ratios and ES ratios on α = 99% and

α = 95% and by the fact that the Clayton is the only static model to pass

the Lower Tail test.

While incorporating skewness and kurtosis in the marginal distributions

does not improve the hit ratios for the commodity data (documented by the

comparison of the Gaussian copula with multivariate normal model results),

the capability of modeling lower tail dependence (as in the Student-t and Clay-

ton copula) results in substantially better hit ratios on the 99% confidence

level. Applying the static Clayton copula setup instead of the multivariate

normal model reduces the 99% hit ratio by more than 50%. The χ2-test even

indicates that the Clayton copula is the best static model to forecast the en-

tire profit and loss distribution of the commodity futures index portfolio.

The backtesting results of the regime switching models are listed in table

7.7. Forecasting the profit and loss distribution of the commodity futures

index portfolio by means of the regime switching copulas with three states

yields worse results than with two-state models, analogous to the results for

the equity data. The histograms of the three-state models in figure 7.6 visual-

ize their incapability to forecast either tail of the portfolio return distribution.

The inclusion of a mixture copula to characterize one of the two regimes does

not produce better forecasts compared to the regime switching structures with

two standalone copulas.

The G/G and the T/T regime switching copulas are the only two Markov-

chain models to achieve a yellow rating. The former’s hit ratios compared

to those of the static Gaussian model show that allowing for regime switches

results in preferable VaR forecasts. The results of the χ2 tests further suggest

that the two-state Gaussian setup yields better forecasts for the entire return

distribution than the one-state Gaussian model and the multivariate normal

benchmark. The regime switching copula models do not shine when it comes

to forecast the lowest 1% and 5% quantiles of the commodities’ profit and
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loss distribution as they fail the unconditional coverage test and the joint test

on the according α levels and further do not pass the Lower Tail test. The

backtesting outcomes of the G/G and the G/T models on α = 90%, however,

allude to their predictive power for the VaR on the according level. Note that

the information criteria for the in-sample fit relegate the latter two models

to the rear positions among the regime switching models whilst the models

with the best in-sample fit perform rather poorly in the backtesting procedure

which again points to a limited use of the in-sample rankings to gauge the

predictive power.

Next, the performance of the dynamic models is shifted into focus. The

according results are listed in table 7.8. Comparing the backtest performance

of the dynamic copulas to those of their static counterparts (see table 7.6)

shows that allowing for time variation in the dependence structure improves

most of the backtest results for all the copula models under consideration.

Four models which are classified as red in their static versions rank as yellow

under the Basel regulatory framework in their dynamic specification. The

dynamic Frank copula, however, does not produce materially different results

than its static version, indicating that the Frank copula is in neither static nor

dynamic form an appropriate dependence model to forecast the commodity

portfolio’s returns.

Adding the Clayton to the Frank copula in the form of a dynamic convex

combination of both models improves the performance to the degree that the

dynamic Frank-Clayton mixture reaches a yellow traffic light ranking, but

still yields the second poorest results among the dynamic models. Figure 7.7

depicts the histograms of the portfolio returns’ probability integral transforms

with respect to the dynamic models forecasted profit and loss distributions.

Clearly, the forecasted return distribution of the dynamic Frank-Clayton mix-

ture copula concentrates too much probability mass in the center of the dis-

tribution, which results in the high bars at lowest and highest quantiles of the

histogram.
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The model with the highest predictive power for the negative extreme re-

turns of the commodity portfolio is the dynamic Clayton copula. Even though

the dynamic version only improves the VaR forecasts on the 90% confidence

level compared to the static Clayton copula, the dynamic version passes the

Lower Tail test with a p-value twice as large. This outperformance of the mul-

tivariate Clayton copula (both static and dynamic) in forecasting the lowest

portfolio return quantiles is due to its capability to model lower tail depen-

dence. The histogram in figure 7.7 visualizes the Clayton’s superiority in this

regard with the low bar for the 2% quantile. This highlights the importance of

modeling lower tail dependence to forecast the risk of a commodity futures in-

dex portfolio. The second poorest in-sample fit of the dynamic Clayton copula

among the dynamic models according to both information criteria questions

the usefulness of AIC and BIC rankings to identify a powerful risk forecasting

model.
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Table 7.6
Static models out-of-sample backtest results: Commodity portfolio

α F C G T FC GC TC

Hit Ratio 99% 0.056 0.018 0.037 0.029 0.099 0.100 0.097
95% 0.100 0.077 0.078 0.078 0.172 0.172 0.164
90% 0.144 0.141 0.127 0.122 0.227 0.233 0.228

ES Ratio 99% 0.847 1.025 0.989 0.956 0.794 0.793 0.803
95% 0.839 1.044 0.935 0.964 0.804 0.800 0.787
90% 0.857 1.060 0.975 0.973 0.807 0.825 0.819

Traffic Light Red Yellow Red Yellow Red Red Red

Ind. Cov. 99% 2.281 5.264 2.567 4.780 1.792 3.698 3.200
(0.131) (0.022) (0.109) (0.029) (0.181) (0.054) (0.074)

95% 2.605 1.369 2.328 2.197 3.049 2.269 3.269
(0.107) (0.242) (0.127) (0.138) (0.081) (0.132) (0.071)

90% 5.009 4.625 2.950 4.298 0.042 0.547 0.100
(0.025) (0.032) (0.086) (0.038) (0.837) (0.460) (0.752)

Unc. Cov. 99% 81.570 4.028 34.351 19.644 220.606 225.388 215.854
(0.000) (0.045) (0.000) (0.000) (0.000) (0.000) (0.000)

95% 32.221 10.295 11.232 11.232 153.523 153.523 137.393
(0.000) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000)

90% 14.715 13.111 5.840 3.877 106.751 116.647 108.701
(0.000) (0.000) (0.016) (0.049) (0.000) (0.000) (0.000)

Joint Test 99% 83.851 9.292 36.918 24.424 222.399 229.086 219.053
(0.000) (0.010) (0.000) (0.000) (0.000) (0.000) (0.000)

95% 34.826 11.664 13.559 13.429 156.572 155.792 140.662
(0.000) (0.003) (0.001) (0.001) (0.000) (0.000) (0.000)

90% 19.724 17.736 8.790 8.175 106.793 117.193 108.801
(0.000) (0.000) (0.012) (0.017) (0.000) (0.000) (0.000)

χ2-Test 78.975 36.276 54.768 53.183 64.295 72.233 65.630
(0.000) (0.363) (0.005) (0.008) (0.015) (0.003) (0.011)

AD Test 14.708 17.319 5.859 5.605 118.621 123.705 118.060
(0.000) (0.000) (0.001) (0.001) (0.000) (0.000) (0.000)

KS Test 0.065 0.079 0.061 0.063 0.175 0.174 0.175
(0.002) (0.000) (0.006) (0.004) (0.000) (0.000) (0.000)

Lower Tail 259.651 4.548 66.008 52.095 474.543 518.550 427.286
(0.000) (0.208) (0.000) (0.000) (0.000) (0.000) (0.000)

This table reports the backtest evaluation results for the static copula models applied to the
commodity index data set. The copula models are abbreviated with F (Frank), C (Clayton), G
(Gaussian), T (Student-t), FC (Frank-Clayton mixture), GC (Gaussian-Clayton mixture) and TC
(Student-t-Clayton mixture). α denotes the confidence level of VaR(α). The hit ratio reflects the
percentage of times when the portfolio return exceeds VaR(α). ES ratio shows whether the mean
of the returns when VaR(α) is violated corresponds to the average expected shortfall in these
weeks. The traffic light is the model classification of the Basel regulatory framework. The mid
and lower panel lists test statistics and p-values (in parentheses) for multiple backtesting evalu-
ation tests. Independence (unconditional) coverage is abbreviated with Ind. Cov. (Unc. Cov.).
Joint Test is the joint test for conditional coverage. The lower panel reports the test statistics
with p-values in parentheses of density forecast evaluation tests. χ2-Test is Pearson’s χ2-test with
10 evenly spaced bins. AD and KS are the tests of Anderson-Darling and Kolmogorov-Smirnov.
Lower Tail is the test of Christoffersen (2012) assessing the models’ ability to forecast the entire
lower tail (losses below the 10% quantile) of the P&L distribution.
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Figure 7.5: Commodity portfolio: Relative frequency of occurrence of the probability
integral transforms of the commodity futures index portfolio returns using the static copula
models’ forecasted probability density distribution. The histogram is segmented into 50 bins
of equal size. The overlaid dashed lines indicate the 95% confidence interval for the heights
of the individual bins under the null hypothesis that the probability integral transforms are
(0, 1) uniform distributed.



156 Chapter 7. Forecast Evaluation

Table 7.7
Regime switching models out-of-sample backtest results: Commodity portfolio

α G/G G/T T/T T/GC G/TC G/T/C G/C/F

Hit Ratio 99% 0.029 0.036 0.031 0.082 0.053 0.094 0.095
95% 0.077 0.078 0.078 0.141 0.092 0.164 0.168
90% 0.114 0.115 0.126 0.195 0.145 0.232 0.231

ES Ratio 99% 0.922 0.927 0.973 0.832 0.840 0.766 0.787
95% 0.930 0.940 0.954 0.799 0.836 0.779 0.797
90% 0.929 0.928 0.975 0.826 0.905 0.823 0.822

Traffic Light Yellow Red Yellow Red Red Red Red

Ind. Cov. 99% 4.780 5.754 4.343 2.845 3.157 1.597 1.492
(0.029) (0.016) (0.037) (0.092) (0.076) (0.206) (0.222)

95% 2.600 2.328 2.328 2.569 3.140 3.269 2.359
(0.107) (0.127) (0.127) (0.109) (0.076) (0.071) (0.125)

90% 3.959 3.613 1.442 1.047 3.534 0.190 0.109
(0.047) (0.057) (0.230) (0.306) (0.060) (0.663) (0.741)

Unc. Cov. 99% 19.644 31.706 21.891 161.202 71.123 201.772 206.436
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

95% 10.295 11.232 11.232 93.153 23.779 137.393 145.375
(0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

90% 1.656 1.964 5.314 62.910 15.548 114.639 112.645
(0.198) (0.161) (0.021) (0.000) (0.000) (0.000) (0.000)

Joint Test 99% 24.424 37.460 26.234 164.047 74.280 203.369 207.928
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

95% 12.894 13.559 13.559 95.723 26.919 140.662 147.734
(0.002) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

90% 5.615 5.578 6.756 63.958 19.082 114.829 112.754
(0.060) (0.061) (0.034) (0.000) (0.000) (0.000) (0.000)

χ2-Test 33.755 49.988 34.938 44.981 58.597 84.563 91.784
(0.383) (0.029) (0.286) (0.271) (0.010) (0.000) (0.000)

AD Test 4.773 5.478 6.287 82.530 15.924 121.344 121.996
(0.004) (0.002) (0.001) (0.000) (0.000) (0.000) (0.000)

KS Test 0.058 0.057 0.066 0.142 0.074 0.179 0.177
(0.010) (0.012) (0.002) (0.000) (0.000) (0.000) (0.000)

Lower Tail 65.859 60.530 35.474 344.719 212.651 562.397 519.691
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

This table reports the backtest evaluation results for the regime switch copula models applied to
the commodity futures index data set. The copula models are abbreviated with G (Gaussian), T
(Student-t), F (Frank), C (Clayton), GC (Gaussian-Clayton mixture) and TC (Student-t-Clayton
mixture). G/T/C and G/C/F are three-regime models. α denotes the confidence level of VaR(α).
The hit ratio reflects the percentage of times when the portfolio return exceeds VaR(α). ES ra-
tio shows whether the mean of the returns when VaR(α) is violated corresponds to the average
expected shortfall in these weeks. The traffic light is the model classification of the Basel regu-
latory framework. The mid and lower panel lists test statistics and p-values (in parentheses) for
multiple backtesting evaluation tests. Independence (unconditional) coverage is abbreviated with
Ind. Cov. (Unc. Cov.). Joint Test is the joint test for conditional coverage. The lower panel re-
ports the test statistics with p-values in parentheses of density forecast evaluation tests. χ2-Test
is Pearson’s χ2-test with 10 evenly spaced bins. AD and KS are the tests of Anderson-Darling
and Kolmogorov-Smirnov. Lower Tail is the test of Christoffersen (2012) assessing the models’
ability to forecast the entire lower tail (losses below the 10% quantile) of the P&L distribution.
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Figure 7.6: Commodity portfolio: Relative frequency of occurrence of the probability inte-
gral transforms of the commodity futures index portfolio returns using the regime switching
(RS) copula models’ forecasted probability density distribution. The histogram is seg-
mented into 50 bins of equal size. The overlaid dashed lines indicate the 95% confidence
interval for the heights of the individual bins under the null hypothesis that the probability
integral transforms are (0, 1) uniform distributed.
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Table 7.8
Dynamic models out-of-sample backtest results: Commodity portfolio

α DF DC DG DT DFC DGC DTC

Hit Ratio 99% 0.053 0.018 0.029 0.024 0.033 0.026 0.026
95% 0.104 0.078 0.079 0.072 0.082 0.074 0.078
90% 0.136 0.135 0.122 0.118 0.138 0.119 0.122

ES Ratio 99% 0.839 1.065 0.972 0.954 0.953 0.950 0.983
95% 0.863 1.049 0.965 0.939 0.942 1.072 0.975
90% 0.851 1.052 0.974 0.960 0.981 1.011 0.984

Traffic Light Red Yellow Yellow Yellow Yellow Yellow Yellow

Ind. Cov. 99% 3.157 5.264 4.780 6.870 3.557 2.702 6.290
(0.076) (0.022) (0.029) (0.009) (0.059) (0.100) (0.012)

95% 1.835 0.395 3.305 3.687 1.609 3.039 2.328
(0.176) (0.530) (0.069) (0.055) (0.205) (0.081) (0.127)

90% 1.941 4.201 2.136 1.982 2.253 2.677 2.136
(0.164) (0.040) (0.144) (0.159) (0.133) (0.102) (0.144)

Unc. Cov. 99% 71.123 4.028 19.644 11.595 26.639 13.458 13.458
(0.000) (0.045) (0.000) (0.001) (0.000) (0.000) (0.000)

95% 36.831 11.232 12.204 6.914 14.254 8.530 11.232
(0.000) (0.001) (0.000) (0.009) (0.000) (0.003) (0.001)

90% 10.159 9.475 3.877 2.656 11.592 3.038 3.877
(0.001) (0.002) (0.049) (0.103) (0.001) (0.081) (0.049)

Joint Test 99% 74.280 9.292 24.424 18.465 30.196 16.160 19.748
(0.000) (0.010) (0.000) (0.000) (0.000) (0.000) (0.000)

95% 38.666 11.627 15.509 10.600 15.863 11.569 13.559
(0.000) (0.003) (0.000) (0.005) (0.000) (0.003) (0.001)

90% 12.099 13.676 6.013 4.638 13.845 5.716 6.013
(0.002) (0.001) (0.049) (0.098) (0.001) (0.057) (0.049)

χ2-Test 71.852 65.422 38.637 38.480 42.313 44.958 31.116
(0.000) (0.002) (0.163) (0.200) (0.128) (0.064) (0.410)

AD Test 13.972 15.284 4.910 4.745 14.748 4.108 4.801
(0.000) (0.000) (0.003) (0.004) (0.000) (0.008) (0.004)

KS Test 0.063 0.079 0.058 0.059 0.087 0.057 0.060
(0.004) (0.000) (0.009) (0.008) (0.000) (0.013) (0.007)

Lower Tail 302.755 2.295 41.068 36.010 57.616 37.133 21.853
(0.000) (0.513) (0.000) (0.000) (0.000) (0.000) (0.000)

This table reports the backtest evaluation results for the dynamic copula models applied to the
commodity index data set. The models are abbreviated with D (Dynamic), F (Frank), C (Clay-
ton), G (Gaussian), T (Student-t), FC (Frank-Clayton mixture), GC (Gaussian-Clayton mix-
ture) and TC (Student-t-Clayton mixture). α denotes the confidence level of VaR(α). The hit
ratio reflects the percentage of times when the portfolio return exceeds VaR(α). ES ratio shows
whether the mean of the returns when VaR(α) is violated corresponds to the average expected
shortfall in these weeks. The traffic light is the model classification of the Basel regulatory
framework. The mid and lower panel lists test statistics and p-values (in parentheses) for mul-
tiple backtesting evaluation tests. Independence (unconditional) coverage is abbreviated with
Ind. Cov. (Unc. Cov.). Joint Test is the joint test for conditional coverage. The lower panel re-
ports the test statistics with p-values in parentheses of density forecast evaluation tests. χ2-Test
is Pearson’s χ2-test with 10 evenly spaced bins. AD and KS are the tests of Anderson-Darling
and Kolmogorov-Smirnov. Lower Tail is the test of Christoffersen (2012) assessing the models’
ability to forecast the entire lower tail (losses below the 10% quantile) of the P&L distribution.
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Figure 7.7: Commodity portfolio: Relative frequency of occurrence of the probability
integral transforms of the commodity futures index portfolio returns using the dynamic
copula models’ forecasted probability density distribution. The histogram is segmented
into 50 bins of equal size. The overlaid dashed lines indicate the 95% confidence interval
for the heights of the individual bins under the null hypothesis that the probability integral
transforms are (0, 1) uniform distributed.
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7.2.3 Multi Asset Classes Index Portfolio

This section discusses the results of the backtests for the multi asset classes

portfolio starting with the performance analysis of the static copula models,

which are listed in table 7.9. Figure 7.8 depicts the histograms of the probabil-

ity integral transformed portfolio returns taken with regard to the according

model’s forecasted profit and loss distribution and shows that none of the

static mixture copulas is capable of producing adequate forecasts for the tails

of the portfolio’s return distribution. The significantly elevated bars at the

lowest 2% quantiles in the mixtures’ histograms point to a severe underesti-

mation of the probability of joint negative extreme returns of the portfolio

constituents. This is substantiated by the high levels of the mixture models’

hit ratios, their low ES ratios and the large test statistics for the uncondi-

tional coverage, joint and Lower Tail tests. Unsurprisingly, they are rated red

according to the Basel regulatory framework’s traffic light system.

The Frank copula, a further static model with a very high bar for the lowest

2% quantile in figure 7.8, also shows overall evaluation results indicating poor

predictive power. The comparison of the static Gaussian with the multivariate

normal benchmark model (see table 7.2) shows that incorporating skewness in

the marginal models improves the VaR forecasts for α = 99%, 95% and yields

a lower test statistic for the Lower Tail test. The substantially higher p-

value of the χ2-test further suggests that the Gaussian copula model provides

better forecasts for the entire profit and loss distribution compared to the

multivariate normal model.

The model with the highest predictive power for the lower tail of the

profit and loss distribution among the static copulas is the Clayton copula.

The asymmetric Archimedean model yields the best hit ratios on the 99% and

95% significance level. The histogram in figure 7.8 shows the comparatively

low bar for the first 2% quantile of the Clayton model’s probability integral

transforms, which visualizes the fatter lower tail of the Clayton’s forecasted

profit and loss distribution.
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However, all of the static copulas classify as red according to the Basel

regulatory framework. The static Gaussian and the static Student-t copula

may provide suitable forecasts for a major part of the profit and loss distribu-

tion since they pass both the χ2 and the Kolmogorov-Smirnov test, but their

predictions for the lower tail are far from accurate even though substantially

better than the multivariate normal model on the 99% and 95% confidence

levels.

The results of the regime switching models are focused on next. The

comparison of the Gaussian/Gaussian regime switching model with the static

Gaussian reveals that the advantage of the two-state specification is of minor

nature. The latter is also branded as red and whilst yielding no improvement

for the VaR forecasts on α = 99%, its hit ratios on the 95% and 90% confidence

levels are more accurate in comparison to the ones of the static Gaussian.

The performance of the Gaussian/Student-t model is similar to the one of the

Gaussian/Gaussian model with identical results for the hit ratios and coverage

test on the lower two significance levels.

The χ2 and the Kolmogorov-Smirnov test results suggest that all two-state

regime switching models with standalone copulas produce acceptable forecasts

for the entire profit and loss distribution which is visualized in figure 7.9 by

the flattest histograms among the Markov chain models for the G/G, G/T

and T/T model. The large bars for the lowest and highest quantiles in the

histograms of the other four regime switching models document that they

underestimate the probability of joint extreme returns of the indices in the

portfolio.

The amalgamation of the asymmetric Clayton copula with neither the

Gaussian nor the Student-t regime of the G/T copula to form the two regime

switching structures with mixture copulas has an improving effect on the re-

sults. To the contrary, practically all backtesting results are inferior. This

shows that the static mixtures models, despite their promising in-sample fit,

have poor predictive power also as a part of the regime switching structures.
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In addition, the models with three regimes produce even more imprecise fore-

casts displaying the worst results for all backtests. Overall, the two-state

models containing singular copulas are suitable to forecast the majority of the

profit and loss distribution based on them passing the Kolmogorov-Smirnov

and the χ2 test. The lower tail of the portfolio return distribution however is

not forecasted appropriately by any of the regime switching models, as they

all classify as red and fail the unconditional coverage and the joint tests.

Next, the dynamic models’ forecast performance is analyzed. The ad-

ditional flexibility of the dynamic copulas to capture time variations in the

dependence structure results in improved forecasts for the lower tail of the

profit and loss distribution for all models except the Frank copula, as docu-

mented in table 7.11. The Frank copula proves to be unsuitable to forecast

the multi asset classes portfolio’s returns in both its static and its dynamic

form.

Figure 7.10 visualizes the improvement of the dynamic mixture models’

forecasts for the tails of the portfolio return distribution with substantially

smaller bars for the outermost quantiles compared to the histograms of their

static counterparts in figure 7.8. With the dynamic model specifications, the

hit ratios and ES ratios of the mixture models are a major step closer to the

expected values. In contrast to their results as static models, all dynamic

mixtures pass the χ2 and the Kolmogorov-Smirnov test. This demonstrates

that the dynamic mixture copula models have more predictive power with

regards to the entire profit and loss distribution of the portfolio than their

static versions, which underpins the importance of allowing for time variation

in copula mixture models.

The comparison of the backtest results of the dynamic Gaussian with the

dynamic Gaussian-Clayton mixture reveals that the additional capability to

capture asymmetries in the dependence structure yields better forecasts for

both VaR and ES on the 99% and 95% levels of α. However, the dynamic

Gaussian-Clayton mixture overforecasts the expected shortfall on α = 90%
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and while the dynamic Gaussian’s forecasts are smaller than the realized loss,

its according ES ratio is closer to the expectation of 1.

Incorporating asymmetries into the dynamic Student-t copula with the

dynamic Student-t-Clayton mixture improves the VaR forecasts on the 95%

significance level and the forecasts for the expected shortfall on both α =

95% and α = 99%. The best VaR forecasts are produced by the dynamic

Clayton copula model, which stands out as the only model attaining a yellow

classification according to the Basel regulatory framework among all dynamic

models, even among all tested models for the multi asset classes portfolio.

While the Clayton copula is not appropriate to forecast the entire profit and

loss distribution neither in its static nor in its dynamic version, as both fail

the χ2 test and the Kolmogorov-Smirnov test, it is the model with the most

predictive power for the lowest 10% quantile of the return distribution of

the multi asset classes portfolio. Compared to the static form, the backtest

results show that allowing for time variation in the Clayton copula increases

the accuracy of the VaR forecasts on all three significance levels.
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Table 7.9
Static models out-of-sample backtest results: Multi asset classes portfolio

α F C G T FC GC TC

Hit Ratio 99% 0.060 0.026 0.036 0.036 0.124 0.131 0.123
95% 0.120 0.084 0.091 0.101 0.192 0.192 0.192
90% 0.160 0.157 0.152 0.151 0.246 0.255 0.246

ES Ratio 99% 0.773 0.953 0.869 0.915 0.760 0.779 0.763
95% 0.828 1.023 0.928 0.993 0.746 0.741 0.746
90% 0.830 1.054 0.955 0.964 0.762 0.786 0.755

Traffic Light Red Red Red Red Red Red Red

Ind. Cov. 99% 2.369 3.066 3.450 3.450 1.260 0.451 2.370
(0.124) (0.080) (0.063) (0.063) (0.262) (0.502) (0.124)

95% 0.140 3.453 1.953 0.596 2.183 1.014 1.545
(0.708) (0.063) (0.162) (0.440) (0.140) (0.314) (0.214)

90% 2.087 1.190 0.659 0.817 0.008 0.240 0.087
(0.149) (0.275) (0.417) (0.366) (0.927) (0.624) (0.768)

Unc. Cov. 99% 82.099 12.112 28.015 28.015 287.602 314.319 282.337
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

95% 52.476 14.349 20.358 30.204 179.683 179.683 179.683
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

90% 23.870 21.771 18.783 17.831 124.188 137.416 124.188
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Joint Test 99% 84.468 15.178 31.465 31.465 288.863 314.770 284.707
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

95% 52.616 17.802 22.311 30.801 181.867 180.697 181.228
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

90% 25.957 22.961 19.442 18.648 124.196 137.656 124.275
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

χ2-Test 85.354 55.870 24.398 33.921 72.631 71.009 44.386
(0.000) (0.008) (0.830) (0.375) (0.003) (0.005) (0.413)

AD Test 15.085 18.196 8.599 8.971 133.316 135.057 133.707
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

KS Test 0.074 0.067 0.056 0.058 0.161 0.162 0.163
(0.001) (0.004) (0.022) (0.016) (0.000) (0.000) (0.000)

Lower Tail 265.505 18.459 79.472 70.767 620.521 633.204 629.283
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

This table reports the backtest evaluation results for the static copula models applied to the
multi asset classes data set. The copula models are abbreviated with F (Frank), C (Clayton), G
(Gaussian), T (Student-t), FC (Frank-Clayton mixture), GC (Gaussian-Clayton mixture) and TC
(Student-t-Clayton mixture). α denotes the confidence level of VaR(α). The hit ratio reflects the
percentage of times when the portfolio return exceeds VaR(α). ES ratio shows whether the mean
of the returns when VaR(α) is violated corresponds to the average expected shortfall in these
weeks. The traffic light is the model classification of the Basel regulatory framework. The mid
and lower panel lists test statistics and p-values (in parentheses) for multiple backtesting evalu-
ation tests. Independence (unconditional) coverage is abbreviated with Ind. Cov. (Unc. Cov.).
Joint Test is the joint test for conditional coverage. The lower panel reports the test statistics
with p-values in parentheses of density forecast evaluation tests. χ2-Test is Pearson’s χ2-test with
10 evenly spaced bins. AD and KS are the tests of Anderson-Darling and Kolmogorov-Smirnov.
Lower Tail is the test of Christoffersen (2012) assessing the models’ ability to forecast the entire
lower tail (losses below the 10% quantile) of the P&L distribution.
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Figure 7.8: Multi asset classes: Relative frequency of occurrence of the probability integral
transforms of the multi asset classes portfolio returns taken with respect to the static copula
models’ forecasted probability density distribution. The histogram is segmented into 50 bins
of equal size. The overlaid dashed lines indicate the 95% confidence interval for the heights
of the individual bins under the null hypothesis that the probability integral transforms are
(0, 1) uniform distributed.
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Table 7.10
Regime switching models out-of-sample backtest results: Multi asset classes portfolio

α G/G G/T T/T T/GC G/TC G/T/C G/C/F

Hit Ratio 99% 0.036 0.036 0.031 0.083 0.063 0.125 0.127
95% 0.085 0.085 0.093 0.128 0.128 0.198 0.192
90% 0.145 0.150 0.150 0.197 0.174 0.248 0.246

ES Ratio 99% 0.870 0.881 0.857 0.807 0.844 0.767 0.782
95% 0.926 0.922 0.961 0.775 0.870 0.759 0.757
90% 0.957 0.973 0.976 0.861 0.858 0.760 0.763

Traffic Light Red Red Red Red Red Red Red

Ind. Cov. 99% 3.450 3.450 4.723 1.171 1.715 1.065 0.377
(0.063) (0.063) (0.030) (0.279) (0.190) (0.302) (0.539)

95% 3.115 0.203 1.708 3.234 0.724 0.733 0.281
(0.078) (0.652) (0.191) (0.072) (0.395) (0.392) (0.596)

90% 0.477 1.637 0.992 0.907 0.257 0.046 0.013
(0.490) (0.201) (0.319) (0.341) (0.612) (0.830) (0.911)

Unc. Cov. 99% 28.015 28.015 20.626 146.829 89.561 292.894 298.212
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

95% 15.479 15.479 21.665 64.338 64.338 191.904 179.683
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

90% 14.248 16.902 16.902 58.501 35.620 126.355 124.188
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Joint Test 99% 31.465 31.465 25.348 148.000 91.276 293.959 298.589
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

95% 18.594 15.682 23.373 67.572 65.063 192.637 179.965
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

90% 14.725 18.538 17.894 59.408 35.877 126.401 124.201
(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

χ2-Test 27.621 23.925 29.093 40.273 35.299 55.974 50.309
(0.641) (0.847) (0.564) (0.414) (0.454) (0.089) (0.207)

AD Test 7.028 7.941 7.748 52.912 29.154 136.227 132.362
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

KS Test 0.055 0.056 0.057 0.102 0.084 0.159 0.161
(0.027) (0.024) (0.022) (0.000) (0.000) (0.000) (0.000)

Lower Tail 61.145 68.402 53.432 337.326 216.795 645.351 600.885
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

This table reports the backtest evaluation results for the regime switch copula models applied
to the multi asset classes data set. The copula models are abbreviated with G (Gaussian), T
(Student-t), F (Frank), C (Clayton), GC (Gaussian-Clayton mixture) and TC (Student-t-Clayton
mixture). G/T/C and G/C/F are three-regime models. α denotes the confidence level of VaR(α).
The hit ratio reflects the percentage of times when the portfolio return exceeds VaR(α). ES ra-
tio shows whether the mean of the returns when VaR(α) is violated corresponds to the average
expected shortfall in these weeks. The traffic light is the model classification of the Basel regu-
latory framework. The mid and lower panel lists test statistics and p-values (in parentheses) for
multiple backtesting evaluation tests. Independence (unconditional) coverage is abbreviated with
Ind. Cov. (Unc. Cov.). Joint Test is the joint test for conditional coverage. The lower panel re-
ports the test statistics with p-values in parentheses of density forecast evaluation tests. χ2-Test
is Pearson’s χ2-test with 10 evenly spaced bins. AD and KS are the tests of Anderson-Darling
and Kolmogorov-Smirnov. Lower Tail is the test of Christoffersen (2012) assessing the models’
ability to forecast the entire lower tail (losses below the 10% quantile) of the P&L distribution.
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Figure 7.9: Multi Asset Classes: Relative frequency of occurrence of the probability
integral transforms of the multi asset classes portfolio returns taken with respect to the
regime switching (RS) copula models’ forecasted probability density distribution. The
histogram is segmented into 50 bins of equal size. The overlaid dashed lines indicate the
95% confidence interval for the heights of the individual bins under the null hypothesis that
the probability integral transforms are (0, 1) uniform distributed.
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Table 7.11
Dynamic models out-of-sample backtest results: Multi asset classes portfolio

α DF DC DG DT DFC DGC DTC

Hit Ratio 99% 0.061 0.022 0.036 0.034 0.033 0.033 0.034
95% 0.115 0.078 0.088 0.090 0.091 0.083 0.080
90% 0.151 0.154 0.148 0.148 0.154 0.148 0.151

ES Ratio 99% 0.799 0.912 0.859 0.886 0.890 0.883 0.919
95% 0.838 0.989 0.927 0.938 0.970 0.959 1.041
90% 0.831 1.061 0.954 0.948 1.002 1.132 1.261

Traffic Light Red Yellow Red Red Red Red Red

Ind. Cov. 99% 3.921 3.891 3.450 3.844 4.267 1.552 3.844
(0.048) (0.049) (0.063) (0.050) (0.039) (0.213) (0.050)

95% 0.407 0.779 1.351 1.151 0.969 1.171 1.590
(0.523) (0.377) (0.245) (0.283) (0.325) (0.279) (0.207)

90% 0.817 1.633 0.641 0.641 0.518 0.260 0.382
(0.366) (0.201) (0.423) (0.423) (0.472) (0.610) (0.536)

Unc. Cov. 99% 85.805 8.519 28.015 25.464 23.000 23.000 25.464
(0.000) (0.004) (0.000) (0.000) (0.000) (0.000) (0.000)

95% 46.906 10.204 17.848 19.085 20.358 13.256 11.183
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.001)

90% 17.831 19.757 15.994 15.994 19.757 15.994 17.831
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Joint Test 99% 89.726 12.410 31.465 29.308 27.267 24.552 29.308
(0.000) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000)

95% 47.314 10.984 19.198 20.237 21.327 14.426 12.772
(0.000) (0.004) (0.000) (0.000) (0.000) (0.001) (0.002)

90% 18.648 21.390 16.635 16.635 20.276 16.254 18.213
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

χ2-Test 96.927 52.061 30.634 29.344 34.861 33.713 40.885
(0.000) (0.019) (0.485) (0.551) (0.380) (0.338) (0.110)

AD Test 12.930 15.792 7.732 7.557 12.664 7.160 7.240
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

KS Test 0.071 0.068 0.058 0.061 0.059 0.054 0.060
(0.002) (0.003) (0.018) (0.011) (0.014) (0.033) (0.012)

Lower Tail 275.164 18.268 65.900 49.251 58.280 64.487 51.655
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

This table reports the backtest evaluation results for the dynamic copula models applied to the
multi asset classes index data set. The models are abbreviated with D (Dynamic), F (Frank), C
(Clayton), G (Gaussian), T (Student-t), FC (Frank-Clayton mixture), GC (Gaussian-Clayton
mixture) and TC (Student-t-Clayton mixture). α denotes the confidence level of VaR(α). The
hit ratio reflects the percentage of times when the portfolio return exceeds VaR(α). ES ratio
shows whether the mean of the returns when VaR(α) is violated corresponds to the average
expected shortfall in these weeks. The traffic light is the model classification of the Basel reg-
ulatory framework. The mid and lower panel lists test statistics and p-values (in parentheses)
for multiple backtesting evaluation tests. Independence (unconditional) coverage is abbreviated
with Ind. Cov. (Unc. Cov.). Joint Test is the joint test for conditional coverage. The lower
panel reports the test statistics with p-values in parentheses of density forecast evaluation tests.
χ2-Test is Pearson’s χ2-test with 10 evenly spaced bins. AD and KS are the tests of Anderson-
Darling and Kolmogorov-Smirnov. Lower Tail is the test of Christoffersen (2012) assessing the
models’ ability to forecast the entire lower tail (losses below the 10% quantile) of the P&L dis-
tribution.
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Figure 7.10: Multi asset classes portfolio: Relative frequency of occurrence of the proba-
bility integral transforms of the multi asset classes portfolio returns taken with respect to
the dynamic copula models’ forecasted probability density distribution. The histogram is
segmented into 50 bins of equal size. The overlaid dashed lines indicate the 95% confidence
interval for the heights of the individual bins under the null hypothesis that the probability
integral transforms are (0, 1) uniform distributed.
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7.3 Crisis Forecast Performance

The standard risk management models employed by the financial industry

have drawn wide criticism for their performance during the financial crisis

(see e.g. Contreras, 2010; Das et al., 2013; Skoglund et al., 2010). Many

financial institutions reported a sharp increase in the number of VaR viola-

tions in the unfolding of the crisis, which underpinned the perception that

risk forecasting models perform well except in times of crises. While in the

previous section, the scope of the backtest covered the entire time frame eval-

uating out-of-sample forecasts from 1998 until 2013, this section concentrates

on the performance of the presented models during the last financial crisis. To

ensure comparability, the same backtest procedures including the same uni-

variate model specifications as in section 7.2 (see table 7.1) are used in this

section. Following the Basel supervisory framework (2013), which demands

backtests of the risk model based on the VaR measure on the 99% confidence

level, this section focuses on the performance of the models on α = 99%.

Firstly, the crisis forecast performance analysis focuses on the out-of-

sample accuracy of the risk forecasts of the different models during the crisis

period from January 7, 2007 until January 5, 2011. The time frame therewith

covers the unfolding of the financial turmoil from the disruptions in the sub-

prime mortgage market to the virulent global financial crisis. Secondly, the

changes in VaR violations of the presented models in reaction to the outbreak

of the financial crisis are investigated over time.

Table 7.14 summarizes the results of the backtests for all presented copula

models during the crisis period for the equity index portfolio. The therein

reported measures refer to the 99% significance level with the exception of

the Lower Tail test, which assesses the model’s capability to forecast the

density of the profit and loss distribution below the 10% quantile. According

to the Basel three-zones approach, the Frank copula model does not produce

acceptable forecasts during the crisis neither in its dynamic nor in its static
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form. Furthermore, all static mixture copulas, the dynamic Frank-Clayton

mixture, the three-state regime switching models and the two-state models

with mixture regimes are also labeled red, which means that the accuracy of

their VaR forecasts is not acceptable either. The inaccuracy of these models’

forecasts is substantiated by their failure to pass the unconditional coverage

and the joint test as well as the Lower Tail test.

Eight models qualify as yellow, among which seven yield the identical

hit ratio of 2.9%: the Gaussian copula in the static and dynamic version,

the regime switching models G/G, G/T and T/T, the dynamic Student-t

copula and the dynamic Gaussian-Clayton mixture. These seven models’

VaR forecasts are violated almost 50% less than those of the multivariate

normal benchmark (see table 7.13). While they are identical with regards to

their VaR forecasts, their expected shortfall ratios reveal the differences in

the accuracy of the average forecasted loss given a VaR violation: the least

accurate ES ratio among the yellow models is found with the static Gaussian

copula and the closest to the expected value of 1 is the ES ratio of the dynamic

Gaussian-Clayton mixture followed by the dynamic Student-t copula. Note

that the direct comparisons of the expected shortfall ratios is expressive in this

case since the compared models all have the same hit ratio. As the ES ratio

hinges on the hit ratio, a sole comparison of the former without considering

the latter is not very meaningful.

Three copulas, however, are distinctly more accurate during the financial

crisis than all other models as they are the only ones to score green accord-

ing to the Basel framework: the static Clayton copula, the dynamic Clayton

copula and the dynamic Student-t-Clayton mixture. Their results for the

coverage tests and the joint test confirm their superiority, which is further

substantiated by their results for the Lower Tail test. The dynamic Clayton

copula clearly produces the most accurate VaR forecasts during the financial

crisis with a hit ratio exactly equal to the theoretical expectation of 1%. The

highest p-value for the Lower Tail test confirms the dynamic Clayton’s su-

perior capabilities to forecast the lowest decile of the equity portfolio’s profit
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and loss distribution. While the results for the static Clayton highlight the

importance of modeling lower tail dependence in a multivariate setting, the

substantially increased forecast accuracy of the dynamic Clayton copula em-

phasizes the significance of also modeling time variation in the dependence

structure of the equity index portfolio.
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Figure 7.11: Equity portfolio: The plot shows the evolution of the hit ratios of several
copula models starting from the outbreak of the financial crisis. Depicted are the hit ratios
at the 99% level over a rolling window of 250 returns of all those models which classified
as ”green” by the Basel II framework at the beginning of 2008. Hit ratios below the
dotted line labeled ”Green” respectively ”Yellow” are classified accordingly by the Basel
regulatory framework. The models with ratios above the line ”yellow” are categorized as
”red” according to the Basel traffic light approach.

To investigate the models’ reaction to the unfolding of the financial crisis,

figure 7.11 visualizes the hit ratios over time. The plot shows the hit ratios at

the 99% level, calculated on a rolling window basis using the preceding 250

returns in allusion to the Basel regulatory framework (Basel Committee on

Banking Supervision, 2013). The plot includes the hit ratios of those models

which qualify as green at the beginning of 2008. Naturally, the hit ratio of

an ideal model would remain close to the expected hit ratio of 0.01 showing

little to no reaction to the outbreak of the crisis. The three zones of the

Basel framework are marked on the y-axis of the plot: models with a hit ratio

in time t below the mark ”Green” respectively ”Yellow” classify accordingly,

while models whose hit ratios in time t exceed ”Yellow” are ranked red. All
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depicted models remain in the green zone until September 2008, when the

hit ratios increase sharply in reaction to the bankruptcy of the investment

bank Lehman Brothers and the collapse of the insurance firm AIG. With

the exception of the dynamic Clayton copula, all depicted models turn from

green to yellow in only a few weeks. The dynamic Clayton’s hit ratio however

shows the smallest reaction to the outbreak of the global crisis preserving its

green status until the aggravation of the Eurozone crisis in mid-2011. At the

same time, the static Gaussian and the static Student-t show the strongest

immediate reaction to eruption of the crisis. The second and third best model

according to the results in table 7.14 are easily identifiable in figure 7.11 as

together with the dynamic Clayton their hit ratios are closest to the expected

value of 0.01: the dynamic Student-t-Clayton mixture and the static Clayton.

Whilst the dynamic Clayton model provides the most accurate forecasts dur-

ing the global financial crisis remaining green until mid 2011 the other two

models cope better with the aftermath of the Eurozone crisis.

The models’ performance during the financial crisis for the commodity

futures index portfolio is listed in table 7.15. None of the copula models

attains a green classification according to the Basel regulatory framework. 19

out of 21 tested models rank red, which means that the accuracy of their VaR

forecasts for the commodities between 2007 and 2011 is not acceptable. Even

though all are labeled red, the differences in the results of the static Gaussian,

G/G regime switching and dynamic Gaussian copula highlight the advantages

of a time varying specification of the Gaussian copula as the static version

shows the most inaccurate hit ratio among the three models. The G/G regime

switching version and the dynamic version of the Gaussian copula produce

VaR forecasts of identical accuracy, but the dynamic Gaussian’s ES ratio being

closer to 1 and its Lower Tail test statistic show that the dynamic version’s

forecast of the profit and loss distribution’s density in the lowest quantiles

is somewhat more accurate. For the Student-t copula, the ability to switch

between two states (T/T) does not result in a better hit ratio compared to the
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static setup, the dynamic form however clearly beats the static and regime

switching form in terms of hit ratio, ES ratio and Lower Tail test statistic.

The best two models both achieve a yellow classification: the static and

the dynamic Clayton copula. The dominance of this asymmetric copula is

manifested by far more accurate hit ratios compared to all other models.

Furthermore, both static and dynamic Clayton are the only two copulas to

pass the Lower Tail test, which shows the importance of capturing lower tail

dependence. Indeed, ranks three and four in terms of hit ratio and Lower

Tail test statistic are taken by the dynamic Gaussian-Clayton mixture and

the Student-t Clayton mixture, whose Clayton component enables them to

model asymmetries and lower tail dependence.

2008 2009 2010 2011 2012 2013

0.01

Green

0.03

Yellow

0.05

0.07

 

 

C

G

T

RSGG

RSGT

RSTT

DC

DG

DT

DGC

Figure 7.12: Commodity portfolio: The plot shows the evolution of the hit ratios of
several copula models starting from the outbreak of the financial crisis. Depicted are the
hit ratios at the 99% level over a rolling window of 250 returns of all those models which
classified as ”green” by the Basel II framework at the beginning of 2008. Hit ratios below
the dotted line labeled ”green” respectively ”yellow” are classified accordingly by the Basel
regulatory framework. The models with ratios above the line ”yellow” are categorized as
”red” according to the Basel traffic light approach.

The dynamic version of the Clayton copula does not increase the accuracy

of commodity portfolio return forecasts compared to the static version. The

former yields a less accurate hit ratio and further overforecasts the loss given a

VaR violation. Figure 7.12 depicts the evolution of the hit ratios of a selection
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of models for the commodity index data from the outbreak to the aftermath

of the last financial crisis. The depicted hit ratios are the ones of those

models which qualified as green according to the Basel regulatory framework

at the outbreak of the financial crisis: the dynamic Gaussian, the dynamic

Student-t and the dynamic Clayton with their static counterparts, the regime

switching models with two regimes: Gaussian/Gaussian, Gaussian/Student-t

and Student-t/Student-t and finally the dynamic Gaussian-Clayton mixture.

None of these models preserves its Basel traffic light category during the crisis,

however, there are subtle differences in the reaction to the outbreak of the

financial turmoil.

Only two of the ten models do not become classified as red in their imme-

diate reaction to the beginning of the financial turmoil: The dynamic Clayton

and the static Clayton copula. While the dynamic Clayton was better capa-

ble of handling the initial impacts of the crisis from 2008 to 2010, the static

version shows the best hit ratio in the aftermath of the crisis. Note that these

two models are also the closest to the expected hit ratio of 1% in the first half

of the year 2008. The dynamic Gaussian-Clayton mixture also faces a deterio-

ration from green to yellow and manages to maintain the yellow classification

until the end of 2010, when it becomes red for most of the remainder of the

observation period. All the other models in the figure deteriorated from an

acceptable model (green) to an unacceptable one (red) in just a few months.

The most pronounced deterioration during the outbreak of the crisis is shown

by the Gaussian and the regime switching Gaussian/Student-t copula mod-

els, which prove to be least capable to appropriately forecast the portfolios’

returns during the beginning crisis.

Of all the considered dependence structures, the three models which per-

formed best in terms of hit ratio of the commodity futures portfolio during

the times of crises are asymmetric models capable of capturing lower tail de-

pendence. Note that the models whose hit ratio deteriorated drastically at

the outbreak of the crisis are all (combinations of) elliptical copulas. The su-

periority of the static and dynamic Clayton copula established in the analysis
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of the backtesting results over the entire data set covering more than 16 years

out-of-sample is thus confirmed also by the analysis of the models’ reaction

to the outbreak of the crisis.

Next, the focus is laid on the crisis performance of the copula models

for the multi asset classes portfolio. The according results are listed in table

7.16 and show that among the static copulas only the Clayton attains a yellow

traffic light, whilst the other static models are all rated red displaying high hit

ratios. Despite the increased accuracy of the static Clayton’s VaR forecasts,

the copula fails the unconditional coverage test, the joint test and the Lower

Tail test, as do all the other static models.

The Markov two-state versions of the elliptical copulas do not ameliorate

the quality of the forecasts: the G/G regime switching model yields the same

hit ratio as the static Gaussian and the T/T copula’s VaR forecasts are iden-

tical to the ones of static Student-t copula. The lower ES ratios of the regime

switching models furthermore show that they are less capable of predicting

the loss given a VaR violation compared to their static counterparts. Like the

static models, the complete range of regime switching models fail three of the

four tests indicating that they are neither suitable to forecast the 99% VaR

nor the density in the lowest decile of the multi asset classes portfolio’s profit

and loss distribution during the financial turmoil.

With the dynamic Clayton, the dynamic Frank-Clayton mixture and the

dynamic Gaussian-Clayton mixture three out of seven dynamic models attain

the yellow Basel traffic light categorization. Together with the static Clayton

copula, these dependence models are distinctly better capable of forecasting

the VaR of the multi asset classes portfolio. Note that none of the symmetrical

models comes close to the results of the Archimedean Clayton copula neither

in static nor in dynamic form. This demonstrates that asymmetric dependence

which captures lower tail dependence is an crucial feature of a dependence

model to accurately forecast the multivariate distribution of the portfolio’s

returns in times of crises.
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The dynamic Clayton copula furthermore stands out compared to the

static Clayton and in comparison to all other tested models firstly due to the

most accurate hit ratio, secondly because it is the only copula to pass the

unconditional coverage and the joint test and thirdly it is the sole model to

pass the Lower Tail test. The dynamic Clayton is therewith the only model for

which the null hypothesis of accurate forecasts of the entire lower tail of the

multi asset classes portfolio’s profit and loss distribution cannot be rejected.

While allowing for skewness and kurtosis in the marginal distributions

reduces the 99% hit ratio from 7.7% (multivariate normal) to 6.2% (Gaussian

copula), allowing for time variation as in the dynamic Gaussian model further

decreases the hit ratio to 5.7%. Incorporating asymmetries in the dynamic

dependence structure as in the dynamic Gaussian-Clayton mixture copula

further lowers the hit ratio to 4.3%. The most accurate VaR forecasts are

obtained by employing the asymmetric dynamic Clayton model, which yields

a 99% hit ratio of 2.9%. Employing the dynamic Clayton copula model instead

of the multivariate normal model hence reduces the number of VaR violations

during the financial crisis by more than 62%.

2008 2009 2010 2011 2012 2013

0.01

Green

0.03

Yellow

0.05

0.07

 

 

C

G

T

RSGG

RSGT

RSTT

DC

DG

DT

DFC

DTC

Figure 7.13: Multi asset classes portfolio: The plot shows the evolution of the hit ratios
of several copula models starting from the outbreak of the financial crisis. Depicted are the
hit ratios at the 99% level over a rolling window of 250 returns of all those models which
classified as ”green” by the Basel II framework at the beginning of 2008. Hit ratios below
the dotted line labeled ”green” respectively ”yellow” are classified accordingly by the Basel
regulatory framework. The models with ratios above the line ”yellow” are categorized as
”red” according to the Basel traffic light approach.
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The dominance of the dynamic Clayton in terms of VaR forecast accuracy

is depicted in figure 7.13. While the fastest deterioration among the depicted

hit ratios is displayed by the Gaussian copula, the hit ratio of the dynamic

Clayton clearly shows the least reaction to the outbreak of the global crisis and

remains the most accurate until the end of the observation period. The static

Clayton overforecasts the VaR before September 2008 and yields a higher hit

ratio than its dynamic counterpart from 2010 until 2013.

It is remarkable that the multivariate Clayton copula model in both static

and dynamic version produces VaR(99%)-forecasts which are more accurate

than those of all other models at any point in time during the financial turmoil.

Table 7.12 relates the results of the models for the financial crisis period

(upper panel) to the overall performance of the models documented in the

previous section 7.2 (lower panel), by listing the top rankings of the mod-

els for all portfolios according to the accuracy of their VaR(99%) forecasts.

The comparison shows, that the models’ ranking during the financial crisis is

largely consistent with the overall ranking. The Clayton copula stands out,

as it is ranked first for all portfolios in either static (commodity portfolio) or

dynamic form (equity and multi asset classes portfolio). In general, the table

demonstrates that the fully dynamic copulas yield VaR forecasts of superior

accuracy compared to both the regime switching and the static copulas. It

further displays that asymmetric dynamic copulas generally dominate the top

five rankings of the crisis and the overall performance.
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Table 7.12
Out-of-sample forecast accuracy ranking

1. 2. 3. 4. 5.

Financial Crisis

Equities DC DTC C DGC DT

Commodities C DC DGC DTC DG

Multi Asset Classes DC C DGC DFC DTC

Overall

Equities DC DTC C DGC DT

Commodities C DC DT DTC DGC

Multi Asset Classes DC DFC DGC DTC DT

This table presents the top rankings of the out-of-sample VaR(99%) forecast accu-
racy for the static, regime-switching and fully dynamic copulas for the three port-
folios under consideration. The rankings for models with identical hit ratios are de-
termined by the accuracy of their ES ratio. The upper panel refers to the financial
crisis out-of-sample performance while the lower panel refers to the overall out-of-
sample performance of the models (see section 7.2). The copulas are abbreviated:
Gaussian (G), Student-t (T), Clayton (C), Frank-Clayton mixture (FC), Gaussian-
Clayton mixture (GC) and Student-t-Clayton mixture (TC). The prefixed D denotes
fully dynamic copula models.
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Table 7.13
Financial crisis: Static multivariate normal model out-of-sample backtest
results for α = 99%

Equities Commodities Multi Asset Classes

Hit Ratio 0.057 0.067 0.077
ES Ratio 0.945 0.904 0.828

Traffic Light Red Red Red

Ind. Cov. 0.137 3.542 0.054
(0.711) (0.060) (0.817)

Unc. Cov. 22.608 30.132 38.270
(0.000) (0.000) (0.000)

Joint Test 22.746 33.674 38.324
(0.000) (0.000) (0.000)

Lower Tail 31.614 50.977 85.887
(0.000) (0.000) (0.000)

This table reports the backtest evaluation results for the forecasting period from Jan-
uary 2007 until January 2011 for the static multivariate normal benchmark model
applied to the three index portfolios. The confidence level of VaR is α = 99%. The
hit ratio reflects the percentage of times when the portfolio return exceeds VaR(α).
ES ratio shows whether the mean of the returns when VaR(α) is violated corresponds
to the average expected shortfall in these weeks. The traffic light is the model classi-
fication of the Basel regulatory framework. Independence (unconditional) coverage is
abbreviated with Ind. Cov. (Unc. Cov.). Joint Test is the test for conditional cov-
erage. Lower Tail is the test of Christoffersen (2012) assessing the models’ ability to
forecast the lowest decile of the P&L distribution. P-values are given in parentheses.
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Table 7.14
Financial crisis: Equity portfolio out-of-sample backtest results for α = 99%

Static F C G T FC GC TC

Hit Ratio 0.077 0.019 0.029 0.033 0.201 0.211 0.206
ES Ratio 0.811 0.915 0.909 0.997 0.702 0.722 0.720

Traffic Light Red Green Yellow Yellow Red Red Red

Ind. Cov. 0.025 0.157 0.356 1.545 3.866 2.515 4.721
(0.875) (0.692) (0.550) (0.214) (0.049) (0.113) (0.030)

Unc. Cov. 38.270 1.391 4.910 7.220 180.470 193.447 186.929
(0.000) (0.238) (0.027) (0.007) (0.000) (0.000) (0.000)

Joint Test 38.295 1.548 5.266 8.765 184.336 195.961 191.650
(0.000) (0.461) (0.072) (0.012) (0.000) (0.000) (0.000)

Lower Tail 133.466 6.872 16.678 9.537 446.127 394.398 413.505
(0.000) (0.076) (0.001) (0.023) (0.000) (0.000) (0.000)

Regime Switching G/G G/T T/T T/GC G/TC G/T/C G/C/F

Hit Ratio 0.029 0.029 0.029 0.196 0.191 0.048 0.096
ES Ratio 0.964 0.925 0.943 0.667 0.679 0.804 0.814

Traffic Light Yellow Yellow Yellow Red Red Red Red

Ind. Cov. 0.356 2.104 0.296 3.059 3.757 3.189 16.435
(0.550) (0.147) (0.586) (0.080) (0.053) (0.074) (0.000)

Unc. Cov. 4.910 4.910 4.910 174.070 167.731 15.795 56.120
(0.027) (0.027) (0.027) (0.000) (0.000) (0.000) (0.000)

Joint Test 5.266 7.014 5.206 177.129 171.488 18.984 72.555
(0.072) (0.030) (0.074) (0.000) (0.000) (0.000) (0.000)

Lower Tail 11.819 9.272 14.274 480.834 408.501 52.227 113.822
(0.008) (0.026) (0.003) (0.000) (0.000) (0.000) (0.000)

Dynamic DF DC DG DT DFC DGC DTC

Hit Ratio 0.081 0.010 0.029 0.029 0.048 0.029 0.014
ES Ratio 0.855 0.769 0.935 0.983 1.009 0.996 0.818

Traffic Light Red Green Yellow Yellow Red Yellow Green

Ind. Cov. 0.141 0.039 2.104 0.356 0.485 0.356 0.088
(0.707) (0.844) (0.147) (0.550) (0.486) (0.550) (0.767)

Unc. Cov. 42.547 0.004 4.910 4.910 15.795 4.910 0.353
(0.000) (0.950) (0.027) (0.027) (0.000) (0.027) (0.553)

Joint Test 42.688 0.043 7.014 5.266 16.280 5.266 0.441
(0.000) (0.979) (0.030) (0.072) (0.000) (0.072) (0.802)

Lower Tail 118.078 4.043 9.350 11.086 36.622 6.590 6.376
(0.000) (0.257) (0.025) (0.011) (0.000) (0.086) (0.095)

This table reports the backtest evaluation results for the forecasting period from January 2007
until January 2011 for all copula models applied to the equity index portfolio. The copula models
are abbreviated with G (Gaussian), T (Student-t), F (Frank), C (Clayton), FC (Frank-Clayton
mixture), GC (Gaussian-Clayton mixture) and TC (Student-t-Clayton mixture). The prefixed D
denotes dynamic copulas. The confidence level of VaR is α = 99%. The hit ratio reflects the per-
centage of times when the portfolio return exceeds VaR(α). ES ratio shows whether the mean of
the returns when VaR(α) is violated corresponds to the average expected shortfall in these weeks.
The traffic light is the model classification of the Basel regulatory framework. Independence (un-
conditional) coverage is abbreviated with Ind. Cov. (Unc. Cov.). Joint Test is the test for con-
ditional coverage. Lower Tail is the test of Christoffersen (2012) assessing the models’ ability to
forecast the lowest decile of the P&L distribution. P-values are given in parentheses.
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Table 7.15
Financial crisis: Commodity portfolio backtest results for α = 99%

Static F C G T FC GC TC

Hit Ratio 0.086 0.024 0.072 0.062 0.120 0.124 0.115
ES Ratio 0.807 1.050 1.010 0.978 0.702 0.723 0.716

Traffic Light Red Yellow Red Red Red Red Red

Ind. Cov. 3.459 9.187 2.859 4.326 0.509 0.299 0.779
(0.063) (0.002) (0.091) (0.038) (0.475) (0.584) (0.377)

Unc. Cov. 46.951 2.944 34.129 26.288 80.901 86.145 75.749
(0.000) (0.086) (0.000) (0.000) (0.000) (0.000) (0.000)

Joint Test 50.410 12.131 36.989 30.614 81.411 86.444 76.528
(0.000) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000)

Lower Tail 162.158 5.792 39.675 32.527 221.283 215.249 196.192
(0.000) (0.122) (0.000) (0.000) (0.000) (0.000) (0.000)

Regime Switching G/G G/T T/T T/GC G/TC G/T/C G/C/F

Hit Ratio 0.053 0.072 0.067 0.120 0.115 0.086 0.095
ES Ratio 0.956 0.952 1.015 0.713 0.677 0.928 0.787

Traffic Light Red Red Red Red Red Red Red

Ind. Cov. 6.258 5.992 3.542 0.509 0.779 3.459 1.492
(0.012) (0.014) (0.060) (0.475) (0.377) (0.063) (0.222)

Unc. Cov. 19.105 34.129 30.132 80.901 75.749 46.951 206.436
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Joint Test 25.363 40.122 33.674 81.411 76.528 50.410 207.928
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Lower Tail 41.192 49.911 26.440 254.503 259.490 61.174 519.691
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Dynamic DF DC DG DT DFC DGC DTC

Hit Ratio 0.081 0.029 0.053 0.048 0.062 0.038 0.043
ES Ratio 0.798 1.144 1.002 1.009 0.993 0.986 1.035

Traffic Light Red Yellow Red Red Red Yellow Yellow

Ind. Cov. 4.203 7.440 6.258 7.451 4.770 4.924 8.837
(0.040) (0.006) (0.012) (0.006) (0.029) (0.026) (0.003)

Unc. Cov. 42.547 4.910 19.105 15.795 26.288 9.827 12.694
(0.000) (0.027) (0.000) (0.000) (0.000) (0.002) (0.000)

Joint Test 46.750 12.350 25.363 23.245 31.058 14.750 21.532
(0.000) (0.002) (0.000) (0.000) (0.000) (0.001) (0.000)

Lower Tail 176.480 5.981 28.031 20.838 63.014 13.762 18.770
(0.000) (0.113) (0.000) (0.000) (0.000) (0.003) (0.000)

This table reports the backtest evaluation results for the forecasting period from January 2007
until January 2011 for all copula models applied to the commodity futures index portfolio. The
copula models are abbreviated with G (Gaussian), T (Student-t), F (Frank), C (Clayton), FC
(Frank-Clayton mixture), GC (Gaussian-Clayton mixture) and TC (Student-t-Clayton mixture).
The prefixed D denotes dynamic copulas. The confidence level of VaR is α = 99%. The hit ratio
reflects the percentage of times when the portfolio return exceeds VaR(α). ES ratio shows whether
the mean of the returns when VaR(α) is violated corresponds to the average expected shortfall in
these weeks. The traffic light is the model classification of the Basel regulatory framework. Inde-
pendence (unconditional) coverage is abbreviated with Ind. Cov. (Unc. Cov.). Joint Test is the
test for conditional coverage. Lower Tail is the test of Christoffersen (2012) assessing the models’
ability to forecast the lowest decile of the P&L distribution. P-values are given in parentheses.
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Table 7.16
Financial crisis: Multi asset classes portfolio backtest results for α = 99%

Static F C G T FC GC TC

Hit Ratio 0.086 0.038 0.062 0.057 0.191 0.196 0.196
ES Ratio 0.741 1.025 0.923 0.967 0.748 0.747 0.762

Traffic Light Red Yellow Red Red Red Red Red

Ind. Cov. 0.268 1.104 0.046 0.137 0.050 0.157 0.237
(0.605) (0.293) (0.830) (0.711) (0.823) (0.692) (0.626)

Unc. Cov. 46.951 9.827 26.288 22.608 167.731 174.070 174.070
(0.000) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000)

Joint Test 47.220 10.931 26.334 22.746 167.781 174.227 174.307
(0.000) (0.004) (0.000) (0.000) (0.000) (0.000) (0.000)

Lower Tail 139.926 11.826 42.921 22.845 328.814 340.536 331.005
(0.000) (0.008) (0.000) (0.000) (0.000) (0.000) (0.000)

Regime Switching G/G G/T T/T T/GC G/TC G/T/C G/C/F

Hit Ratio 0.062 0.062 0.057 0.182 0.201 0.081 0.127
ES Ratio 0.901 0.911 0.894 0.765 0.775 0.897 0.782

Traffic Light Red Red Red Red Red Red Red

Ind. Cov. 0.046 0.046 0.137 0.130 0.318 0.141 0.377
(0.830) (0.830) (0.711) (0.718) (0.573) (0.707) (0.539)

Unc. Cov. 26.288 26.288 22.608 155.240 180.470 42.547 298.212
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Joint Test 26.334 26.334 22.746 155.370 180.788 42.688 298.589
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Lower Tail 43.060 43.748 25.358 292.533 336.211 59.567 600.885
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Dynamic DF DC DG DT DFC DGC DTC

Hit Ratio 0.086 0.029 0.057 0.057 0.043 0.043 0.053
ES Ratio 0.783 0.946 0.893 0.951 0.875 0.899 0.975

Traffic Light Red Yellow Red Red Yellow Yellow Red

Ind. Cov. 0.140 0.356 0.137 0.137 0.756 0.814 0.282
(0.708) (0.550) (0.711) (0.711) (0.385) (0.367) (0.595)

Unc. Cov. 46.951 4.910 22.608 22.608 12.694 12.694 19.105
(0.000) (0.027) (0.000) (0.000) (0.000) (0.000) (0.000)

Joint Test 47.092 5.266 22.746 22.746 13.450 13.509 19.387
(0.000) (0.072) (0.000) (0.000) (0.001) (0.001) (0.000)

Lower Tail 125.660 7.677 23.042 22.034 25.498 22.778 12.247
(0.000) (0.053) (0.000) (0.000) (0.000) (0.000) (0.007)

This table reports the backtest evaluation results for the forecasting period from January 2007
until January 2011 for all copula models applied to the multi asset classes index portfolio. The
copula models are abbreviated with G (Gaussian), T (Student-t), F (Frank), C (Clayton), FC
(Frank-Clayton mixture), GC (Gaussian-Clayton mixture) and TC (Student-t-Clayton mixture).
The prefixed D denotes dynamic copulas. The confidence level of VaR is α = 99%. The hit ratio
reflects the percentage of times when the portfolio return exceeds VaR(α). ES ratio shows whether
the mean of the returns when VaR(α) is violated corresponds to the average expected shortfall in
these weeks. The traffic light is the model classification of the Basel regulatory framework. Inde-
pendence (unconditional) coverage is abbreviated with Ind. Cov. (Unc. Cov.). Joint Test is the
test for conditional coverage. Lower Tail is the test of Christoffersen (2012) assessing the models’
ability to forecast the lowest decile of the P&L distribution. P-values are given in parentheses.





Chapter 8

Conclusion

A proper specification of financial assets’ multivariate distribution is essen-

tial to forecast the risk of a portfolio. A large body of empirical evidence

suggests that the dependence structure between financial variables is neither

symmetric nor time-stable. Consequentially, forecasts of portfolio risks which

neglect asymmetries and time variation in the interdependence of the port-

folio constituents might yield misleading results. This thesis investigated the

importance of modeling time variation and asymmetries in the dependence

structure to forecast the risk of a portfolio of international equity indices, a

commodity futures index portfolio and a multi asset classes index portfolio.

The use of copula theory allowed to separately specify and estimate the

dependence structure and the marginal distributions in order to model the

conditional multivariate distribution function. To automatically select the

best fitting univariate model for each of the heteroscedastic time series, the

Akaike and the Bayesian information criteria were employed, which identi-

fied asymmetric volatility models to be most adequate for virtually all return

series. Hansen’s skewed-t distribution was used to account for excess kur-

tosis and skewness in the distribution of the univariate series’ standardized

residuals.

The analysis of the three portfolios’ dependence structures in an in-sample

setting documented asymmetric exceedance correlations among the demeaned

returns which persist after filtering the series with the asymmetric GARCH
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models. This points to a limited role of the marginal models in capturing

multivariate asymmetries and highlights the need for copula models which

are capable of accounting for asymmetric dependencies. To amplify the selec-

tion of asymmetric dependence models for multivariate applications, mixture

copulas were constructed.

The level of dependence as well as the amount of lower tail dependence

was found to vary substantially over the sample period for all three portfolios.

As a first approach to model this time variation in the interdependence of

the portfolio constituents, regime switching copula models were introduced.

To enhance the flexibility of this set-up, multivariate mixture copulas were

employed to characterize states and the model was extended to three regimes.

As a second approach to account for time-instable dependencies, fully dynamic

copula models were presented. Enhancing the dynamic Student-t copula’s

capability to adapt both level of dependence and strength of tail dependence,

its degrees of freedom parameter was also allowed to vary over time. Finally,

the dynamic copulas were combined into dynamic mixture structures.

The in-sample comparison of the time-varying copulas with their static

counterparts exhibited that for each of the three portfolios, the best fitting

copulas are dynamic models which allow for tail dependence. In particular,

the dynamic Student-t copula and the dynamic Student-t-Clayton mixture

copula were found to have a superior in-sample fit.

A comprehensive backtest of the models’ out-of-sample portfolio return

forecasts was conducted. Since the marginals are identical for all copula

models, their differences in forecast accuracy are solely attributable to the

differences of the dependence models. The results revealed, that the choice

of copula model has a large impact on the forecast accuracy of the portfolio

profit and loss distribution’s lowest decile. The differences are particularly

pronounced for risk measures on the 99% confidence level. Among the static

models, the Clayton copula yields by far the best results for all three port-

folios. In contrast, the symmetric Frank copula model with asymptotically
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independent tails was found to be inappropriate to characterize any of the

portfolios’ dependence structures. This underpins the importance of model-

ing interdependence asymmetries and accounting for lower tail dependence.

The comparison of the static Gaussian with the multivariate normal bench-

mark model showed, that allowing for fat tails and asymmetries in the marginal

models improves the forecast accuracy of the models for the equity and the

multi asset classes portfolio, but has virtually no influence for the commodity

portfolio.

Failing to model time variation in the multivariate mixture copulas results

in entirely inaccurate forecasts. Accounting for time instable dependencies

by employing the dynamic versions of the Student-t-Clayton mixture and the

Gaussian-Clayton mixture copulas, however, yields the second and third best

VaR(99%) forecasts for the equity index portfolio. Evidence from the in-

sample analysis suggests, that the crucial part is to account for time variation

in the mixture’s copula parameters, while a static mixture weight might be

sufficient.

Accounting for time variation by switching between different static copu-

las as in the regime switching models led to an improvement of some models’

forecasts. Particularly, allowing for a second Gaussian state as in the Gaus-

sian/Gaussian regime switching copula improves the forecast accuracy for all

three portfolios on almost all VaR confidence levels. Furthermore, the density

test results indicate an increase in accuracy of the entire forecasted return dis-

tribution when allowing for two instead of only one Gaussian copula regime.

Modeling one of two states in the regime switching framework with a static

mixture copula does not provide satisfactory results due to the inaccuracy of

the mixture copula with static parameters. Furthermore, adding a third state

to the regime switching copula model yields no improvement of the forecast

accuracy compared to the two-regime models. To the contrary, extending

the two-state Gaussian/Student-t model by adding the Clayton as a separate

regime yields worse forecast results for all portfolios. The accuracy of this

three-state model is also inferior to the two-state models where the Clayton
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is mixed with either one of the elliptical copula regimes as in the Student-

t/Gaussian-Clayton mixture and Gaussian/Student-t-Clayton mixture mod-

els. This evidence suggests, that multivariate regime switching copulas are

best set up with two states each consisting of one standalone copula.

The fully dynamic copulas have generally been found to produce forecasts

of superior accuracy compared to both static and regime switching copula

models. Specifically, the predictive power of the dynamic Student-t and all

dynamic mixture copula models is stronger compared to their static versions

for each of the portfolios on all three significance levels. The best forecasts

for the lower tail of the profit and loss distribution for all three portfolios are

produced by the dynamic Clayton copula model, which highlights the impor-

tance of modeling both positive lower tail dependence and time variation in

the dependence structure. This stands in contrast to the in-sample model

fit results, where the dynamic Clayton copula was ranked in the rearmost

positions. Generally, the goodness of in-sample fit was not found to provide

dependable indications of predictive power. However, the in-sample ranking

did point to the superiority of the time varying models compared to the static

copulas.

Finally, the forecast accuracy of the models during the last financial cri-

sis was analyzed, which underpinned the superiority of the Clayton copula

model. For the equity index portfolio, the multivariate dynamic Clayton cop-

ula accurately forecasted the VaR(99%) with a hit ratio of 1% followed by the

dynamic Student-t-Clayton mixture copula with 1.4%. Their superiority also

reflected in their hit ratios showing the least reaction to the outbreak of the

financial crisis, remaining closest to the expected value. The employment of

the dynamic Clayton copula model instead of the multivariate normal model

would have scaled down the number of VaR(99%) violations for the equity

index portfolio during the financial crisis by more than 82%.

The most accurate forecasts for the commodity futures index portfolio
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during the financial crisis were produced by the static Clayton copula, fol-

lowed by the dynamic Clayton model. Both yield the single most accurate

forecasts among all models for the commodity data at all times during the

crisis. Their hit ratios only displayed a minor increase in reaction to the out-

break of the global financial crisis, while the hit ratios of most other models

surged drastically.

The dynamic Clayton copula model’s forecasts for the risks of the multi

asset classes portfolio are by far the most accurate during the financial cri-

sis. It is further the only model to pass the Lower Tail test for an accurate

prediction of the profit and loss distribution’s lowest decile. Using a static

Gaussian copula for the multi asset classes portfolio during the last financial

crisis results in more than twice as many VaR(99%) violations as with the

dynamic Clayton model. This emphasizes the crucial importance of account-

ing for time variation and asymmetries in the dependence structure, which is

underpinned by the general finding that asymmetric dynamic copula models

dominate the top rankings of both crisis and overall forecast performance.

Several aspects, which are beyond the scope of this thesis, deserve to

become a topic for future research. While the employed regime switching

models allow to account for shifts in the dependence structure, the transition

probabilities were assumed to remain constant. If time varying transition

probabilities would increase the forecast accuracy and, given they do, how

their performance would compare to the fully dynamic copulas is left for fu-

ture research to determine. Also, if an amalgamation of the two presented

approaches to account for time varying dependencies to attain a multivariate

regime switching copula with fully dynamic states would yield any improve-

ment, is to be investigated.

Utilizing three different portfolios in the empirical analysis demonstrated

the models’ abilities of capturing diverse dependence characteristics. However,

the application to a wider selection of portfolios would further contribute to

the robustness of the findings.
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The eight dimensional models employed in this document are a significant

step closer to cover real world portfolio sizes compared to bivariate models.

Given the scalability of the models developed in this thesis, they are capable

of handling portfolios of arbitrary dimensions. However, the impact of the

portfolio size on the models’ performance would be interesting to explore.

Specifically, as the multivariate Clayton copula model has been found to yield

risk forecasts of superior accuracy in static and particularly in dynamic form,

its capability of capturing the dependencies of very high dimensional portfolios

with its only copula parameter θC should be subject of future research.
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worski, P., Durante, F., Härdle, W., and Rychlik, T., editors, Copula The-
ory and its Applications, pages 77–92. Springer, Berlin, 2010.

Christie, A. A. The Stochastic Behavior of Common Stock Variances : Value,
Leverage and Interest Rate Effects. Journal of Financial Economics, 10(4):
407–432, December 1982.

Christoffersen, P. Evaluating Interval Forecasts. International Economic Re-
view, 39(4):841–62, November 1998.



194 REFERENCES

Christoffersen, P. Value–at–Risk Models. In Mikosch, T., Kreiß, J.-P., Davis,
R. A., and Andersen, T. G., editors, Handbook of Financial Time Series,
pages 753–766. Springer Berlin Heidelberg, 2009.

Christoffersen, P. Elements of Financial Risk Management. Academic Press,
San Diego, second edition, 2012.

Christoffersen, P., Errunza, V., Jacobs, K., and Langlois, H. Is the Potential
for International Diversification Disappearing? A Dynamic Copula Ap-
proach. Review of Financial Studies, 25(12):3711–3751, 2012.

Commodity Futures Trading Commission. Staff Report on Commodity Swap
Dealers & Index Traders with Commission Recommendations. Technical
Report, CFTC, September 2008.

Contreras, P. Is VAR a Useful Tool in Volatile Markets? Risk Magazine,
pages 66–69, Oct 2010.
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