
Pricing Contingent Convertible Capital - A Theoretical

and Empirical Analysis of Selected Pricing Models

DISSERTATION
of the University of St. Gallen,

School of Management,
Economics, Law, Social Sciences

and International Affairs
to obtain the title of

Doctor of Philosophy in Management

submitted by

Marc Erismann

from

Beinwil am See (Aargau)

Approved on the application of

Prof. Dr. Karl Frauendorfer

and

Prof. Dr. Markus Schmid

Dissertation no. 4347

Difo-Druck GmbH, Bamberg 2015



2

The University of St. Gallen, School of Management, Economics, Law, So-

cial Sciences and International Affairs hereby consents to the printing of the

present dissertation, without hereby expressing any opinion on the views herein

expressed.

St. Gallen, October 22, 2014

The President:

Prof. Dr. Thomas Bieger



Acknowledgments

Firstly, I would like to thank Prof. Dr. Karl Frauendorfer - Dean of the School

of Finance (SoF-HSG) and Director of the Institute for Operations Research

and Computational Finance (ior/cf-HSG) - for introducing me to the topic of

quantitative finance during the course of my studies and for the supervision of

my doctoral thesis. My gratitude also goes to Prof. Dr. Markus Schmid from

the Swiss Institute of Banking and Finance (s/bf-HSG), who agreed to act as

co-supervisor to my thesis.

I owe a special thanks to Matthias Aepli. If it were not for him, I would

not have considered doing my doctoral studies. Furthermore, I thank him for

the many fruitful conversations we had during the writing of this thesis.

However, my deepest gratitude goes to my family for their continuous

support in all aspects of my life.
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Summary

This thesis contributes to the pricing of market and accounting triggered

contingent convertible capital. By evaluating four selected pricing models in

a theoretical and empirical context the foundation for a generally accepted

pricing approach is broadened for practitioners and academics alike.

The thesis introduces the theory of a structural approach based on Pen-

nacchi (2010), a credit and equity derivative approach shown by De Spiegeleer

and Schoutens (2011, 2012) and a credit default swap model devised by the

investment bank J.P. Morgan (Henriques and Doctor, 2011). The risky dy-

namics of each model are enhanced to allow for discontinuous returns. In an

extensive empirical analysis on two Credit Suisse and two Lloyds Banking

Group CoCos the parametrization, implementation and pricing capabilities

are compared.

The model complexity is lowest for the credit derivative model and high-

est for the equity derivative model with discontinuous returns, whereas the

data gathering and parametrization is most challenging within the structural

approach. Universally it is found that the considered CoCos generate a high

loss with a low probability, as the model implied trigger levels are low. The

qualitative and quantitative assessment reveals that all models tend to overes-

timate the risk compared to the empirical observations, where the structural

model shows the smallest pricing errors and is generally to be favored.



Zusammenfassung

Die vorliegende Arbeit trägt zu der Preisfindung von Markt und Bilanz aus-

gelöstem Contingent Convertible Capital bei. Durch die Evaluation vier

ausgewählter Preismodelle in einem theoretischen und empirischen Kontext

werden die Grundlagen zu einem allgemein akzeptierten Preisfindungsansatz

in der Praxis und Akademia erweitert.

Die Dissertation veranschaulicht die Preisfindung in einem strukturellen,

einem Kredit- und Eigenkapitalderivat sowie einen Credit Default Swap Modell.

Ersteres basiert auf den Grundlagen von Pennacchi (2010), das zweite und

dritte Modell wurde von De Spiegeleer and Schoutens (2011, 2012) vorgestellt

und das Letztere wurde von der Investment Bank J.P. Morgan (Henriques

and Doctor, 2011) vorgeschlagen. Des Weiteren wird die Risikodynamik der

Modelle erweitert, um unstetige Renditen abbilden zu können. Die Para-

metrisierung, Implementierung und allgemeine Güte der Modelle wird in einer

extensiven empirischen Analyse an zwei Credit Suisse und zwei Lloyds Banking

Group CoCos veranschaulicht.

Die Modellkomplexität ist am geringsten im Kreditderivat Modell und

am höchsten im Eigenkapitalderivat Modell mit unstetigen Renditen. Die

Parametrisierung ist am komplexesten im strukturellen Ansatz. Generell

kann gesagt werden, dass die untersuchten CoCos einen hohen Verlust mit

kleiner Eintrittswahrscheinlichkeit generieren, da die modellimpliziten Wand-

lungsniveaus tief sind. Die qualitative und quantitative Analyse zeigt weiter,

dass alle Preisansätze das Risiko im Vergleich zu den Marktpreisen überschät-

zen, wobei das strukturelle Modell die geringste Preisabweichung zeigt und

generell zu bevorzugen ist.



Chapter 1

Introduction and Motivation

1.1 Introduction

Over the years before the worldwide economic and financial crisis in 2007-2009

the banking sector was increasingly driven by moral hazard, lower market disci-

pline and higher returns. The importance, interconnectedness and complexity

of financial institutions increased a great deal while at the same time their

capital and liquidity ratios decreased, effectively reducing their loss absorp-

tion potential (Basel Committee on Banking Supervision, 2011a; Maes and

Schoutens, 2010). This inherent weakness manifested itself during the aggres-

sive correction of the mortgage market in the U.S. when financial institutions

worldwide were exposed to significant write-downs and ultimately losses which

could not be borne by themselves. At the same time this sparked the global

discussion on the issue of too-big-to-fail as governments and regulators realized

that certain financial institutions are indeed systemically important and that

the possible cost to the economy as a whole - should such an institution fail -

outweighs the costs to bail them out. This resulted in a call for further regula-

tion with a focus on strengthening the quality, quantity and transparency of

loss absorbing capital with the primary aim to stabilize financial institutions

in turbulent times while at the same time not hindering profitable business

conduct during good times (Berg and Kaserer, 2011; Koziol and Lawrenz,

2012; Squam Lake Working Group on Financial Regulation, 2009).
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Contingent convertible capital (CoCo) was introduced as a first line of

defense to address aforementioned criteria. It is a long-term hybrid debt

instrument with principal and scheduled coupon payments that serves the

purpose of pre-arranging a re-capitalization given an event that is not con-

trolled by the company that issues them. Recent studies by e.g. Barucci and

Del Viva (2012), Hilscher and Raviv (2014), Sundaresan and Wang (2011),

von Furstenberg (2011) or Albul et al. (2010) show that bankruptcy costs and

cost of capital could be reduced with the right design of CoCos. A further

feature the studies advocate is that the monitoring of financial institutions

by investors is facilitated and moral hazard induced risk taking activities can

effectively be reduced.

Regulators such as the European Banking Authority (2011), the European

Commission (2011), the Financial Services Authority (2011), the Independent

Commission on Banking (2011) or the Swiss Commission of Experts (2010)

approve the issuance of CoCos to increase the financial buffer. Burne’s (2011)

estimate in early 2011 that the total CoCo market could reach up to USD 950

billion was sharply corrected downward when the Basel Committee (2011b,

p. 20) concluded that “G-SIB’s [Global-Systemically Important Banks] be

required to meet their additional loss absorbency requirement with Common

Equity Tier 1 only”. However, the Basel III framework also supports the use of

CoCos to meet higher national capital requirements than the global standard

requirement - which for example is important for Switzerland within the Swiss

SIFI (Systemically Important Financial Institutions) Policy released by the

Swiss Financial Market Supervisory Authority FINMA (2011).

A handful of financial institutions have successfully raised capital with

CoCo notes to be able to meet the higher buffer requirements. Until February

2012, only six CoCo issuances had taken place, whereas in the beginning

of 2014, the newly established Bank of America Merrill Lynch Contingent

Capital Index already comprised 48 bonds with a combined face value of

approximately 58 billion US dollars. The index only comprises bonds which

have a capital-dependent conversion feature, where the majority of the bonds
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qualify as additional tier 1 securities. At the end of 2014, approximately 40%

of the bonds had a rating of BBB, whereas the remaining 60% have a rating

of BB. Furthermore, roughly 40% of the bonds feature a maturity of two to

five years and another 50% a maturity of five to ten years with the remaining

10% above ten years (Bürgi, 2013; Reuters, 2014). Table 1.1 shows the details

of some of the earliest CoCo issuances of the larger financial institutions, with

a special focus on Switzerland.

Credit Suisse was the first bank to issue a traditional CoCo bond in February

2011, which converts into equity if their CET1 ratio undercuts a value of 7%.

They subsequently offered two more equity conversion CoCos, raising a total

of approximately USD 4.5 billion (Credit Suisse, 2011, 2012a, b). Similarly,

the second largest Swiss bank UBS issued its first contingent capital issue in

February 2012. In contrast to Credit Suisse, the UBS issuance offers a low-level

trigger of a CET1 ratio of 5% and provides a write-down if the trigger is reached

(UBS, 2012a, c). Recently the Swiss National Bank (2013) also designated the

cantonal bank Zürcher Kantonalbank (ZKB) to be of systemical importance.

ZKB as public-law institution had already issued a tier 1 subordinated bond

in anticipation of this, which features a write-down mechanism if their CET1

ratio falls below a threshold of 7% (Zürcher Kantonalbank, 2013). Interestingly,

also SwissRe (Swiss Re-Insurance company) issued a contingent convertible

bond, which is linked to their solvency ratio as reported within the Swiss

Solvency Test (SST). It provides a write-down mechanism up to 100% if

the SST ratio falls below 125%, where any residual amount of the bond can

be continued (Swiss Re, 2013). Lloyds Banking Group was the first large

international bank that offered 29 enhanced capital notes series to its investors

in exchange for existing preferred shares. The series amounts to a total of

approximately GBP 7 billion and are denominated in GBP and EUR (Lloyds

Banking Group, 2009a). The case of Rabobank is a second example of a

non-listed company that benefits from issuing CoCos, where the face value in

case of a contingency event is not converted into equity but simply written

down (Rabobank, 2010, 2011). It is noted that the appetite is still high in the
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market, as the recent and more than five-fold oversubscribed notes issuance in

the amount of USD 3 billion of Barclay proves (Bloomberg, 2012a, b).
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1.2 Literature Overview

It is evident that the topic of CoCos is enjoying a lively debate among academics,

regulators and financial institutions and literature is continuing to emerge

and is quickly becoming vast. Up to now, most academic research focuses on

the qualitative aspect of how contingent convertible capital is best designed

in order for it to fulfill its primary goal to stabilize a financial institution

in distress. This is also the common idea shared by all literature; but the

implementation design can take many different forms.

Among the first papers to be published was by The Squam Lake Working

Group (2009), who provide an economic rationale and recommend regulatory

support for this new hybrid security. They see CoCos as a last resort and

propose that it should not be triggered unless absolutely necessary. Therefore,

they advocate a trigger mechanism that is both dependent on the decision

of the respective regulatory agency and a violation of a capital adequacy

ratio based on accounting values. Similarly, also McDonald (2010) proposes a

multivariate trigger in his work, where the first trigger is an equity threshold

based on market values and the second one is tied to a systemic index. In this

case, individual banks are allowed to go bankrupt in normal times but would

be saved in times of systemic distress. Also Pazarbasioglu et al. (2011) come to

the conclusion that contingent capital instruments can act as a crisis prevention

and management tool and should be considered within a comprehensive capital

framework.

Already in 2002 Flannery put forward the idea to use Reverse Convertible

Debentures with the main goal to optimize a firm’s capital structure and

provide an automatic un-levering mechanism should the firms equity capital

deteriorate. Similarly, Albul et al. (2010) show that adding CoCos to newly

created / existing capital structures can increase the firm’s value. In his

updated work, Flannery (2009) provides a hands-on description and evaluation

of CoCos with an equity-based trigger, where upon breach the firm is un-

levered to restore its minimum capital requirements. Of course also many
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regulating bodies have picked up on the discussion of CoCos and their ideal

implementation structure as mentioned in the previous section.

Existing Pricing Approaches

Generally speaking the pricing approaches proposed in the literature so far

can be distinguished into structural, credit and equity derivative models (cf.

table 1.2).

Structural Models

The structural model was pioneered by Merton in 1974 and provides a natural

pricing framework for capital ratio triggered CoCo bonds. These models im-

pose a stochastic process for the value of the assets and evaluate equity capital

and debt as a function of the assets. Pennacchi (2010) applies such a structural

risk model and values CoCos as claims contingent on the assets (cf. section

3.4). The model incorporates discontinuous asset returns, mean-reverting

capital ratios and stochastic interest rates. This allows Pennacchi (2010) to

calculate fair new issue yields depending on the debt-to-equity ratio at the

time of issuance. One of the key findings of his work is that CoCos would in

fact yield a riskless return if there were no jumps in the asset process. This

structural model is able to include a sum of risk factors that have an impact on

the value of the CoCo. However, the determination of the optimal parameter

estimates is difficult in practice and has not been addressed by Pennacchi

(2010). Similarly, Albul et al. (2010) apply a structural model but do not pri-

marily focus on the pricing but they use the default model by Leland (1994) to

obtain closed-form expressions that allow them to study the effects of a CoCo

issue on the capital structure decision of a firm. Furthermore, they investigate

the risk of stock price manipulation depending on different implementation

designs. Glasserman and Nouri (2012) adapt a structural model to analyze

contingent capital with a capital ratio trigger and on-going partial conversion,

such that just enough debt is converted into equity to meet the minimum
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requirement. They arrive at closed form solutions for the market value of such

securities in a setting where the assets are modeled as a Geometric Brownian

Motion. Madan and Schoutens (2011) incorporate the fact that assets and

liabilities are both risky and employ conic finance techniques to introduce

bid-ask-prices into their model. They argue that under the presence of risky

liabilities the trigger should not be based on a core tier ratio but rather a

trigger based on capital shortfall. Sundaresan and Wang (2011) argue within

a structural model that an implementation using equity based market triggers

can lead to multiple equilibria and price manipulations. As a consequence

they propose that the coupon payment of a CoCo must be floating and equal

to the risk free rate, which on the one hand ensures that the bond trades

at par during its lifetime and on the other hand eliminates a value transfer

between share holders and CoCo holders. Hilscher and Raviv (2014) propose a

tractable form of contingent capital and provide a closed form solution for its

price in a structural model. They show that an appropriate CoCo design can

mitigate the stockholders’ incentives to risk-shift thus concluding that CoCos

may cancel out negative effects of equity-based compensation schemes. Bürgi

(2013) presents a structural framework that combines multiple aspects from

theoretical and practical literature, allowing him to model tier 1 triggered

CoCos by imposing that there is a linear relationship between straight and

tier 1 equity ratios. The model reveals large pricing differences in a time

series analysis on a Credit Suisse CoCo, concluding with the fact that the

parametrization in any model is attached with a lot of uncertainty and that

future CoCo issuances should be designed in the form of pure write-down bonds.

Equity Derivative Models

Due to the hybrid nature of a CoCo bond another pricing approach takes

the view of an equity investor and applies equity derivative techniques to

replicate and value the implicit share position a CoCo investor is exposed to.

De Spiegeleer and Schoutens (2011; 2012) suggest to separate the payoff of

the CoCo into a zero corporate bond, a knock-in forward and a sum of binary
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down-and-in options. The forward contract simulates the conversion of the

bond into shares at a predetermined strike price while the binary options ac-

count for the foregone coupon payments if a conversion occurs (cf. section 3.2).

One of the main conclusions is that Black-Scholes dynamics do not sufficiently

cover the fat-tail dynamics that CoCos have. The model is therefore later

extended by Corcuera et al. (2013) and Teneberg (2012) to incorporate higher

fat-tail risk. Henriques and Doctor (2011) consider a CoCo to be a bond issued

by a financial institution where the issuer has a long position in an option from

the bondholder which is exercised at the occurrence of a trigger event such

that the face value of the bond is converted into equity at a predetermined

strike. Hence, they replicate a CoCo with an amount that gets written down

to zero in the event of a trigger and an amount that gets converted into equity.

These components are priced individually (cf. section 3.3). They believe that

such a model accurately reflects the risk and structure of CoCo bonds and

advise that conflicting interests could be mitigated by establishing a direct

link between the solvency variable and the underlying equity value.

Credit Models

Since the conversion of a CoCo bond is closely connected to a firms default

respectively survival probability also intensity based credit modeling lends

itself as a pricing methodology. De Spiegeleer and Schoutens (2011; 2012)

apply a credit derivative approach which results in a credit spread that is

calculated as a function of the exogenously defined triggering probability and

the corresponding expected loss in case of a conversion. They find that this

method is quick to implement and is vastly applied in fixed income valuation

(cf. section 3.1).

To the best knowledge of the author, Wilkens and Bethke (2014) are the

first to perform an empirical assessment of a credit- and equity-derivative as

well as a structural model. They parametrize and calibrate the models on two

Lloyds Banking Group CoCos and one Credit Suisse CoCo and find that all



12 Chapter 1. Introduction and Motivation

models are largely able to fit observed market prices, where the maximum

observation period ranges from December 2009 to December 2011 for the

Lloyds CoCos and from February 2011 to December 2011 for the Credit Suisse

CoCo. Furthermore, they derive hedge ratios and compare the hedging perfor-

mance of the models. They find that while the equity derivative model fares

worst in their fitting analysis, it performs best in their hedge assessment and

seems to be the most promising in light of its straight forward parametrization.1

Table 1.2 provides an overview of the aforementioned pricing approaches,

showing the angle from which the models approach the problem.

Structural Models: Credit Models:

Pennacchi (2010) De Spiegeleer and Schoutens (2011)

Glasserman and Nouri (2012)

Madan and Schoutens (2011)

Albul et al. (2010)

Sundaresan and Wang (2011)

Hilscher and Raviv (2014)

Bürgi (2013)

Equity Derivative Models:

De Spiegeleer and Schoutens (2012)

Henriques and Doctor (2011)

Table 1.2: This table shows an overview of existing pricing approaches for contingent
convertible capital. (based on: De Spiegeleer and Schoutens (2011))

1The results of their empirical analysis are contrasted in more detail in chapter 5.
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1.3 Motivation

As shown, a quickly growing market presents itself and is expected to grow

even stronger in light of the stricter capital requirements set out by Basel III.

Therefore, the need for capable pricing tools to enable regulators, investors

and market makers to evaluate and manage this new hybrid instrument is

clear.

As shown in the literature review, there co-exist several possible approaches

regarding the pricing of contingent convertible capital. There is, however, no

consensus among academics and practitioners alike as to which model is suited

best to the task. Investors, market makers and regulators must therefore

cope with significant uncertainties regarding the fair valuation, forecasting

and risk management of the capital instrument (De Spiegeleer et al., 2011).

De Spiegeleer and Schoutens (2011, p. 66) emphasize that “one model will

likely prevail and will be accepted by most of the trading and structuring

desks around the world”. The question remains which one.

The motivation is to compare the performance of a number of chosen pricing

models by means of theoretical and empirical analysis, practicability and

computational effort. This includes the theoretical introduction of the models,

discussing the data requirements and parametrization and comparing the

pricing capabilities in a theoretical and extensive empirical analysis. Ultimately

the challenge is to find the pricing model which is able to produce rapid and

accurate prices (De Spiegeleer et al., 2011).

To cover a broad arrangement of pricing models, the thesis will introduce

the theoretical foundation of a structural approach as outlined by Pennacchi

(2010), a credit and equity derivative approach as suggested by De Spiegeleer

and Schoutens (2011; 2012) and the J.P. Morgan pricing approach devised

by Henriques and Doctor (2011). To respect the fact that a CoCo is an

instrument which is driven by fat-tail events, a further motivation presents

itself to incorporate the possibility of discontinuous returns as in Merton (1975)

into aforementioned models.
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1.4 Research Design

Having outlined the economic importance of contingent convertible capital and

the resulting motivation, the subsequent chapter 2 provides a comprehensive

overview of contingent convertible capital and its characteristic design features

in order to introduce the qualitative framework needed to understand the

behaviour, the mechanisms and most importantly the risk drivers of a CoCo.

Using this framework, the four mentioned pricing approaches are introduced

in the following chapter 3 both in a setting where the risky returns are assumed

to be normally distributed and on the other hand in a setting where returns

are allowed to be discontinuous. Chapter 3 furthermore outlines the data

requirements and parametrization techniques of the models and provides

first pricing examples. An intermediary conclusion provides an overview and

summary of the insights so far.

Chapter 4 includes a dynamics and sensitivity analysis to assess the model

behaviour with respect to the different pricing and design parameters.

An extensive empirical analysis follows in chapter 5, where the models are

parametrized on two Credit Suisse and two Lloyds Banking Group CoCos and

the resulting price dynamics are qualitatively and quantitatively compared to

reach a conclusion and outlook in the final chapter 6.



Chapter 2

Anatomy of CoCos

This chapter outlines the essential design characteristics of CoCos in order to

get a grasp of the risk characteristics and possible value drivers that can have

an impact on valuation.

2.1 CoCo Description

Contingent convertible capital is a long-term debt instrument with a maturity

T that pays periodic interest ci and serves the purpose of pre-arranging an

automatic re-capitalization by either converting a fraction 0 < α ≤ 1 of the face

value N of the bond into common equity or suffering a write-down 0 ≤ α ≤ 1

when a predefined trigger event occurs.1 This description gives raise to two

flavors of contingent convertible capital: On the one hand the ‘traditional’

CoCo that converts into shares and on the other hand a CoCo that suffers a

write-down. The latter option is the most prominent among the issuances so

far and is for example interesting for privately held institutions that have no

publicly traded equity. Contingent capital therefore enables raising funds in

times of distress and unfavorable market conditions where it would otherwise

be difficult to re-capitalize (e.g. due to a lack of investor trust or a prolonged

liquidity/credit crunch). This automated capital buffer strengthens the loss

1Note that the actual maturity is unknown, as the expected lifetime of a CoCo can be
shorter because of a possible early conversion or write-down.
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absorbency potential and therefore acts to secure the going-concern of the

individual entity and ultimately helps decrease the systemic contagion among

financial institutions as could be observed during the recent financial turmoil.

However, as shown by Albul et al. (2010), not only financial institutions

ought to be interested in issuing contingent capital but any capital structure

decision might benefit from this capital instrument, as its interest payments

are tax deductible and therefore provide a tax shield effect which increases firm

value.2 Many non-financial companies could have benefited from an automatic

re-capitalization to overcome negative or highly volatile cash-flow periods.

2.2 Payoff and Risk Profile

The above description suggests that a CoCo - much like a normal convertible

bond - can be broken down into a bond and an equity part. The CoCo behaves

like a normal corporate bond if a trigger event is unlikely, since the investor

receives periodic coupon payments ci and the bond would eventually redeem at

maturity T . However, due to the risk of an early write-down or conversion into

shares, the face value might not be repaid at all or suffer a haircut. Moreover,

any future interest payments will be lost. It is at this point where an implicit

equity position, for a CoCo that converts into shares, is no longer zero (Bürgi,

2013). In this sense, Glasserman and Nouri (2012) identify the following four

preliminary value drivers of a contingent convertible bond:

1. Coupon payments on unconverted debt:

During the lifetime of the CoCo it pays periodic interest payments ci

which add to the present value of the instrument.

2However, under U.S. tax law a fixed or ascertainable maturity date as well as the
unconditional promise to pay upon maturity is generally considered to be necessary for a
classification as debt (Allen & Overy LLP, 2012). Hence contingent capital instruments will
most likely be treated as equity and a potential tax shield effect will not be given under U.S.
jurisdiction. This is the main reason why no U.S. based institutions have issued contingent
capital so far.
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2. Principal payment on the unconverted debt:

If no conversion has happened during its lifetime, the bond is redeemed

at par and the principle amount repaid to the investor.

3. Dividends earned on equity after conversion:

Once a trigger event has materialized and the bond has been converted

into equity, the fixed-income investor now has a long position in shares of

the company. As a result, the investor is now entitled to receive dividend

payments.

4. Final value of earned equity at maturity:

After a trigger event the investor can hold on to the shares and participate

in the further share development.

To illustrate this value shift, consider the following simplified characterization

of the payoff structure of a CoCo that pays coupon payments ci and is tied to

a share price trigger S∗ (cf. figure 2.1):

1. At the discrete time points t1,2,...,n, the level of the underlying S is

compared to the trigger level S∗ and checked whether S > S∗. If this

is true, the CoCo is not converted and the investor receives the usual

coupon payments c1,2,...,T .

2. The alternative scenario is activated if during the lifetime of the CoCo

the predefined barrier level S∗ is hit by the reference underlying

min0≤t≤T (ST ) ≤ S∗. In this case the CoCo gets converted into ordinary

shares at a conversion ratio of Cr (cf. section 2.4) and the investor

participates in the further development of the share until T . The terminal

value in this case is Cr(ST − S∗) plus any dividend that might be

distributed.

3. If the second scenario does not materialize, the CoCo investor receives

the face value N at maturity T .
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begin date t0

mint0≤t≤t1(St) ≤ S∗

t1: St1 > S∗ c1

mint1<t≤t2(St) ≤ S∗

t2: St2 > S∗ c2

mint2<t≤T (St) ≤ S∗

T : ST > S∗ N + cT

Cr(ST − S∗)

no

no

no
yes

Figure 2.1: This flowchart shows the payoff structure of a contingent convertible
bond that is converted into ordinary shares with a conversion ratio Cr and a trigger
price of S∗.
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Figure 2.2: The left-hand side graph shows the value of a generic CoCo bond that is
converted into shares. The right-hand side graph shows the payoff profile of a generic
CoCo. (based on: De Spiegeleer and Schoutens (2011))

This generic payoff structure is plotted in the left-hand side graph of figure

2.2. This particular CoCo has a face value N of 100 and the trigger lies at

a share price of 40, where the CoCo converts into 1 share. The initial share

price is 100 and the CoCo pays an annual coupon of 10%. The behaviour

clearly shows a negative convexity, as the investor is increasingly exposed

to share price movements as the trigger is approached and ultimately has

a one-to-one relationship to the share post-trigger. In contrast, the CoCo

converges to non-convertible corporate debt if the trigger probability decreases

as the share price moves further away from the trigger. This clearly illustrates

the interconnectedness of the value shift between the bond and equity position

driven by the trigger probability (De Spiegeleer and Schoutens, 2011). Once

the CoCo holder is long in the shares, the further development of the share

price will determine the ultimate payoff at maturity T, which can be seen in

the right-hand graph of figure 2.2. In this example, there is a high probability

that the CoCo does not get converted and the coupon payments are received,

generating a return up to 30% for this three year CoCo. However, once it is

triggered, the generated loss can be quite substantial.

Due to the argumentation above a CoCo clearly carries a high negative

impact risk that occurs with a relatively small probability versus limited
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upside potential with a high likelihood (De Spiegeleer and Schoutens, 2011;

Glasserman and Nouri, 2012). It is clear that the probability of conversion is

one of the main determinants that governs the payoff and the riskiness of the

CoCo.

Having identified the main value drivers and the inherent risk-profile allows

to subsequently treat the different price determinants that have an impact on

the expected value of the bond and/or the equity part.

2.3 Conversion Trigger

The conversion trigger is the main difference of CoCos to existing hybrid debt

instruments. This section discusses market-, accounting-, regulatory- and

multivariate-trigger implementations with respect to the general guideline

proposed by De Spiegeleer and Schoutens (2011, 2012) according to which a

trigger should be designed:

• Clarity: The trigger must be universally applicable regardless of the

jurisdiction of the issuer. This means that e.g. capital ratios have

the same meaning and are not subject to discrepancies in accounting

standards.

• Objective: There should be no subjectivity involved in the trigger. The

trigger event should be well known and documented ex-ante.

• Transparent: A trigger should be observable to the investor. Ideally, this

is a market driven measure that is readily available to all investors.

• Fixed: The chosen trigger should not change over the lifetime of the

CoCo.

• Public: Issuing institutions should ideally make information concern-

ing the trigger publicly available at the same time in order to avoid

speculative contagion.
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• Frequency: Accounting information is at most provided on a quarterly

basis, which leaves a lot of room for speculation for investors about

the financial condition of a company. Ideally the information should be

available real-time.

Complementary to the stipulated inclusion criteria as regulatory capital, the

Basel III framework furthermore defines minimum criteria for capital instru-

ments that are allowed to be included in “Additional Tier 1 capital” (i.e.

going-concern capital). Specifically, a capital instrument “classified as lia-

bilities for accounting purposes must have principal loss absorption through

either (i) conversion to common shares at an objective pre-specified trigger

point or (ii) a write-down mechanism which allocates losses to the instrument

at a pre-specified trigger point” (Basel Committee on Banking Supervision,

2011a, p. 17). Hence choosing the right trigger design is important and in this

context different possible designs are discussed subsequently.

2.3.1 Market Trigger

A market trigger is the most simple and straightforward approach to determine

the contingent event and could for example be based on the firm’s stock price

or its credit-spreads. Those measures are (ideally) governed by the law of

supply and demand and under the assumption of liquid and efficient markets,

these indicators have forward looking characteristics and should therefore

reflect the financial condition of a bank most accurately and timely. There is

a clear favoring towards market based triggers in current academic research as

for example McDonald (2010), Haldane (2011) or Calomiris and Herring (2013)

contend using a share price trigger as well as Flannery (2002; 2009) suggests

using a capital ratio comprised of the book value of the debt and the market

value of equity.3 Clearly, a market trigger would limit the management’s

ability to deliberately manipulate such a ratio and eliminate the subjectivity

inherent in e.g. a regulatory trigger. However, practitioners fear that also

3McDonald (2010) combines it with a systemic index to create a dual-trigger design.
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market prices could be subject to manipulation if a CoCo is close to conversion

(Flannery, 2009; McDonald, 2010; Squam Lake Working Group on Financial

Regulation, 2009). If CoCo investors believe that shares will continue to decline

post-trigger they put additional pressure on the stock by short selling it in

order to hedge their investment and profit from share price corrections. This

“self-fulfilling-prophecy” can be mitigated by specifying the conversion price in

such a way that bondholders bear some loss in case of conversion (McDonald,

2010). During the “flash-crash” on May 6, 2010 almost all individual stock

prices of more than 8000 firms suffered a sharp price correction and a quick

reversal (Borland and Hassid, 2010). Similarly, the share price of Swiss private

bank Julius Bär plummeted more than 40% on February 6th 2009 after rumors

that their financial statement had been ‘cooked’ (Neue Zürcher Zeitung, 2009).

Such a sudden spike in volatility could have forced an unjust triggering of

the convertible and demonstrates a potential weakness of a market trigger.4

A remedy to this problem would for example provide the utilization of an

average share price as proposed by e.g. Duffie (2010) or Flannery (2009).

2.3.2 Accounting Trigger

Typically the solvency of a financial institution is measured using an accounting

based value such as the core equity tier 1 (CET1) ratio as defined in Basel

III or a solvency based measure like the Swiss Solvency Test (SST, as is the

case in the SwissRe issue). These measures are clearly defined and tightly

regulated and transparent in their assumptions. Thus such accounting levels

lend themselves as an indication that additional capital is needed to secure the

going-concern and act as a trigger point. However, there is still potential leeway

in calculating the risk weighted assets on the basis of which the CET1 ratio is

calculated, which in turn results in intransparency and possible distortion of

the ratio. As a matter of fact Kuritzkes and Hal (2009) or Haldane (2011) argue

that many of the large U.S. financial institutions that were on the brink of

4Flannery (2011) argues that some conversion errors of this kind would even be justified
in light of too low capital buffers.
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collapsing were reporting capital ratios in excess of the minimum requirements.

A further caveat to be considered is the periodicity as accounting statements

are usually published on a quarterly basis or even semi-annually, as in the case

of e.g. Lloyds Banking Group (Risk Magazine, 2010). Insurance companies are

even only required to submit Swiss Solvency Test reports to the FINMA on

an annual basis (Swiss Financial Market Supervisory Authority, 2012). This

might lead to a lagged information source and unnecessary speculation by debt

and equity investors. Despite its downsides this option clearly has become the

only broadly accepted implementation as all currently issued CoCos feature

some sort of an accounting trigger, first and foremost to be in line with the

Basel III requirements.

2.3.3 Regulatory Trigger

As regulators are interested in limiting the economic impact a governmental

authority could request the conversion if they believe that the going-concern

of a systemically important financial institution is at risk. Such a trigger

would eliminate the risk of market manipulation and ensure the timeliness of

the conversion. However the highly discretionary nature of such a trigger is

almost impossible to judge by the markets, let alone being incorporated into a

valuation model (De Spiegeleer and Schoutens, 2011). Interestingly, the CoCos

issued by e.g. Credit Suisse and UBS can both be triggered at the discretion

of the Swiss regulator FINMA (Credit Suisse, 2011, 2012a, b; UBS, 2012c).

2.3.4 Multivariate Trigger

Flannery (2009) or the Squam Lake Working Group on Financial Regulation

(2009) also propose to link a conversion to multiple triggers. This could for

example be a macro variable, indicating the status of the economy as a whole,

linked with a micro variable that reflects the status of the issuing company.

E.g. a financial index could serve as a proxy for the health of the financial

sector as a whole and the share price of the individual company as the idiosyn-
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Criterion Market Accounting Regulatory Multi-Variate

Clarity high medium low medium

Objectiveness high medium low medium

Transparency high medium low medium

Fixedness high high low high

Publicity high high high high

Frequency high medium low high

Table 2.1: This table provides an overview of the different trigger designs. High,
medium and low indicate a qualitative interpretation of the design criteria.

cratic measure. This immediately raises the question whether it should be

an (and / or) relationship. A systemic index might be at low levels due to

single banks that are in trouble but other banks might still be doing fine. If

this would force a system wide conversion without respecting the individual

health of the banks, it would certainly avert a systemic crisis but it would

leave banks that are in good health overcapitalized and eventually hinder a

cost-effective financial intermediation. On the other hand if the idiosyncratic

measure would trigger a conversion but the financial sector as a whole is doing

fine, then an individual bank might not get recapitalized at all (Flannery, 2009).

To summarize, table 2.1 provides an overview of the trigger designs with a

qualitative interpretation of the objective criteria according to which a trigger

should ideally be implemented. E.g. a market trigger has a high level of

objectiveness as opposed to a regulatory trigger, which due to its discretionary

basis is not very objective.

2.4 Conversion Details

Equally as important as specifying the trigger conditions are the conversion

details. As previously mentioned there exist CoCos that convert to equity
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and CoCos that suffer a write-down. Write-down bonds are of course easier

to design, whereas equity conversion bonds are a more delicate manner, as

the number of shares needed to service the equity conversion can either

be a predefined amount or determined at the time of conversion using the

contemporaneous stock price. In any case the conversion fraction indicates

the amount of the CoCo that gets converted or written off.

2.4.1 Conversion Fraction

The conversion fraction α determines the amount of the face value N of the

CoCo that is converted into equity or written off: N × α. Any remaining

amount (1 − α) might be redeemed by the issuer or is to be written off in

case of a partial equity conversion (De Spiegeleer and Schoutens, 2011). Most

CoCos issued so far specify a full conversion / write-off, i.e. α = 1, however

there are examples with varying α’s.

2.4.2 Conversion Price and Ratio

After having determined the conversion amount αN the question remains

how many shares the investor will receive in case of a conversion respectively

what the conversion price for one share will be. If the conversion rate Cr is

determined beforehand, i.e. at the issuance date, then the implied conversion

price Cp is

Cp =
αN

Cr
(2.1)

On the other hand if the conversion price Cp is known then the conversion

rate Cr equals

Cr =
αN

Cp
(2.2)

In both cases it comes down to the (implied) conversion price Cp, as the

recovery rate RCoCo is given by the stock price at the trigger event S∗
T divided
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by the conversion price Cp

RCoCo =
S∗
T

Cp
(2.3)

and hence the direct loss attributable to CoCo holders is (De Spiegeleer and

Schoutens, 2011)

LCoCo = N − (1−RCoCo) = N

(
1− S∗

T

Cp

)
(2.4)

or equivalently the final payoff PT to the CoCo holder is

PT =

⎧⎨
⎩(1− α)N + CrS

∗
T if converted

N if not converted
(2.5)

This is assuming that the CoCo investor sells the shares directly after conversion

at S∗
T ; another option would be to hold on to the shares, which would generate

a different payoff depending on the stock price evolution.

Generally there exist three predominant ways in which the conversion price

Cp can be set (De Spiegeleer and Schoutens, 2011):

1. Cp determined at issuance, Cp = S

Setting the conversion price Cp to a pre-determined share price S at the

date of issuance would immediately allow to calculate the conversion

rate Cr and therefore the amount of shares that would be issued in case

of conversion. This way the dilution of the existing shareholders would

be known ex-ante and less severe than if the conversion price is set at the

trigger date (due to the lower conversion ratio Cr). On the other hand,

as the actual market price S∗
T when conversion happens is uncertain and

is very likely to be in a depressed state it will be very likely that the

investor will have to bear a loss upon conversion.

2. Cp determined at conversion, Cp = S∗
T

A CoCo investor would in theory be held loss-less if the conversion price
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would equal the market price at the time of conversion N = CrS
∗
T . In

this case just enough shares would be issued to service the full conversion

amount of the CoCo. In this example the conversion ratio Cr would be

higher and therefore existing shareholders would suffer a higher dilution.

To limit this effect a floor conversion price Sfloor could be incorporated

Cp = max(S∗
T , Sfloor). This option is most prone to market manipulation

as CoCo investors might try to force a conversion at a low price to

maximize their ex-post stake in the company. However, this could be

mitigated by calculating the conversion price as the average share price

during a pre-defined time period. In fact the Credit Suisse issuances have

a floor conversion price and an averaging feature incorporated (Credit

Suisse, 2011, 2012a, b).

3. Conversion in fixed amount of shares

The conversion could also be specified as a fixed amount of shares. If the

conversion price is not set beforehand, i.e. a conversion price equal to

the market price S∗
T on the trigger date, the expected conversion amount

α is uncertain.

It is clear that the choice of the conversion price is important. Currently issued

bonds that convert into equity either have a predefined conversion price, as

explained under point one, or a price determined at conversion but with a floor,

as explained under point two above. Table 2.2 provides a summary of the

conversion price designs, showing the interplay between the conversion ratio

and the conversion price and a qualitative assessment of the main consequences

on the attached loss, dilution and manipulation effects. E.g. a conversion price

fixed at issuance (case 1) implies a low conversion ratio and conversely a high

conversion price, therefore inducing a high loss to the investors but leading to

a low dilution and manipulation effect.
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Case Cr Cp Loss Dilution Manipulation

1. low high high low low

2. high low low high high

3. medium medium high medium high

Table 2.2: This table provides an overview of the conversion price designs and the
effects on the conversion ratio and the conversion price. Furthermore loss, dilution
and manipulation effects are shown. Case 1 corresponds to a conversion price fixed at
issuance, case 2 to a conversion price fixed at conversion and case 3 to a conversion
into a fixed amount of shares.

Having introduced the main framework to understand the mechanics and

behaviour of CoCo bonds the next chapter moves on to introduce the theory

and methodology of four different pricing models.
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Theory of Pricing CoCos

In its essence a CoCo shares a lot of its characteristics even with the most

basic form of a convertible bond. A convertible bond is a security that has

both debt and equity characteristics, since the investor has the right to convert

the bond’s nominal amount into a predefined number of shares at maturity

(Bodie et al., 2009; Hull, 2009). In a simplified manner, the payoff of such

a bond can be expressed as a straight bond with an embedded call option,

whose fair value can be deduced from the time value of money combined with

option pricing theory, provided by e.g. Black and Scholes (1973) and Merton

(1973) (Ammann et al., 2008; De Spiegeleer et al., 2011; Hull, 2009). What

distinguishes a CoCo from ordinary convertible capital is the dependence on a

conversion trigger, where the trigger probability can for example be determined

via an accounting value or a stock price that breaches a certain threshold (cf.

section 2.3). Another distinctive fact is that the contemporaneous stock price

at the date of conversion ultimately determines the payoff to the investor if

the CoCo is converted into shares at the share price on the trigger date (cf.

section 2.4.2). Due to the stochasticity of the share price (and/or accounting

value) the payoff cannot be perfectly determined ex-ante and must therefore

be approximated (Bürgi, 2013).

The pricing models that are introduced in this chapter includes a credit

and equity derivative approach as proposed by De Spiegeleer and Schoutens

(2011; 2012) - where the latter has been extended by Teneberg (2012) and
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Corcuera et al. (2013) to incorporate fat tail behaviour - a structural approach

that follows the implementation of Pennacchi (2010) and a credit default swap

(CDS) approach that J.P. Morgan (Henriques and Doctor, 2011) has devised.

Irrelevant of which method is applied, the valuation is generally confronted

with the determination of a triggering probability and the contemporaneous

stock price at the time of conversion. All approaches therefore rely on assump-

tions regarding the stochastic process that governs the triggering probability

and/or the stock price. The models are on the one hand presented in their

original form where the returns from the underlying risky asset process are

assumed to be normally distributed. Additionally, the behaviour of the models

will also be investigated in a setting that allows for discontinuous returns.

Specifically, this is done by imposing a jump-diffusion process as presented by

e.g. Merton (1975) as return generating process.

At this point it must be noted that CoCos are securities that include

non-tradeable risk drivers (e.g. the decision of a government body to force a

conversion or the evolution of the CET1 ratio) and hence a perfect risk transfer

by the investing agent is not possible. This generally leads to an incomplete

market setting, which is also observed for many other financial and insurance

products. In the classical application of financial engineering within a complete

market setting (e.g. Black-Scholes) one can move from the physical probability

space to a unique risk-neutral measure (the former is commonly referred to as

P and the latter as Q) via no-arbitrage / replicating conditions, arriving at a

unique pricing kernel thus satisfying the first and second fundamental theorem

of pricing (Birge and Linetsky, 2007; Björk, 2009). The consideration of a

jump-diffusion process as underlying model induces market incompleteness,

where a risk-neutral measure Q can still be achieved but with the caveat that

it is non-unique and several parameter sets can lead to the same price (Björk,

2009; Joshi, 2003; Tankov, 2003).

Thus in incomplete markets the calibration of (in-)complete market models

to observed security prices do not account for any costs generated through
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hedging activities or any residual risk borne by the investing agent. The

intrinsic assumption of a fictitious replicating portfolio strategy of (in-)complete

market models wrongly appraises the non-hedgeable risk as though it could be

diversified away (Birge and Linetsky, 2007). The observed pricing differences

between the achieved model prices and the empirical prices must be interpreted

within this setting.

3.1 Credit Derivative Model

In standard fixed income mathematics corporate debt is often priced using a

reduced form approach, also referred to as intensity based credit modeling. It

can be seen as a simplification of the Merton (1974) model, where instead of

modeling an entire balance sheet only the default probability and the loss given

default are involved. Combined with straight forward bond pricing method-

ologies results in the famous credit triangle, which is often encountered and

applied in practice due to its simplicity and easy implementation (De Spiegeleer

et al., 2011; Hull, 2009). The derivation mainly follows De Spiegeleer et al.

(2011), De Spiegeleer and Schoutens (2011) and Duffie and Singleton (2003).

3.1.1 Intensity based credit risk approach

Proposed by e.g. Jarrow and Turnbull (1995), Duffie and Singleton (1997; 1999;

2003) or Madan and Unal (1998) and extensively covered in e.g. Lando (2009)

or Duffie and Singleton (2003) the intensity based approach assumes that the

default event is governed by an exogenously defined intensity process, which

must not necessarily be correlated to the asset value of the company. This is in

contrast to the structural models, where the default event is connected to the

asset and debt levels of the company (cf. section 3.4). The default intensity

directly relates to the hazard rate, which is the conditional default rate: define

the default time τ as a non-negative random variable and assume that it has
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a continuous density function f , then the probability of default up to time t is

P (τ ≤ t) = F (t) = 1− S(t) =

∫ t

0

f(s)ds (3.1)

where S(t) is the survival function and F (t) is the distribution function. The

hazard rate h(t) or correspondingly the default intensity λ(t) is defined as

h(t) = lim
Δt↓0

1

ΔT
P (t ≤ τ < t+Δt) =

f(t)

S(t)
=

f(t)

1− F (t)
= − d

dt
log(S(t)) (3.2)

i.e. the rate of default conditional on the survival. The survival function S(t)

is then given by

S(t) = e

{
−
∫ t

0

λ(s)ds

}
(3.3)

The specification of λ(t) is often treated as stochastic and usually term-

structure models such as the Vasicek (1977) or Cox et al. (1985) model are

applied.1 The default intensity λ(t) can also be modeled as a deterministic

function of time, where λ(t) can be constant or piecewise constant over time.

This thesis treats the default intensity as a deterministic function of time,

which is introduced subsequently both in constant and piecewise constant

form.

By assuming that λ(t) is a deterministic function of time t then the default

probability can be expressed by combining equation (3.1) with (3.3) as

P (τ ≤ t) = 1− e

{
−
∫ t

0

λ(s)ds

}
(3.4)

On the other hand, if λ(t) is given piecewise constant between fixed time

1For more details on the technical definition in such a setting see e.g. Lando (2009).
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points t1, t2, ..., ti as shown below

λ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ1 if 0 < t ≤ t1

λ2 if t1 < t ≤ t2
...

...

λi if ti−1 < t

(3.5)

then the default probabilities using equation (3.4) can be expressed as

P (τ ≤ ti) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1− e−λ1t if 0 < t ≤ t1

1− e−λ1t1−λ2(t−t1) if t1 < t ≤ t2
...

...

1− e−λ1t1−λ2(t2−t1)...λi(t−ti−1) if ti−1 < t

(3.6)

If a flat default intensity function is assumed for all maturities, the default

probability reduces to

P (τ ≤ t) = 1− e−λt = 1− P (τ > t) (3.7)

To illustrate the practical implication this simplification has, assume a single

time step model, in which a zero-coupon bond can either survive and pay

the full face value N at maturity T or it can default and pay a recovery rate

R ≥ 0, as illustrated in table 3.1. The expected zero-coupon bond value B

State Value Probability

No Default Ne−rfT P (τ > t)

Default Ne−rfTR 1− P (τ > t)

Table 3.1: Zero-Coupon bond states.

can then be computed by multiplying the value and the probability of the
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respective state and discounting it with the risk-free rate rf :

B = Ne−rfT [P (τ > t) + (1− P (τ > t))R] (3.8)

By substituting the survival probability P (τ > t) = e−λt with its first order

approximation 1− λt, the value of the zero coupon bond can be expressed as

B ≈ Ne−rf t[1− λt+ λtR] = Ne−rf t[1− λt(1−R)] (3.9)

Combining equation (3.9) with the fact that a risky zero-coupon bond pays a

certain credit spread s above the risk-free rate rf , it is evident that there exists

a link between the credit spread s, the default intensity λ and the recovery

rate R. This is called the credit triangle (3.10) and is often used in practice

as it provides a quick valuation method for bonds:

λ =
s

1−R
(3.10)

Equivalently, the credit spread can be expressed as

s = λ(1−R) (3.11)

This allows to determine the default probability from a credit spread or

alternatively to calculate the credit spread for a given default intensity λ.
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3.1.2 Application to CoCos

Recalling equation (2.3) the recovery rate RCoCo is given by the choice of the

conversion price Cp and the contemporaneous share price S∗
T at the trigger

event

RCoCo =
S∗
T

Cp
(3.12)

In the case of CoCo’s of primary interest is not necessarily the default intensity

λ but the conversion intensity λCoCo, which will be greater than the former

λCoCo > λ, as a conversion should happen before an actual default to secure

the going-concern. Therefore, the CoCo credit spread sCoCo with a constant

default intensity λCoCo is

sCoCo = λCoCo(1−RCoCo) (3.13)

GBM Trigger Probability λCoCo

The conversion intensity λCoCo should reflect the probability of conversion

up to a certain time T . The implementation outlined below allows to model

the trigger event in terms of a market trigger, i.e. a trigger share price, as

well as in terms of an accounting trigger. Specifically, the risk-neutral default

probability within a first-passage-default model in a Black-Scholes setting as

outlined by e.g. Black and Cox (1976) is defined as follows

p∗(T − t) = φ

⎛
⎝ log

(
S∗
St

)
− μ(T − t)

σ
√
T − t

⎞
⎠+

(
S∗

St

) 2μ

σ2

φ

⎛
⎝ log

(
S∗
St

)
+ μ(T − t)

σ
√
T − t

⎞
⎠

(3.14)

Here, φ is the cumulative standard normal distribution, q is the continuous

dividend yield, rf is the continuous risk-free interest rate, σ is the volatility

of the underlying and μ is given by rf − q − σ2

2 . The equation coincides with

the first time exit equation in a Black-Scholes setting used to price barrier

options as it yields the probability that a geometric brownian motion with

initial value S0 touches a barrier S∗ before time T (Derman and Iraj, 1996;
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Su and Rieger, 2009).2

JGBM Trigger Probability λCoCoJ

There exist no closed form solutions for the first-passage-default probability

under jump diffusion models (Abrahams, 1986; Zhou, 2001). Therefore, the

trigger probability is computed by simulation. Specifically, the implementation

follows the jump-diffusion process

dVt

Vt
= (μ− q − λk)dt+ σdWt + (Π− 1)dYt (3.15)

where μ is the expected return of the asset less the dividend yield q and where

k, λ and σ are positive constants; Wt is a standard Brownian motion and

dY is a Poisson process with intensity parameter λ; Π is the expected jump

amplitude with E(Π) = k−1 where k = e(μπ+σ2
π/2)−1 under the assumption

that ln(Π) ∼ φ(μπ, σ
2
π). Zhou (1997; 2001) then transforms (3.15) into the

following form

Xt −Xti = xi + yi ∗ πi (3.16)

by letting Xt = ln(Vt) and with xi, yi and πi being mutually and serially

independent random variables drawn from

xi ∼ φ((rf − q − σ2

2
− λk)

T

n
, σ2T

n
)

πi ∼ (μπ, σ
2
π)

yi =

⎧⎨
⎩0 with probability 1− λT

n

1 with probability λT
n

By discretizing T over n and finding the smallest integer i ≤ n for which Xti

is smaller or equal than some threshold level ln(K) over a large number of

simulations j = 1, 2, . . . ,M for varying maturities allows to determine the

2For more details on barrier options please refer to section 3.2, where the topic is discussed
in more detail within the equity derivative approach.
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probability of default as

p∗J(T ) =

∑M
j=1 1{i=τ∗≤T}

M
(3.17)

A nice property of using a jump diffusion process is that it is capable of

explaining credit spreads in short maturities, as there exists a probability in

the short term that a non-continuous drop leads to default. However, the

reverse is observable for longer maturities. This behaviour is shown in figure

3.1, where the cumulative default probability λCoCo and λCoCoJ is plotted as

a function of maturity T . The basic intuition behind this is that when keeping

the total process volatility constant the likelihood of a jump induced default

is higher than a diffusion induced default for short maturities, whereas for

longer maturities the opposite is true.3 Of course the effect is more or less

pronounced depending on the chosen parameter set and also if constant or

piecewise constant conversion intensities are considered.

A further effect that plays a role is that the average recovery rate RCoCoJ

will be lower when adding the possibility of sudden jumps, because the trigger

share price is not only approached continuously but discontinuous drops can

induce a further loss. The recovery rate RCoCoJ from the simulations can

be determined by dividing the sum of the recovery rates by the number of

observed defaults over the simulation runs j = 1, 2, . . . ,M

RCoCoJ =

∑F
f=1 RRf∑M

j=1 1{i=τ∗≤T}
(3.18)

Both of these reported effects are in line with the findings of Zhou (2001).

Naturally, this simulation approach is associated with an approximation

error, which - at the cost of computational time - can be reduced by increasing

3As opposed to a geometric brownian motion, a jump diffusion process has a total
variance of σ2

J = σ2 +λ(μ2
π +σ2

π) (Merton, 1975), which is kept constant in order to perform
comparative analysis between jump and non-jump configurations. E.g. when adding jumps
the diffusion volatility decreases by λ(μ2

π + σ2
π).
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the number of simulations. The standard error for 50’000 simulation runs

is only about 3 basis points for a five year bond; the corresponding 95%

confidence interval is given in brackets where applicable.
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Figure 3.1: Cumulative trigger probability λCoCo and λCoCoJ in the credit derivative
approach as a function of maturity T . The parameters correspond to the generic
CoCo parameters presented in table 3.3. The total process variance is kept constant
in the evaluation. (based on: Zhou (2001))

Calculation of the Credit Spread sCoCo

Setting the probability of touching the barrier p∗(J) equal to the default prob-

ability from equation (3.7) allows to express λCoCo(J) as a function of the

underlying stock price process and maturity T (De Spiegeleer and Schoutens,

2011, 2012)

λCoCo(J) =
log(1− p∗(J)(T ))

T
(3.19)

In combination with equation (3.13) yields the final CoCo spread in a Black-

Scholes setting sCoCo respectively the credit spread when returns include jumps

sCoCoJ . When dealing with piecewise constant default intensities the respective

default probabilities p∗(J) = (p∗(J)(t1), p
∗
(J)(t2), . . . , p

∗
(J)(ti)) are computed for

the respective time points ti under consideration. The CoCo spread can then
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be calculated using the simplified CDS pricing approach given by e.g. Hull

(2009), Hull and White (2000) or Schönbucher (2003)

s(T ) =
(1−RCoCo)

∑T
i=1 e

−rti(F (ti)− F (ti−1))∑T
i=1 e

−rti(1− F (ti))
(3.20)

where F (ti) corresponds to the bootstrapped probabilities P(J)(τ ≤ ti). Figure

3.2 shows the required coco yield, i.e. the credit spread sCoCo plus the risk-free

interest rate rf , and the resulting bond price. What can be observed is that

there are two main effects at play, which counteract each other. As the trigger

price S∗ decreases, the trigger probability decreases as well but on the other

hand the loss to the investor increases, as the recovery rate RCoCo is lowered.

When the trigger price approaches the conversion price Cp = 25, the recovery

rate increases to reach 100% and offsets the increasing trigger probability. For

trigger levels above the conversion price, the CoCo holder would not suffer

any loss and consequently the CoCo spread sCoCo over the risk-free rate rf

is zero. What is also evident is that there is a double equilibrium price for

different levels of the trigger price S∗.

3.1.3 Data Requirements and Calibration

With the aim to generate a time series in the context of the empirical analysis

in chapter 5, the data sources and the calibration of the different parameters

need to be defined. An overview of all the model parameters is provided in

table 3.2.

GBM trigger probability (subtable 3.2b)

In a Black-Scholes setting the trigger probability is given by the standard

deviation σ of the share price, the risk-free rate rf , the dividend yield q as

well as the current and trigger share price St respectively S∗. The diffusion

parameter σ in this approach is calculated using the five year log returns of

the respective underlying, which yields a representative value of the standard
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Figure 3.2: This figure shows the required yield YCoCo on the left-hand side y-axis
and the bond price CDC on the right-hand y-axis as a function of the trigger stock
price S∗. The parameters correspond to the generic CoCo parameters presented in
table 3.3. (based on: De Spiegeleer and Schoutens (2011))

deviation. For the risk-free rate rf the yield of a government bond of the same

denomination and initial tenor as the bond will be used. The dividend yield q

will be based on the five year average dividend yield prevailing the first pricing

date of the CoCo bond but furthermore any firm specific policies or measures

regarding their dividend payments will be taken into account.4

As a last element remains the unknown trigger level S∗ at which the CoCo

converts. Instead of arbitrarily choosing a stock price level, this value will be

calibrated via minimization of the root mean squared error to meet the initial

market price of the CoCo under consideration.

4As will be seen later on, Lloyds Banking Group was forced to seize any dividend
payments starting from 2009 as part of their recapitalization scheme (Lloyds Banking Group,
2009b). In fact, Lloyds only very recently has applied to the Prudential Regulation Authority
(PRA) to restart dividend payments (Lloyds Banking Group, 2009b, 2014).
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JGBM trigger probability (subtable 3.2c)

Generally the estimation of the parameters inherent in (3.15) can for example

be done via maximum likelihood estimation on the source data, which in

turn yields those parameters which maximize the likelihood that the observed

data has been generated with the respective process (Cochrane, 2009; Hull,

2009). However, when calibrating jump processes using this classical approach

bears certain caveats, as it yields the most likely jumps and not the most

pronounced jumps (Clewlow and Strickland, 2000). As the target in this thesis

is to detect the most severe jumps - which are found in the tails of the return

distribution - a threshold exceedance technique is applied to determine the

jump distribution φ(μπ, σ
2
π).

5 In this case, the integer exceedance threshold k

is determined by the assumed number of jumps λ per year multiplied by the

length of the calibration period in years. The distribution is then determined

on the sorted set of returns xn ≤ · · · ≤ xN and k < N returns exceed the

threshold. The positive jumps are found in the upper tail xN−k ≤ · · · ≤ xN

and the negative jumps are in the lower tail xn ≤ · · · ≤ xn+k. This implies that

the largest negative and positive returns are used to construct the distribution,

irrespective of the year when the jump happened.

Recovery ratio (subtable 3.2a)

To calculate the recovery ratio RCoCo the conversion price Cp as well as

the contemporaneous share price S∗
T at the trigger event is required. The

conversion price Cp is (in most cases) readily available in the bond prospectus

as they are usually set at the issue date of the bond. As already mentioned,

the actual share price at the trigger event S∗
T is unknown and is given through

the return dynamics of the model.

5Similar techniques are applied in e.g. extreme value theory (see e.g. McNeil et al.
(2005a) or Embrechts et al. (1997)).
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3.1.4 Pricing Example

To put the theoretical framework into context this section provides an applica-

tion on a generic CoCo bond presented in table 3.3. The individual steps will

be outlined both assuming a constant (CDC) and a piecewise constant (CDP)

conversion intensity to arrive at a final CoCo spread. The structure follows

Alvemar and Ericson (2012).

Variable Value Description

N 100 Face value

T 5 Bond maturity in years

ci 7% Bond coupon rate, paid annually

α 1 Full conversion

S0 40 Initial share price

S∗ 20 Trigger share price

Cp 25 Conversion price

σ 30% Annual standard deviation

rf 3% Risk-free rate

q 0% Dividend yield

λ 1 Jump intensity

μπ 0 Mean jump size

σπ 20% Jump standard deviation

Table 3.3: Generic CoCo price parameters. (based on: Alvemar and Ericson
(2012))

Constant Conversion Intensity λCDC(J)

Recalling that the credit spread in a setting with a constant conversion

intensity is given by equation (3.13), sCDC(J) = λCDC(J)(1−RCoCo(J)), the

first step involves the calculation of the conversion intensity λCDC(J) using

(3.19). Secondly, the recovery rate RCoCo(J) is expected to coincide with 80%

in the GBM model, as the trigger share price S∗ will not be broken but rather

approached continuously such that S∗
T = S∗. In the case with jumps it should
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be lower because on average S∗
T < S∗ due to discontinuous jumps.

In a Black-Scholes setting the trigger probability p∗(T ) is given by the first-

passage default equation shown in (3.14). When considering jumps, the

conversion probability p∗J (T ) has to be approximated by simulating (3.16) and

evaluating (3.17). The conversion intensity can then be calculated by plugging

in the respective probability into equation (3.19).

The parameters from table 3.3 yield a likelihood of 33.83% that the stock

price hits the barrier within five years in a standard Black-Scholes setting.

When returns are discontinuous, the probability lowers to 31.78% and further-

more the recovery rate decreases slightly to 77.45% (which is in line with the

previous findings). The resulting conversion intensities are λCDC = 0.0826

and λCDCJ = 0.0764. Table 3.4 summarizes these intermediary results.

Variable Value Description

p∗(5) 33.83% CDC first-passage probability

p∗J(5) 31.78% CDCJ first-passage probability

λCDC 0.0826 CDC conversion intensity

λCDCJ 0.0764 CDCJ conversion intensity

RCDC 80% GBM Recovery rate

RCDCJ 77.45% JGBM Recovery rate

Table 3.4: This table shows the trigger probabilities, the corresponding conver-
sion intensities and the recovery rates of the credit derivative model with constant
conversion intensity. (based on: Alvemar and Ericson (2012))

The resulting CoCo spread is then given by

sCDC(5) = 0.0826 · (1− 0.8) = 1.65%

sCDCJ(5) = 0.0764 · (1− 0.7745) = 1.72% [1.70%; 1.74%]

There is only a slight pricing difference as the spread is about 7 basis points

higher in the case when jumps in the returns are considered. The sensitivity

analysis in chapter 4 will reveal further details on the behaviour of these
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spreads. To arrive at the required yield the risk-free rate of 3% needs to be

added

YCoCo(5) = 1.65% + 3% = 4.65%

YCoCoJ(5) = 1.72% + 3% = 4.72% [4.70%; 4.74%]

Piecewise Constant Conversion Intensity λCDP (J)

In the case of piecewise constant conversion intensities the probability of default

is calculated for every year during the lifetime of the bond. In this case, the

five year bond is split into five time points ti and the corresponding cumulative

default probability p∗(J)(ti) is calculated. From this, the corresponding intra-

period default intensities p∗(J)(ti)−p∗(J)(ti−1) are computed. This is illustrated

in table 3.5. The CoCo spread is calculated using equation (3.20), which is

ti p∗(ti) p∗(ti)− p∗(ti−1) p∗J(ti) p∗J (ti)−p∗J (ti−1)

1 2.35% 2.35% 2.38% 2.38%

2 11.53% 9.18% 9.59% 7.21%

3 20.49% 8.97% 18.74% 9.15%

4 27.86% 7.37% 25.40% 6.60%

5 33.83% 5.98% 31.78% 6.38%

Table 3.5: This table shows the piecewise constant default probabilities in the credit
derivative model. (based on: Alvemar and Ericson (2012))

presented again below

s(T ) =
(1−RCoCo)

∑T
i=1 e

−rti(p∗(J)(ti)− p∗(J)(ti−1))∑T
i=1 e

−rti(1− p∗(J)(ti))
(3.21)

where the nominator corresponds to the sum of the discounted intra-period

default probabilities multiplied by the loss given default and the denominator

represents the sum of the discounted survival probabilities. In the case at
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hand, the credit spread sCoCo(J) corresponds to

sCDP = 0.0617
3.7209 = 1.66%

sCDPJ = 0.0708
3.8092 = 1.86% [1.83%; 1.89%]

and the respective required yields are

YCDP = 1.66% + 3% = 4.66%

YCDPJ = 1.86% + 3% = 4.86% [4.83%; 4.89%]

In both cases the results are very similar to the case with constant default

intensities. The difference is a bit more pronounced for the CDPJ model, as

the higher default intensity for shorter maturities is reflected more accurately.

This shows that the rule of thumb approach is quite accurate; however the

difference will be more pronounced depending on the input parameters. The

implied bond prices can be calculated by discounting the future cash flows

CFi with the yield rate.

Model Price =
∑T

i=1 CFie
−YCoCo(J)·ti

CDC 110.02

CDCJ 109.69 [109.78; 109.59]

CDP 109.97

CDPJ 109.03 [109.17; 108.89]

Table 3.6: This table shows the CoCo prices for the credit derivative model with
constant and piecewise constant conversion intensity (CDC / CDP) as well as for
the credit derivative model including jumps CDCJ and CDPJ respectively. (based on:
Alvemar and Ericson (2012))
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3.2 Equity Derivative Model

The equity derivative model as proposed by De Spiegeleer and Schoutens

(2011, 2012) tries to replicate the payoff structure of a CoCo by using existing

equity derivative techniques. As the name implies, this approach is driven

by a market trigger where a certain share price level S∗ will determine the

point of conversion. Recalling equation (2.5) the payoff of a CoCo in case

of a conversion is given by PT = (1− α)N + CrS
∗
T , which can be expanded

differently such that it can be shown that the payoff can be decomposed into

two components (it is assumed here that S∗ = S∗
T ) (Alvemar and Ericson,

2012; De Spiegeleer and Schoutens, 2011)

PT = 1{τ>T}N +

[
(1− α)N +

αN

CpS∗

]
1{τ≤T}

= N +

[
αN

Cp
S∗ − αN

]
1{τ≤T}

= N + [CrS
∗ − αN ]1{τ≤T}

= N + Cr

[
S∗ − αN

Cr

]
1{τ≤T}

= N + Cr[S
∗ − Cp]1{τ≤T}

(3.22)

The first component is the face value N of the bond and the second component

is the implicit long position in Cr shares, which only generates a payoff if

the trigger has materialized 1{τ≤T}. Specifically, the second component can

be thought of as a knock-in forward, where the strike price K equals the

conversion price Cp and the barrier level equals the trigger share price S∗.

The intuition is that at the point of the conversion the bond holder will use

the face value N to exercise the forward contracts which commits the investor

to buy the amount Cr shares for the price of Cp at maturity. Arguably,

receiving a forward when the barrier is touched is not the same as receiving

the actual share. The most notable difference is the omitted dividend which

is accentuated if a conversion happens early during the lifetime of the CoCo.
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However, De Spiegeleer and Schoutens (2011; 2012) find this to be a reasonable

assumption since a company in distress will very likely (have to) be restrictive

with their dividend payments.6

Furthermore, a third valuation component in connection to the corporate

bond has to be evaluated that takes into account the foregone coupon pay-

ments should a conversion occur. This will reduce the value of the corporate

bond and can be modeled with short positions in binary-down-and-in options

(De Spiegeleer and Schoutens, 2011).

Subsequently the payoff structure will be disentangled and the theory

behind it laid out to arrive at a closed form solution under standard Black-

Scholes assumptions. A later section will then show how the same valuation

can be done in a jump diffusion setting.7

3.2.1 Corporate Bond

The first component is a long position in a corporate bond of the issuing entity

that mimics the properties of the bond profile before a possible conversion.

The corporate bond with value V cb
t has a face value N and pays a coupon ci at

time points ti and can be priced through standard bond pricing (Hull, 2009)

V cb
t = Ne−rf (T−t) +

T∑
i=t

cie
−rf ti (3.23)

Notice that the corporate bond is discounted using the risk-free rate rf as the

potential loss in case of a trigger event is embedded in the down-and-in forward

described below in section 3.2.3. The risk-free rate rf in this case is assumed

6Recall e.g. the case of Lloyds Banking Group, who had to seize dividend payments
altogether as part of their refinancing program (Lloyds Banking Group, 2009b, 2014).
Similar cases include e.g. AIG, American International Group Inc., or UBS, Union Bank
of Switzerland, who have not payed out any dividend at all or only very minor payments
have been made since 2008 (American International Group, Inc., 2012; Reuters, 2012; UBS,
2012b).

7The author would like to thank Henrik Teneberg (2012), who generously provided key
components of the program code to implement the equity derivative approach in a jump
diffusion setting.
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to be flat.8 As noted before, including all the future coupon payments would

not be correct since as soon as a conversion takes place, any future cash-flows

are lost. The subsequent section 3.2.2 will present a binary option approach

to capture this effect.

3.2.2 Binary Barrier Option

To take the effect of foregone coupon payments of the bond valued above into

account, De Spiegeleer and Schoutens (2011; 2012) apply binary option tech-

niques that partially or completely offset future coupon payments. Specifically,

this can be achieved by taking a short position in a down-and-in cash-or-

nothing barrier option for every coupon payment ci of the CoCo. This type of

option is a path dependent option and either pays a fixed amount of cash Q

at maturity T if a predefined barrier level S∗ has been breached during the

lifetime of the option or zero otherwise (Derman and Iraj, 1996, 1997; Haug,

2006; Hull, 2009). Hence, the set of k down-and-in-cash-or-nothing binary

barrier options can be used to add a negative rebate αci that partially or

completely offsets the future coupon payments and accounts for the foregone

cash flows once a trigger event has materialized. The barrier level S∗ when

the option gets activated corresponds to the overall conversion trigger of the

CoCo and the maturities ti of the binary barrier options are equal to the time

points of the coupon payments ci. Rubinstein and Reiner (1991) provide the

following formula to derive the price of such an option in a Black-Scholes

setting

V dibi
ti (ci, S

∗, t) = α

k∑
i=1

cie
−rf ti [φ(−x1i + σ

√
ti)

+

(
S∗

S

)2λ−2

φ(y1i − σ
√
ti)]

(3.24)

8The effect of incorporating daily yield curve data into the model is discussed in chapter
5.3.
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with

x1i =
log( St

S∗ )

σ
√
ti

+ λσ
√
ti

y1i =
log(S

∗
St

)

σ
√
ti

+ λσ
√
ti

λ =
rf − q + σ2

2

σ2

The formula shows that the value V dibi
ti is the coupon amount ci times the

probability that the payment will take place. As the probability converges

to one when approaching the barrier, the formula reduces to discounting a

future cash flow payment. Indeed, the price of this option converges to the

price of a zero-coupon bond as the probability of hitting the barrier increases

(De Spiegeleer and Schoutens, 2011). This behaviour is illustrated in figure

3.3. It depicts the value of a binary barrier option which pays an amount of 1

at the expiry date if the barrier S∗ = 20 is hit. The discounted value of a unit

zero-coupon bond and a five year maturity is 0.86.
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Figure 3.3: Value of a five-year unit down-and-in binary barrier option as a function
of the stock price. (based on: De Spiegeleer and Schoutens (2011))
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3.2.3 Down-And-In Forward

The remaining component is a long position in a down-and-in forward contract

that replicates the long position in the shares once a trigger event occurs.

Repeating the reasoning from above, a CoCo investor has the implicit obli-

gation to buy Cr shares during the lifetime of the bond. After a conversion

- respectively having the obligation to buy Cr shares - the CoCo investor is

exposed to the upside potential of the stock as well as to a further deterioration

of it until maturity. Following De Spiegeleer and Schoutens (2011; 2012) this

component will be approximated using knock-in forwards on the underlying

share.

It is well known that a synthetic forward contract on a stock can be

replicated by a long position in a call option and a short position in a put

option, both sharing the same strike K and the same maturity T (Hull, 2009).

However, the specific down-and-in forward contract that needs to be modeled

in this case must be path dependent. Therefore, vanilla options cannot be used

to construct the synthetic forward but one has to resort to barrier options.

Similarly to the binary barrier option above, a normal barrier option is a

path dependent option where the payoff is a function of the underlying share

price at maturity ST and whether the share price S has breached a predefined

barrier S∗ during the lifetime of the option (Derman and Iraj, 1996, 1997;

Haug, 2006; Hull, 2009). In case of a down-and-in option the barrier option

gets activated once the threshold stock price S∗ is hit. On the other hand, a

down-and-out option ceases to exist once the barrier S∗ is breached.

The payoff of a down-and-in call option (3.25) respectively of a down-and-in

put option (3.26) can be specified as follows:

max(ST −K) if min
0≤t≤T

(ST ) ≤ S∗ (3.25)

max(K − ST ) if min
0≤t≤T

(ST ) ≤ S∗ (3.26)

Assuming normality for returns, an assumption which will be relaxed in section
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3.2.4, there exist closed form solutions for the described barrier options as

presented by Merton (1973) for a down-and-in call

V dic
t (St, S

∗,K) = Ste
−q(T−t)

(
S∗

St

)2λ

φ(y)

−Ke−rf (T−t)

(
S∗

St

)2λ−2

φ(y − σ
√
T − t)

(3.27)

with

y =
log(

S2
∗

StK
)

σ
√
T − t

+ λσ
√
T − t

λ =
rf − q + σ2

2

σ2

or for a down-and-in put

V dip
t (St, S

∗,K) = Ste
−q(T−t)

(
S∗

St

)2λ

(φ(y)− φ(y1))

−Ke−rf (T−t)

(
S∗

St

)2λ−2

(φ(y − σ
√
T − t)

− φ(y1− σ
√
T − t)) +Ke−rf (T−t)φ(x1 + σ

√
T − t)

− Ste
−q(T−t)φ(−x1)

(3.28)

with

x1 =
log( St

S∗ )

σ
√
T − t

+ λσ
√
T − t

y1 =
log(S

∗
St

)

σ
√
T − t

+ λσ
√
T − t

Interestingly the down-and-in call as well as the down-and-in put converge

to the standard Black and Scholes European option prices as the share price

S approaches the barrier S∗. This convergence is illustrated in figure 3.4. It

can be observed that the down-and-in call has a negative delta, as its value
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increases as the share price approaches the barrier. This is due to the fact that

it can only generate a payoff once the call is activated, which is more likely the

closer the stock price is to the barrier (Derman and Iraj, 1996, 1997). Similarly
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Figure 3.4: Convergence of barrier options to Black and Scholes option value.
(based on: De Spiegeleer and Schoutens (2011))

to the synthetic forward contract a down-and-in forward can be constructed

by buying a down-and-in call option and selling a down-and-in put option

with the same strike price K, the same maturity T and additionally the same

knock-in barrier S∗. The payoff of such a down-and-in forward is defined as

follows (Hull, 2009)

min(St) ≤ S∗ : PT = ST −K = max(ST −K)−max(K − ST ) (3.29)

min(St) > S∗ : PT = 0 (3.30)

As soon as the barrier is hit, the option holder is paying the price K for one

share. Depending on the terminal share price ST either the down-and-in call

or the down-and-in put component is in the money and the investor is either

gaining or losing money as in equation (3.29). On the other hand, if the barrier

is not breached during the lifetime of the down-and-in forward, the payoff is

zero as in equation (3.30). The further away the barrier S∗ is from the strike

price K, the less likely it is that the share price is going to recover to a level
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where the down-and-in call is in the money once it is activated. It is clear

that the conditional distribution of the payoff, once the down-and-in forward

is activated, is crucial to evaluate its value.

The final down-and-in forward can be constructed using equation (3.27)

and (3.28), where Cr indicates how many down-and-in forward contracts the

investor is exposed to in case of conversion (cf. section 2.4.2) and φ stands for

the cumulative normal distribution function:

V difwd
t (St, S

∗,K) = Cr[Se
−q(T−t)

(
S∗

S

)2λ

φ(y1)−Ke−rf (T−t)

(
S∗

S

)2λ−2

φ(y1 − σ
√
T − t)−Ke−rf (T−t)φ(−x1 + σ

√
T − t)

+ Se−q(T−t)φ(−x1)]

(3.31)

with

x1 =
log( S

S∗ )

σ
√
T − t

+ λσ
√
T − t

y1 =
log(S

∗
S )

σ
√
T − t

+ λσ
√
T − t

λ =
rf − q + σ2

2

σ2

Similarly to De Spiegeleer and Schoutens (2011), a Monte Carlo simulation

has been run with a geometric brownian motion as return generating process

to show the payoff of a down-and-in forward contract. The results are plotted

in figure 3.5. The volatility of the stock has been set to 40% and the risk-free

interest rate is assumed to be 5% whereas the dividend yield is set to 0%.

Moreover, the initial share price S is 100 and the barrier S∗ lies at 40. The

result of 50’000 simulations over a three year maturity reveals a probability

of about 21% that the barrier was breached and the down-and-in forward

activated. Since the barrier is far below the strike price, the share price seldom

succeeds to recover above the strike price; it is much more likely that the short
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put component is in the money and generates a loss. The conditional expected

payoff E(PT ) equals -58.09 whereas the unconditional expected payoff equals

-12.49.
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Figure 3.5: Down-and-in forward conditional expected payoff and unconditional
expected payoff. (based on: De Spiegeleer and Schoutens (2011))

Also the down-and-in forward convergences to a standard forward contract

as the share price S approaches the knock-in barrier S∗. This is shown in

figure 3.6. The dashed line indicates the value of the down-and-in forward

component for different levels of the stock price S. In combination with the

conversion ratio Cr = αN
Cp

the value of the down-and-in forward component

can be calculated.

The final value of the CoCo in the equity derivative model is then derived

as

EDt = V cb
t − V dibi

ti + V difwd
t (3.32)

3.2.4 Jump Diffusion setting

The corporate bond component is not affected by the change from a GBM to a

JGBM setting and is evaluated according to (3.23). However, the calculation

of the binary barrier options and the forward position is not available in a

closed form anymore and must be approximated to accommodate the jump
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Figure 3.6: Down-and-in forward convergence to a normal forward contract. (based
on: De Spiegeleer and Schoutens (2011))

diffusion process. The implementation and valuation is achieved within a

trinomial tree as shown by e.g. Hull (2009) or more specifically in a jump

diffusion setting shown by Albert et al. (2006). Furthermore, to decrease the

inherent non-linearity error the Ritchken (2005) technique is applied, which

introduces a stretch parameter into the lattice, that ensures that a tree node

falls on the barrier level.

As it is easier to set up the lower boundary conditions for down-and-out

rather than for down-and-in options in a trinomial tree, the former are priced

in the tree and the in-out-parity of barrier options is exploited to calculate

the down-and-in option value. The parity shown in equation (3.33) establishes

a relationship between the vanilla option and the down-and-in respectively

down-and-out option values and holds for European style options without

rebate (Derman and Iraj, 1996, 1997; Hull, 2009).

V pJ
t = V dipJ

t + V dopJ
t

V cJ
t = V dicJ

t + V docJ
t

(3.33)
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The down-and-in forward in a jump diffusion setting can then be expressed by

V difwdJ
t (St, S

∗,K) = [(V cJ
t − V docJ

t )− (V pJ
t − V dopJ

t )] (3.34)

The value of the vanilla call V cJ
t and put V pJ

t in a JGBM setting is given in

semi-closed form as shown by Merton (1975) for normally distributed jumps

V
cJ/pJ
t =

∞∑
n=0

eλ(1+k)(T−t)n

n!
V

c/p
t (3.35)

where λ is the average number of jumps per year and k = e(μπ + σ2
π/2)− 1.

The Black-Scholes option value V
c/p
t is given subsequently in equation (3.36)

for a call and for a put (Black and Scholes, 1973; Hull, 2009).

V c
t = Sφ(d1)−Ke−r̄(T−t)φ(d2)

V p
t = Ke−r̄(T−t)φ(−d2)− Sφ(−d1)

(3.36)

with

d1 =
log S

K + (r̄ + σ̄2

2 (T − t))

σ̄
√
(T − t)

d2 = d1 − σ
√

(T − t)

In this particular case Merton (1975) adjusts the interest rate to r̄ = rf −λk+
nμπ

(T−t) and the variance rate to σ̄2 = σ2 +
n∗σ2

π

(T−t) ; the counter n is bounded to

100.9 It is evident that if the jump parameters λ, μπ and σπ are zero, the

formula collapses to a standard Black-Scholes value.

The binary option package V dibiJ
ti is calculated by subtracting the value of

a down-and-out binary option from its own payoff, i.e. one, as the value of

the down-and-out binary option equals the probability of being knocked-out

and is mutually exclusive to the event of being knocked-in (Derman and Iraj,

9The interested reader is referred to Merton (1975), where he provides a rationale for the
changes in interest rate and variance.
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1996, 1997; Teneberg, 2012).

V dibiJ
ti (ci, S

∗, t) = α

k∑
i=1

(1− e−rf ti − V dobiJ
ti ) (3.37)

By setting the jump parameters λ, μπ and σπ to zero, the convergence between

the analytical and approximated CoCo price can be studied. The convergence

in figure 3.7 shows the well-known sawtooth behaviour when approximating

options in a tree setting (see e.g. Boyle and Lau (1994)). The oscillation

effect is somewhat dampened by the fact that different options with different

error developments are combined. The annotations in the graph represent the

Ritchken (2005) optimal points.

Similar to 3.32, the final value of the CoCo in the equity derivative model

including jumps is

EDt = V cb
t − V dibiJ

ti + V difwdJ
t (3.38)
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Figure 3.7: Total CoCo convergence error in the equity derivative approach. The
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60 Chapter 3. Theory of Pricing CoCos

3.2.5 Data Requirements and Calibration

The required input parameters of the equity derivative model are presented in

table 3.7, along with the respective data source and if the value is updated

dynamically or remains fixed over time.

Corporate Bond V cb
t (subtable 3.7a)

The information concerning the bond specifics are readily available in the

respective prospectus and do not change over time. The risk-free rate rf is

proxied by a government bond in the same denomination and with the same

initial tenor as the CoCo bond to be valued.

Binary barrier option V
dibi(J)
ti and down-and-in forward V

difwd(J)
t

(subtable 3.7b)

The volatility σ to calculate the option values follows the same methodology

as mentioned in subsection 3.1.3 of the credit derivative approach and uses

the five year historic log-returns of the underlying share price as basis to

calculate an annual standard deviation. The strike price K of the options

correspond to the conversion price Cp and the share price St feeds into the

model on a daily basis. The jump parameters λ, μπ and σπ are calibrated

using the threshold exceedance method as described in section 3.1.3 of the

credit derivative approach. Having parametrized the model, the trigger share

price S∗ is fitted by minimizing the root mean squared error to match the

issuance price of the instrument and is thereafter kept constant.



3.2. Equity Derivative Model 61

V
c
b

t
=

N
e−

r
f
(T

−
t)
+
∑ T i=

t
c i
e−

r
f
t i

V
ar
ia
b
le

D
es
cr
ip
ti
o
n

D
a
ta

so
u
rc
e

U
sa
g
e

N
B
o
n
d
fa
ce

va
lu
e

B
o
n
d
p
ro
sp
ec
tu
s

S
ta
ti
c

c i
C
o
u
p
o
n
p
ay
m
en
ts

B
o
n
d
p
ro
sp
ec
tu
s

S
ta
ti
c

r f
R
is
k
-f
re
e
ra
te

M
a
rk
et

d
a
ta

D
y
n
a
m
ic

f
C
o
u
p
o
n
fr
eq
u
en
cy

B
o
n
d
p
ro
sp
ec
tu
s

S
ta
ti
c

(a
)
P
a
ra
m
et
er
s
to

d
et
er
m
in
e
th
e
co
rp
o
ra
te

bo
n
d
va

lu
e
in

th
e
eq
u
it
y
d
er
iv
a
ti
ve

m
od

el
.

T
a
b
le

3
.7
:
P
a
ra
m
et
er

o
ve
rv
ie
w

eq
u
it
y
d
er
iv
a
ti
ve

m
od
el

(c
o
n
ti
n
u
ed
)



62 Chapter 3. Theory of Pricing CoCos

V
d
ib
i(
J
)

t i
,
V

d
if

w
d
(J

)
t

V
ar
ia
b
le

D
es
cr
ip
ti
o
n

D
a
ta

so
u
rc
e

U
sa
g
e

α
C
o
n
ve
rs
io
n
fr
a
ct
io
n

B
o
n
d
p
ro
sp
ec
tu
s

S
ta
ti
c

c i
C
o
u
p
o
n
p
ay
m
en
ts

B
o
n
d
p
ro
sp
ec
tu
s

S
ta
ti
c

f
C
o
u
p
o
n
fr
eq
u
en
cy

B
o
n
d
p
ro
sp
ec
tu
s

S
ta
ti
c

r f
R
is
k
-f
re
e
ra
te

M
a
rk
et

d
a
ta

D
y
n
a
m
ic

q
D
iv
id
en

d
y
ie
ld

M
a
rk
et

d
a
ta

S
ta
ti
c

S
t

S
h
a
re

p
ri
ce

at
ti
m
e
t

M
a
rk
et

d
a
ta

D
y
n
a
m
ic

S
∗

T
ri
g
g
er

sh
a
re

p
ri
ce

C
a
li
b
ra
te
d

S
ta
ti
c

K
S
tr
ik
e
p
ri
ce

(e
q
u
a
ls

co
n
v
er
si
o
n
p
ri
ce
)

B
o
n
d
p
ro
sp
ec
tu
s

S
ta
ti
c

σ
S
ta
n
d
a
rd

d
ev
ia
ti
o
n
o
f
sh
a
re

p
ri
ce

M
a
rk
et

d
a
ta

D
y
n
a
m
ic

λ
J
u
m
p
in
te
n
si
ty

A
ss
u
m
p
ti
o
n

S
ta
ti
c

μ
π

M
ea
n
ju
m
p
si
ze

M
a
rk
et

d
a
ta

S
ta
ti
c

σ
π

J
u
m
p
st
a
n
d
a
rd

d
ev
ia
ti
o
n

M
a
rk
et

d
a
ta

S
ta
ti
c

(b
)
P
a
ra
m
et
er
s
to

d
et
er
m
in
e
th
e
bi
n
a
ry

ba
rr
ie
r
o
p
ti
o
n
s
a
n
d
th
e
d
o
w
n
-a
n
d
-i
n
fo
rw

a
rd

in
th
e
eq
u
it
y
d
er
iv
a
ti
ve

m
od

el
.

T
a
b
le

3
.7
:
P
a
ra
m
et
er

o
ve
rv
ie
w

eq
u
it
y
d
er
iv
a
ti
ve

m
od
el
.
(b
a
se
d
o
n
:
W

il
ke
n
s
a
n
d
B
et
h
ke

(2
0
1
4
))



3.2. Equity Derivative Model 63

3.2.6 Pricing Example

Similarly to the pricing example provided in section 3.1.4 for the credit

derivative approach also the yield and price in the equity derivative model for

the same CoCo parameters shown in table 3.3 are computed.

For a five year maturity corporate bond V cb
t with an annual coupon

frequency and a coupon of 7%, the resulting present value is 118.09. The

cash-flow array ci, the respective discount factors e−rf ti and the present

values V cb
ti are shown in table 3.8. Furthermore, table 3.8 also shows the

ti ci N e−rf ti V cb
ti V dibi

ti V dibiJ
ti

1 7 0.97 6.79 0.16 0.06

2 7 0.94 6.59 0.76 0.57

3 7 0.91 6.40 1.31 1.11

4 7 0.89 6.21 1.72 1.54

5 7 100 0.86 92.10 2.03 1.87∑
118.09 5.98 5.15

Table 3.8: This table shows the bond cash-flow array V cb
ti and the value of the

down-and-in binary options V
dibi(J)
ti

in the equity derivative approach. (based on:
De Spiegeleer and Schoutens (2011))

corresponding binary barrier options V
dibi(J)
ti that are deducted from the

individual coupon payments. The total value of V dibi
t is 5.98 and 5.15 for V dibiJ

t

respectively. The down-and-in forward contract for this generic bond V difwd
t

equals 1·100
25 · −1.03 = −4.12 in a GBM setting and V difwdJ

t = 1·100
25 · −0.74 =

−2.96 in a JGBM setting. Interestingly, the value of the binary option package

is slightly lower and the forward value is slightly higher in a jump setting

than in a standard Black-Scholes setting. This is due to the fact that the

variance has been kept constant in the JGBM model to be able to study the

jump impact explicitly. Specifically V cJ
t and V pJ

t of the down-and-in forward

package decrease slightly and V docJ
t decreases as well, as the price of the down-
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and-out call is very close to that of a standard call and lower diffusion volatility

levels lower the price in spite of adding jumps (Joshi, 2003). In contrast the

down-and-out put V dopJ
t is worth a lot less than the standard put as it seizes

to exist at levels when the standard put is deep in the money, therefore it

actually profits from lower diffusion volatility levels and its price increases

slightly (Derman and Iraj, 1996, 1997). The combined effect leads to slightly

higher overall prices (i.e. less negative) for V difwdJ
t . Similarly, the value of the

down-and-out binary barrier option V dobiJ
t increases with decreasing diffusion

volatility, as the probability of being knocked-out decreases; as consequence

the value of V dibiJ
t decreases.

Figure 3.8 shows the values of the risk-free corporate bond, the binary

options and the down-and-in forward. Clearly the value of the bond of 118.09

accounts for most of the final CoCo price whereas the binary option package

provides a rebate of -5.98 / -5.15 and the down-and-in forward amounts to

-4.12 / -2.96. The final CoCo price is 107.99 and 109.98 respectively. This

results in a yield of YED = 5.02% and YEDJ = 4.63%.
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Figure 3.8: This figure shows the decomposition of the CoCo price under the equity
derivative approach as the sum of a risk-free corporate bond, a binary option package
and a down-and-in forward.
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3.3 J.P. Morgan Model

The investment bank J.P. Morgan was among the first to address the issue of

pricing contingent convertible capital. Henriques and Doctor (2011) propose a

pricing approach that is based on CDS- and option-pricing methodologies, as

they decompose a CoCo bond into a zero recovery portion that gets written

down to zero and an amount that gets converted into equity upon a trigger

event. The derivation follows Henriques and Doctor (2011).

Specifically, they consider a CoCo bond to be a bond, where the issuer has

a long position in an option from the bondholder. The option is exercised at

the occurrence of a trigger event such that the face value of the bond is (partly)

converted into equity at a predetermined strike K (i.e. the conversion price).

Depending on the trigger stock price S∗ the bond holder might have to bear

a write-down that equals the difference between the strike price K and the

trigger stock price S∗, whereas the remaining amount is converted into equity.

Table 3.9 illustrates this. For example if the bond notional N equals 100 and

S∗/K% (K − S∗/K)%
Conversion to equity Zero recovery / write-down

Table 3.9: CoCo value decomposition in the J.P. Morgan approach. (source:
Henriques and Doctor (2011))

the strike K lies at 50 (i.e. K% = 50/100 = 0.5) with a barrier stock price of

S∗ = 40, then an amount of S∗/K% = 40/0.5 = 80 of the notional is converted

into equity, whereas the remainder (K − S∗)/K% = (50 − 40)/0.5 = 20 is

written down to zero.

3.3.1 Zero Recovery Part (K − S∗/K)%

The zero recovery portion is priced by combining quoted CDS spreads with

option pricing methodologies to infer information of the underlying stock

distribution. Using traded CDS spreads the cost for a CDS with no running
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spread but only an upfront payment is calculated. Furthermore, by scaling up

the recovery amount to 100% this can then be interpreted as paying upfront

for a CDS that pays 100% in case of a default event and 0% otherwise. The

next step involves backing out the implied volatility of a binary put option

that pays 100% if the strike price K is hit and whose price is equivalent to

aforementioned upfront CDS premium. The implied volatility computed in

said step can then be used to price a binary put option that pays 100% in

the case that the stock falls below a defined barrier S∗. As a final step, the

cost of this option is converted into a running spread again using CDS pricing

methodologies. This then yields the spread of the zero recovery part of the

CoCo. In summary, Henriques and Doctor (2011) propose the following four

steps to arrive at the final running spread:

1. Calculation of the up-front CDS payment

2. Backing out of the implied volatility of a binary put option

3. Pricing of a binary put option at the conversion threshold

4. Conversion of the cost of the binary put option into an implied running

spread

Step one: Calculation of the up-front CDS payment

The calculation of the equivalent up-front CDS payment from a quoted running

spread involves much of the same calculations as outlined already in section

3.1.1 of the credit derivative approach. Specifically, the credit triangle of

equation (3.10) is used to determine a flat hazard rate, which is then utilized

to calculate the unconditional default probabilities using (3.7) to appropriately

discount the protection leg, i.e. the nominator of equation (3.20) of the CDS

contract. The standard recovery rate R for subordinated corporate bonds

equals 20% and must therefore be scaled up to 100% to reflect a full insur-

ance contract.10 Henriques and Doctor (2011) simply scale up the calculated

10E.g. the International Swaps and Derivatives Association (ISDA, 2013) assumes a
20% recovery rate in their standard model for European and North American corporate
subordinated CDS contracts.
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upfront premium by dividing it with 1 − R. For example if the calculated

upfront premium for a CDS that provides 60% indemnity in the case of a

credit event is 10%, the payment for a CDS that provides full protection is

10%/60% = 16.6%. Figure 3.9 depicts the relationship between the quoted CDS

spread and the required upfront payment for a recovery rate of 40% and 100%.
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Figure 3.9: This figure shows the up-front payment of a 5-year CDS contract with
a recovery ratio of 40% and 100% as a function of the quoted running spread.

Step two: Implied volatility at default

A key assumption that Henriques and Doctor (2011) make is that the im-

plied volatility at default is equal to the implied volatility at the time of

conversion. For this they set the level at which a default occurs to 5% of

the current stock price.11 The option of interest is a binary put option that

pays out a fixed amount of one if the asset price is below the strike price

at maturity. The value of such an option as shown by e.g. Hull (2009) is

V bip
t = e−rf (T−t)φ(−d2), where d2 is given as part of equation (3.36) in section

11Corcuera et al. (2013) find a similar default level of 6% by computing the weighted
average of fifty EuroStoxxs CDS quotes and translating them into zero-recovery upfront
premia, which they then compare with a range of digital put prices at different strike price
levels.
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3.2.4. Using the calculated upfront premium in step one as the price of the

digital option with the strike set to 5% of the current stock price allows to

back out the implied volatility of a T maturity binary put option. Figure

3.10 shows the implied volatility of a digital put as a function of the required

CDS upfront payment from step one. The resulting volatility of this approxi-

mation serves as the assumed volatility that will prevail at the point of default.
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Figure 3.10: This figure shows the implied volatility of a digital put option as a
function of the CDS up-front payment.

Step three: Pricing of a digital option at the conversion threshold

Given the volatility at default computed in step two another digital put option

is priced at the conversion threshold S∗. Henriques and Doctor (2011) suggest

that the trigger level S∗ of the CoCo ought to be a function of the required

loss that the solvency variable has to suffer, e.g. the CET1 ratio, in order

to hit the trigger. This implies a linear relationship between the share price

and the solvency variable. I.e. if the issuer has a minimum CET1 ratio

of 10%, then the trigger level of the high-trigger CoCo tranche should be

30% and the low-trigger CoCo tranche at 50% below the share price at is-
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suance. As will be seen later on, the trigger level S∗ will be calibrated such that

the model price meets the initial market price of the CoCo under consideration.

Step four: Conversion of the cost of the digital put option into an

implied running spread

Step three results in the upfront price of a digital put option, whose strike lies

at S∗ and that pays 100% if it hits the strike. This upfront premium is again

translated back into a running spread.

After this four step process the zero recovery component has been priced.

The pricing of the remaining component that is converted into equity is

described in the following subsection.

3.3.2 Equity Conversion Part S∗/K%

Henriques and Doctor (2011) assume that the portion that gets converted into

equity can be hedged with a CDS contract with zero recovery. This implies

that if the conversion price is set to the contemporaneous stock price at the

time of conversion, then the CoCo spread would coincide with the spread on

a zero recovery CDS contract. Henriques and Doctor (2011) use the traded

market spread of the same CDS contract that was used in step one above and

scale it down to reflect a zero recovery CDS.

3.3.3 Jump Diffusion setting

The only difference in a JGBM setting to the approach outlined above involves

step three, where the price of the binary put option is evaluated in a JGBM

setting as opposed to a normal GBM setting at the implied volatility calculated

in step two. Specifically, the price of the binary put option is evaluated as given

in equation (3.35) in section 3.2.4 where V bip
t corresponds to the normal GBM

value with adjusted risk-free rate and variance as given by Merton (1975). For
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ease of reference, the formula is given again below in equation (3.39)

V bipJ
t =

∞∑
n=0

eλ(1+k)(T−t)n

n!
V bip
t (3.39)

and V bip
t = e−r̄(T−t)φ(−d2) with d2 given in equation (3.36) in section 3.2.4.

3.3.4 Data Requirements and Calibration

The required parameters for the J.P. Morgan model are represented in table

3.10. The data sources and the calibration of the parameters is discussed

subsequently in light of chapter 5, where a daily time series is generated as

part of the empirical analysis.

Hazard rate λt (subtable 3.10a)

As primary input to calculate the upfront CDS premium of step one serves the

hazard rate λt, which is extracted from market traded CDS spreads st. With

the aim to generate a daily time series in chapter 5, the daily CDS spread st

of an equivalent maturity subordinated bond of the issuer under consideration

serves as input to generate daily updated hazard rates λt. The recovery rate

R is kept constant over time.

Binary put value V
bip(J)
t (subtable 3.10b)

To compute the implied volatility and subsequently the cost of a binary put

option, the daily share price St, along with the upfront payment calculated

from the hazard rate λt in step one, serves as primary input to the calculation.

The assumed level of the share price at which default occurs is kept constant

at 5%, as proposed by Henriques and Doctor (2011) and validated by Corcuera

et al. (2013). Furthermore, the risk-free rate rf is proxied by an equivalent

maturity government bond of the same denomination as the CoCo bond. The

dividend yield q is assumed to be constant and is estimated based on the five

year dividend history of the company respecting any firm specific constraints as
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mentioned in section 3.1.3. The conversion threshold S∗ is calibrated once to

match the initial market price of the CoCo bond and thereafter kept constant.

The jump parameters λπ, μπ and σπ are again extracted by means of the

threshold exceedance method mentioned in section 3.1.3 of the credit derivative

approach.
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3.3.5 Pricing Example

The generic CoCo parameters lined out in table 3.3 in section 3.1.4 serve as

input to compute a CoCo spread in the J.P. Morgan model by Henriques

and Doctor (2011). As a further component, the CDS spread on a five year

subordinated bond is assumed to be 2.5%.

Using the credit triangle of equation (3.10) and assuming a recovery rate

of 20%, the implied hazard rate λ equals 0.025
(1−0.2) · 100 = 3.13%. Using (3.7) the

values in the second column of table 3.11 are calculated, which are then used to

calculate the nominator of the CDS pricing formula in (3.20), where the time

points ti match the timing of the coupon payments. Therefore, for a contract

ti p∗(ti) p∗(ti)− p∗(ti−1) Contingent Leg

1 3.12% 3.12% 0.0242

2 6.15% 3.03% 0.0228

3 9.08% 2.93% 0.0214

4 11.91% 2.83% 0.0202

5 14.66% 2.75% 0.0190∑
0.1076

Table 3.11: Calculation of the CDS upfront premium in step one of the J.P. Morgan
approach. (based on: Hull (2009))

that pays 20% recovery in case of default the upfront cost is 10.76%. Scaling

this to a contract that pays 100% in case of default yields 0.1076
(1−0.2) ·100 = 13.45%.

In a second step the implied volatility of a digital put option with a strike at

5% of the current spot price S that costs 13.45% is computed, which equals

75.22%. The price of a digital put with a volatility of 75.22% and a strike

equal to S∗ = 20 is 0.5480, which comprises the third step. Finally, the binary

put value is converted into a running spread, which amounts to 17.68%.

The equity conversion part is calculated by dividing the initial CDS spread

of 2.5% by 80% to reflect a zero recovery CDS contract. This amounts to
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3.125%.

Since the trigger level S∗ = 20 lies at 80% of the conversion price Cp = 25,

the combined spread is 20% · 17.68% + 80% · 3.125% = 6.04%. Table 3.12

summarizes the different steps and also shows the digital put value as calculated

in a JGBM setting. As expected, the digital put value is slightly lower when

keeping the total variance constant. The resulting spread is almost the same

for both approaches in this example; however, the values will differ more for

different parameters and equity- / zero-recovery portions (cf. chapter 4). The

Instrument Metric Level LevelJ Step

CDS 5y spread 2.5% Step 1

Upfront 10.76%

Scaled Upfront 13.45%

Equity Implied volatility 75.22% Step 2

Digital put@S∗ 0.549 0.546 Step 3

CoCo Implied running spread 17.68% 17.59% Step 4

Zero recovery portion 20%

Zero recovery spread 3.125%

Equity portion 80%

CoCo spread 6.04% 6.02%

Risk-free rate 3%

CoCo yield 9.04% 9.02%

Table 3.12: This table shows the individual steps involved to calculate the CoCo
spread in the J.P. Morgan model. (based on: Henriques and Doctor (2011))

bond price calculated with
∑T

i=1 CFie
−YCoCo(J)·ti amounts to JPM = 89.74

and JPMJ = 89.83 respectively; there is only a marginal price difference in

the two approaches for this generic CoCo bond.
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3.4 Structural Model

This section introduces a structural credit risk concept which has its roots in

the famous Merton model that was introduced in 1974. The model postulates

a default mechanism that depends on the relationship between the assets

and liabilities at the end of a time period. The default event is therefore

modeled endogenously as opposed to the credit derivative approach, which in

itself can be seen as a reduced structural model, where default is determined

exogenously. Specifically, a structural model considers a bank’s balance sheet

that is composed of assets, equity and debt where the assets follow a stochastic

process and default occurs if the value of assets fall below the value of liabilities

(Black and Scholes, 1973; McNeil et al., 2005b; Merton, 1974). E.g. Ingersoll

(1977) applied this concept to value convertible securities.

The model that will be introduced is based on Pennacchi (2010), who

modifies the structural model to incorporate equity, short-term deposits,

subordinated debt and contingent capital.

3.4.1 Synthetic Balance Sheet

Asset Returns

The banks assets are funded with short-term deposits, long-term debt in the

form of contingent capital or standard non-convertible subordinated debt and

shareholders’ equity. The total change in the quantity of assets is comprised

of cash-in respectively cash-out flows plus the rate of return achieved on the

investment. The assets can be invested in various positions that generate a

return which follow a mixed jump-diffusion process as introduced previously

in section 3.1.2. For ease of reference and to provide more details on how the

process is incorporated into this model, the dynamics are repeated again below

(Glasserman, 2004; Hull, 2009; Merton, 1975; Seydel, 2009).

dAr
t

Ar
t

= (rt − q − λk)dt+ σdWt + (Π− 1)dYt (3.40)
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The superscript r indicates asset fluctuations exclusively due to changes in

the return. Furthermore, dWt is a Brownian motion, Π is an identically and

independently distributed random variable drawn from ln(Π) ∼ φ(μπ, σ
2
π) at

time t where μπ is the mean jump size and σπ the standard deviation of the

jumps and dYt is a Poisson counting process. The counting process Yt is either

zero when no Poisson event occurs or it augments by one whenever a jump

occurs. The risk-neutral probability that a jump occurs and that Yt increases

by one is λtdt, where λt is the intensity of the jump process (Hull, 2009).

Depending if the random variable is either greater or smaller than one there

is an upward respectively a downward jump in the bank’s asset value. For

example Duffie and Lando (2001) interpret these discrete time points when

finite jumps occur as times when newly available information has a higher

than marginal impact on the asset value. Lastly, the risk-neutral expected

proportional jump is defined as E(Π) = k − 1 where k = e(μπ + σ2
π/2) and

the jump intensity and the risk neutral jump probability are assumed to be

independent, then the change in the return over the time interval dt caused

by the jump element (Π− 1)dYt is λtktdt (Hull, 2009; Merton, 1975).

In order to include the payment of premiums to deposit holders ht and

coupon payments to debt holders c
c/f
t , as specified later on, Pennacchi (2010)

adjusts the asset process in equation (3.40) to follow

dAt = [(rr − λkt)At − (rt + ht)Dt − c
c/f
t B]dt+ σAtdz + (Yt − 1)Atdq (3.41)

To include the deposit-growth process g(x̂ − xt) of equation (3.58), as de-

fined later on, Pennacchi (2010) restates equation (3.41) and substitutes with

xt = At/Dt, which leads to12

dAt

At
=

[
(rt − λk)− rt + ht + c

c/f
t bt

xt

]
dt+ σdz + (Yt − 1)dqt (3.42)

12Notice that the superscript r is no longer needed, as the asset process now not only
includes value changes due to returns but also due to cash in- and outflows.
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which now allows to include the deposit growth process of equation (3.58) by

defining

dxt

xt
=

dAt

At
− dDt

dt

=

[
(rt − λk)− rt + ht + c

c/f
t bt

xt
− g(xt − x̂)

]
dt+ σdz + (Yt − 1)dqt

(3.43)

Finally, an application of Itô’s lemma then allows Pennacchi (2010) to model

the stochastic dynamics of this process as

dln(xt) =

[
(rt − λk)− rt + ht + c

c/f
t bt

xt
− g(xt − x̂)− 1

2
σ2

]
dt

+ σdz + lnYtdqt

(3.44)

Default-Free Term Structure

This model considers a stochastic interest rate environment to price both

fixed- and floating-rate coupons for contingent capital.13 Furthermore, the

instantaneous maturity interest rate is the minimum interest rate that deposit

holders receive, as will be shown later on, and it is used to discount the future

cash-flows of the evaluated bond. To accurately reflect this, the equilibrium

term structure model of Cox et al. (1985) is incorporated. It can be understood

as an extension to the one factor model introduced in 1977 by Vasicek but

which additionally includes a square-root diffusion term to prevent the interest

rate rt from becoming negative. Specifically, the risk adjusted dynamics of the

instantaneous interest rate are defined by the following stochastic differential

equation as shown by Cox et al. (1985)

drt = κ(r̄ − rt)dt+ σr
√
rtdWt (3.45)

13Within this thesis only fixed coupon bonds are evaluated.
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Where κ is the speed of convergence, r̄ is the long-run equilibrium interest rate,

rt is the continuous short-term interest rate, σr is the instantaneous volatility

and Wt is a Wiener Process. As stated above, the square root diffusion term

σr
√
rt prevents the undesirable feature that rt can become negative by linking

the instantaneous volatility σt to the interest rate rt, therewith converging to

zero when rt approaches the initial rate (Brigo and Mercurio, 2006; Carmona

and Tehranchi, 2006). A sample evolution of the instantaneous maturity

interest rate as well as three ten-year term structures with different initial

rates r0 have been plotted in figure 3.11 respectively figure 3.12.

To allow for comparative analysis with a default-free bond, consider the

evaluation of a T -maturity unit discount bond P (r, T ) via (Cox et al., 1985)

P (r, T ) = A(T )e−B(T )r (3.46)

with

A(t, T ) =

(
xey(T−t)

y(ex(T−t) − 1) + x

)z

(3.47)

B(t, T ) =

(
ex(T−t) − 1

y(ex(T−t) − 1) + x

)
(3.48)

x =
√

κ2 + 2σ2
r (3.49)

y =
κ+ x

2
(3.50)

z =
2κr̄

σ2
r

(3.51)

A coupon bond can then be replicated as a portfolio of pure discount bonds of

different maturities, and in turn a riskless coupon bearing bond B(c, r, T ) is

the weighted sum of unit discount bonds (Longstaff, 1993)

B(c, r, T ) =
N∑
i=1

ciD(r, Ti) (3.52)
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where Ti represent the coupon payment dates in the amount of ci ≥ 0, with

the last coupon payment including the face value. The par yield to maturity

for a default free coupon bearing bond that matures in T years issued at date

t is

cr =
1−A(t, T )e−B(t,T )rt∫ (t,T )

0
A(s)e−B(s)rtds

(3.53)

≈ 1−A(t, T )e−B(t,T )rt∑i=(T/dt)
i=1 A(dt× i)e−B(dt×i)rtdt

(3.54)
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Figure 3.11: This figure shows a sample evolution of the instantaneous maturity
interest rate using the Cox et al. (1985) model with κ = 0.0455, r̄ = 0.0483 and σ =
0.0746.

Deposits

The most senior source of funding of the bank are deposits Dt, which have an

instantaneous maturity (i.e. overnight funds) and Pennacchi (2010) assumes

that they are either partially or fully insured by e.g. a government insurer.

The deposit holders receive the competitive instantaneous maturity default-

free interest rate rt. Furthermore, the instantaneous insurance premium ht

accounts for the risk-neutral expected loss per dollar of deposit. Deposit
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Figure 3.12: This figure shows a Cox et al. (1985) 10-year term structure with differ-
ent starting values r0. The remaining parameters are κ = 0.0455, r̄ = 0.0483 and σ =
0.0746.

holders can only suffer a loss if the asset value of the bank falls below the value

of the deposits At < Dt or equivalently xt < 1, i.e. when bankruptcy occurs.

This implies that only a discontinuous movement (i.e. a downward jump) in

the asset value can impose a loss to the depositors. Hence the credit risk

premium ht must incorporate the risk-neutral expectation of the instantaneous

proportional loss incurred to deposits if such a jump occurs (Dt − YtAt/Dt).

Pennacchi (2010) goes on to show that ht changes continuously depending on

the asset-to-deposit ratio xt

ht = λ
[
φ(−d1)− xte

(μπ+0.5σ2
π)φ(−d2)

]
(3.55)

d1 =
log(xt) + μπ

σπ
(3.56)

d2 = d1 + σπ (3.57)

For non-insured deposits the insurance premium ht can be understood as a

credit risk premium in favor of the deposit holder. Therefore, the total cost of
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deposits amounts to (rt + ht)Dtdt (Pennacchi, 2010).

Studies by e.g. Adrian and Shin (2010), Memmel and Rapauch (2010),

Flannery and Rangan (2008) or Collin-Dufresne and Goldstein (2001) show

that banks have a certain target leverage ratio and that deposit growth is

positively correlated to the amount of capital. Furthermore, within the Basel

III framework and the Swiss finish banks have to adhere to a minimum amount

of capital-to-assets. Within this model, the target leverage ratio is expressed

as an asset-to-deposit ratio xt ≡ At

Dt
. To incorporate the positive correlation

between the amount of capital and deposits, Pennacchi (2010) links the deposit

growth to the asset-to-deposit ratio as shown in equation (3.58).

dDt

Dt
= g(x̂− xt)dt (3.58)

The reversion to the target asset-to-deposit ratio x̂ > 1 happens at the speed

of g > 0. For example if xt > x̂ the bank would increase its deposits Dt and

hence increase its leverage to converge to its target asset-to-deposit ratio x̂ at

a rate of g in each time step dt.

Contingent Convertible Capital

Alternatively to subordinated debt the banks’ long-term financing can take

the form of contingent convertible capital that has a par value B and pays a

continuous coupon ctBdt during its lifetime. The coupon rate can either be

a fixed-rate cct = c or a floating-rate coupon cft = r + s, where s denotes a

fixed spread over the instantaneous maturity interest rate rt (Pennacchi, 2010).

Conversion into common shareholders’ equity occurs at a prespecified asset-

to-deposit ratio xt ≤ x∗ or equivalently total capital-to-assets of (1− 1/x∗ =

(At − Dt)/At). The value of contingent capital at the date of conversion

Vtc depends on the banks’ remaining equity capital Atc −Dtc . Similarly to

Wilkens and Bethke (2014) the fact that most CoCo issuances have a specified

conversion price is incorporated via the conversion ratio p, which reflects the

conversion fraction of the CoCo bond. Using the fact that the stock price Sc−
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as well as the number of shares prior to conversion Nc− is known and due to

the specified conversion price Cp the newly created number of shares Nc is

also known, the following relationship holds

N0Sc− +NcSc = (N0 +Nc)Sc+ (3.59)

Therefore, one can work out the adjusted share price after the conversion Sc+,

giving the conversion fraction p = Sc+

Cp
. To determine the CoCo price, the

coupon payments ci and the nominal value B are discounted using the risk-free

discount rate rf from the Cox et al. (1985) process (Cochrane, 2009; Hull,

2009)

V0 = E0

[∫ T

0

e−
∫ t
0
rfdtv(t)dt

]
(3.60)

and compared to the par value B. Coupon payments are continuously paid up

to the point of conversion tc, where a one time cash flow equal to pB takes

place; subsequently for all t > tc, v(t) = 0.

3.4.2 Data Requirements and Calibration

The model requires a list of parameters, which mostly are not directly observ-

able and thus have to be approximated or otherwise assumed. Furthermore

if modeling a time series of CoCo prices some parameters remain constant

over time and some have a dynamic nature. An overview of the parameters is

provided in table 3.13.

Asset return process (subtable 3.13a)

The model simulates the evolution of the assets as well as the deposits by

linking the latter to a target asset-to-deposit ratio. Hence both the amount

of assets as well as the amount of deposits is required to evaluate the current

asset-to-deposit ratio. In line with Wilkens and Bethke (2014) and Bürgi

(2013) the values for the assets At are represented as the sum of the daily
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total liabilities Dt and the daily market capitalization Et of the company;

the latter is readily available on a daily basis whereas the former is linearly

interpolated between reporting periods to arrive at daily values. Assuming

an efficient market should ensure that effects of divergence between market

and book values of assets are reflected in the market capitalization (Bini and

Penman, 2013; Bürgi, 2013). In keeping with the assumption of a correlation

between the market capitalization and the total asset value, the asset volatility

is calculated as

σAt = σEt

Et

At
= σEt

Et

Dt + Et
(3.61)

which is based on the boundary conditions of Merton (1974). Finally the jump

intensity λ and the parameters of the jump distribution φ(μπ, σπ) result from

the threshold exceedance method as explained in section 3.1.3 of the credit

derivative model.

Interest rate process (subtable 3.13b)

Following Duan and Simonato (1999) the parameters for the term structure

process are calibrated using a Kalman-Filter.14 The calibration takes monthly

yield series with maturities of 3, 6, 12 and 60 months as input and calibrates

the speed of conversion κ, the equilibrium interest rate r̄ and the standard

deviation σr accordingly, which serve as input to equation 3.45. The associated

standard errors are determined via the inverse of the negative Hessian matrix.

This is ideally done on the yield series of the base currency of the bond, i.e.

for a USD denominated bond the monthly U.S. treasury bill yield series are

used.

Deposit growth process (subtable 3.13c)

The mean reversion speed g of the deposit growth process in equation (3.58)

is set to 0.5. This means that it would take the bank around three years to

14See e.g. Harvey (1990) for more details on Kalman-Filtering in combination with
econometric and time series concepts.
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reach its target asset-to-deposit ratio x̂. The initial asset-to-deposit ratio xt

is determined from the daily asset values Vt and the interpolated liabilities

Dt as explained above. The target asset-to-deposit ratio x̂ can be interpreted

as the newly imposed minimum leverage ratio of Basel III, to which banks

have to adhere to. Details on the parametrization are described as part of the

empirical analysis in chapter 5.
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3.4.3 Pricing Example

Also for the structural approach the generic CoCo bond parameters from

table 3.3 serve to calculate a pricing example. Due to the model’s complexity

a number of additional parameters as outlined in table 3.14 below must be

set. As a base case the starting assets V0 are set to 1000 and the starting

Variable Description Value

V0 Asset value 1000

D0 Debt value 880

E0 Equity value 120

N0 Number of original shares 3

B CoCo value 25

Nc Number of new shares 1

x̂ Target asset-to-deposit ratio 112%

x∗ Trigger asset-to-deposit ratio 106.82%

σV Volatility of asset returns 3.33%

μy Risk neutral mean jump size 0%

σy Standard deviation of jumps 0.024%

κ CIR Speed of convergence 0.0413

(0.0109)

r̄ Long-term interest rate 7.42%

(0.0192)

σr Standard deviation of interest rate 4.81%

(0.0019)

g Deposit-growth speed of convergence 0.5

Table 3.14: This table presents the additional CoCo price parameters to price the
generic CoCo outlined in table 3.3 in the structural model.

equity E0 to 120, which is the share price S0 of 40 multiplied by an assumed

amount of outstanding shares N0 of 3. This leaves the debt value (including

the CoCo value) at D0 = 880. This results in a starting capital-to-asset
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ratio of 120
1000 · 100 = 12%, or equivalently an asset-to-deposit ratio x0 of

1000
880 · 100 = 113.64% and a capital-to-deposit ratio of 120

880 · 100 = 13.64%. The

conversion is triggered when the asset value falls to 940, i.e. at a critical asset-

to-deposit ratio x∗ of 940
880 · 100 = 106.82%. The target asset-to-deposit ratio x̂

is set at 112%, which means that the bank starts out slightly overcapitalized.

To translate the equity volatility σE = 30% into an equivalent asset

volatility σV , the equity volatility σE of 30% is de-levered by rearranging

equation (3.61) for σV , which results in σV = σEE0

V0
= 0.3∗120

1000 · 100 = 3.33%.

Similarly the jump component is de-levered in the same way, which yields a

jump volatility of 0.024%. In line with the other pricing examples, the total

volatility is kept constant at 3.33% according to equation (3.62).

σ2
J = σ2 + λ(μ2

π + σ2
π) (3.62)

In this pricing example, the number of newly created shares in case of a

conversion is given by the CoCo amount B divided by the conversion price Cp

of 25, which equals exactly one share. At the trigger level of x∗ the assets are

worth 940, leaving the equity worth 60 and the stock price prior to conversion

Sc− 20. After conversion, equity is worth 85 with 4 shares outstanding, leaving

the adjusted share price after conversion Sc+ at 21.25. As the single CoCo

holder paid 25 for the stock, there is a value shift from the CoCo holder to the

shareholder, as the former takes an immediate loss of 15%. This is assuming

that x∗ is approached continuously. When allowing for discontinuous drops

in the asset values, the recovery rate is expected to be lower, which is what

could be observed in the credit derivative model as well.

Running the simulation with these parameters yields a price of 107.95

[107.75, 108.13] and 106.41 [106.24, 106.65] when including jumps. The 95%

confidence interval is given in brackets. This corresponds to a yield of 5.18%

[5.14%, 5.22%] and 5.52% [5.46%, 5.55%].
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3.5 Intermediary Conclusion

Clearly CoCos already form an integral part of the debt markets and issuances

are foreseen to grow stronger, as the new capital requirements by Basel III and

particularly the case for Switzerland allow that the higher capital requirements

can be partially met with contingent convertible capital. Furthermore it has

been shown, that the CoCo specific conversion designs allow for very different

implementations, which can have a substantial impact on the associated risk-

profile from a share- respectively a bondholder perspective. As the qualitative

discussion would suggest to optimally use a market trigger as indication for

the conversion event, the regulators and therefore the issuers are clearly opting

for accounting based triggers, mostly in connection with a regulatory trigger

as well. Such an implementation makes valuation more difficult, as the clarity,

objectivity and transparency of the trigger event is attached with uncertainties.

The implementation of the pricing models revealed key differences with

respect to their complexity, parametrization and price examples. Reverting to

the four main value drivers as outlined in section 2.2, the following conclusions

can be drawn: None of the models include all value drivers, most importantly

though, the bond price components, i.e. the coupon and final principal, are

included in all models. In the J.P. Morgan approach, this is implicitly included

in the CDS spread (indicated as ‘(o)’ in table 3.15), as this product reflects

the insurance premium on a regular corporate bond with all its associated

cash-flows. If a conversion takes place, none of the models include the dividend

payments that a shareholder is entitled to. The final equity value is only

included in the equity derivative model through the down-and-in forward

contract. Those findings are summarized in table 3.15, where ‘o’ indicates that

the value driver is included in the model, whereas ‘x’ indicates that it is not

included.

As shown in table 3.16 the prices of the generic CoCo bond are rather

closely distributed for all models except for the J.P. Morgan model, which

indicates a much higher yield. However, the CDS level at 250 basis points has
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been chosen rather high, which is reflected in the price.

Clearly the complexity of the implementation is highest in the equity deriva-

tive model with discontinuous returns, as the barrier options must be evaluated

with advanced numerical techniques. The easiest to implement certainly is

the credit derivative model in a normal Black-Scholes setting, as the closed

form solutions are quickly implemented. Furthermore, all closed-form solutions

naturally lead to computationally more efficient prices, whereas the applied

simulation techniques take a toll on computational time, sometimes taking

multiple minutes to calculate one price.

It will be interesting to see how on the one hand the models react to

different initial parameters as shown in the subsequent chapter 4 and on the

other hand how significantly this will impact the empirical time series analysis

of chapter 5.



3.5. Intermediary Conclusion 91

Value Driver CD ED JPM ST

Coupons o o (o) o

Principal o o (o) o

Dividends x x x x

Equity value x o x x

Table 3.15: This table shows the value drivers that are included in the models.
CD stands for the credit derivative model, ED for the equity derivative model, JPM
for the J.P. Morgan model and ST for the structural model. ‘o’ indicates that the
respective value driver is included in the model, whereas ‘x’ indicates that it is not
included; ‘(o)’ stands for an implicit inclusion.

Model Price Yield

CDC 110.02 4.65%

CDCJ 109.69 [109.59, 109.78] 4.72% [4.70%, 4.74%]

CDP 109.97 4.66%

CDPJ 109.03 [108.89, 109.17] 4.86% [4.83%, 4.89%]

ED 107.99 5.02%

EDJ 109.98 4.63%

JPM 89.74 9.04%

JPMJ 89.83 9.02%

ST 107.95 [107.75, 108.13] 5.18% [5.14%, 5.22%]

STJ 106.41 [106.24; 106.65] 5.52% [5.46%; 5.55%]

Table 3.16: This table shows the prices and yields obtained in the different models
for the generic CoCo bond. CD(C/P) stands for the credit derivative model with
(piecewise-)constant conversion intensity, ED for the equity derivative model, JPM
for the J.P. Morgan model and ST for the structural model. The indicator J stands
for the models including jumps. The values in brackets stand for the 95% confidence
interval.
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Chapter 4

Dynamics and Sensitivity Analysis

Chapter 3 has provided the theoretical setting of the different pricing models

and has also introduced preliminary pricing examples. Furthermore, the

different pricing parameters and therewith the necessary data requirements

have been outlined. This chapter investigates the sensitivity of the models with

respect to their primary input parameters. This will allow to assess the price

impact a single variable has, while keeping the remaining parameters constant.

Specifically, the four models are analysed towards changes in the underlying

share price Δ = δV
δS , the volatility of the share price κ = δV

δσ , the risk-free

interest rate ρ = δV
δr and the maturity Θ = δV

δτ (Hull, 2009). Moreover, to

honour the CoCo specific parameters, changes in the conversion price Cp and

the trigger level S∗ are also investigated. To discriminate between the models

that allow for discontinuous returns versus the closed-form models, different

jump intensities λ will be checked. Unless otherwise indicated, the model

parameters correspond to the base parameters as outlined in the previous

chapter in table 3.3 for the credit and equity derivative model as well as the

J.P. Morgan model and the additional base parameter set in table 3.14 for the

structural model.
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4.1 Credit Derivative Model

The left-hand side diagram in figure 4.1 displays how the CoCo price reacts

to changes in the stock price S at different volatility levels σ. What can be

observed is that with an increasing stock price the CoCo price increases as

well, respectively the required CoCo yield decreases. As the current stock price

S moves further away from the trigger level S∗, the probability of conversion

decreases, therefore decreasing the required yield. On the other hand, an

increase in the volatility level σ has a countering effect, as this increases the

conversion probability, thus lowering the overall CoCo price. On the right-hand

side in figure 4.1 the CoCo price as a function of maturity T is depicted for

different risk-free interest rates rf . Increasing the risk-free rate has a two-fold

effect on the final price of the CoCo: Due to the increased growth rate the

probability of conversion decreases but at the same time the required yield

- including the risk-free rate - by the CoCo investor increases. For longer

maturities the former effect outweighs the latter, but there is a slight dip for

shorter maturities at a level of 5% for the risk-free rate. Figure 4.2 shows the

same analysis for piecewise constant conversion intensities with very similar

patterns. The only discernable difference can be observed for stock price levels

close to the trigger level, where the piecewise constant model reacts more

sensitive to changes and exhibits a larger delta.

Figure 4.3 shows the CoCo price as a function of the trigger price S∗ for

different conversion price levels Cp on the left-hand side and the CoCo price

as a function of the stock price S when returns are discontinuous at different

levels of the jump intensity λ. As the recovery ratio RCoCo in the credit

derivative approach results from the division of the trigger price S∗ by the

conversion price Cp, the closer the trigger price is to the conversion price, the

higher is the recovery ratio and the CoCo price. However, as the trigger price

gets closer to the current stock price, the trigger probability increases, reducing

the CoCo price. This opposing effect can lead to a double equilibrium price

(De Spiegeleer and Schoutens, 2011). Adding the possibility of discountinuous
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Figure 4.1: The plot on the left shows the sensitivity of the credit derivative approach
with constant conversion intensity towards changes in the stock price S for different
levels of volatility σ. The plot on the right shows the sensitivity of the credit derivative
approach with constant conversion intensity for different maturities T at different
risk-free interest rate levels rf .
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Figure 4.2: The plot on the left shows the sensitivity of the credit derivative approach
with piecewise constant conversion intensity towards changes in the stock price S
for different levels of volatility σ. The plot on the right shows the sensitivity of the
credit derivative approach with piecewise constant conversion intensity for different
maturities T at different risk-free interest rate levels rf .
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Figure 4.3: The plot on the left shows the sensitivity of the credit derivative approach
with constant conversion intensity towards changes in the trigger price S∗ for different
levels of the conversion price Cp. The plot on the right shows the sensitivity of the
credit derivative approach with constant conversion intensity when introducing jumps
λ at different stock price levels S.
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Figure 4.4: The plot on the left shows the sensitivity of the credit derivative
approach with piecewise constant conversion intensity towards changes in the trigger
price S∗ for different levels of the conversion price Cp. The plot on the right shows
the sensitivity of the credit derivative approach with piecewise constant conversion
intensity when introducing jumps λ at different stock price levels S.
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returns through the jump diffusion process leads to almost the same CoCo

prices, where the only discernable difference is for stock price levels close to

the trigger level. For higher stock price levels, the effect of the overall lower

conversion probability and the lower recovery ratio seem to offset each other,

ultimately leading to the same CoCo prices irrespective of the amount of

jumps. An effect which could already be observed in the pricing example in

section 3.1.4. Again the same analysis is also shown for the credit derivative

model with piecewise constant conversion intensities in the right-hand side

graph of figure 4.4, where the difference is slightly more outspoken for stock

price levels close to the trigger price.

4.2 Equity Derivative Model

Performing the same analysis for the equity derivative model yields qualitatively

similar results to the credit derivative model. The left-hand side diagram

in figure 4.5 shows the CoCo price as a function of the stock price S at

different volatility levels σ, whereas the right-hand side graph shows the CoCo

price as a function of maturity T for different risk-free interest rate levels rf .

Again the price increases the further away the stock price is from the trigger

price S∗ until eventually the CoCo price reaches the price of a risk-free bond.

Interestingly, independent of the volatility level all prices converge when the

stock price approaches the trigger level S∗ = 20 as the knock-out options and

the down-and-in forward reach the same value because they share the same

strike and maturity structure. With increasing volatility, the down-and-in

forward as well as the binary option package gets more expensive and therefore

reduces the price. The right-hand side diagram looks very similar to the case of

the credit derivative approach. The main price driver in the equity derivative

model is the corporate bond value, which is discounted using the risk-free

rate. Therefore, with increasing rf and considering higher discount factors for

increasing maturities, the overall CoCo bond value decreases at higher levels

of rf . Obviously, with increasing maturity a larger cash-flow stream from the
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coupon payments is expected, which raises the price for longer maturity bonds.

Figure 4.6 shows the CoCo bond price as a function of the trigger level S∗

for different conversion price levels Cp on the left-hand side. The right-hand

side graph shows the CoCo bond price as a function of the stock price when

introducing different jump intensities λ. As long as the trigger price S∗ is

below the conversion price Cp, which corresponds to the strike price K of the

option package, the short put of the synthetic forward is in the money whereas

the long call is out of the money. This reduces the overall CoCo price. A

low conversion price Cp would therefore be favorable to the investor, which is

reflected in the higher prices for lower conversion price levels (Alvemar and

Ericson, 2012). Interestingly for high levels of the conversion price also the

equity derivative model is challenged with a double equilibrium problem, as

two levels of the trigger price lead to the same CoCo value. Introducing jumps

at different levels of the stock price in the equity derivative approach has a

counterintuitive effect at first sight, as the price increases when adding jumps.

This effect can be explained by the fact that the total process variance is

kept constant, therefore reducing the volatility of the continuous diffusion

process at the cost of adding jump induced volatility, with the effect that the

down-and-in forward and the binary option package provide less of a rebate.

The same effect was shown in the pricing example in section 3.2.6 and is in

line with observations by Teneberg (2012), who evaluates different ranges of

jump intensities and jump standard deviations.

4.3 J.P. Morgan Model

Figure 4.7 shows the J.P. Morgan CoCo price as a function of the CDS price

st for different stock price levels S in the left-hand graph as well as the impact

of varying maturities T and risk-free interest rates rf in the right-hand side

graph. In general, an increase in the CDS level leads to an increase in the

spread of the equity portion, which is what can be observed in the left-hand

diagram in figure 4.7. Furthermore, a higher initial CDS spread increases the
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Figure 4.5: The plot on the left shows the sensitivity of the equity derivative
approach towards changes in the stock price S for different levels of volatility σ. The
plot on the right shows the sensitivity of the equity derivative approach for different
maturities T at different risk-free interest rate levels rf .
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Figure 4.6: The plot on the left shows the sensitivity of the equity derivative
approach towards changes in the trigger level S∗ for different levels of the conversion
price Cp. The plot on the right shows the sensitivity of the equity derivative approach
when introducing jumps λ at different stock price levels S.
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level of the implied volatility and as a result the spread on the zero recovery

portion increases as well, leading to lower CoCo prices. Recalling that the

spot price in combination with the assumed strike level of 5% determines the

OTM-level (out-of-the-moneyness) at which the implied volatility is calculated,

it becomes clear that lower spot prices result in deeper out-of-the-money levels

at which the implied volatilities are calculated and ultimately lead to higher

spreads and lower prices (Henriques and Doctor, 2011).

The right-hand side graph in figure 4.7 shows that an increasing maturity

generally leads to higher required upfront payments for the CDS contract,

which is more pronounced for lower interest rates as the discounting effect is

lower. This ultimately reduces the spread on the zero recovery portion, thus

increasing the CoCo price. For higher risk-free interest rates, this effect is

offset by the fact that the required CoCo yield, i.e. the CoCo spread including

the risk-free rate, increases more in proportion.

Figure 4.8 shows the CoCo price as a function of the trigger price S∗ for

different conversion price levels Cp in the left-hand diagram. As the trigger

price divided by the conversion price determines the equity respectively the

zero recovery portion, it can be observed that as soon as the trigger price is

above the conversion price, the CoCo price is solely set by the spread on the

equity portion. Contrarily, as the trigger price decreases, the zero recovery

portion increases, ceteris paribus decreasing the price. At lower trigger levels

not shown here, the value of the binary put would continue to decrease as

it moves further out of the money, which ultimately would lead to a convex

evolution of the price curve and raise the issue of a double equilibrium, as

encountered with the credit derivative approach.

The right-hand diagram in figure 4.8 shows the CoCo price evolution as a

function of the OTM level when adding jumps. The OTM level corresponds to

the different strike levels at which the implied volatility of the digital option

is evaluated. Thus, the lower the strike level (the higher the OTM level) the

higher is the implied volatility of the digital option, which in turn increases

the CoCo spread and lowers the CoCo price. As already seen in the pricing
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example in chapter 3.3, the addition of jumps has virtually no impact on the

resulting price in the J.P. Morgan model. The only influence it has is on the

binary put price, which almost stays the same in a setting where the total

variance is kept constant.
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Figure 4.7: The plot on the left shows the sensitivity of the J.P. Morgan approach
towards changes in the CDS price level for different levels of the spot stock price S.
The plot on the right shows the sensitivity of the J.P. Morgan approach for different
maturities T at different risk-free interest rate levels rf .

4.4 Structural Model

The same analysis is conducted for the structural model. Figure 4.9 shows

the CoCo price as a function of the starting value of assets to deposits x0

at different volatility levels σ on the left-hand side and the CoCo price as

a function of maturity T for different risk-free interest rate levels rf on the

right-hand side. With an increasing starting level of assets to deposits x0 the

likelihood that the conversion threshold is going to be hit decreases, therefore

increasing the CoCo price. Expectably, if the volatility of the asset process

increases the evolution of the asset to deposit ratio is more volatile, which

increases the probability of hitting the threshold thus reducing the price level.

Increasing the maturity generally has a positive effect on the CoCo price, as
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Figure 4.8: The plot on the left shows the sensitivity of the J.P. Morgan approach
towards changes in the trigger level S∗ for different levels of the conversion price
Cp. The plot on the right shows the sensitivity of the J.P. Morgan approach when
introducing jumps λ at different OTM levels.

the number of the discounted coupon payments increase and the likelihood of

a conversion remains relatively low. For well capitalized banks (as is the case

here) the required yield would approach the default free yield as calculated in

the Cox et al. (1985) term structure process (Pennacchi, 2010). A familiar

picture presents itself when increasing the risk-free interest rate rf , which

increases the discount factors but on the other hand increases the growth rate

of the asset process as well. However the former effect outweighs the latter,

especially so because the bank is well capitalized.

The left-hand side diagram in figure 4.10 shows the CoCo price as a function

of the starting asset to deposit ratio x0 for different conversion threshold levels

xc. The right-hand side graph shows the effect of adding jumps λ for different

starting asset to deposit values x0. As to be expected, raising the trigger

threshold xc increases the probability that the CoCo is converted early on

and therefore reduces the price. Even though the probability of conversion is

at its lowest at a level of conversion of 106% of assets to deposits, the price

practically coincides with the conversion level of 107%. This can be explained

by the fact that at lower conversion levels the possibility increases that not the
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entire CoCo value can be converted and the CoCo investor faces a loss at the

trigger event (i.e. the recovery amount decreases), which poses a counteracting

effect.

It is evident in the right-hand graph of figure 4.10 that increasing the jump

intensity increases the probability of a conversion and therefore decreases the

price level of the CoCo. Further to increasing the conversion probability also

the recovery rate is on average lower with discontinuous asset returns. For

asset to deposit ratios close to and far away from x∗, the difference is less

outspoken as the trigger probability is high in the first case and low in the

second case, where the addition of jumps shows less of an impact.

Finally, figure 4.11 shows the CoCo price for different starting values of

assets to deposits x0 at different conversion price levels Cp. As the conversion

price increases, the loss that a CoCo investor might face at the trigger event is

higher than with a lower conversion price. Obviously, for lower asset to deposit

ratios this is accentuated because the probability of a conversion is increased.
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Figure 4.9: The plot on the left shows the sensitivity of the structural model towards
changes in the starting level of assets to deposits x0 for different levels of the asset
process volatility σ. The plot on the right shows the sensitivity of the structural model
for different maturities T at different risk-free interest rate levels rf .

Evidently the models show a similar behaviour for variables like the ma-
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Figure 4.10: The plot on the left shows the sensitivity of the structural model
towards changes in the starting level of assets to deposits x0 for different levels of the
conversion threshold xc. The plot on the right shows the sensitivity of the structural
model for different starting asset to deposit ratios x0 with different jump intensities
λ.
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turity, the risk-free rate, and the volatility. An increasing maturity generally

leads to higher prices, whereas higher risk-free interest rates universally lead

to lower prices. Increasing the diffusion volatility also shows lower prices in all

models, as the conversion probability is increased. However the delta, i.e. the

change in the value of the CoCo per unit change of the underlying stock price,

shows distinct model differences. I.e. in the credit derivative approach, the

model with piecewise constant conversion intensity shows a higher sensitivity

when the stock price get close to the trigger level, as opposed to the constant

conversion intensity model. The equity derivative model shows a higher delta

when the diffusion volatility is lower and ultimately converges to the same

CoCo price if the stock price is at the trigger level. The structural model

overall shows quite low levels of sensitivity when the threshold is approached.

Furthermore, the credit derivative, J.P. Morgan and equity derivative model

are all challenged with a double equilibrium problem, as they present a convex

price curve for varying trigger levels. This makes it more challenging to judge

which trigger level might be the correct one.

The inclusion of jumps while keeping the total process variance constant

shows to have a very minor effect on the credit derivative and J.P. Morgan

approach. In the equity derivative model there is a clear difference for higher

levels of the stock price. Where it is clearly evident that jumps have an impact

is in the structural model, where a jump in the assets has an accentuated

effect on the equity through the high leverage ratio.

Subsequently, the models are implemented in the empirical time series

analysis, where the combined effects will play a role.
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Chapter 5

Empirical Analysis and Model Compari-

son

This chapter investigates to what extent the different models are capable to

reflect the (clean) observed market prices of a set of traded CoCo bonds. The

focus lies on contingent convertible bonds, which are converted into ordinary

shares once a trigger event materializes. Specifically, two CoCo bonds from

Credit Suisse (CS) and two CoCo bonds from Lloyds Banking Group (LBG)

are evaluated in the different models. For each model, a time series is generated

using the data and calibration procedures outlined in chapter 3 to match the

observation period of the respective CoCo bond. Applying different error

measures such as the root mean squared error (RMSE), the mean absolute

scaled error (MASE) and the relative tracking time (TT) allows to scrutinize

between models and across CoCo series.

In a first part the specifics of the CoCo’s are outlined, followed by the

parametrization of the models to obtain a time series. In a third part, the

results are compared and discussed in a qualitative and quantitative assessment.
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5.1 Data Description

As the focus of the work lies on the traditional contingent capital bond that

converts into equity, bonds of this class have been chosen to conduct the

empirical analysis. Furthermore, to allow a comparison across different issuers

and to enable a judgement of different CoCo designs for the same issuer,

two CoCos of Lloyds Banking Group and two CoCos of Credit Suisse are

investigated. The chosen bonds represent the longest time series available

and have shown to have a high liquidity compared to other CoCo issuances.

Furthermore, three of these bonds have also been investigated by Wilkens and

Bethke (2014) in their empirical assessment, which will allow a comparison of

the results.

5.1.1 Credit Suisse

Up to the end of 2013, Credit Suisse Group in Switzerland had issued six

CoCo bonds in denominations of USD, CHF and EUR. Four qualify as tier 2

bonds and two as tier 1 bonds. Three of these bonds are equity conversion

bonds, whereas the other three are write-off bonds. Subsequently two pure eq-

uity conversion bonds are introduced, which form part of the empirical analysis.

CS1 ISIN XS0595225318

The first CoCo under consideration in the case of Credit Suisse was issued on

February 24th 2011 (cf. table 1.1) and the first registered quote was March

16th 2011. The first closing price recorded was USD 102.05. The time series

spans 704 trading days up to December 31st 2013. The maturity of the bond

as outlined in the bond prospectus is 30 years and it is callable the first time

on August 24th 2016 and semi-annually afterwards. Due to the call feature,

the bonds upside potential will be limited to its redemption value after the

first call date, as the issuer would otherwise call the bond (Brennan and

Schwartz, 1977). Thus the assumed maturity of the bond corresponds to the
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call protection period and is 5.5 years.1 The face value N of the bond is

USD 1000 and it has semi-annual coupon payments of 7.875%. The CoCo is

converted into ordinary shares if the core equity tier 1 ratio of Credit Suisse

falls below 7% or at the discretion of the Swiss Financial Market Supervisory

Authority (FINMA) (Credit Suisse, 2011).

Due to the fact that the CoCo bond is denominated in USD but a conversion

takes place in CHF at a conversion price of Cp = max(20CHF, 20USD, S̄), the

CoCo investor is exposed to a potential exchange rate risk as well (Credit

Suisse, 2011). Specifically, if the USD to CHF exchange rate is higher than

one on the date of conversion, the effective conversion price will be higher than

USD 20. As table 5.4c shows, the exchange rate was always above one during

the observation period, ranging from a minimum of 1.01 USD per CHF up to

1.37 USD per CHF. This fact is incorporated into the model by converting the

conversion floor price of CHF 20 into the USD equivalent using the USD/CHF

exchange rate FXt on the respective trading day. S̄ corresponds to the volume

weighted average share price in CHF of the 30 trading days preceding the

conversion. However, as the model implied trigger prices are all below the

conversion floor price, it can be assumed that the conversion price can be

simplified to max(20CHF, 20USD) with a negligible impact. The conversion

prices Cp therefore range from 21.19 up to 27.49 USD.

The mean empirical price as shown in table 5.4c of the CS1 CoCo lies at

USD 101.33, with a standard deviation of the price of USD 5.71. The CoCo

shows a rather large price span, as the minimum price is as low as USD 86.58

and the maximum price lies at USD 110.73.

CS2 ISIN CH0181115681

The second Credit Suisse CoCo was issued on March 22nd 2012 (cf. table 1.1)

with a first registered quote of CHF 101.2 on the same date. The time series

spans 464 trading days up to December 31st 2013. The bond has a maturity

1This assumption is in line with e.g. Wilkens and Bethke (2014), De Spiegeleer and
Schoutens (2011) or Bürgi (2013).
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of 20 years and is also callable after five years on March 22nd 2017 however

without any further specified optional redemption dates (Credit Suisse, 2012a).

For the same reasoning as above, the initial maturity is chosen to be five years

to match the call protection period. The face value N of the bond is CHF

1000 with a coupon rate of 7.125% paid annually. Like the CS1 CoCo the

full face value is converted into ordinary shares but in this case at a floor of

Cp = max(20CHF, S̄), if the core equity tier 1 ratio of Credit Suisse falls below

7% or at the discretion of the Swiss Financial Market Supervisory Authority

(FINMA) (Credit Suisse, 2012a).

Table 5.5c shows a mean price level of the CS2 CoCo of CHF 104.99, with

a price standard deviation of CHF 3.54. With a minimum / maximum price of

CHF 97.1 / CHF 111.3, the span is not as large as for the CS1 CoCo; however

this is mainly attributable to the different observation period.

The evolution of the CS1 and CS2 CoCo price, the Credit Suisse stock

price, the core equity tier 1 ratio and the CDS price on a five year subordinated

bond is depicted in figure 5.1.

5.1.2 Lloyds Banking Group

As part of their refinancing program to exit the asset protection scheme put

in place by the UK Treasury, Lloyds Banking Group has issued a series of 21

contingent convertible bonds at the end of 2009, generating approximately 7.5

billion GBP of contingent core capital (National Audit Office, 2010). Two of

the larger CoCo issues are part of the subsequent empirical analysis.

LBG1 ISIN XS0459086582

The first Lloyds Banking Group CoCo was issued on December 1st 2009 with

a maturity date of May 12th 2020 without any optional redemption dates (cf.

table 1.1 and table A.1). This results in an initial maturity of approximately

10.5 years. The time series under consideration encompasses 1065 trading days
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until December 31st 2013. The CoCo pays a semi-annual coupon of 7.5884%

and has a face value of GBP 1000. It is fully converted into ordinary shares at

a predetermined price of GBp 59 if the core equity tier one ratio falls below

5% (Lloyds Banking Group, 2009a).

Table 5.6c shows a mean price for LBG1 of GBP 91.29, with a stan-

dard deviation of the price of GBP 10.55. The relatively large price span is

shown via a minimum price of GBP 68.82 and a maximum price of GBP 109.15.

LBG2 ISIN XS0459089255

The second Lloyds Banking Group CoCo was also issued on December 1st 2009

and has a maturity date of December 21st 2019. It features a 15% coupon,

that is paid semi-annually and it has a face value of GBP 1000. The conversion

price is GBp 59 and a conversion into ordinary shares occurs at a core equity

tier one ratio of 5%. Until December 31st 2013, 1030 quotes are available.

Both bonds do not have a call feature (Lloyds Banking Group, 2009a).

The mean price of this CoCo lies at a high level of GBP 129.77, with

a lowest price level of GBP 103.89 and a peak of GBP 148.15. The price

standard deviation is GBP 11.39 (cf. table 5.7c).

Also for Lloyds Banking Group, the evolution of the LBG1 and LBG2

CoCo price, the stock price, the core equity tier 1 ratio and the CDS price on

a ten year subordinated bond is depicted in figure 5.2.

5.2 Model Parametrization

Following the calibration procedures outlined in chapter 3 the different model

parameters are determined to reflect the specifics of the CoCos and the issuers.

The only degree of freedom remaining in the models is the trigger share price

S∗ for the credit and equity derivative model as well as the J.P. Morgan

model and the trigger threshold x∗ for the structural model. This parameter

is calibrated via minimization of the mean squared error between the model
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price and the initial market price of the respective CoCo.2

Credit Derivative Model

Recalling the required parameter set outlined in table 3.2 and following the

calibration procedures described in section 3.1.3 leads to the descriptive statis-

tics shown in table 5.4 and 5.5 for CS1 and CS2 and in table 5.6 and 5.7 for

LBG1 and LBG2 respectively. Specifically, the equity volatility σE has been

calculated with a rolling window over 1250 trading days preceding the pricing

date, i.e. five years, on the stock price of Credit Suisse and Lloyds Banking

Group. E.g. for the CS1 CoCo this encompasses 1955 closing prices from

March 5th 2005 to December 31st 2013 to yield 1954 daily returns and 704

rolling standard deviations. As the volatility is one of the main uncertainties

feeding into the models, the standard error of the estimate is assessed via

bootstrap sampling over the respective return period and translated into a

95% confidence band. The evolution of the volatility is shown in diagram

three of figure 5.1 for Credit Suisse and in diagram three of figure 5.2 for

Lloyds Banking Group. For Credit Suisse, the average volatility over the entire

observation period lies at 56.03% and for Lloyds Banking Group the mean is

at an astoundingly high level of 71.15%. The high standard deviation is also

clearly reflected in the span of the share prices St, which feed into the model.

The lowest share price for the CS1 CoCo corresponds to USD 15.81 and the

highest price is at USD 44.41, with an average price level of USD 27.47. For

the LBG issues, the mean price level is at GBp 52.12, with a minimum price

almost 60% lower at GBp 21.84 and the peak lies at GBp 80.37, which is

roughly 50% higher than the mean price.

As the CS1 bond is denominated in USD, the risk free interest rate rf

corresponds to the five year US-treasury yield, whereas for the CS2 bond the

yield on a five year Swiss government bond is chosen. For the LBG issues,

2In a comparable analysis, Wilkens and Bethke (2014) assess the overall model fit in their
paper and calibrate the trigger level on the entire period of the CoCo. For the structural
approach, they furthermore calibrate the asset process parameters σ, λ, μπ and σπ .
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the yield on a ten year UK government bond is applied. The applicable five

year US yield rate has a mean level of 1.13%, with a lowest level of 0.62%

and a peak level of 2.36% over the observation period of the CS1 bond. The

yield on Swiss government bonds for the CS2 CoCo is even lower, with a mean

level of 0.18%, a standard deviation of 0.16% and a lowest level of 0%. The

risk-free interest levels on ten-year UK bonds show an average of 2.8%, with

a maximum of 4.09% and minimum of 1.64%. Overall the flat levels clearly

reflect the low interest rate policies of the national banks.

The trigger share price S∗ is calibrated by minimizing the mean squared

error between the model price and the initial CoCo price and is thereafter

kept constant. Recall that an inherent problem to this model is the double

equilibrium price as encountered in figure 3.2 and 4.3, the calibration procedure

is therefore constrained to yield the lower trigger price.

The generated time series is shown in figure 5.4 to 5.7 for CS1, figure 5.14

to 5.17 for CS2, figure 5.24 to 5.27 for LBG1 and figure 5.34 to 5.37 for LBG2.

Equity Derivative Model

The equity derivative model relies largely on the same input parameters

as outlined above for the credit derivative approach. The only additional

parameter is the strike price K for the down-and-in forward and barrier

options, which corresponds to the conversion price Cp. For the CS1 issue this

also includes the adjustments due to the changes in the USD to CHF exchange

rate. As above, the trigger share price S∗ is calibrated to meet the first market

price via minimization of the root mean squared error of the model price and

the market price.

The parameters for the equity derivative model are summarized in table

5.4 for CS1, table 5.5 for CS2 and table 5.6 and 5.7 for LBG1 and LBG2

respectively. The generated time series can be found in figure 5.8 to 5.9 for

CS1, figure 5.18 to 5.19 for CS2, figure 5.28 to 5.29 for LBG1 and 5.38 to 5.39

for LBG2.
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J.P. Morgan Model

The J.P. Morgan model relies on quoted CDS spreads st as main input along

with the stock price St. To reflect the approximate five year maturity of the

CS1 and CS2 bond, the CDS spread on a five year subordinated corporate

bond from Credit Suisse is used. In the case of the LBG1 and LBG2 issue,

a ten year CDS spread on a subordinated bond on Lloyds Banking Group is

used. Referring to table 5.4c and 5.5c the mean CDS level is at 2.09% for

Credit Suisse over the CS1 observation period and at a mean level of 1.98%

over the period of the CS2 bond. The spreads exhibit a rather large standard

deviation of roughly 0.7%. The first CDS price surge leads to a highest level

for the CS1 bond at 3.74%, whereas for the CS2 bond it is at 3.46%. Naturally,

the spreads on a ten-year subordinated bond for LBG are higher, with a mean

level of 3.95% and a peak spread of 7.72%, as shown in table 5.6c and table

5.7c. As the standard deviation is not part of the required parameters and the

model is available in closed / semi-closed form, there is no confidence band

reported.

The parameters for the J.P. Morgan model are summarized in table 5.4 for

CS1, table 5.5 for CS2 and table 5.6 and 5.7 for LBG1 and LBG2 respectively.

The generated time series can be found in figure 5.10 to 5.11 for CS1, figure

5.20 to 5.21 for CS2, figure 5.30 to 5.31 for LBG1 and figure 5.40 to 5.41 for

LBG2.

Structural Model

In order to calculate daily asset values At, the total liabilities Dt are inferred

from the balance sheet and linearly interpolated between fiscal quarters to get

daily values, to which the daily market capitalization Et is added. From this

the evolution of the asset-to-deposit ratio xt can be inferred. The relatively

low levels for both Credit Suisse and Lloyds Banking Group clearly reflect

the high leverage that they have. The mean asset-to-deposit ratio of Credit

Suisse over the entire observation period ranges from 102.01% up to 105.67%,
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with a mean level of 103.66%. For Lloyds the mean asset-to-deposit ratio is

at 103.95%, with a minimum level of 101.61% and a highest level of 106.87%.

This is coherent with the recent monitoring exercise by the Basel Committee

on Banking Supervision (2013), who report a weighted average leverage ratio

of 3.8% across a sample of 223 participating banks.3

Based on the rolling volatility window as explained beforehand, the annual

asset volatility σAt
is calculated using the procedure outlined in section 3.4.2.

This leads to a mean asset volatility for Lloyds Banking Group of 2.87% and

a span from 1.19% up to 4.97%. The Credit Suisse assets are slightly less

volatile, at a mean level of 2.08%, a peak level of 3.05% and a lowest value of

1.2%. This is in line with e.g. Crosbie and Bohn (2003), who report annualized

asset volatilities of 1% up to 5% for financial institutions.

The parameters κ, r̄ and σr for the term-structure process are calibrated

on monthly time series of 3, 6, 12 and 60 month treasury bill yields in the

respective denomination of the CoCo, each covering a time frame from January

1993 to December 2013. E.g. for the CS2 bond denominated in CHF the

twenty year yield series on Swiss government bonds is used. The calibrated

long-term interest rate r̄ is highest for the US government yields at 7.42%,

followed by the UK yields at an equilibrium level of 3.87% and the lowest

levels are observed for Swiss government yields at a steady state of 3.28%.

The target asset-to-deposit ratio x̂ can be regarded as the newly imposed

minimum leverage ratio by Basel III. Under regular Basel III provisions, the

minimum leverage ratio is still to be calibrated until 2017 but for testing

purposes is set to 3% (Basel Committee on Banking Supervision, 2011a). As

Lloyds Banking Group is already well above that (i.e. at 4.4% at year-end

2013), the minimum is set to 4% for LBG1 and LBG2. In Switzerland the

capital adequacy ordinance (“Eigenmittelverordnung”) prescribes that the

leverage ratio, i.e. the non-risk-weighted capital adequacy requirements, must

amount to 24% of the total capital requirements (Swiss Federal Council, 2013).

3Note that the final calculation procedure of the new Basel III leverage ratio is still under
discussion at the time of writing.
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E.g. for the target of 19% capital requirements outlined in the capital adequacy

ordinance, the according leverage ratio is 4.56%.4 This ratio is then translated

into a target asset-to-deposit ratio of 104.77% for Credit Suisse and 104.17%

for Lloyds Banking Group.

The critical conversion threshold in terms of assets-to-deposits x∗ is cal-

ibrated via minimization of the root mean squared error to meet the initial

CoCo price. As there is a linear relationship between the assets, deposits and

the market capitalization this trigger threshold is also translated into a trigger

share price S∗, as in the other models.

All the descriptive statistics for the parameters in the structural model are

summarized in table 5.4 and in table 5.5 for CS1 and CS2 and in table 5.6

and 5.7 for LBG1 and LBG2 respectively. Figure 5.12 to 5.13 and figure 5.22

to 5.23 show the generated time series for CS1 and CS2, whereas figure 5.32

to 5.33 and figure 5.42 to 5.43 shows the time series for LBG1 and LBG2.

Jump Parameters

The threshold exceedance method as introduced in chapter 3 is applied on a

twenty year return history spanning the years 1993 to 2013 of both Credit

Suisse and Lloyds Banking Group. Assuming one jump per year, i.e. λ = 1,

determines the exceedance threshold and yields a jump distribution of 40 jumps,

containing large negative as well as large positive returns. The descriptive

statistics (cf. table 5.4a / 5.5a for Credit Suisse and table 5.6a / 5.7a for

Lloyds) reveal that large negative jumps seem to be almost offset by positive

jumps of the same magnitude, as the mean jump size μπ is close to zero with

a high standard error (calculated via bootstrap sampling) for both Credit

Suisse and Lloyds Banking Group. The jump standard deviation σπ is highly

significant in both cases and with σπ = 18.74% versus σπ = 14.03% larger for

Lloyds Banking Group than for Credit Suisse, which matches its overall higher

4Credit Suisse (2014) assumes that their total capital requirements will be at 16.66% in
2019, which would translate into a leverage ratio of 4%. Due to the uncertainty attached to
the final capital requirements, the target is set to 4.56%.
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standard deviation of the stock price vis-à-vis the Credit Suisse stock price.

5.3 Model Comparison

Firstly the models are assessed in a qualitative analysis, in which the obser-

vation period is split into three windows and the generated time series are

discussed. In a second part, a quantitative analysis measures and compares

the root mean squared error, the mean absolute scaled error and the tracking

time of the models; furthermore, the implied trigger prices are assessed.

5.3.1 Qualitative Analysis

As the CoCos of Credit Suisse and Lloyds Banking Group respectively show

qualitatively the same price evolution the remarks below can be generalized.

In both cases the time under observation is divided into three sub-periods, as

shown in figure 5.1 for Credit Suisse and figure 5.2 for Lloyds Banking Group.

The first period for Credit Suisse only applies to the CS1 CoCo, whereas the

observations for period two and three apply to both. As both Lloyds CoCos

have been issued on the same date, the qualitative assessment applies for all

three periods to both bonds.

What can be taken away beforehand is that due to the fact that the trigger

price is calibrated to meet the initial CoCo price, the price error defined as

et = yt − ŷt, where yt is the empirical price, starts off at zero for all models;

this is also the main reason why the jump versus non-jump time series are

almost indistinguishable as the different risk-characteristic is mainly captured

in the trigger level.

Credit Suisse

Over the entire observation period from April 2011 to December 2013 the

CET1 ratio of Credit Suisse has steadily increased to reach 16% at the end

of 2013. The stock price during the same period has been highly volatile,
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dropping from USD 40 to below USD 20 during the first year, only to recover

slightly and showing a sideways movement until December 2013. Comparing

the CS1 CoCo to the evolution of the stock price, there seems to be a clear

connection as the CS1 CoCo follows the sharp decline of the stock price in

period one. Even the short lived recovery of the stock price in October 2011 is

clearly reflected in the CoCo price.5 Subsequently, the stock price recovers

slightly to reach the end of period one. Afterwards, it further declines to reach

its low in July 2012 at a level of USD 15.8, thereafter recovering to around

the same level at the start of the second time window. Interestingly, during

the same time frame the CET1 ratio (which is reported quarterly) improves

from 10% in April 2011 to roughly 15% at the end of June 2012 and continues

to improve to 16% at the end of 2013. This development also seems to be

reflected in the CoCo prices, as the mean price level of CS1 and CS2 steadily

increases (albeit with a slight correction in period three). This makes intuitive

sense as the trigger of both CoCos is linked to the CET1 ratio.

At the start of the first period, the price models are calibrated to meet the

initial market price and all models start with no price error. During the first

couple of weeks, the CS1 CoCo as well as the model prices remain steady until

the stock price starts dropping in the second half of period one. Referring to

figures 5.4 to 5.13, this is when all the model prices start exhibiting positive

pricing errors (i.e. the model price is below the empirical CoCo price) and

mostly outside the confidence interval, as the model prices react more sensitive

to the decline in the stock price. Furthermore there is a noticeable increase in

the level of the rolling volatility, as shown in diagram three of figure 5.1, which

stays high until the end of period three. The brief recovery until the start of

period two still leaves the model prices below the actual CS1 price and barely

within the confidence interval of the credit derivative model with piecewise

constant conversion intensity (jump and non-jump) and the structural model.

A similar picture presents itself for the J.P. Morgan model, as the CDS prices

5Wilkens and Bethke (2014) report a significant correlation of one-day and five-day
returns between the individual stock and CoCo for Credit Suisse and Lloyds Banking Group.
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almost double in period one, the price decreases over-proportionally versus the

actual CoCo price, leading to the positive price error presented in diagram

three of figure 5.10 and 5.11.

The second period is dominated by a further decline in the stock price

and overall high levels of the CDS spread. The high sensitivity of the models

to the stock price movements further accentuate the pricing errors, as the

empirical CS1 and CS2 CoCo’s reaction is not as volatile. Even for the CS2

CoCo, whose price error is zero at the beginning of period two, the divergence

of the model price to the actual price increases quickly. What can be noticed

during period two is the high increase in the CET1 ratio, along with a general

increase in the price level of the CS1 and CS2 CoCo. During the second period

the risk-free interest rate level is also at its lowest, where the risk-free rate for

Swiss government bonds even reach zero percent. This should lead to slightly

higher prices in the models as seen in the dynamics and sensitivity analysis of

chapter 4. Even though the CDS spread tightens towards the end of period

two, the J.P. Morgan model still exhibits quite a large price difference for CS1

(cf. figure 5.10 and 5.11) and CS2 (cf. figure 5.20 and 5.21). The final period

features a slight recovery of the stock price and a further increase in the CET1

ratio. What can also be observed is the level of the rolling volatility, which

decreases approximately ten percentage points towards the end of period three.

This is due to the fact that the most turbulent times of the financial crisis are

not included in the rolling window anymore. The combined effect of increasing

stock prices and lower volatility levels gradually reduce the pricing error of

the credit derivative models, as well as the equity derivative and structural

approach. Overall, the lower volatility levels towards the end result in narrower

confidence bands in the models. Whereas the price errors remain positive for

the CS1 bond, towards the end of period three the price error turns negative for

the CS2 CoCo. In the case of the structural model there is a sudden increase

in the model price in the first half of period three, which is due to the fact that

fresh capital was injected via a mandatory conversion of CHF 3.8 billion of

mandatory and contingent convertible securities (MACCS), which were issued
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Figure 5.1: The first diagram shows the stock price of Credit Suisse along with
the investigated CoCos CS1 and CS2 on the left-hand y-axis and the evolution of
the CET1 ratio on the right-hand y-axis. The second diagram shows the CDS price
on a five year subordinated corporate bond of Credit Suisse. Diagram three shows
the five-year rolling volatility on the Credit Suisse stock. The confidence band is
computed using bootstrap sampling. The final diagram shows the evolution of the
five-year risk-free interest rates.
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in July 2012, into 233.5 million shares at a conversion price of CHF 16.29

(Credit Suisse, 2013). This essentially boosts the asset-to-deposit ratio and

reduces the pricing error and the structural model tracks the CS1 CoCo quite

well towards the end. The price error of the J.P. Morgan model remains al-

most the same through period three although the CDS price steadily decreases.

The descriptive statistics in table 5.4c show that the JPM and the JPMJ

prices show a similar standard deviation of 5.49 and 5.41 compared to the

empirical CS1 CoCo, which itself shows a standard deviation of 5.71. The

JPM model is closely followed by the structural models ST and STJ, with

a standard deviation of 6.57 and 6.66 respectively. The credit derivative

models all show comparatively high standard deviations in terms of the price

of around 11, as they are quite sensitive to changes in the stock prices. Also

the equity derivative models ED and EDJ exhibit a high standard deviation

of the prices. A similar picture paints itself for the CS2 bond (cf. table 5.5c),

where the standard deviation this time is lowest and closest to the empirical

price standard deviation in the structural models ST and STJ. Interestingly,

the mean prices lie quite closely together for the structural, J.P. Morgan and

credit derivative model with piecewise constant conversion intensity and are

comparable to the empirical mean price of the CS2 CoCo. This is partly

attributable to the shorter observation period.

Lloyds Banking Group

Also in the case of Lloyds Banking Group the entire observation period is

divided into three sub-periods as shown in figure 5.2. Generally, the CET1

ratio steadily increases over all three periods to reach a level of 14% from

a starting value of 6.3%. However, also the stock price of Lloyds suffers a

depression during the second period reaching a low of 21.84 GBp in November

2011 and therewith increasing CDS spreads on a ten year subordinated bond

of up to 772.25 basis points, before recovering again in the third period. The

five-year rolling volatility level is extremely high with a mean level of 71.15%
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and rather wide confidence bands. Both empirical CoCo prices react to the

changes in the stock price, which is especially pronounced in period one and

two, whereas towards the end of period three the overall price level of LBG1

and LBG2 increases along with the rising CET1 ratio.

Due to the calibration of the trigger price to match the initial price, the

price error between the model prices and the actual price are again zero at the

beginning of period one. As seen in figure 5.24 to figure 5.27 for LBG1 and

figure 5.34 to 5.37 for LBG2, the credit derivative models are able to track

the price evolution quite nicely during the first period, with the price error

only outside the confidence interval towards the end of period one. The equity

derivative model also performs well as the price error develops similarly to

the credit derivative models, as shown in figure 5.28 to figure 5.29 and figure

5.38 to 5.39. The J.P. Morgan model shows a slightly negative pricing error

(i.e. the model price is above the actual CoCo price) before the CDS price

almost doubles within a short time period, which decreases the model price

significantly and leads to a positive pricing error. The structural model shows

a slight overestimation of the price during the first half of period one before

leading to a short period of a negative price error but subsequently the model

prices decline again, ending period one with a positive pricing error for both

LBG1 and LBG2.

The second period is dominated by low share prices and high CDS spreads,

as mentioned above. This leads to lower prices in all of the models and also the

empirical CoCo prices of LBG1 and LBG2 drop. However, due to the higher

sensitivity of the model prices to the decline in the stock and CDS prices,

they underestimate the price, which leads to a positive price error for all of

the models and for both bonds during this time window. The price error is

somewhat more pronounced for the equity derivative model than in the credit

derivative approach, while the J.P. Morgan models’ price error stays more or

less constant, as seen in figure 5.30 to 5.31 and figure 5.40 to 5.41. Only the

structural model shows a negative price error during a short time-frame in

period two.
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In period three the stock price and the CDS price recover again, while the

CET1 ratio steadily increases. Hence the prices for all models start to increase

to reach their highest price levels at the end of the third period. The price

error decreases towards the end of period three for both LBG1 and LBG2 and

for all models to end up almost at a level of zero. Also the rolling volatility of

Lloyds decreases slightly in the last few months of the observation period to

reach approximately the same level as at the start of period one. The positive

error of the structural model - depicted in figure 5.32 to 5.33 and figure 5.42

to 5.43 - stays relatively constant in the last part of period three and does not

pull back to zero like the other models.

The descriptive statistics in table 5.6c and 5.7c show that only the structural

model (ST / STJ) exhibits more or less the same mean price of 86.87 / 85.73

for the LBG1 bond and 125.81 / 124.50 for the LBG2 bond, which themselves

show a mean price of 91.29 / 129.77. The remaining models show lower average

prices, ranging from 75.79 for the CDCJ model to 82.08 for the JPM approach.

Interestingly, the structural model exhibits a lower price standard deviation

than LBG1, with a level of 7.56 versus 10.55. This is even more pronounced for

the LBG2 bond, which shows a price standard deviation of 11.39, whereas the

structural model including jumps (STJ) shows a deviation in the price of 5.24.

For the LBG1 bond, the credit derivative, equity derivative and J.P. Morgan

approach show similar standard deviations to the empirical value between 10.7

and 12.89. In the case of the LBG2 bond, said models exhibit a higher price

deviation than the empirical value with values ranging from 12.93 up to 17.14.

Based on the qualitative analysis it is evident that none of the models

are able to accurately track the actual price evolution of the CoCos under

consideration. However, only knowing about the severity of the pricing errors

will allow to conclude which of the models performs best under the given

circumstances.
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Figure 5.2: The first diagram shows the stock price of Lloyds Banking Group
along with the investigated CoCos LBG1 and LBG2 on the left-hand y-axis and the
evolution of the CET1 ratio on the right-hand y-axis. The second diagram shows
the CDS price on a ten year subordinated corporate bond of Lloyds Banking Group.
Diagram three shows the five-year rolling volatility on the Lloyds Banking Group
stock. The confidence band is computed using bootstrap sampling. The final diagram
shows the evolution of the ten-year UK risk-free interest rates.
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5.3.2 Quantitative Analysis

As a standard measure the root mean squared error (RMSE) is used to compare

the goodness and forecasting accuracy of the different models. Let yt denote

the observation and ŷt the forecast at time t ∈ {1, ..., N}, then the RMSE is

defined as (Kirchgässner and Wolters, 2008)

RMSE =

√√√√ 1

N

N∑
t=1

(yt − ŷt)2 (5.1)

A smaller RMSE is desirable as it indicates a better fit. Furthermore, the

mean absolute scaled error (MASE) is investigated, which enables to compare

the results across time series and models (Hyndman and Koehler, 2006). The

error is defined as the forecast errors et = yt − ŷt as in the RMSE but scaled

by the mean error of the näıve forecast (i.e. random walk)

qt =
et

1
N−1

∑N
t=2 |yt − yt−1|

(5.2)

The MASE is then simply the mean of the absolute scaled error

MASE = mean(|qt|) (5.3)

To get an indication of the accuracy of the models taking into account their

confidence bands, the relative tracking time (TT) is computed by dividing the

joint number of observations that e95t = yt− ŷ95t is above zero and e5t = yt− ŷ5t

is below zero by the total number of observations N

TT =

∑N
t=1 1{e95t >0} ∩ 1{e5t<0}

N
(5.4)

The superscript 95 stands for the price calculated using the upper volatility

confidence band and vice versa the superscript 5 equals the price calculated

with the lower confidence band of the rolling volatility.
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Table 5.1 provides an overview of the RMSE, the MASE as well as the

tracking time of the models for the different CoCos. The root mean squared

error and the mean absolute scaled error are calculated using the mean price

(ŷ50) of the models. Note that interpreting the tracking time on a standalone

basis might be misleading, as larger values might seem desirable. As the

tracking time represents the time that the models forecast error bounded by

the lower and upper confidence band is indistinguishable from zero, models

with larger confidence bands will perform better and have a larger tracking

time. However, large confidence bands do not speak for the accuracy of the

model. Therefore, the tracking time is best interpreted in conjunction with the

RMSE or the MASE. For example, the credit derivative model with piecewise

constant conversion intensity including jumps (CDPJ) for the CS1 bond has

a low RMSE and the lowest MASE of the group, but its TT is largest with

0.365. Hence the RMSE and MASE might be as low as the CDP model, but

at the cost of larger inaccuracies.

Looking at the CS1 CoCo the lowest RMSE and MASE is clearly achieved

by the structural model with values of 0.067 and 0.139 respectively, closely

followed by the J.P. Morgan model with a RMSE of 0.071 and a MASE of

0.169. The structural model furthermore shows the lowest tracking time,

which is due to the fact that it has very narrow confidence bands (cf. figure

5.12). The credit derivative model with piecewise constant conversion intensity

slightly outperforms its counterparts with constant conversion intensity, as

the RMSE and the MASE are lower for the former with 0.124 / 0.253 for the

CDPJ model versus 0.133 / 0.284 in the CDC model. As the confidence bands

for the credit derivative models with jumps are slightly higher, the tracking

time is increased as well. E.g. the CDP and the CDPJ model show the same

RMSE, but the CDPJ specification exhibits a higher tracking time. The equity

derivative model without jumps shows comparable levels of the RMSE, MASE

and tracking time to the credit derivative representation, whereas the EDJ

specification shows overall higher error measures than without jumps.

In the case of the CS2 bond, the lowest RMSE and MASE is achieved
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by the JPM models, where the JPMJ configuration slightly outperforms

the JPM model with values of 0.031 / 0.105 versus 0.032 / 0.109 for the

RMSE and MASE respectively. A similar picture paints itself for the equity

derivative model, where the ED configuration shows lower error levels (0.086 /

0.314) than its jump counterpart EDJ (0.095 / 0.346). The credit derivative

implementations do not show any large differences in any of the error measures

and are at levels of 0.088 to 0.09 for the RMSE and 0.312 to 0.322 for the

MASE. As a runner up to the J.P. Morgan model is the structural approach,

with a RMSE of 0.037 and a MASE of 0.137.

Mostly due to the larger observation period, the average error levels are

higher for the LBG bonds as compared to the Credit Suisse issues. Nevertheless,

also for the LBG1 CoCo the structural and the J.P. Morgan models clearly

outperform the equity and credit derivative approaches. Specifically, the ST

model edges out the JPMJ approach, with a RMSE and MASE of 0.097 / 0.201

versus 0.117 / 0.259 respectively. The credit derivative models all perform in

the same range with RMSE’s reaching from 0.162 to 0.169 and MASE’s from

0.348 to 0.352, with overall high levels of the tracking time. Again, this is

mainly attributable to the large confidence bands attached. Both the ED and

EDJ models fare slightly worse than the CD implementation.

Focusing on the LBG2 bond, the overall error levels are slightly elevated

compared to the LBG1 bond, except for the structural model, where the fit

becomes slightly better. Considering that the two CoCos have almost the

same specification, this is mainly attributable to the different coupon structure,

where LBG1 features a 7.5884% coupon the LBG2 bond pays 15%. The gap

between the structural and J.P. Morgan model is almost doubled, with an

RMSE of 0.079 versus 0.152 and a MASE of 0.161 as opposed to 0.337. The

credit derivative implementations follow the JPM model, with average RMSE

levels close to 0.2 and MASE levels of 0.4. Also for the LBG2 bond, the equity

derivative model fares worst.

Finally, the overall comparison of the RMSE for each CoCo clearly favors

the structural model (ST and STJ) as it shows the lowest RMSE across all
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models for all CoCos, closely tracked by the J.P. Morgan model. The overall

average RMSE of 0.071 however is clearly lowest for the structural model,

whereas the JPMJ implementation shows a level of 0.093. Looking at the

MASE leads to the same conclusion, as it is also lowest for the structural model,

where the average lies at 0.161 versus 0.281 in the JPMJ implementation. The

credit derivative models show equal averages for the root mean squared error

and the mean absolute scaled error and are almost twice as high as in the

structural approach. The worst performance in this setting is shown by the

equity derivative approach, with an average RMSE and MASE of 0.171 / 0.393

in the EDJ configuration.

The error statistics presented in table 5.3 underpin the previously made

findings. The structural model ST(J) shows the lowest average price error

across all bonds, ranging from 0.58 for the CS2 bond to 7.21 for the LBG1

bond, with a price deviation of 3.66 and 6.51 respectively. It is closely followed

by the JPM(J) model, which shows the smallest mean error for CS2 of 1.77

with a deviation of 2.53 and the largest mean error for LBG2 of 10.99 with

a deviation of 10.52. The credit and equity derivative models fare less well,

where the credit derivative approach manages to slightly outperform the equity

derivative models. The former shows mean errors between 0.31 for the CS2

bond up to 16.25 for the LBG2 bond, whereas the latter shows a minimum

average error of 4.13 for the CS2 bond and a maximum average error of 18.33

for the LBG2 bond.

Although Wilkens and Bethke (2014) use a different calibration method

and have a much shorter observation period, they also find that the equity

derivative model performs worst in their model fitting analysis as measured by

the RMSE, across all three bonds that they investigate. They report an RMSE

of the equity derivative model ranging from 0.0633 for the Credit Suisse bond,

which corresponds to the CS1 bond, to 0.1842 for the first Lloyds Banking

Group bond, which matches the LBG2 bond of the work at hand. This is

compared to a reported RMSE of 0.0268 and 0.1422 for the CS1 and LBG2

equivalents for the structural model in their work.
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Note that comparing the values between the jump and non-jump models

only makes limited sense, as the main model difference will already have been

captured in the initial calibration of the trigger threshold S∗, which will be

investigated subsequently. Notably, the values for the RMSE, MASE and TT

are almost the same for the credit derivative and the J.P. Morgan model in

a jump vs. a non-jump setting. Only the equity derivative model shows a

discernable difference, where the non-jump model fares better for all bonds.
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A further indication to compare the models is presented in figure 5.3, where

the calibrated implied trigger stock price level S∗ is plotted for each CoCo and

each model. The diagram reveals that for each CoCo the implied trigger levels

are relatively tightly distributed with exception of the structural model, which

indicates slightly higher trigger levels and the J.P. Morgan model with slightly

lower implied trigger levels. E.g. for LBG1, the prices range from GBp 3.58 to

GBp 4.06 for the J.P. Morgan approach, whereas the structural model implies

prices of GBp 13.23 to GBp 14.67. Considering the initial market price was

at GBp 54.14 for Lloyds, this corresponds to a level of 6.61% up to 27.10%.

Moreover, based on a conversion price of GBp 59, this would lead to average

recovery rates for the LBG1 CoCo of 6.07% in the JPM model and an average

recovery rate of 24.86% in the structural model without jumps.6 Table 5.2

shows an overview of the trigger levels relative to the initial share price S̄∗ and

the model implied recovery rates R̄. Interestingly, for the Credit Suisse CS1

CoCo the average recovery rate R̄ lies between 22.21% for the JPMJ model

up to 62.71% for the structural model, however, higher recovery rates are

joined by the fact that the trigger level in terms of the initial share price S̄∗ is

also elevated at levels between 11.1% (JPMJ) and 31.12% (ST), suggesting a

higher likelihood of a trigger event. The Lloyds CoCos show a slightly different

picture, as the recovery rates R̄ are rather low between 6.12% in the JPMJ

model and 24.93% in the ST approach for the LBG1 bond. These values are

accompanied with low implied trigger levels S̄∗ as well, ranging from 6.62% to

27.11% for the LBG1 bond.

What can further be observed in figure 5.3 and table 5.2 is that the trigger

levels are also very similar across CoCos. Especially as the LBG1 and LBG2

bond were issued on the same date, the values are directly comparable and

the differences are very minor between the two bonds. This confirms the

models’ abilities to reflect different CoCo variations of the same issuer. Finally,

the difference of the trigger stock price S∗ for the jump versus the non-jump

models is usually small. For all pricing models the trigger price including

6These results are comparable to those reported by Wilkens and Bethke (2014).
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jumps is slightly higher except in the case of the JPM model and the structural

approach, where it is slightly lower when including jumps.7

As mentioned in section 3.2, the impact of adding daily yield curve data

into the equity derivative model has been assessed for the LBG1 bond. For

this, daily UK government yield curve data is obtained reflecting one to ten

year maturities. To specifically gauge the contribution of adding yield curve

data to the model, it is not re-calibrated and the trigger level S∗ of the ED

model is used. Doing the same error analysis shows that the mean price

error eED|LBG1 of 15.13 as reported in table 5.3b is reduced to 10.34, with a

standard deviation of 9.03. The RMSE and MASE are reduced from 0.178

and 0.383 to 0.137 and 0.279 respectively.8

Closely linked to the implied trigger levels S∗ are the risk-neutral conversion

probabilities that the different models suggest. The results presented in table

5.2 reflect the risk-neutral conversion probabilities at the time of calibration

(i.e. at the time of issuance of the bonds) for three different time horizons.

Expectedly, the conversion probabilities increase with an increasing investment

horizon, as the one year probabilities are practically zero for all models and

all bonds, except for the structural model ST(J), which indicates conversion

probabilities ranging from 0.057 (ST) for the CS1 bond and 0.173 (STJ) for

the LBG2 bond. On a five year horizon, the highest conversion probability

is observed for the structural model STJ for the CS2 bond with 0.375 and

the lowest for the ST model with 0.244 for LBG1. Naturally, the conversion

probabilities would change over time as the input parameters change as well.

E.g. for CS2 versus CS1 one can observe higher conversion probabilities for

the former, quite possibly due to the higher contemporaneous volatility level

at the time of issuance of the CS2 bond. For the two Lloyds Banking Group

bonds LBG1 and LBG2 the probability levels are within close range, as the

7Corcuera et al. (2013) report similar findings for the equity derivative approach under a
smile conform model using a special class of a β-process from the Lévy process family.

8When re-calibrating, the trigger level S∗ would increase from originally 5.36 to 6.62, as
the calculated CoCo prices are lower than with a flat yield rate. The error measures would
remain practically the same with a higher trigger level, as the effect would be captured
almost entirely in the higher trigger level.
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only difference can be attributed to the slightly different implied trigger stock

level S∗. The addition of jumps into the risk-dynamics of the models shows

overall higher conversion probabilities for the credit derivative models CDCJ

and CDPJ as well as for the structural model STJ. Due to the ambiguous

impact on the option values the equity derivative model EDJ shows overall

slightly lower conversion probabilities than the non-jump counterpart ED. The

same can be observed for the JPM model.

Overall though these values underpin the findings from chapter 2, that a

CoCo on average has a low probability of a trigger event happening, but at a

great cost if a conversion takes place.
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Figure 5.3: This diagram shows the implied trigger stock price levels S∗ of the
different models as a result of the calibration to the initial CoCo market price. For
CS1 and CS2 the trigger stock price is to be interpreted in USD and for LBG1 and
LBG2 in GBp.

CS1 CS2 LBG1 LBG2

S̄∗ R̄ S̄∗ R̄ S̄∗ R̄ S̄∗ R̄

CDC 0.152 0.307 0.137 0.190 0.072 0.066 0.079 0.072

CDCJ 0.168 0.338 0.152 0.212 0.079 0.073 0.084 0.073

CDP 0.169 0.341 0.146 0.197 0.093 0.085 0.102 0.093

CDPJ 0.175 0.353 0.155 0.216 0.097 0.089 0.105 0.096

ED 0.167 0.337 0.144 0.201 0.099 0.091 0.108 0.099

EDJ 0.201 0.406 0.164 0.228 0.128 0.117 0.131 0.120

JPM 0.120 0.243 0.091 0.127 0.075 0.069 0.083 0.076

JPMJ 0.110 0.222 0.082 0.115 0.066 0.061 0.073 0.067

ST 0.311 0.627 0.297 0.413 0.271 0.249 0.287 0.263

STJ 0.286 0.576 0.283 0.394 0.244 0.224 0.269 0.247

Table 5.2: This table provides an overview of the implied trigger share price levels
S̄∗ and recovery rates R̄ relative to the initial stock price levels of USD 40.25 for
CS1, USD 27.82 for CS2 and GBp 54.14 for LBG1/2. The base conversion prices
Cp to calculate the recovery rates are USD 20 for CS1/2 and GBp 59 for LBG1/2.
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CS1 CS2

1yr 3yr 5yr 1yr 3yr 5yr

CDC 0.001 0.107 0.279 0.002 0.127 0.319

CDCJ 0.001 0.110 0.281 0.001 0.123 0.321

CDP 0.002 0.133 0.314 0.002 0.136 0.331

CDPJ 0.002 0.132 0.307 0.001 0.123 0.331

ED 0.002 0.123 0.281 0.002 0.138 0.332

EDJ 0.002 0.115 0.269 0.002 0.132 0.321

JPM 0.000 0.109 0.193 0.000 0.095 0.197

JPMJ 0.000 0.098 0.185 0.000 0.088 0.192

ST 0.057 0.150 0.249 0.062 0.165 0.263

STJ 0.086 0.193 0.333 0.093 0.198 0.375

(a) Risk-neutral conversion probabilities for Credit Suisse.

LBG1 LBG2

1yr 3yr 5yr 1yr 3yr 5yr

CDC 0.000 0.012 0.193 0.000 0.066 0.211

CDCJ 0.003 0.054 0.212 0.001 0.065 0.215

CDP 0.001 0.089 0.249 0.000 0.105 0.274

CDPJ 0.004 0.091 0.247 0.006 0.107 0.273

ED 0.001 0.093 0.224 0.002 0.108 0.244

EDJ 0.000 0.075 0.196 0.001 0.100 0.229

JPM 0.000 0.097 0.210 0.000 0.110 0.226

JPMJ 0.000 0.086 0.201 0.000 0.099 0.218

ST 0.102 0.203 0.244 0.117 0.224 0.276

STJ 0.154 0.279 0.344 0.173 0.286 0.365

(b) Risk-neutral conversion probabilities for Lloyds Banking Group.

Table 5.2: This table provides an overview of the risk-neutral conversion probabilities
for the Credit Suisse and Lloyds Banking Group bonds evaluated in the different
models at the time of issuance. 1yr, 3yr and 5yr stand for the investment horizon
under consideration.
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Variable Mean Std. Min. Q. 1 Md. Q. 3 Max.

eCDC|CS1 10.22 8.45 -2.49 3.14 9.06 15.58 32.94
eCDCJ|CS1 9.92 8.42 -2.49 2.72 8.89 15.17 33.33
eCDP |CS1 8.01 9.40 -8.74 0.37 7.01 14.01 31.02
eCDPJ|CS1 8.49 8.98 -6.04 0.94 7.06 13.90 31.43
eED|CS1 10.31 7.92 -2.26 3.95 9.33 15.91 30.71
eEDJ|CS1 12.70 8.46 -1.46 6.11 12.11 18.86 34.23
eJPM|CS1 6.56 3.61 -2.65 3.45 7.69 9.11 13.31
eJPMJ|CS1 6.11 3.48 -2.98 3.23 7.19 8.58 12.65
eST |CS1 4.91 4.51 -5.52 1.26 3.66 8.64 15.06
eSTJ|CS1 5.02 4.53 -4.89 1.34 3.89 9.54 16.04

eCDC|CS2 3.91 7.93 -12.03 -1.59 4.21 10.37 21.12
eCDCJ|CS2 3.49 7.79 -11.99 -1.80 3.96 9.51 20.41
eCDP |CS2 0.31 9.02 -17.36 -7.43 0.32 6.57 18.43
eCDPJ|CS2 1.11 8.86 -17.87 -8.18 -0.29 5.67 16.93
eED|CS2 4.13 7.52 -11.55 -0.87 4.92 9.98 20.61
eEDJ|CS2 4.57 8.29 -12.45 -1.09 5.07 11.16 22.74
eJPM|CS2 1.95 2.56 -2.93 0.21 1.59 3.92 7.69
eJPMJ|CS2 1.77 2.53 -3.09 0.02 1.49 3.73 7.38
eST |CS2 0.58 3.66 -4.88 -3.16 0.51 3.98 8.51
eSTJ|CS2 0.97 3.66 -4.48 -2.76 0.91 4.38 8.91

(a) This table presents the error statistics of the different models for the CS1 and CS2 bond.
‘Std.’ stands for standard deviation, ‘Min.’ for minimum, ‘Q. 1’ for the first quantile, ‘Md.’
for median, ‘Q. 3’ for the third quantile and ‘Max.’ for maximum.

Table 5.3: Error statistics CS1/2, LBG1/2 (continued)
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Variable Mean Std. Min. Q. 1 Md. Q. 3 Max.

eCDC|LBG1 13.69 8.72 -5.43 5.82 14.49 21.06 29.52
eCDCJ|LBG1 15.05 9.88 -5.76 6.42 15.98 24.78 34.05
eCDP |LBG1 13.65 9.28 -6.62 5.15 14.38 22.07 30.85
eCDPJ|LBG1 14.09 9.32 -5.62 5.72 14.68 22.57 31.77
eED|LBG1 15.13 9.33 -5.12 6.85 15.95 23.09 31.44
eEDJ|LBG1 16.16 11.12 -5.87 5.84 16.93 26.29 36.02
eJPM|LBG1 9.22 7.22 -9.01 3.84 11.77 14.65 20.05
eJPMJ|LBG1 9.29 7.08 -8.53 4.15 11.76 14.59 20.01
eST |LBG1 7.21 6.51 -8.15 2.21 6.91 12.83 19.19
eSTJ|LBG1 7.71 6.51 -7.65 2.71 7.41 13.33 19.69

eCDC|LBG2 16.25 11.52 -8.19 5.89 18.23 26.84 34.99
eCDCJ|LBG2 15.78 11.51 -9.33 5.63 17.81 26.37 35.03
eCDP |LBG2 15.72 12.38 -10.13 4.65 18.19 26.32 36.59
eCDPJ|LBG2 15.63 12.39 -9.98 4.33 18.05 26.22 36.16
eED|LBG2 18.33 12.85 -8.01 6.25 20.72 30.32 38.14
eEDJ|LBG2 18.21 14.85 -10.77 4.36 19.49 32.08 41.48
eJPM|LBG2 10.89 10.71 -14.75 7.88 15.19 18.29 26.67
eJPMJ|LBG2 10.99 10.52 -14.09 7.77 15.29 18.22 26.69
eST |LBG2 3.97 7.29 -16.18 -1.37 4.39 10.07 17.95
eSTJ|LBG2 3.27 7.29 -16.88 -2.07 3.69 9.38 17.25

(b) This table presents the error statistics of the different models for the LBG1 and LBG2
bond. ‘Std.’ stands for standard deviation, ‘Min.’ for minimum, ‘Q. 1’ for the first quantile,
‘Md.’ for median, ‘Q. 3’ for the third quantile and ‘Max.’ for maximum.

Table 5.3: Error statistics CS1/2, LBG1/2.
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Descriptive Statistics and Time Series

The subsequent pages present the descriptive statistics and time series figures

of the different pricing models for the four CoCos under consideration.

Credit Suisse CS1

Variable Value Description

N 1000 Face value
ci 7.875% Bond coupon rate, semi-annual
α 1 Full conversion
q 2.96% Dividend yield
λ 1 Jump intensity per year
μπ -0.49% Mean jump size

(0.0067)
σπ 14.03% Jump standard deviation

(0.0073)
S∗
CDC 6.13 Implied trigger share price CDC

(0.0011)
S∗
CDP 6.82 Implied trigger share price CDP

(0.0331)
S∗
CDCJ 6.75 Implied trigger share price CDCJ

(0.0002)
S∗
CDPJ 7.05 Implied trigger share price CDPJ

(0.0004)
S∗
ED 6.73 Implied trigger share price ED

(0.2280)
S∗
EDJ 8.11 Implied trigger share price EDJ

(0.1750)
S∗
JPM 4.85 Implied trigger share price JPM

(0.0068)
S∗
JPMJ 4.44 Implied trigger share price JPMJ

(0.0046)

(a) This table presents the static parameters of the credit, equity derivative and J.P. Morgan
model to price the CS1 CoCo. The standard errors of the jump distribution φ(μπ , σπ)
reported in brackets are calculated via bootstrap sampling. The standard error of S∗ reported
in brackets is calculated via the square root of the inverse of the hessian matrix.

Table 5.4: Descriptive statistics CS1 (continued)
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Variable Value Description

N 1000 Face value
ci 7.875% Bond coupon rate, semi-annual
α 1 Full conversion
q 2.96% Dividend yield
λ 1 Jump intensity per year
μπ -0.49% Mean jump size

(0.0067)
σπ 14.03% Jump standard deviation

(0.0073)
κ 0.0413 CIR Speed of convergence

(0.0109)
r̄ 7.42% Long-term interest rate

(0.0192)
σr 4.81% Standard deviation of interest rate

(0.0019)
g 0.5 Deposit-growth speed of convergence
x̂ 104.78% Target asset-to-deposit ratio
b0 0.19% Initial CoCo-to-deposit ratio
x∗
ST 101.42% Implied trigger asset-to-deposit ratio ST

(0.0012)
S∗
ST 12.53 Implied trigger share price ST

x∗
STJ 101.30% Implied trigger asset-to-deposit ratio STJ

(0.0015)
S∗
STJ 11.51 Implied trigger share price STJ

(b) This table presents the static parameters of the structural model to price the CS1 CoCo.
The standard errors of the jump distribution φ(μπ , σπ) reported in brackets are calculated
via bootstrap sampling. The standard error of x∗ reported in brackets is calculated via the
square root of the inverse of the hessian matrix.

Table 5.4: Descriptive statistics CS1 (continued)
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Variable Mean Std. Min. Q. 1 Md. Q. 3 Max.

ti (years) 4.05 - 2.65 3.34 4.05 4.75 5.5
St 27.47 6.38 15.81 23.05 26.85 29.8 44.41

CDSsub5
t 209.78 69.44 100.8 150.96 185.93 266.21 373.59

At 1067.88 67.45 969.18 993.7 1083.15 1125.19 1170.56

Dt 1030.64 70.83 927.44 951.39 1059.7 1085.63 1131.79

Et 37.24 9.09 21.39 29.92 35 46.23 53.96
σAt (%) 2.08 0.53 1.2 1.62 1.99 2.57 3.05
xt (%) 103.66 1.03 102.01 102.8 103.4 104.75 105.67
CET1 (%) 13.31 2.23 10 10.7 14.2 15.3 16.3
σt (%) 56.03 2.81 46.54 54.15 57.28 58.02 58.45
Cp

t 21.91 1.09 20.13 21.28 21.69 22.14 27.49

rf5t (%) 1.13 0.46 0.62 0.76 0.9 1.52 2.26

FXt 1.1 0.05 1.01 1.06 1.08 1.11 1.37

VCS1 101.33 5.71 86.58 97.21 102.65 106.14 110.73
VCDC 91.11 10.75 65.73 83.4 91.46 99.72 110.12
VCDCJ 91.28 10.51 66.59 83.66 91.82 99.86 109.72
VCDP 93.32 12.09 67.67 84.11 93.72 103.38 116.85
VCDPJ 92.84 11.59 67.13 84.06 93.39 102.85 113.87
VED 91.02 9.97 68.17 83.73 91.17 98.76 108.93
VEDJ 88.63 10.7 64.8 81.09 88.3 97.28 108.15
VJPM 94.77 5.49 81.71 90.29 96.49 99.44 103.97
VJPMJ 95.22 5.41 82.23 90.73 97.01 99.81 103.95
VST 96.38 6.57 84.62 90.78 94.89 103.18 106.03
VSTJ 96.42 6.66 85.62 90.57 95.19 103.24 107.53

(c) This table presents the dynamic parameters of the models to price the CS1 CoCo. The
lower part of the table presents the pricing results for the different models. All monetary
values are indicated in USD; the CDS spread is indicated in basis points. At, Dt and Et are
reported in billion. ‘Std.’ stands for standard deviation, ‘Min.’ for minimum, ‘Q. 1’ for
the first quantile, ‘Md.’ for median, ‘Q. 3’ for the third quantile and ‘Max.’ for maximum.
(source: based on Bürgi (2013))

Table 5.4: Descriptive statistics CS1.
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Figure 5.4: Diagram one shows the clean CoCo price as calculated with the credit
derivative model with constant conversion intensity, where the trigger share price
S∗ has been calibrated to match the first empirical price. The 95% confidence bands
result from the parameter uncertainty of the estimated five-year rolling volatility.
Diagram two shows the empirical stock price of Credit Suisse and the clean empirical
CS1 CoCo price in USD on the left y-axis and the core equity tier 1 ratio on the
right y-axis. Diagram three shows the absolute price error et = yt − ŷt, where ŷt
corresponds to the price calculated using the 50 percentile rolling standard deviation.
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Figure 5.5: Diagram one shows the clean CoCo price as calculated with the credit
derivative model with piecewise constant conversion intensity, where the trigger share
price S∗ has been calibrated to match the first empirical price. The 95% confidence
bands result from the parameter uncertainty of the estimated five-year rolling volatility.
Diagram two shows the empirical stock price of Credit Suisse and the clean empirical
CS1 CoCo price in USD on the left y-axis and the core equity tier 1 ratio on the
right y-axis. Diagram three shows the absolute price error et = yt − ŷt, where ŷt
corresponds to the price calculated using the 50 percentile rolling standard deviation.
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Figure 5.6: Diagram one shows the clean CoCo price as calculated with the credit
derivative model with constant conversion intensity including jumps, where the
trigger share price S∗ has been calibrated to match the first empirical price. The 95%
confidence bands result from the parameter uncertainty of the estimated five-year
rolling volatility. Diagram two shows the empirical stock price of Credit Suisse and
the clean empirical CS1 CoCo price in USD on the left y-axis and the core equity tier
1 ratio on the right y-axis. Diagram three shows the absolute price error et = yt − ŷt,
where ŷt corresponds to the price calculated using the 50 percentile rolling standard
deviation.
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Figure 5.7: Diagram one shows the clean CoCo price as calculated with the credit
derivative model with piecewise constant conversion intensity including jumps, where
the trigger share price S∗ has been calibrated to match the first empirical price. The
95% confidence bands result from the parameter uncertainty of the estimated five-year
rolling volatility. Diagram two shows the empirical stock price of Credit Suisse and
the clean empirical CS1 CoCo price in USD on the left y-axis and the core equity tier
1 ratio on the right y-axis. Diagram three shows the absolute price error et = yt − ŷt,
where ŷt corresponds to the price calculated using the 50 percentile rolling standard
deviation.
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Figure 5.8: Diagram one shows the clean CoCo price as calculated with the equity
derivative model, where the trigger share price S∗ has been calibrated to match the
first empirical price. The 95% confidence bands result from the parameter uncertainty
of the estimated five-year rolling volatility. Diagram two shows the empirical stock
price of Credit Suisse and the clean empirical CS1 CoCo price in USD on the left
y-axis and the core equity tier 1 ratio on the right y-axis. Diagram three shows the
absolute price error et = yt − ŷt, where ŷt corresponds to the price calculated using
the 50 percentile rolling standard deviation.
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Figure 5.9: Diagram one shows the clean CoCo price as calculated with the equity
derivative model including jumps, where the trigger share price S∗ has been calibrated
to match the first empirical price. The 95% confidence bands result from the parameter
uncertainty of the estimated five-year rolling volatility. Diagram two shows the
empirical stock price of Credit Suisse and the clean empirical CS1 CoCo price in
USD on the left y-axis and the core equity tier 1 ratio on the right y-axis. Diagram
three shows the absolute price error et = yt − ŷt, where ŷt corresponds to the price
calculated using the 50 percentile rolling standard deviation.
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Figure 5.10: Diagram one shows the clean CoCo price as calculated with the J.P.
Morgan model, where the trigger share price S∗ has been calibrated to match the
first empirical price. Diagram two shows the historical CDS spread on a five year
subordinated bond of Credit Suisse in basis points and the clean empirical CS1 CoCo
price in USD on the left y-axis and the core equity tier 1 ratio on the right y-axis.
Diagram three shows the absolute price error et = yt − ŷt, where ŷt corresponds to
the price calculated using the 50 percentile rolling standard deviation.
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Figure 5.11: Diagram one shows the clean CoCo price as calculated with the J.P.
Morgan model including jumps, where the trigger share price S∗ has been calibrated
to match the first empirical price. Diagram two shows the historical CDS spread on
a five year subordinated bond of Credit Suisse in basis points and the clean empirical
CS1 CoCo price in USD on the left y-axis and the core equity tier 1 ratio on the
right y-axis. Diagram three shows the absolute price error et = yt − ŷt, where ŷt
corresponds to the price calculated using the 50 percentile rolling standard deviation.
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Figure 5.12: Diagram one shows the clean CoCo price as calculated with the
structural model, where the trigger asset-to-deposit ratio x∗ has been calibrated to
match the first empirical price. The 95% confidence bands result from the parameter
uncertainty of the estimated five-year rolling volatility. Diagram two shows the
empirical stock price of Credit Suisse and the clean empirical CS1 CoCo price in
USD on the left y-axis and the core equity tier 1 ratio on the right y-axis. Diagram
three shows the absolute price error et = yt − ŷt, where ŷt corresponds to the price
calculated using the 50 percentile rolling standard deviation.



150 Chapter 5. Empirical Analysis and Model Comparison

60

80

100

120
STJ Price with 95% Confidence Bands (CS1)

P
ric

e

0

20

40

60

80

100

120
Credit Suisse Stock Price, CoCo Price and CET1 Ratio

P
ric

e

 

 

Stock Price (lhs)
CoCo Price (lhs)
CET1 Ratio (rhs)

10

15

20

C
E

T
1 

R
at

io
 in

 %

Apr11 Oct11 May12 Nov12 Jun13 Dec13
−10

0

10

20

Date

P
ric

e 
E

rr
or

Price Error with 95% Confidence Bands

Figure 5.13: Diagram one shows the clean CoCo price as calculated with the
structural model including jumps, where the trigger asset-to-deposit ratio x∗ has been
calibrated to match the first empirical price. The 95% confidence bands result from
the parameter uncertainty of the estimated five-year rolling volatility. Diagram two
shows the empirical stock price of Credit Suisse and the clean empirical CS1 CoCo
price in USD on the left y-axis and the core equity tier 1 ratio on the right y-axis.
Diagram three shows the absolute price error et = yt − ŷt, where ŷt corresponds to
the price calculated using the 50 percentile rolling standard deviation.
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Credit Suisse CS2

Variable Value Description

N 1000 Face value
ci 7.175% Bond coupon rate, semi-annual
α 1 Full conversion
q 2.96% Dividend yield
λ 1 Jump intensity per year
μπ -0.49% Mean jump size

(0.0067)
σπ 14.03% Jump standard deviation

(0.0073)
S∗
CDC 3.8 Implied trigger share price CDC

(0.0003)
S∗
CDP 3.94 Implied trigger share price CDP

(0.0051)
S∗
CDCJ 4.23 Implied trigger share price CDCJ

(0.0021)
S∗
CDPJ 4.31 Implied trigger share price CDPJ

(0.0026)
S∗
ED 4.01 Implied trigger share price ED

(0.1023)
S∗
EDJ 4.56 Implied trigger share price EDJ

(0.1510)
S∗
JPM 2.45 Implied trigger share price JPM

(0.0029)
S∗
JPMJ 2.27 Implied trigger share price JPMJ

(0.0072)

(a) This table presents the static parameters of the credit, equity derivative and J.P. Morgan
model to price the CS2 CoCo. The standard errors of the jump distribution φ(μπ , σπ) are
calculated via bootstrap sampling. The standard error of S∗ is calculated via the square root
of the inverse of the hessian matrix.

Table 5.5: Descriptive statistics CS2 (continued)
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Variable Value Description

N 1000 Face value
ci 7.175% Bond coupon rate, semi-annual
α 1 Full conversion
q 2.96% Dividend yield
λ 1 Jump intensity per year
μπ -0.49% Mean jump size

(0.0067)
σπ 14.03% Jump standard deviation

(0.0073)
κ 0.1751 CIR Speed of convergence

(0.0417)
r̄ 3.28% Long-term interest rate

(0.0077)
σr 6.4% Standard deviation of interest rate

(0.0028)
g 0.5 Deposit-growth speed of convergence
x̂ 104.78% Target asset-to-deposit ratio
b0 1.5% Initial CoCo-to-deposit ratio
x∗
ST 101.00% Implied trigger asset-to-deposit ratio ST

(0.0021)
S∗
ST 8.25 Implied trigger stock price ST

x∗
STJ 100.95% Implied trigger asset-to-deposit ratio STJ

(0.0018)
S∗
STJ 7.87 Implied trigger stock price STJ

(b) This table presents the static parameters of the structural model to price the CS2 CoCo.
The standard errors of the jump distribution φ(μπ , σπ) are calculated via bootstrap sampling.
The standard error of κ, r̄, σr and x∗ is calculated via the square root of the inverse of the
hessian matrix.

Table 5.5: Descriptive statistics CS2 (continued)
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Variable Mean Std. Min. Q. 1 Md. Q. 3 Max.

ti (years) 4.11 - 3.22 3.67 4.11 4.56 5
St (USD) 25.48 4.52 15.81 22.07 26.72 29.2 33.84

CDSsub5
t 197.72 67.13 100.8 147.05 172.39 239.93 346.09

At 1031.32 47.8 959.81 991.48 1020.91 1082.88 1107.64

Dt 994.48 55.4 911.81 94.13 978.53 1058.76 1074.52

Et 36.84 8.98 21.39 29.85 35.41 45.9 53.37
σAt (%) 2.05 0.52 1.17 1.65 2.07 2.55 2.94
xt (%) 103.76 1.09 102.01 102.87 103.66 104.83 105.67
CET1 (%) 14.82 1.21 12.5 14.2 14.7 16 16.3
σt (%) 56.59 3.11 46.55 57.26 57.66 58.17 58.48

rf5t (%) 0.18 0.16 0.00 0.04 0.17 0.33 0.42

VCS2 104.99 3.54 97.1 101.9 106.2 107.13 111.3
VCDC 101.08 10.12 78.88 94.34 103.03 107.96 118.08
VCDCJ 101.59 9.99 78.79 94.68 103.53 108.29 118.09
VCDP 105.31 11.38 80.77 97.89 107.51 113.75 123.55
VCDPJ 106.11 11.23 82.32 98.68 108.22 114.37 124.06
VED 100.87 9.65 79.38 94.25 104.41 107.33 117.6
VEDJ 100.42 10.47 77.26 93.48 102.03 107.31 118.55
VJPM 103.04 5.19 90.63 99.23 105.23 107.06 109.43
VJPMJ 103.22 5.15 90.96 100.09 105.36 107.22 109.52
VST 103.89 4.51 97.38 99.25 103.11 108.89 111.01
VSTJ 102.42 4.23 96.96 99.01 102.51 108.25 110.28

(c) This table presents the dynamic parameters of the models to price the CS2 CoCo. The
lower part of the table presents the pricing results for the different models. At, Dt and Et

are reported in billion. ‘Std.’ stands for standard deviation, ‘Min.’ for minimum, ‘Q. 1’ for
the first quantile, ‘Md.’ for median, ‘Q. 3’ for the third quantile and ‘Max.’ for maximum.
(source: based on Bürgi (2013))

Table 5.5: Descriptive statistics CS2.
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Figure 5.14: Diagram one shows the clean CoCo price as calculated with the credit
derivative model with constant conversion intensity, where the trigger share price S∗

has been calibrated to match the first empirical price. The 95% confidence bands result
from the parameter uncertainty of the estimated five-year rolling volatility. Diagram
two shows the empirical stock price of Credit Suisse in USD and the clean empirical
CS2 CoCo price in CHF on the left y-axis and the core equity tier 1 ratio on the
right y-axis. Diagram three shows the absolute price error et = yt − ŷt, where ŷt
corresponds to the price calculated using the 50 percentile rolling standard deviation.
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Figure 5.15: Diagram one shows the clean CoCo price as calculated with the credit
derivative model with piecewise constant conversion intensity, where the trigger share
price S∗ has been calibrated to match the first empirical price. The 95% confidence
bands result from the parameter uncertainty of the estimated five-year rolling volatility.
Diagram two shows the empirical stock price of Credit Suisse in USD and the clean
empirical CS2 CoCo price in CHF on the left y-axis and the core equity tier 1 ratio on
the right y-axis. Diagram three shows the absolute price error et = yt − ŷt, where ŷt
corresponds to the price calculated using the 50 percentile rolling standard deviation.
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Figure 5.16: Diagram one shows the clean CoCo price as calculated with the
credit derivative model with constant conversion intensity including jumps, where
the trigger share price S∗ has been calibrated to match the first empirical price. The
95% confidence bands result from the parameter uncertainty of the estimated five-year
rolling volatility. Diagram two shows the empirical stock price of Credit Suisse in
USD and the clean empirical CS2 CoCo price in CHF on the left y-axis and the core
equity tier 1 ratio on the right y-axis. Diagram three shows the absolute price error
et = yt − ŷt, where ŷt corresponds to the price calculated using the 50 percentile
rolling standard deviation.
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Figure 5.17: Diagram one shows the clean CoCo price as calculated with the credit
derivative model with piecewise constant conversion intensity including jumps, where
the trigger share price S∗ has been calibrated to match the first empirical price. The
95% confidence bands result from the parameter uncertainty of the estimated five-year
rolling volatility. Diagram two shows the empirical stock price of Credit Suisse in
USD and the clean empirical CS2 CoCo price in CHF on the left y-axis and the core
equity tier 1 ratio on the right y-axis. Diagram three shows the absolute price error
et = yt − ŷt, where ŷt corresponds to the price calculated using the 50 percentile
rolling standard deviation.
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Figure 5.18: Diagram one shows the clean CoCo price as calculated with the equity
derivative model, where the trigger share price S∗ has been calibrated to match the
first empirical price. The 95% confidence bands result from the parameter uncertainty
of the estimated five-year rolling volatility. Diagram two shows the empirical stock
price of Credit Suisse in USD and the clean empirical CS2 CoCo price in CHF on the
left y-axis and the core equity tier 1 ratio on the right y-axis. Diagram three shows
the absolute price error et = yt − ŷt, where ŷt corresponds to the price calculated
using the 50 percentile rolling standard deviation.



5.3. Model Comparison 159

60

80

100

120
EDJ Price with 95% Confidence Bands (CS2)

P
ric

e

0

20

40

60

80

100

120
Credit Suisse Stock Price, CoCo Price and CET1 Ratio

P
ric

e

 

 

Stock Price (lhs)
CoCo Price (lhs)
CET1 Ratio (rhs)

10

15

20

C
E

T
1 

R
at

io
 in

 %

May12 Nov12 Jun13 Dec13
−20

−10

0

10

20

30

Date

P
ric

e 
E

rr
or

Price Error with 95% Confidence Bands

Figure 5.19: Diagram one shows the clean CoCo price as calculated with the
equity derivative model including jumps, where the trigger share price S∗ has been
calibrated to match the first empirical price. The 95% confidence bands result from
the parameter uncertainty of the estimated five-year rolling volatility. Diagram two
shows the empirical stock price of Credit Suisse in USD and the clean empirical
CS2 CoCo price in CHF on the left y-axis and the core equity tier 1 ratio on the
right y-axis. Diagram three shows the absolute price error et = yt − ŷt, where ŷt
corresponds to the price calculated using the 50 percentile rolling standard deviation.
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Figure 5.20: Diagram one shows the clean CoCo price as calculated with the J.P.
Morgan model, where the trigger share price S∗ has been calibrated to match the
first empirical price. Diagram two shows the historical CDS spread on a five year
subordinated bond of Credit Suisse in basis points and the clean empirical CS2 CoCo
price in CHF on the left y-axis and the core equity tier 1 ratio on the right y-axis.
Diagram three shows the absolute price error et = yt − ŷt, where ŷt corresponds to
the price calculated using the 50 percentile rolling standard deviation.
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Figure 5.21: Diagram one shows the clean CoCo price as calculated with the J.P.
Morgan model including jumps, where the trigger share price S∗ has been calibrated
to match the first empirical price. Diagram two shows the historical CDS spread on
a five year subordinated bond of Credit Suisse in basis points and the clean empirical
CS2 CoCo price in CHF on the left y-axis and the core equity tier 1 ratio on the
right y-axis. Diagram three shows the absolute price error et = yt − ŷt, where ŷt
corresponds to the price calculated using the 50 percentile rolling standard deviation.
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Figure 5.22: Diagram one shows the clean CoCo price as calculated with the
structural model, where the trigger asset-to-deposit ratio x∗ has been calibrated to
match the first empirical price. The 95% confidence bands result from the parameter
uncertainty of the estimated five-year rolling volatility. Diagram two shows the
empirical stock price of Credit Suisse in USD and the clean empirical CS2 CoCo
price in CHF on the left y-axis and the core equity tier 1 ratio on the right y-axis.
Diagram three shows the absolute price error et = yt − ŷt, where ŷt corresponds to
the price calculated using the 50 percentile rolling standard deviation.
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Figure 5.23: Diagram one shows the clean CoCo price as calculated with the
structural model including jumps, where the trigger asset-to-deposit ratio x∗ has been
calibrated to match the first empirical price. The 95% confidence bands result from
the parameter uncertainty of the estimated five-year rolling volatility. Diagram two
shows the empirical stock price of Credit Suisse in USD and the clean empirical
CS2 CoCo price in CHF on the left y-axis and the core equity tier 1 ratio on the
right y-axis. Diagram three shows the absolute price error et = yt − ŷt, where ŷt
corresponds to the price calculated using the 50 percentile rolling standard deviation.
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Lloyds Banking Group LBG1

Variable Value Description

N 1000 Face value
ci 7.5884% Bond coupon rate, semi-annual
α 1 Full conversion
q 0% Dividend yield
λ 1 Jump intensity per year
μπ -1.28% Mean jump size

(0.0152)
σπ 18.74% Jump standard deviation

(0.0186)
S∗
CDC 3.92 Implied trigger share price CDC

(0.0041)
S∗
CDP 5.01 Implied trigger share price CDP

(0.0027)
S∗
CDCJ 4.32 Implied trigger share price CDCJ

(0.0003)
S∗
CDPJ 5.24 Implied trigger share price CDPJ

(0.0013)
S∗
ED 5.36 Implied trigger share price ED

(0.32)
S∗
EDJ 6.91 Implied trigger share price EDJ

(0.2987)
S∗
JPM 4.06 Implied trigger share price JPM

(0.0016)
S∗
JPMJ 3.58 Implied trigger share price JPMJ

(0.0013)

(a) This table presents the static parameters of the credit, equity derivative and J.P. Morgan
model to price the LBG1 CoCo. The standard errors of the jump distribution φ(μπ , σπ) are
calculated via bootstrap sampling. The standard error of S∗ is calculated via the square root
of the inverse of the hessian matrix.

Table 5.6: Descriptive statistics LBG1 (continued)



5.3. Model Comparison 165

Variable Value Description

N 1000 Face value
ci 7.5884% Bond coupon rate, semi-annual
α 1 Full conversion
q 0% Dividend yield
λ 1 Jump intensity per year
μπ -1.28% Mean jump size

(0.0152)
σπ 18.74% Jump standard deviation

(0.0186)
κ 0.2050 CIR Speed of convergence

(0.0252)
r̄ 3.87% Long-term interest rate

(0.0043)
σr 3.81% Standard deviation of interest rate

(0.0017)
g 0.5 Deposit-growth speed of convergence
x̂ 104.17% Target asset-to-deposit ratio
b0 2% Initial CoCo-to-deposit ratio
x∗
ST 100.94% Implied trigger asset-to-deposit ratio ST

(0.0267)
S∗
ST 14.67 Implied trigger stock price ST

x∗
STJ 100.85% Implied trigger asset-to-deposit ratio STJ

(0.0189)
S∗
STJ 13.23 Implied trigger stock price STJ

(b) This table presents the static parameters of the structural model to price the LBG1
CoCo. The standard errors of the jump distribution φ(μπ , σπ) are calculated via bootstrap
sampling. The standard error of κ, r̄, σr and x∗ is calculated via the square root of the
inverse of the hessian matrix.

Table 5.6: Descriptive statistics LBG1 (continued)



166 Chapter 5. Empirical Analysis and Model Comparison

Variable Mean Std. Min. Q. 1 Md. Q. 3 Max.

ti (years) 8.41 - 6.37 7.39 8.41 9.43 10.45
St (GBp) 52.12 15.96 21.84 35.8 53.38 65.79 80.37

CDSsub10
t 395.04 150.52 168 276.23 342.19 514.1 772.25

At 953.87 47.58 877.4 915.01 945.85 994.42 1028.44

Dt 917.9 49.02 829.14 880.82 925.92 949.83 988.14

Et 35.97 11.17 15.01 24.64 36.17 44.9 57.36
σAt (%) 2.87 0.95 1.19 2 2.83 3.46 4.97
xt (%) 103.95 1.33 101.61 102.66 103.9 104.83 106.87
CET1 (%) 10.68 1.69 6.3 9.5 10.4 11.5 14
σt (%) 71.15 2.79 63.62 69.08 70.61 74.02 74.87

rf10t (%) 2.8 0.77 1.64 2.17 2.76 3.49 4.09

VLBG1 91.29 10.55 68.82 83.36 89.46 103.11 109.15
VCDC 77.59 10.62 53.81 68.21 79.36 83.29 107.28
VCDCJ 75.79 11.81 50.25 65.21 77.99 82.83 106.99
VCDP 77.65 11.28 48.18 69.05 79.99 83.93 105.17
VCDPJ 77.12 11.33 46.99 68.44 79.63 83.58 105.06
VED 76.17 10.7 51.25 66.43 78.28 82.77 104.09
VEDJ 75.13 12.89 45.86 63.35 77.22 83.75 106.54
VJPM 82.08 11.26 55.97 73.29 84.11 91.39 103.03
VJPMJ 81.99 11.06 56.28 73.4 83.97 91.01 102.67
VST 86.87 7.85 78.12 80.09 83.23 92.21 103.92
VSTJ 85.73 7.56 77.67 79.71 83.01 91.71 102.99

(c) This table presents the dynamic parameters of the models to price the LBG1 CoCo.
All monetary values are reported in GBP (unless otherwise indicated); the CDS spread is
indicated in basis points. At, Dt and Et are reported in billion. ‘Std.’ stands for standard
deviation, ‘Min.’ for minimum, ‘Q. 1’ for the first quantile, ‘Md.’ for median, ‘Q. 3’ for the
third quantile and ‘Max.’ for maximum. (source: based on Bürgi (2013))

Table 5.6: Descriptive statistics LBG1.
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Figure 5.24: Diagram one shows the CoCo price calculated with the credit derivative
model with constant conversion intensity, where the trigger share price S∗ has been
calibrated to match the first empirical price. The 95% confidence bands result from the
parameter uncertainty of the estimated five-year rolling volatility. Diagram two shows
the empirical stock price of Lloyds Banking Group in GBp and the clean empirical
LBG1 CoCo price in GBP on the left y-axis and the core equity tier 1 ratio on the
right y-axis. Diagram three shows the absolute price error et = yt − ŷt, where ŷt
corresponds to the price calculated using the 50 percentile rolling standard deviation.
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Figure 5.25: Diagram one shows the CoCo price calculated with the credit derivative
model with piecewise constant conversion intensity, where the trigger share price S∗

has been calibrated to match the first empirical price. The 95% confidence bands result
from the parameter uncertainty of the estimated five-year rolling volatility. Diagram
two shows the empirical stock price of Lloyds Banking Group in GBp and the clean
empirical LBG1 CoCo price in GBP on the left y-axis and the core equity tier 1
ratio on the right y-axis. Diagram three shows the absolute price error et = yt − ŷt,
where ŷt corresponds to the price calculated using the 50 percentile rolling standard
deviation.
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Figure 5.26: Diagram one shows the CoCo price calculated with the credit derivative
model with constant conversion intensity including jumps, where the trigger share
price S∗ has been calibrated to match the first empirical price. The 95% confidence
bands result from the parameter uncertainty of the estimated five-year rolling volatility.
Diagram two shows the empirical stock price of Lloyds Banking Group in GBp and
the clean empirical LBG1 CoCo price with in GBP on the left y-axis and the core
equity tier 1 ratio on the right y-axis. Diagram three shows the absolute price error
et = yt − ŷt, where ŷt corresponds to the price calculated using the 50 percentile
rolling standard deviation.
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Figure 5.27: Diagram one shows the CoCo price calculated with the credit derivative
model with piecewise constant conversion intensity including jumps, where the trigger
share price S∗ has been calibrated to match the first empirical price. The 95%
confidence bands result from the parameter uncertainty of the estimated five-year
rolling volatility. Diagram two shows the empirical stock price of Lloyds Banking
Group in GBp and the clean empirical LBG1 CoCo price in GBP on the left y-axis
and the core equity tier 1 ratio on the right y-axis. Diagram three shows the absolute
price error et = yt − ŷt, where ŷt corresponds to the price calculated using the 50
percentile rolling standard deviation.
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Figure 5.28: Diagram one shows the CoCo price calculated with the equity derivative
model, where the trigger share price S∗ has been calibrated to match the first empirical
price. The 95% confidence bands result from the parameter uncertainty of the
estimated five-year rolling volatility. Diagram two shows the empirical stock price of
Lloyds Banking Group in GBp and the clean empirical LBG1 CoCo price in GBP on
the left y-axis and the core equity tier 1 ratio on the right y-axis. Diagram three shows
the absolute price error et = yt − ŷt, where ŷt corresponds to the price calculated
using the 50 percentile rolling standard deviation.
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Figure 5.29: Diagram one shows the CoCo price calculated with the equity derivative
model including jumps, where the trigger share price S∗ has been calibrated to match
the first empirical price. The 95% confidence bands result from the parameter
uncertainty of the estimated five-year rolling volatility. Diagram two shows the
empirical stock price of Lloyds Banking Group in GBp and the clean empirical LBG1
CoCo price in GBP on the left y-axis and the core equity tier 1 ratio on the right
y-axis. Diagram three shows the absolute price error et = yt−ŷt, where ŷt corresponds
to the price calculated using the 50 percentile rolling standard deviation.
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Figure 5.30: Diagram one shows the clean CoCo price as calculated with the J.P.
Morgan model, where the trigger share price S∗ has been calibrated to match the
first empirical price. Diagram two shows the historical CDS spread on a five year
subordinated bond of Lloyds Banking Group in basis points and the clean empirical
LBG1 CoCo price in GBP on the left y-axis and the core equity tier 1 ratio on the
right y-axis. Diagram three shows the absolute price error et = yt − ŷt, where ŷt
corresponds to the price calculated using the 50 percentile rolling standard deviation.
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Figure 5.31: Diagram one shows the clean CoCo price as calculated with the J.P.
Morgan model including jumps, where the trigger share price S∗ has been calibrated
to match the first empirical price. Diagram two shows the historical CDS spread
on a five year subordinated bond of Lloyds Banking Group in basis points and the
clean empirical LBG1 CoCo price in GBP on the left y-axis and the core equity tier
1 ratio on the right y-axis. Diagram three shows the absolute price error et = yt − ŷt,
where ŷt corresponds to the price calculated using the 50 percentile rolling standard
deviation.
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Figure 5.32: Diagram one shows the CoCo price calculated with the structural
model, where the trigger asset-to-deposit ratio x∗ has been calibrated to match the
first empirical price. The 95% confidence bands result from the parameter uncertainty
of the estimated five-year rolling volatility. Diagram two shows the empirical stock
price of Lloyds Banking Group in GBp and the clean empirical LBG1 CoCo price in
GBP on the left y-axis and the core equity tier 1 ratio on the right y-axis. Diagram
three shows the absolute price error et = yt − ŷt, where ŷt corresponds to the price
calculated using the 50 percentile rolling standard deviation.
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Figure 5.33: Diagram one shows the CoCo price calculated with the structural model
including jumps, where the trigger asset-to-deposit ratio x∗ has been calibrated to
match the first empirical price. The 95% confidence bands result from the parameter
uncertainty of the estimated five-year rolling volatility. Diagram two shows the
empirical stock price of Lloyds Banking Group in GBp and the clean empirical LBG1
CoCo price in GBP on the left y-axis and the core equity tier 1 ratio on the right
y-axis. Diagram three shows the absolute price error et = yt−ŷt, where ŷt corresponds
to the price calculated using the 50 percentile rolling standard deviation.
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Lloyds Banking Group LBG2

Variable Value Description

N 1000 Face value
ci 15% Bond coupon rate, semi-annual
α 1 Full conversion
q 0% Dividend yield
λ 1 Jump intensity per year
μπ -1.28% Mean jump size

(0.0152)
σπ 18.74% Jump standard deviation

(0.0186)
S∗
CDC 4.26 Implied trigger share price CDC

(0.0089)
S∗
CDP 5.51 Implied trigger share price CDP

(0.0067)
S∗
CDCJ 4.56 Implied trigger share price CDCJ

(0.0012)
S∗
CDPJ 5.67 Implied trigger share price CDPJ

(0.0014)
S∗
ED 5.86 Implied trigger share price ED

(0.4124)
S∗
EDJ 7.09 Implied trigger share price EDJ

(0.3891)
S∗
JPM 4.48 Implied trigger share price JPM

(0.0018)
S∗
JPMJ 3.97 Implied trigger share price JPMJ

(0.0021)

(a) This table presents the static parameters of the credit, equity derivative and J.P. Morgan
model to price the LBG2 CoCo. The standard errors of the jump distribution φ(μπ , σπ) are
calculated via bootstrap sampling. The standard error of S∗ is calculated via the square root
of the inverse of the hessian matrix.

Table 5.7: Descriptive statistics LBG2 (continued)
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Variable Value Description

N 1000 Face value
ci 15% Bond coupon rate, semi-annual
α 1 Full conversion
q 0% Dividend yield
λ 1 Jump intensity per year
μπ -1.28% Mean jump size

(0.0152)
σπ 18.74% Jump standard deviation

(0.0186)
κ 0.2050 CIR Speed of convergence

(0.0252)
r̄ 3.87% Long-term interest rate

(0.0043)
σr 3.81% Standard deviation of interest rate

(0.0017)
g 0.5 Deposit-growth speed of convergence
x̂ 104.17 Target asset-to-deposit ratio
b0 2% Initial CoCo-to-deposit ratio
x∗
ST 100.99% Implied trigger asset-to-deposit ratio ST

(0.0135)
S∗
ST 15.51 Implied trigger stock price ST

x∗
STJ 100.94% Implied trigger asset-to-deposit ratio STJ

(0.0135)
S∗
STJ 14.58 Implied trigger stock price STJ

(b) This table presents the static parameters of the structural model to price the LBG2
CoCo. The standard errors of the jump distribution φ(μπ , σπ) are calculated via bootstrap
sampling. The standard error of κ, r̄, σr and x∗ is calculated via the square root of the
inverse of the hessian matrix.

Table 5.7: Descriptive statistics LBG2 (continued)
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Variable Mean Std. Min. Q. 1 Md. Q. 3 Max.

ti (years) 8.01 - 5.98 7 8.02 9.04 10.06
St (GBp) 52.14 15.96 21.84 35.81 53.42 65.86 80.37

CDSsub10
t 394.85 150.14 168 275.75 342.46 513.01 772.25

At 953.77 47.59 877.4 915.14 945.86 994.52 1028.44

Dt 917.78 49.07 829.14 881.14 926.03 949.94 988.14

Et 35.99 11.17 15.01 24.65 36.18 44.93 57.36
σAt (%) 2.87 0.99 1.19 1.98 2.81 3.46 5.09
xt (%) 103.95 1.33 101.61 102.66 103.9 104.84 106.87
CET1 (%) 10.69 1.69 6.3 9.5 10.4 11.5 14
σt (%) 71.15 2.79 63.62 69.08 70.61 74.02 74.87

rf10t (%) 2.8 0.77 1.64 2.17 2.76 3.49 4.09

VCoCo 129.77 11.39 103.89 121.5 129.85 139.28 148.15
VCDC 113.52 12.98 82.6 102.23 117.52 123.78 136.26
VCDCJ 113.98 12.93 82.76 102.59 117.69 124.12 136.72
VCDP 114.05 14.34 73.97 103.35 117.69 125.12 136.27
VCDPJ 114.14 14.32 73.98 103.37 117.73 124.99 137.07
VED 111.44 14.52 75.7 98.52 115.89 123.44 133.6
VEDJ 111.56 17.14 69.61 96.02 116.36 126.18 138.98
VJPM 118.88 13.86 86.39 107.65 122.63 128.69 142.37
VJPMJ 118.77 13.6 86.78 107.83 122.52 128.41 141.54
VST 125.81 5.51 113.74 121.09 126.11 130.54 135.09
VSTJ 124.50 5.24 112.64 120.79 125.81 130.24 134.79

(c) This table presents the dynamic parameters of the models to price the LBG2 CoCo.
All monetary values are reported in GBP (unless otherwise indicated); the CDS spread is
indicated in basis points. At, Dt and Et are reported in billion. ‘Std.’ stands for standard
deviation, ‘Min.’ for minimum, ‘Q. 1’ for the first quantile, ‘Md.’ for median, ‘Q. 3’ for the
third quantile and ‘Max.’ for maximum. (source: based on Bürgi (2013))

Table 5.7: Descriptive statistics credit derivative model LBG2
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Figure 5.34: Diagram one shows the CoCo price calculated with the credit derivative
model with constant conversion intensity, where the trigger share price S∗ has been
calibrated to match the first empirical price. The 95% confidence bands result from the
parameter uncertainty of the estimated five-year rolling volatility. Diagram two shows
the empirical stock price of Lloyds Banking Group in GBp and the clean empirical
LBG2 CoCo price in GBP on the left y-axis and the core equity tier 1 ratio on the
right y-axis. Diagram three shows the absolute price error et = yt − ŷt, where ŷt
corresponds to the price calculated using the 50 percentile rolling standard deviation.
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Figure 5.35: Diagram one shows the CoCo price calculated with the credit derivative
model with piecewise constant conversion intensity, where the trigger share price S∗

has been calibrated to match the first empirical price. The 95% confidence bands result
from the parameter uncertainty of the estimated five-year rolling volatility. Diagram
two shows the empirical stock price of Lloyds Banking Group in GBp and the clean
empirical LBG2 CoCo price in GBP on the left y-axis and the core equity tier 1
ratio on the right y-axis. Diagram three shows the absolute price error et = yt − ŷt,
where ŷt corresponds to the price calculated using the 50 percentile rolling standard
deviation.
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Figure 5.36: Diagram one shows the CoCo price calculated with the credit derivative
model with constant conversion intensity including jumps, where the trigger share
price S∗ has been calibrated to match the first empirical price. The 95% confidence
bands result from the parameter uncertainty of the estimated five-year rolling volatility.
Diagram two shows the empirical stock price of Lloyds Banking Group in GBp and the
clean empirical LBG2 CoCo price in GBP on the left y-axis and the core equity tier
1 ratio on the right y-axis. Diagram three shows the absolute price error et = yt − ŷt,
where ŷt corresponds to the price calculated using the 50 percentile rolling standard
deviation.
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Figure 5.37: Diagram one shows the CoCo price calculated with the credit derivative
model with piecewise constant conversion intensity including jumps, where the trigger
share price S∗ has been calibrated to match the first empirical price. The 95%
confidence bands result from the parameter uncertainty of the estimated five-year
rolling volatility. Diagram two shows the empirical stock price of Lloyds Banking
Group in GBp and the clean empirical LBG2 CoCo price in GBP on the left y-axis
and the core equity tier 1 ratio on the right y-axis. Diagram three shows the absolute
price error et = yt − ŷt, where ŷt corresponds to the price calculated using the 50
percentile rolling standard deviation.
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Figure 5.38: Diagram one shows the CoCo price calculated with the equity derivative
model, where the trigger share price S∗ has been calibrated to match the first empirical
price. The 95% confidence bands result from the parameter uncertainty of the
estimated five-year rolling volatility. Diagram two shows the empirical stock price of
Lloyds Banking Group in GBp and the clean empirical LBG2 CoCo price in GBP on
the left y-axis and the core equity tier 1 ratio on the right y-axis. Diagram three shows
the absolute price error et = yt − ŷt, where ŷt corresponds to the price calculated
using the 50 percentile rolling standard deviation.
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Figure 5.39: Diagram one shows the CoCo price calculated with the equity derivative
model including jumps, where the trigger share price S∗ has been calibrated to match
the first empirical price. The 95% confidence bands result from the parameter
uncertainty of the estimated five-year rolling volatility. Diagram two shows the
empirical stock price of Lloyds Banking Group in GBp and the clean empirical LBG2
CoCo price in GBP on the left y-axis and the core equity tier 1 ratio on the right
y-axis. Diagram three shows the absolute price error et = yt−ŷt, where ŷt corresponds
to the price calculated using the 50 percentile rolling standard deviation.
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Figure 5.40: Diagram one shows the clean CoCo price as calculated with the J.P.
Morgan model, where the trigger share price S∗ has been calibrated to match the
first empirical price. Diagram two shows the historical CDS spread on a five year
subordinated bond of Lloyds Banking Group in basis points and the clean empirical
LBG2 CoCo price in GBP on the left y-axis and the core equity tier 1 ratio on the
right y-axis. Diagram three shows the absolute price error et = yt − ŷt, where ŷt
corresponds to the price calculated using the 50 percentile rolling standard deviation.
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Figure 5.41: Diagram one shows the clean CoCo price as calculated with the J.P.
Morgan model including jumps, where the trigger share price S∗ has been calibrated
to match the first empirical price. Diagram two shows the historical CDS spread
on a five year subordinated bond of Lloyds Banking Group in basis points and the
clean empirical LBG2 CoCo price in GBP on the left y-axis and the core equity tier
1 ratio on the right y-axis. Diagram three shows the absolute price error et = yt − ŷt,
where ŷt corresponds to the price calculated using the 50 percentile rolling standard
deviation.
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Figure 5.42: Diagram one shows the CoCo price calculated with the structural
model, where the trigger asset-to-deposit ratio x∗ has been calibrated to match the
first empirical price. The 95% confidence bands result from the parameter uncertainty
of the estimated five-year rolling volatility. Diagram two shows the empirical stock
price of Lloyds Banking Group in GBp and the clean empirical LBG2 CoCo price in
GBP on the left y-axis and the core equity tier 1 ratio on the right y-axis. Diagram
three shows the absolute price error et = yt − ŷt, where ŷt corresponds to the price
calculated using the 50 percentile rolling standard deviation.
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Figure 5.43: Diagram one shows the CoCo price calculated with the structural model
including jumps, where the trigger asset-to-deposit ratio x∗ has been calibrated to
match the first empirical price. The 95% confidence bands result from the parameter
uncertainty of the estimated five-year rolling volatility. Diagram two shows the
empirical stock price of Lloyds Banking Group in GBp and the clean empirical LBG2
CoCo price in GBP on the left y-axis and the core equity tier 1 ratio on the right
y-axis. Diagram three shows the absolute price error et = yt−ŷt, where ŷt corresponds
to the price calculated using the 50 percentile rolling standard deviation.
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Chapter 6

Conclusion and Outlook

The thesis presented contingent convertible capital both in a qualitative and a

quantitative framework, fostering the transparency and understanding of the

new capital instrument and advancing in the field of pricing.

Whereas the first chapter provided the economic background and rationale

of contingent convertible capital, the second chapter outlined its anatomy,

revealing important insights with regards to the value drivers and design

characteristics and the potential impact of the latter on the risk-profile both

from an equity- and bondholder perspective. The introduction of the pricing

models in chapter three illustrated the angle and the theory based on which

the models approach the task and revealed intricate details with regards to

their implementation and parametrization. Chapter three also enhanced the

models’ capabilities to include discontinuous returns and improve their ability

to reflect fat-tail behaviour in the risky dynamics. Furthermore, the pricing

examples of a generic CoCo served as a first price indication. The dynamics and

sensitivity analysis in chapter four allowed to study the model behaviour with

respect to single parameter movements, aiding to understand the mechanics

of the models and enabling to learn about the impact of CoCo specific design

characteristics and examine a jump versus non-jump environment. Chapter

five finally collated the models in an extensive empirical setting, by conducting

a time series analysis on Credit Suisse and Lloyds Banking Group CoCos,

effectively revealing their real world performance.
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Clearly the models exhibit different implementation complexities, reaching

from a relatively simple ‘rule-of-thumb’ approach with the credit derivative

model to a highly involved and complex implementation in the case of the

equity derivative approach with discontinuous returns. In general, allowing

for non-continuous risky dynamics clearly increases the implementation effort

and takes a toll on the computational efficiency. To this end, closed form and

semi-closed form approaches as e.g. the credit and equity derivative models

or the J.P. Morgan approach vastly outperform simulation based models in

terms of computational time.

Additionally, the parametrization poses one of the main issues. While

the relevant pricing parameters are readily available in the markets for the

credit derivative, equity derivative and J.P. Morgan approach, the structural

model includes several non-observable variables and involves further calibration

techniques. Moreover, each of the variables is attached with uncertainties,

which can lead to large price spans as observed in the empirical analysis.

The models have been found to show a similar behaviour to changes in the

maturity, the risk-free rate and the volatility level. More interestingly, the price

reaction when the trigger price is approached is most pronounced in the credit

derivative model with piecewise constant conversion intensity and least marked

in the structural model. Importantly, the sensitivity analysis for varying trigger

levels revealed a double equilibrium problem for the credit, equity derivative

and J.P. Morgan approach, where the models exhibit the same price level at

different trigger points. Furthermore, the analysis of the models for different

jump configurations with a constant process variance revealed that adding

the possibility of discontinuous returns has little to no effect in the credit

derivative and J.P. Morgan model. However, the structural approach exhibits

clear pricing differences, where adding jumps generally decreases the price

levels. The option based equity derivative model has even shown increasing

prices when adding jumps.

Under the given circumstances the models universally suggest too low CoCo

prices as the price errors are mostly positive during the observation period.
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This might indicate that the models overestimate the risk or conversely that the

markets underestimate it. Clearly the model prices are strongly dependent on

the parametrization of the primary input factors. Even though the structural

model is one of the more complex ones to implement, it fares better than any

of the purely stock price driven models, as they exhibit too high sensitivities

especially in times of depressed stock price levels. As a result the model fit of

the credit and equity derivative model, as measured by the root mean squared

error and the mean absolute scaled error, is on average more than twice as

large as with the structural model. As a close second it has been found that

the J.P. Morgan model performs rather well, as it exhibits pricing errors close

to those of the structural approach.

Finally, the overall low levels of the implied trigger share prices underpin

the conceptual risk-profile outlined in chapter two, where a CoCo was shown

to be an instrument that can result in a high loss but with a low probability.

It remains to be seen what model will persevere in the markets. Certainly

more academic work will be devoted to this topic and very likely additional

pricing models or derivatives of existing ones will appear. The findings of

this thesis clearly suggest to focus on structural models, as they provide the

natural framework for capital ratio triggered CoCos. Furthermore, the research

focus should lie less on trying to enhance the underlying risky dynamics of

the models, as it has been shown to have a very minor impact at best under

the given circumstances. Further efforts should rather be spent on trying

to evaluate and capture the essential value drivers of a CoCo, which with

increasing empirical data will lead to more robust pricing models.
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Issue Date ISIN Denomination Coupon Maturity

01.12.2009 XS0459090188 GBP 147m 9.125% 15.07.2020

01.12.2009 XS0459091582 GBP 151m 7.625% 09.12.2019

01.12.2009 XS0459091665 GBP 96m 9% 15.12.2019

01.12.2009 XS0459092473 GBP 68m 10.5% 29.09.2023

01.12.2009 XS0459092804 GBP 107m 9% 15.07.2029

01.12.2009 XS0459092986 GBP 104m 8.5% 07.06.2032

01.12.2009 XS0459090691 GBP 38m 11.125% 04.11.2020

01.12.2009 XS0459090774 EUR 94m 7.375% 12.03.2020

01.12.2009 XS0459090931 EUR 53m 3mE + 310bps 12.03.2020

01.12.2009 XS0459091079 GBP 57m 12.75% 10.08.2020

01.12.2009 XS0459091236 EUR 226m 7.625% 14.10.2020

01.12.2009 XS0459091749 GBP 4m 8.125% 15.12.2019

01.12.2009 XS0459091822 GBP 79m 14.5% 30.01.2022

01.12.2009 XS0459092127 GBP 57m 9.875% 10.02.2023

01.12.2009 XS0459092390 GBP 38m 11.25% 14.09.2023

01.12.2009 XS0459092556 GBP 35m 11.875% 01.09.2024

01.12.2009 XS0459093281 GBP 61m 16.125% 10.12.2024

01.12.2009 XS0459088281 EUR 710m 6.439% 23.05.2020

01.12.2009 XS0459088877 GBP 736m 11.04% 19.03.2020

01.12.2009 XS0459087986 EUR 125m 8.875% 07.02.2020

01.12.2009 XS0459088109 GBP 207m 9.334% 07.02.2020

01.12.2009 XS0459086582 GBP 732m 7.588% 12.05.2020

01.12.2009 XS0459093364 GBP 596m 7.869% 25.08.2020

01.12.2009 XS0459088794 EUR 661m 6.385% 12.05.2020

01.12.2009 XS0459089255 GBP 775m 15% 21.12.2019

01.12.2009 XS0459089412 EUR 486m 15% 21.12.2019

01.12.2009 XS0459086749 GBP 331m 7.867% 17.12.2019

01.12.2009 XS0459086822 GBP 102m 7.975% 15.09.2024

Table A.1: This table shows the issued CoCos of Lloyds Banking Group, which
formed part of their refinancing program in 2009.



Curriculum Vitae

Personal Information

Name: Marc Erismann

Date of birth: July 22, 1983

Place of origin: Beinwil am See (Aargau), Switzerland

Citizenship: Swiss

Education

2011 - 2015 University of St. Gallen (HSG)

Ph.D. in Management, Specialization in Finance

2009 - 2011 University of St. Gallen (HSG)

Master of Arts (M.A. HSG) in Banking and Finance

2006 - 2009 University of Applied Sciences

Bachelor of Science (B.Sc.) in Business Administration

Professional Experience

2008 - Zurich Insurance Group Ltd., Zürich
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