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Abstract

Multivariate regime-switching presents an efficient way of jointly modeling the cycli-

cal behavior of financial time series. Standard regime-switching models thereby a

priori determine the relationship between the regime-switches of individual assets.

These switches are usually assumed to be either perfectly synchronized or fully in-

dependent. However, neither assumption seems realistic in practice.

This thesis develops a multivariate Markov regime-switching model to infer the ac-

tual degree of synchronization from the underlying data. This flexible model allows

subgroups of assets to be driven by individual Markov chains. At the same time,

these Markov chains underlie a dynamically changing degree of synchronization. In

comparison to most existing solutions, this model is not restricted to bivariate anal-

ysis. To keep the model traceable, a novel factorization algorithm for the regime-

dependent correlation matrix is formulated. This algorithm scales down the increase

in parameters and presents an efficient way of ensuring positive semi-definite corre-

lation matrices.

The structure of the flexible regime-switching model is motivated by the initial syn-

chronization analysis conducted in this thesis. The analysis of univariate regime-

switching results shows that neither perfectly synchronized nor fully independent

regime cycles are empirically observable. The synchronization of regime cycles

tends to dynamically change over time. Some assets, however, might show more con-

temporaneous switching dynamics and can therefore be governed by a joint regime

process.

The empirical results for a sample of six international equity markets confirm the as-

sumptions underlying this thesis. The flexible model reveals a stable synchronization

factor, marked by one particular change in synchronization. The estimated param-

eters of this model closely cover the individual dynamics of their underlying assets

and confirm the model’s validity. Moreover, in some states, correlation matrices



show very low or even negative parameters. This observation can be of particular

value for portfolio allocation analysis.

Finally, to evaluate the performance of flexible regime-switching, an asset allocation

problem is introduced. The comparison of the different models reveals the favorable

dynamics of flexible regime-switching for medium-term investment horizons.



Zusammenfassung

Multivariate Regime-Switching Ansätze stellen eine effiziente Möglichkeit dar, um

das zyklische Verhalten von mehreren Finanzmarktzeitreihen gemeinsam zu model-

lieren. Gängige Regime-Switching Modelle unterstellen dabei a priori in welcher

Abhängigkeit einzelne Zeitreihen ihre Regime wechseln. Diese Regimewechsel wer-

den üblicherweise als perfekt synchronisiert oder vollständig unabhängig vermutet.

Keine dieser Annahmen scheint jedoch realistisch.

Die vorliegende Arbeit entwickelt ein multivariates Markov Regime-Switching Mo-

dell, welches die Abhängigkeit dieser Regimewechsel von den zugrundeliegenden

Daten herleiten kann. Dieses flexible Modell erlaubt es, dass einzelne Subgrup-

pen von Anlageinstrumenten durch individuelle Markov-Ketten gesteuert werden.

Gleichzeitig weisen diese individuellen Regime-Prozesse eine sich dynamisch verän-

dernde Synchronisation auf. Im Vergleich zu bestehenden Lösungsansätzen ist das

Modell jedoch nicht auf bivariate Zeitreihen beschränkt. Um das Modell lösbar

auszugestalten, wurde zudem ein neuer Faktorisierungsalgorithmus entwickelt, wel-

cher es ermöglicht die regimeabhängige Korrelationsmatrix zu berechnen. Dieser

Algorithmus reduziert die Zunahme an Modellparametern und stellt eine effiziente

Lösung zur Sicherstellung von positiv semi-definiten Korrelationsmatrizen dar.

Der Aufbau des flexiblen Regime-Switching Modells ist dabei durch die im Rah-

men dieser Arbeit durchgeführte Synchronisationsanalyse bestimmt. Die Analyse

von univariaten Regime-Switching Modellen hat gezeigt, dass weder perfekt syn-

chronisierte, noch vollständig unabhängige Regime-Zyklen empirisch beobachtbar

sind. Vielmehr verändert sich die Synchronisation dieser Zyklen dynamisch über die

Zeit hinweg. Einzelne Zeitreihen können dabei jedoch sehr ähnliche Eigenschaften

aufweisen, was deren Modellierung über einen gemeinsamen Regime-Prozess recht-

fertigt.

Die empirische Untersuchung des entwickelten Modells stützte sich dabei auf eine



Stichprobe von sechs internationalen Aktienmärkten. Die Analyse dieser Märkte

bestätigte die getroffenen Annahmen. Das flexible Regime-Switching Modell weist

einen stabilen Synchronisationsfaktor auf, welcher sich über die Untersuchungsperi-

ode hinweg einmal wesentlich veränderte. Die berechneten Parameter für das Modell

widerspiegeln dabei die individuellen Eigenschaften der zugrundeliegenden Zeitrei-

hen und bestätigen damit dessen Validität. Des Weiteren weisen die Korrelationsma-

trizen in gewissen “States” sehr tiefe oder sogar negative Werte auf. Diese Eigen-

schaften können von besonderem Wert für die Portfolio-Analyse sein.

Um schlussendlich die Performance des flexiblen Regime-Switching Modells zu be-

stimmen, wurde dessen Asset Allocation untersucht. Der Vergleich von verschiede-

nen linearen und Regime-Switching Modellen hat dabei deutlich die positiven Eigen-

schaften des flexiblen Modells für mittelfristige Investitionszeiträume hervorgeho-

ben.



Chapter 1

Introduction

1.1 Motivation

Most financial markets reveal a cyclical behavior in their dynamics. This cyclical be-

havior is marked by occasional shifts, which are often shared by different individual

markets. To analyze the joint dynamics of these market cycles, multivariate regime-

switching models have become a common econometric technique. However, mul-

tivariate regime-switching models generally define the dependence structure among

individual market cycles a priori.

Two polar assumptions emerge from this specification. The cycles in a multivariate

model are either assumed to be fully independent or to be perfectly synchronized.

In the independent case, each time series follows its individual regime dynamics.

Consequently, Markov processes of individual markets are presumed independent,

and regime-switches across time series are therefore purely idiosyncratic.

In the fully dependent case, on the other hand, all time series are governed by a com-

mon Markov chain and switch regimes contemporaneously. Shifts in the dynamics

of individual time series are presumed to be perfectly synchronized across a sample.

Phillips (1991) was among the first to analyze these extreme cases of synchroniza-

tion. He remarked that the true model solution might lie somewhere in between full

synchronization and perfect independence. Based on Phillips’s remarks, two differ-

ent lines of research have emerged. One line of research assumes a single Markov

chain process, which governs all underlying assets. The regime dynamics of individ-
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ual assets, however, might lead or lag this common Markov process (see Cakmakli,

Paap & van Dijk, 2011).

The other line of research assumes that each asset follows a distinct regime cycle.

And yet these individual cycles can show some intermediate degree of synchroniza-

tion. This specification rejects the a priori assumption of full independence or perfect

synchronization and infers the actual degree of dependence from the data (Camacho

& Perez-Quiros, 2006). Leiva-Leon (2012a, 2012b) extended this idea of coherent

cycles by allowing the degree of synchronization to vary over time.

The structures presented in the previous paragraphs come at the price of an extended

parameter set and an increased model complexity. These shortcomings motivate the

bivariate focus encountered in most research. By contrast, this thesis aims to ex-

tend the focus to multivariate models. Model complexity is thereby kept as low as

possible by clustering time series with similar characteristics. Each cluster is driven

by an individual Markov chain process. Consequently, synchronization is no longer

measured among the Markov chains of two individual time series, but instead among

the Markov chain dynamics of multivariate clusters. To keep the model traceable, a

novel factorization algorithm for the regime-dependent correlation matrix is formu-

lated. This algorithm scales down the increase in parameters and presents an efficient

way of ensuring positive semi-definite correlation matrices.

1.2 Research Focus

This thesis aims to develop a multivariate regime-switching model governed by mul-

tiple Markov chains. Each Markov chain drives the regime-dynamics of a homoge-

neous subgroup of assets. The degree of synchronization across these Markov chains

is time-varying and can lie anywhere between full independence and perfect synchro-

nization. This structure allows the model to dynamically analyze higher-dimensional

regime-switching problems and to determine their degree of synchronization. In ad-

dition, the model is able to reproduce most stylized facts of financial markets, which

are mimicked by standard regime-switching models.

This thesis further aims to analyze the out-of-sample performance of different regime-
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switching specifications. To quantify this performance, a dynamic asset allocation

model is introduced. This asset allocation model accounts for regime-switches and

enables the investigation of multistage portfolio optimization problems. The multi-

period focus is thereby intended to capture the underlying regime dynamics.

This dissertation makes four main contributions to existing research. First, it presents

different linear and nonlinear methods for measuring the synchronization of regime

processes. Second, it introduces a flexible regime-switching model capable of cap-

turing switching dynamics among individual groups of assets. Third, it develops

a correlation factorization technique to keep the number of model parameters low

and to guarantee positive semi-definiteness of the correlation matrices. Finally, it

contributes to existing research on asset allocation under regime-switching.

1.3 Structure of the Thesis

Figure 1.1 surveys the three parts of this study. The first part consists of Chapters 2

to 4 and examines the standard regime-switching framework. Chapter 2 reviews the

relevant literature and specifies the structure of univariate and multivariate regime-

switching models. In Chapter 3, methods for measuring the degree of synchroniza-

tion among regime processes are outlined. Chapter 4 then provides data analysis and

presents initial regime-switching results. Further, the synchronization of univariate

Markov regime processes is investigated.

The second part consists of Chapters 5 and 6. This part develops the flexible regime-

switching model, which allows for asynchronous regime shifts. Chapter 5 starts by

specifying the data- and the regime-generating process. It then presents inference

techniques to reduce the number of model parameters. Finally, possible model exten-

sions are analyzed. Chapter 6 illustrates empirical results for the previously specified

models.

Chapter 7, the third part of this study, focuses on asset allocation under regime-

switching. This chapter evaluates the performance and the value added of different

regime-switching models presented throughout this work. The models are compared
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by means of myopic and multistage dynamic asset allocation problems. Chapter 8

summarizes the main results and concludes this thesis.

Low HighRegime synchronization

Standard

regime-switching

(Chapters 2-4)

Multi-period

asset allocation

(Chapter 7)

Univariate

regime-switching

Flexible

regime-switching

Multivariate

regime-switching

Empirical analysis & model extensions

Flexible

regime-switching

(Chapters 5-6)

Forecasting & asset allocation

Performance

analysis

Rebalancing

strategy

Buy-and-hold

strategy

Flexible regime-switching model

Data-generating

process

Regime-generating

process
Model estimation

Figure 1.1: Structure of the thesis



Chapter 2

Theory of Markov
Regime-Switching

The behavior of most economic and financial time series is marked by episodes of

structural changes. These changes in behavior can be associated with events such

as financial crises, significant changes in government policies, natural disasters, or

wars. A simple way to model such structural changes could be to assume their occur-

rence as a foreseeable, deterministic event (Hamilton, 1994). Data prior to the event

would be described by model 2-1 whereas data after the event would be described

by model 2-2

yt = µ1 + εt εt ∼ N
(
0, σ2

1
)

(2-1)

yt = µ2 + εt εt ∼ N
(
0, σ2

2
)

, (2-2)

where yt is a return series, and µi and σ2
i define the mean and variance in period i

(further µ1 > µ2 or σ1 < σ2 is assumed). However, if the time series dynamics have

changed in the past, they might change again in the future. This aspect should be

considered in the model specification. Moreover, the changes in dynamics should not

be regarded as perfectly predictable, but rather as random events (Hamilton, 1994).

A suitable way of accounting for these features is to presume a stochastic process

governing the transition from one market state to another. This stochastic process is

described by the discrete-valued and unobservable random variable st, which indi-
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cates the prevailing regime at time t

yt = µst + εt εt ∼ N
(
0, σ2

st

)
. (2-3)

The distributional moments of this model no longer depend on deterministic events.

Rather, they are conditioned on the underlying regime-variable. The variable itself

follows a Markov chain process and needs to be inferred from the data.

The next sections will introduce this so-called regime-switching model in more de-

tail. Section 2.1 surveys the literature on regime-switching models and their applica-

tion to portfolio optimization. Section 2.2 then presents the regime-switching frame-

work, which is specified by a data-generating process and a Markov chain. The last

section extends the basic univariate framework to a multivariate regime-switching

model and discusses the implications of this extension.

2.1 Literature Review

The origins of regime-switching models date back more than 50 years. Early re-

search focused on a simple model that incorporates a single nonrecurring structural

break. Quandt (1958) first attempted to estimate the parameters of this linear regres-

sion system and assumed that such a system obeys two separate regimes. Similar to

the model in 2-1 and 2-2, he assumed a point in time at which the system switches

the regime and data are described by a different regression equation. Using maxi-

mum likelihood estimation, Quandt was able to infer the corresponding turning point

and to determine the regression parameters. However, his model considers only the

possibility of a single switch and was tested in a hypothetical sampling experiment.

In 1972, Quandt extended his earlier model to allow for multiple regime-switches.

He introduced the λ-method, where λ and 1 − λ represent unknown probabilities for

the observed data points being driven by regime 1 or 2. He applied this model to the

US housing market between June 1959 and November 1969, and obtained significant

results for the two regimes.
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Goldfeld and Quandt (1973) relaxed the assumption of constant regime probabilities

and introduced the first Markov-switching model. They assumed that the current

regime depends on its preceding state through a Markov chain process. In order

to capture state-dependency, they introduced a transition probability matrix, which

governs the transitions across states. They applied this so-called τ -method to the

same data sample as Quandt (1972) and obtained similar results as for the λ-method.

Over time, models became more complex and sophisticated due to computational

improvements and data availability. As a result, Hamilton (1989) presented a new

approach to proceed with regime-switching analysis. He showed that the regimes

– up until then often considered to be exogenous – cannot be observed directly.

Instead, a probabilistic inference on their existence must be drawn. Hamilton (1989,

1994, 2005) proposed a nonlinear iterative filter, in which the likelihood function is

calculated as a by-product of the algorithm. This algorithm is similar to the Kalman

filter, but underlies a nonlinear process. Hamilton (1989) applied his model to US

real GNP data between March 1951 and December 1984. He found two distinct

regimes of positive and negative GNP growth.

Regime-switching models have received considerable interest in different areas of

research. Some important contributors are Hamilton (1989) on macroeconomic vari-

ables; Ang and Bekaert (1999, 2002a, 2004) and Ang and Chen (2002) on equities;

and Ang and Bekaert (2002b, 2002c), Garcia and Perron (1996), and Gray (1996)

on interest rates. Moreover, Guidolin and Timmermann (2005a, 2005b, 2006, 2007)

and Schwendener (2010) researched multiple asset classes.

Early research on Markov regime-switching mainly focused on univariate time se-

ries. Phillips (1991) extended this research by combining the business cycles of two

countries in a joint setup. He aimed to evaluate the transmission of the two busi-

ness cycles, where each cycle was represented through an individual regime process.

Phillips was the first to analyze this transmission of cycles. He examined the two

extreme cases of fully independent and perfectly correlated regime-switches. More-

over, he analyzed intermediate cases, where one regime process either leads or lags

the other. Phillips showed that the consideration of the business cycles of two coun-

tries improves both the forecast and the fit of the model. However, his results for
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the pairwise synchronization of the US, Canada, Germany, and the UK turned out to

be insignificant. The results revealed that the international transmission of business

cycles is mainly due to worldwide shocks and not to inter-country transmissions.

In 2006, Bengoechea et al. revisited Phillips’s approach (1991). Similar to Phillips,

they allowed for an intermediate solution between the two extreme cases of indepen-

dent and perfectly synchronized regime cycles. Bengoechea et al. (2006) linearly

combined these two cases in a bivariate framework to determine the degree of pair-

wise synchronization.

Camacho and Perez-Quiros (2006) readopted this approach. They analyzed the real

GDP data for a sample of G7 countries between March 1980 and June 2004 to deter-

mine the level of regime synchronization. Camacho and Perez-Quiros found signifi-

cant results for the business cycle synchronization inferred from the GDP data. The

results indicate that European and Anglo-Saxon countries form two distinct groups

with regard to their business cycles. Business cycles within a group are synchro-

nized, whereas business cycles across groups are desynchronized.

Cakmakli et al. (2011) made another important contribution to the analysis of regime

synchronization. They developed a Markov-switching vector autoregressive model

(MS-VAR) that allows for the imperfect synchronization of regimes. Cakmakli et al.

applied their model to a sample of size-based portfolios and showed that large- and

small-cap equity portfolios switch contemporaneously into extreme regimes (bull

and bear states). However, for switches to moderate regimes (transition states), the

large-cap portfolio leads the small-cap portfolio by one month.

Further contributions in the area of regime synchronization were made by Krolzig

(1997) on perfectly synchronized regime cycles, and by Ang and Bekaert (2002b),

Krolzig (2001), Smith and Summers (2005), and Otranto (2010) on fully independent

cycles. Hamilton and Perez-Quiros (1996), Paap, Segers and van Dijk (2009), and

Cakmakli et al. (2011) considered the case of a common but phase-shifted regime

cycle. Finally, Bengoechea et al. (2006), Camacho and Perez-Quiros (2006), and

Leiva-Leon (2012a, 2012b) considered the case of limited synchronization among

individual regime processes. The most important contributors and their models are

also presented in Table 5.1 (see Chapter 5).
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The emergence of bivariate and multivariate regime-switching models has also drawn

attention to portfolio selection. Investors are faced with a time-varying portfolio

choice problem, given the regime-dependent means and potentially changing co-

movement structures.

Ang and Bekaert (1999, 2002a) were the first to analyze these dynamics in a port-

folio optimization context. They applied a multivariate regime-switching model to

an international equity portfolio. The resulting regime-probabilities were used as

input for a multi-period portfolio optimization problem of an investor with constant

relative risk aversion (CRRA). Ang and Bekaert compared their results to a buy-

and-hold strategy and found significant differences. A regime-switching allocation

thereby proved to be of particular economic value for longer investment horizons.

Moreover, the inclusion of a risk-free asset in the investment universe added further

value to the regime-switching strategy.

Guidolin and Timmermann (2007) extended the research on asset allocation under

regime-switching. In contrast to Ang and Bekaert (1999, 2002a), however, they

applied the regime-switching model to a portfolio of stocks, bonds, and cash. Fur-

ther, they assumed the regimes to be unobservable, whereas Ang and Bekaert (1999,

2002a) required the prevailing regime to be known with certainty. The results of

Guidolin and Timmermann (2007) indicate that portfolio allocation varies consid-

erably among regimes. Their results further confirm the importance of regime-

switching information for asset allocation decisions.

Further research in this area has been conducted by Morger (2006), Frauendorfer, Ja-

coby and Schwendener (2007), Leippold and Morger (2007), Schwendener (2010),

and Angeloni and Sverrisson (2012). A dynamic asset allocation model is also in-

troduced below (Chapter 7). This model will evaluate different regime-switching

specifications in terms of out-of-sample performance. The results of this evalua-

tion will finally help to determine the power of the flexible regime-switching model

developed in this thesis.
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2.2 Regime-Switching Framework

The above literature review has revealed the versatility of regime-switching models.

Despite this versatility, most of these models share a common underlying structure.

The following sections present the elements of this structure in a general regime-

switching framework.1 This framework first describes the data-generating process

(DGP) and the Markov chain. It then examines the likelihood function and the

regime-inference procedure.

2.2.1 Data-Generating Process

The data-generating process of a regime-switching model underlies the general struc-

ture2

yt = f (ỹt−1, z̃t−1, s̃t) + εyt

zt = c (st) + A (st) z̃t−1 + εzt

εt =
(
ε′

yt, ε′
zt

)′

εt | s̃t ∼ N (0, Σ (ỹt−1, z̃t−1, s̃t)) ,

(2-4)

where yt is the (N × 1) vector of observable returns for the N assets at time t, zt

is a (M × 1) vector of predictive instruments, and st indicates the regime at time t.

Further, f(·) and Σ(·) define the conditional mean vector and covariance matrix,

and the tilde specifies a time series process, for instance, ỹt−1 = {yi}t−1
i=1 .3 Finally,

c and A describe the (regime-dependent) intercept and factor loadings of a VAR

specification.

Based on this general structure, the DGP of a particular regime-switching model can

be specified in different ways. For example, the conditional mean of yt might simply

1This framework follows the remarks in Hamilton (1994, 2005) and in Guidolin (2013).
2This structure follows the illustrations in Ang and Bekaert (1999) and might ignore special cases.
3In most specifications, the function will depend only on the p most recent observations of a time

series ỹt−p,t−1 = {yi}t−1
i=t−p. However, for ease of exposition, the t − p subscript is omitted.
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depend on the current regime st. The mean could additionally depend on the most

recent realization of the predictive instruments zt−1 (for instance, dividend yields,

earnings yields, or short rates).

Likewise, a more complex model might follow a Markov switching vector autore-

gressive (MS-VAR) structure. In this case, f(·) would depend on the p most recent

return observations of all N assets {yi}t−1
i=t−p. If the VAR specification further im-

plies a switching in means, f would also depend on the p most recent regime obser-

vations {si}t
i=t−p.4 Krolzig (1997) provides a good overview of the specification of

such MS-VAR models and of their limitations.

Similar flexibility applies to the conditional covariance matrix Σ. The conditionality

of the covariance matrix allows for regime-dependent ARCH and GARCH struc-

tures in the error terms εt. Examples of these structures are presented by Gray

(1996), Ramchand and Susmel (1998b, 1998a), Hamilton and Susmel (1994), and

Ang and Bekaert (1999, 2002a).5 To keep a model parsimonious, orthogonality be-

tween return errors εyt and instrument errors εzt is generally assumed. This results

in a block-diagonal structure of the covariance matrix Σ.

Formula 2-4 reveals the diversity of regime-switching models. Each individual pa-

rameter can theoretically be defined as either regime-dependent or regime-indepen-

dent. Despite this flexibility, DGPs of standard regime-switching models generally

follow a simple structure. This also applies to the benchmark models specified in the

following paragraphs.

In standard univariate regime-switching models, the conditional mean and the con-

ditional variance are often specified as f (ỹt−1, z̃t−1, s̃t) = µst and as Σ(ỹt−1, z̃t−1,

s̃t) = σ2
st

. These assumptions result in the following data-generating process

yt = µst + σstεt εt ∼ N (0, 1) , (2-5)

where εt is a Gaussian white noise process.6

4Krolzig (1997) shows that this does not apply if the model underlies a switching in the intercept. In
this case, f would only depend on the current regime st.

5Similarly, the correlation matrices might follow a (regime-dependent) DCC structure as presented
by Billio, Caporin and Gobbo (2006) and Otranto (2010).

6This specification ignores predictive instruments and AR dynamics to keep the model complexity as
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Equation 2-5 shows that both mean and variance terms are regime-dependent. Their

specification is equal to that in the introductory example and is intentionally kept

simple. In what follows, this setup is referred to as the fully specified benchmark

model for univariate time series.

Standard multivariate models are structured in a similar way. The conditional mean

vector and the conditional covariance matrix are defined as f (ỹt−1, z̃t−1, s̃t) = µst

and as Σ (ỹt−1, z̃t−1, s̃t) = Σst . The data-generating process is then specified by

yt = µst
+ Σ1/2

st
εt εt ∼ N (0, I) , (2-6)

where yt indicates the (N × 1) return vector for the N assets at time t, µst
is the

(N × 1) vector of mean returns conditional on the prevailing regime st, Σst is the

(N × N) regime-dependent covariance matrix, and I indicates the identity matrix.

Below, this DGP is referred to as the fully specified benchmark model for multivariate

time series.

2.2.2 Markov Chains

The DGP specification revealed the conditionality of the moment and covariance

parameters on the regime variable st. A Markov chain represents one of the simplest

processes for describing the probability law of this random variable. This discrete-

state stochastic process consists of a sequence of random state variables. The state

variable st of a first-order Markov chain is thereby defined as being only serially

dependent on its preceding state

Pr (st = j | st−1 = i, st−2 = k, ..., yt−1, yt−2, ..., y1)

= Pr (st = j | st−1 = i) = pij ,
(2-7)

low as possible. Hamilton and Susmel (1994) showed that the latter are not observed for monthly data but
only for data with higher frequency.
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where pij gives the probability that the regime will change from state i to state j.

Equation 2-7 shows that the current regime depends on the past only through its

most recent state. This process is defined as a K-state first-order Markov chain with

transition probabilities {pij}i,j=1,2,...,K . These probabilities are usually collected in

a (K × K) transition probability matrix

P =


p11 p21 · · · pK1

p12 p22 · · · pK2
...

...
. . .

...

p1K p2K · · · pKK

 ,

where the element in row j and column i of matrix P equals the transition probability

pij . It holds that each column of P sums up to unity
∑N

j=1 pij = 1 and that each

element in P is non-negative (pij ≥ 0, ∀i, j).

In general, this thesis follows a two-state first-order Markov chain. It further pre-

sumes the Markov chain to be irreducible, ergodic, and stationary. These assump-

tions support the estimation of stable and efficient models by avoiding singularities

and absorbing states.

A Markov chain is called irreducible if there is only a single communicating class in

the state space. This communicating class exists if every state j is accessible from

every state i within finite time (Pn
ij > 0 for some exponent n ≥ 0; i ↔ j). Stated

differently, it is possible to proceed from every state to every other state, however,

not necessarily in a single step (Hamilton, 1994; Grinstead & Snell, 2012).

Ergodicity extends the definition of irreducibility by imposing the existence of a

stationary vector of probabilities such that

π = Pπ,

where π is the vector of ergodic state probabilities. These probabilities are consis-

tent with the unconditional or steady-state probabilities (Hamilton, 1994). Ergodic



14 CHAPTER 2. THEORY OF MARKOV REGIME-SWITCHING

probabilities can therefore be interpreted as long-run or unconditional state proba-

bilities.7

Finally, a Markov chain is called stationary or time-homogeneous if the transition

probabilities are time-invariant (pt,ij = pij).8

2.2.3 Likelihood Function and Parameter Estimation

The regime-switching example at the beginning of this chapter summarized what the

last two sections have reviewed in greater detail: At every point of time, the observed

variable yt is drawn from one of K different distributions (Hamilton, 1994). Each

of these distributions is specified by a density function, which is conditional on the

regime variable st. In case the DGP follows a normal distribution, the K conditional

density functions are specified as

ηjt = f (yt|st = j, Ωt−1; θ) = 1√
2πσ2

j

exp

[
− (yt − µj)2

2σ2
j

]
, (2-8)

for j = 1, ..., K, where θ is the vector of population parameters, and where Ωt−1

represents information up to time t − 1.9 In this simple case, the parameter vector

consists of individual mean µj and variance σ2
j parameters for each single regime.

Equation 2-8 shows the distribution’s conditionality on the unobservable state vari-

able st. This variable indicates which of the K regimes the process is in at time t.

7Similar to ergodicity, irreducibility implies the existence of only one eigenvalue equal to unity
(Hamilton, 1994). It does not, however, limit the remaining eigenvalues to lying inside the unit circle.
As a result, more than one eigenvalue might be located on the unit circle. Therefore, the matrix Pm does
not necessarily converge with m → ∞ and no stable unconditional probabilities can be derived. Hence,
whereas ergodicity implies irreducibility, this relation cannot be reversed. Not all irreducible Markov
chains are also ergodic.

8This thesis assumes time-invariant transition probabilities to keep model complexity low. For exam-
ple, Diebold, Lee and Weibach (1994) and Kim and Nelson (1999) presented alternative model specifica-
tions with time-varying transition probabilities (TVTP).

9Note that Ωt−1 might have a broader focus than the time series process ỹt−1 = {yi}t−1
i=1 . Ωt−1

summarizes all exogenous time series information that is available up until time t − 1.
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However, the state variable is unobservable and therefore needs to be inferred from

the data.

Consequently, the specification of a regime-switching model consists of two steps.

In a first step, the model parameters are estimated. Given these estimates, the regime

probabilities are then inferred in a second step.10

To investigate the two steps individually, the regime-generating process needs to be

simplified. Hamilton (1994) proposes the unobserved regime variable st to be drawn

from an unconditional probability distribution

Pr (st = j; θ) = πj , (2-9)

where πj is the time-invariant probability of state j. The regime probabilities are

independent of past regimes and of past information. This assumption simplifies the

regime inference, as the state probabilities are constant and do not follow a Markov

chain process. The resulting model represents an i.i.d. mixture model. The corre-

sponding parameter set θ consists of regime-dependent means, regime-dependent

variances, and unconditional regime probabilities: θ = {µ1, ..., µK , σ2
1 , ..., σ2

K ,

π1, ..., πK−1}. These parameters can be estimated by maximizing the likelihood

function through numerical optimization (Hamilton, 2005).

The specification of this likelihood function relies on the previously defined un-

conditional state probabilities πj and on the conditional density functions ηjt for

j = 1, ..., K.

Note the definition of conditional probability

Pr(A|B) = Pr(A and B)
Pr(B)

,

10This approach is valid for the maximum likelihood estimation (MLE) and for the expectation max-
imization (EM) algorithm (see Dempster, Laird & Rubin, 1977). For example, the Bayesian procedure
uses a different approach. It estimates both the parameters and the regimes in the same step. However, in
general, the present study relies on the two-step MLE approach.
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which can be restated as

Pr(A and B) = Pr(A|B) · Pr(B).

Consequently, the product of the regime-dependent probability function ηjt and of

the marginal regime probability πj results in the joint probability density function

p (yt, st = j|Ωt−1; θ) = f (yt|st = j, Ωt−1; θ) · Pr (st = j; θ) . (2-10)

This function defines the density of the joint event of yt being drawn from the regime-

dependent density function ηjt and of st being in state j.

The unconditional density then results from summing the joint functions over all K

possible states

f (yt|Ωt−1; θ) =
K∑

j=1
p (yt, st = j|Ωt−1; θ) .

Finally, the log-likelihood L (θ) of the time series can be found by summing the

log-densities over time

L (ΩT ; θ) = log (f (y1, y2, ..., yT |Ω0; θ)) =
T∑

t=1
log f (yt|Ωt−1; θ) ,

given that the regime variable is i.i.d. across time. Fortunately, this i.i.d. assumption

holds for the simple time-invariant probability distribution defined in 2-9 as well as

for the Markov chain process. The parameter set θ is then estimated by maximizing

the likelihood function, given the constraints
∑

j πj = 1 and πj ≥ 0, ∀j.
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2.2.4 Regime Inference

The previous section assumed time-invariant regime probabilities. This assumption

simplified the description of the likelihood function. In a full-scale regime-switching

model, however, the regimes follow a Markov chain process. This process defines

the current state as depending on its history only through the most recent state. Be-

cause the regime process is unobservable, it needs to be inferred from the data. This

inference requires the full parameter set, which consists of regime-dependent means

µj , of regime-dependent variances σ2
j , and of the matrix of transition probabilities

P.11

Given the set of population parameters θ = {µ1, ..., µK , σ2
1 , ..., σ2

K , p11, ...,

pK(K−1)}, the probability of an individual regime being responsible for the obser-

vation of yt can be inferred. This inference is now expressed in a conditional state

probability Pr (st = j|Ωτ ; θ), where the information set Ωτ includes yt up to time τ ,

{yt}τ
t=1. Conditional on the position of τ relative to the current time t, the estimation

of state probabilities is either a forecasting (τ < t), filtering (τ = t), or smoothing

(τ > t) procedure. These three procedures will be analyzed below.

Forecasting

Let Pr (st = j|Ωt; θ) define the probability that the regime is in state j, given infor-

mation up to time t. The probabilities for the K individual regimes are then collected

in a (K × 1) vector ξt|t. One-period-ahead regime forecasts result when multiplying

the probabilities at time t by the transition probability matrix P

ξt+1|t = Pξt|t.

Hence, the forecasted regime-probabilities ξt+1|t are still conditioned on time t in-

11The multivariate model follows the same approach. However, its parameter set additionally contains
correlation terms.



18 CHAPTER 2. THEORY OF MARKOV REGIME-SWITCHING

formation. Similarly, an m-period-ahead forecast is specified by

ξt+m|t = Pmξt|t,

where Pm represents the transition probability matrix to the mth power. Element

pij in this extended transition matrix defines the probability that regime i at time

t will be followed by regime j, m periods in the future. However, the forecasted

probabilities again depend on information at time t.

The forecasting or prediction procedure is commonly used to form expectations

about future events. Examples include the application of regime-switching to as-

set allocation problems (Ang & Bekaert, 1999, 2002a; Morger, 2006; Ammann

& Verhofen, 2006; Verhofen, 2006; Frauendorfer et al., 2007; Guidolin & Tim-

mermann, 2007) or to out-of-sample regime-predictability tests (Hamilton & Perez-

Quiros, 1996; Paap et al., 2009).

Chapter 6 will apply the forecasting procedure to analyze the models in this thesis for

their out-of-sample predictability power. Further, in Chapter 7 the forecasting proce-

dure is applied to an asset allocation problem. Moreover, prediction also constitutes

the first phase of the filtering procedure.

Filtering

Hamilton (1989) was the first to propose a non-linear iterative filtering technique to

infer state probabilities from the data. This filtering procedure – known as Hamilton

filter – consists of two steps: a prediction step and an updating step. Following these

two steps, the filtered state probabilities are inferred from the recursive algorithm

ξt|t−1 = Pξt−1|t−1 (2-11)

ξt|t =
ξt|t−1 ⊙ ηt

1′
(
ξt|t−1 ⊙ ηt

) =
Pξt−1|t−1 ⊙ ηt

1′
(
Pξt−1|t−1 ⊙ ηt

) , (2-12)

where ⊙ defines an element-by-element multiplication, and where 1 is a (K × 1)
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vector of ones. Equation 2-11 depicts the known prediction or forecasting step. On

the other hand, equation 2-12 defines the updating step and relies on Bayes’ theo-

rem.12

The numerator in 2-12 describes element-wise products of the K predicted state

probabilities ξj,t|t−1 = Pr (st = j|Ωt−1; θ) and their corresponding conditional den-

sity functions ηjt. The resulting elements specify joint densities for the K states (see

formula 2-10). The denominator of equation 2-12 depicts the sum of all joint densi-

ties, which results in the unconditional density of yt

f (yt|Ωt−1; θ) = 1′ (Pξt−1|t−1 ⊙ ηt

)
. (2-13)

The filtering algorithm is initialized with the state probabilities ξ1|0. These starting

values are either predetermined or treated as unknown random parameters. In the

latter case, they represent part of the parameter set.

After the parameter set θ is estimated (see Section 2.2.3), the nonlinear filtering

procedure in equations 2-11 and 2-12 is run iteratively. Equation 2-11 predicts the

one-period-ahead regime probabilities. In a next step, equation 2-12 filters the prob-

abilities as new information about yt becomes available.

Formula 2-14 shows that the log-likelihood function L – which is subject to maxi-

mization – is a by-product of the filtering process

L (ΩT ; θ) =
T∑

t=1
log f(yt|Ωt−1; θ). (2-14)

Smoothing

The smoothed regime inference at time t considers information available until a later

date T . Kim (1994) presents the following recursive algorithm to solve this problem

ξt|T = ξt|t ⊙
(
P′ ·

(
ξt+1|T ⊘ ξt+1|t

))
, (2-15)

12Note that Bayes’ theorem is defined by Pr(A|B) = Pr(B|A)Pr(A)
Pr(B) .
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where ⊘ denotes an element-by-element division. The algorithm starts with the in-

ferred regime-probabilities at time T and works backwards until time t. Formula

2-15 further shows that the smoothing procedure requires the filtered state probabil-

ities as input variables.

The model estimation presented so far underlies a two-step approach. In a first

step, population parameters are estimated. Maximum likelihood estimation (MLE)

thereby presents a common technique for this task. Based on the estimated param-

eters, the regime probabilities are then inferred in a second step. This estimation

technique belongs to the category of frequentist inference.

The Gibbs sampling procedure represents an alternative estimation technique (see,

for example, Geman & Geman, 1984; Albert & Chib, 1993; McCulloch & Tsay,

1994; Chib, 1996). This technique is a Markov chain Monte Carlo (MCMC) algo-

rithm, which belongs to the category of Bayesian inference. Gibbs sampling consid-

ers both the parameters θ and the regime process st as random variables.13 Conse-

quently, the regime process itself becomes part of the parameter set and is no longer

inferred from the estimated parameters. The Gibbs sampler is thereby able to es-

timate higher dimensional problems where frequentist approaches are less feasible.

This thesis, however, relies on maximum likelihood estimation due to its favorable

properties regarding the DGP specification (see also Kim & Nelson, 1999).

2.3 Extension to Multivariate Regime-
Switching

The baseline framework is easily extended to multivariate time series. This extension

affects only the data-generating process and the conditional density function. The

random variable st, on the other hand, defines the prevailing regime irrespective of

13Below, the parameter space θ is specified according to the frequentist approach. The parameter set
contains all population parameters, but excludes the T regime variables, where T refers to the length of
the observation period.
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the number of underlying assets. Consequently, the Markov chain structure remains

unchanged.

Section 2.2.1 already extended the data-generating process to multivariate time se-

ries. Its covariance matrix Σst is subsequently decomposed into standard deviation

and correlation terms

yt = µst
+ Σ1/2

st εt εt ∼ N (0, I)
Σst = DstRtDst

Rt = Rst ,

(2-16)

where Dst is a (N × N) diagonal matrix composed of regime-dependent standard

deviations, and where Rst is a regime-dependent (N × N) correlation matrix.

The corresponding conditional probability density function (pdf) follows a standard

normal distribution. Similar to the univariate conditional pdf in 2-8, the multivariate

conditional pdf is specified as

ηjt = f(yt|st = j, Ωt−1; θ)

= 1√
(2π)N |DjRjDj |

exp
([

−1
2

(yt − µj)D−1
j R−1

j D−1
j (yt − µj)′

])
for j = 1, ..., K,

(2-17)

where | · | describes the determinant. Formula 2-16 showed the additional covariance

parameters that need to be estimated in the multivariate model. In 2-17, these are

again decomposed into standard deviations and correlations.

The resulting parameter sets of the univariate θuv and the multivariate models θmv

are then defined by

θuv = {µ1, ..., µK , σ2
1 , ..., σ2

K , p11, ..., pK(K−1)},
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and by

θmv = {µ1,1, ..., µ1,K , ..., µN,1, ..., µN,K , σ2
1,1, ..., σ2

N,K ,

ρ21,1, ..., ρN(N−1),K , p11, ..., pK(K−1)},

where µi,k and σ2
i,k are the mean and variance of asset i in regime k, and where ρij,k

refers to the correlation between asset i and j in regime k.

Estimation of the Covariance Matrix

The presented covariance decomposition enables an individual estimation of stan-

dard deviation and correlation parameters. Bollerslev (1990), Tse and Tsui (2002),

Engle (2002), and Barnard, McCulloch and Meng (2000) applied this covariance

decomposition to constant conditional correlation (CCC) and to GARCH structures.

Pelletier (2006) further extended this technique to regime-switching models.

The covariance decomposition simplifies the parameter estimation in three ways:

First, it allows one to separately specify the regime-dependence of standard devia-

tions and correlations. For example, a restriction of the switching in correlations can

significantly reduce the parameter set of high-dimensional time series.14

Second, the model estimation requires the specification of parameter boundaries.

These boundaries are easier to define for standard deviations and correlations than

for covariances. In case the correlations are additionally specified to be regime-

dependent, the variance and covariance estimates are almost unbounded (Geweke &

Amisano, 2003; Pelletier, 2006). The only limitation applies to variances, which are

restricted to be non-negative. Any further boundary conditions are imposed on the

correlation matrix.

Finally, the decomposition enables the estimation of positive semi-definite covari-

ance matrices. A covariance matrix needs to be positive semi-definite (PSD) at every

point in time (Pelletier, 2006). However, maximum likelihood estimation optimizes
14Pelletier (2006), however, clearly demonstrated the importance of both switching standard deviation

and correlation parameters. Therefore, such a restriction is only useful for very large samples (see, for
example, Hamilton & Owyang, 2012).
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the parameter set element-by-element. Consequently, the resulting matrices are not

necessarily positive semi-definite. A non-PSD covariance results in a negative de-

terminant and is non-invertible. Accordingly, the conditional pdf in equation 2-17

would create infeasible results or values near infinity. This would cause the opti-

mization algorithm to stop at a local optimum, away from the global maximum. Co-

variance decomposition simplifies this problem. Only the correlation matrix needs

to be PSD. Standard deviations are simply restricted to be non-negative.

Again, different ways exist to guarantee the PSD structure of a correlation matrix.

The most obvious way is to test the matrix for positive semi-definiteness after each

iteration of the MLE optimization. An estimate is rejected if the correlation matrix

has a non-positive determinant. Despite its simplicity, this approach has a very slow

convergence rate.

Pelletier (2006) alternatively proposed a Cholesky decomposition to ensure PSD re-

sults. The Cholesky decomposition presents a more efficient way of imposing the

properties of a correlation matrix on Rst . It is given by

Rst = LstL
′
st

,

where Lst is a lower triangular matrix, and where L′
st

is its transpose. Pelletier

(2006) showed that the constraints imposed on this matrix are very loose. The ele-

ments of Lst should lie between −1 and +1. Further, the diagonal elements of the

resulting correlation matrix should equal unity. These simple constraints will auto-

matically assure a correlation matrix with PSD properties. Moreover, the constraints

will guarantee off-diagonal correlation values to lie between −1 and +1.

The off-diagonal elements of Lst,ij , where i > j, are the parameters to be estimated.

Following this approach, the diagonal elements of Lst can be calculated as

Lii =

√√√√Rii −
i−1∑

m=1
L2

im for i = 1, ..., K, (2-18)

where Rii refers to the ith diagonal element of the correlation matrix and hence
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equals unity. For ease of exposition, the corresponding regime st for L and R is

omitted. The structure of 2-18 clearly reveals the previously stated constraints on

the matrix Lst . Further, the resulting diagonal elements Lii are restricted to be real-

valued, which guarantees that the solution is unique.

The parameter estimation itself is very intuitive. MLE optimizes for the parameters

in Lst instead of the correlations in Rst . Thereby, the K · N(N − 1)/2 correlation

parameters in θmv are replaced by the K ·N(N −1)/2 lower triangular parameters in

Lst for st = 1, ..., K, where N defines the number of assets. Once these parameters

are estimated, the correlation matrix is reassembled within the likelihood function.

For this purpose, the lower triangular matrix is multiplied by its transpose. Because

MLE optimizes for the lower triangular values of Lst and because the solution is

unique
(
Ls∗

t ;ii /∈ R+, ∀i
)
, the resulting correlation matrix will always be PSD.

Markov Chains in Multivariate Models

The Markov chain of a univariate model governs a single underlying asset. Multiple

assets result in multiple univariate Markov chain processes, and any joint dynamics

among these processes are not considered.15 Nevertheless, there is still a chance

that individual Markov chains will reside in the same regime. For example, the joint

regime probability of two assets is defined by

Pr(sa
t = sb

t) =
K∑

k=1

Pr(sa
t = k)Pr(sb

t = k) > 0.

In a standard multivariate model, by way of contrast, all assets are driven by a com-

mon Markov chain. At any point, the individual time series jointly reside in the

same regime. Switches in regimes happen contemporaneously across time series

and are therefore perfectly correlated. Such a common regime process increases

model stability. At the same time, however, this process might be less representative

15By construction, the univariate specification also ignores any covariance in returns across individ-
ual assets. This implication is contradictory, as independent regime processes do not necessarily imply
independent return processes.
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for individual time series. Regime dynamics of individual assets are aggregated in a

common cycle and might fade out (Dueker & Sola, 2008). A univariate process, on

the other hand, infers only the regime dynamics of its underlying asset. The process

therefore specifically resembles the switching-behavior of this asset.

Figure 2.1 depicts an example of regime-switching in equity data. This example

comprises three individual country indices. The charts show smoothed regime prob-

abilities for state 1, which resembles the properties of a bull market. The top graph

presents univariate state probabilities for the US, the UK, and Germany. These coun-

tries show slightly different regime cycles compared to each other. Visual inspection

reveals that the regimes are neither fully independent nor perfectly synchronized.
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Figure 2.1: Smoothed state probabilities of the univariate and multivariate
benchmark regime-switching models for the period from January 1976 to Febru-
ary 2014. The regime processes depict the probabilities of residing in a bull
market regime.

The bottom graph depicts a multivariate regime process for the time series of the

three countries. The figure shows that the multivariate process usually switches

regimes when the univariate regime processes behave similarly (for example, when

they jointly switch states). However, when the univariate regime processes differ
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from each other, the multivariate process reveals a more stable behavior and does

not necessarily cover the regime changes of individual assets. Hence, the multivari-

ate regime process constitutes only an intermediate solution. It does not necessarily

explain the switching dynamics of any underlying asset appropriately.

The previous example illustrates possible differences among the regime processes

of individual assets and highlights the principal research questions of this thesis:

How do the Markov chains of individual assets interact? Moreover, how can these

dynamics be modeled in a multivariate setup without aggregating all information in

a single regime process? To determine this interaction, the next chapters will analyze

the degree of synchronization among individual regime processes. The results of this

analysis will provide further insights about the best model structure. Chapters 5 and

6 will then present a hybrid model solution, which accounts for these features.



Chapter 3

Synchronization of
Markov Chains

The previous analysis revealed that univariate and multivariate regime-switching

models underlie the same Markov chain specification. However, analysis also showed

that the Markov chain in a univariate model governs a single underlying asset, whereas

it jointly governs a multitude of assets in a multivariate model.

In the univariate case, the analysis of multiple assets results in multiple regime pro-

cesses. The univariate specification, however, reveals no further information about

the joint dynamics of these individual processes.1 Each asset can switch its regime

irrespective of the other assets, and hence any joint dynamics are ignored. Com-

mon multivariate regime-switching models, in contrast, imply that underlying assets

switch their regimes contemporaneously or fully independently.2 However, these

two polar cases seem unrealistic.

In practice, the degree of synchronization is expected to lie somewhere in between.

Figure 2.1 exemplified this intermediate dependence among country-specific regime

cycles. The analysis of univariate regime-switching models therefore allows for

more flexibility as these models do not impose any a priori assumption about the

1Note that an independent estimation of different Markov chains does not imply that the empirically
observed processes are in fact independent.

2Note that the assumption of independently switching regimes results in a multivariate model with
2N states (see Ang & Bekaert, 2002b). Each of these states represents a combination of the regimes of
individual assets. However, this specification is infeasible to estimate for larger samples, given the number
of states and the corresponding number of covariance matrices.
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dependence of two cycles. Consequently, the true degree of synchronization can be

derived empirically.

These observations raise the question of how the degree of synchronization among

two regime probability processes, Sx and Sy, should be measured

sync(Sx, Sy),

where Si indicates the probability process of asset i being in a bull market state,

Pr
(
si

t = 1|ΩT ; θ
)

for t = 1, ..., T .

The following sections present different methods for measuring this degree of syn-

chronization. The individual regime processes Si are thereby inferred from univari-

ate switching models. The empirical analysis of the synchronization of these cycles

will then reveal the actual dependence structure and will provide further insights for

the subsequent specification of an alternative model setup.3

Most research on the synchronization of cycles has focused on economic business

cycles (see Bordo & Helbling, 2003; Artis, Marcellino & Proietti, 2004; Owyang,

Piger & Wall, 2005; Smith & Summers, 2005; Canova, Ciccarelli & Ortega, 2007;

Kose, Otrok & Whiteman, 2003, 2008, among others). In contrast, this thesis fo-

cuses on the synchronization of regime cycles (see, for example, Edwards, Biscarri

& Perez de Gracia, 2003; Bekaert, Harvey & Ng, 2005; Camacho & Perez-Quiros,

2006; Hamilton & Owyang, 2012). Furthermore, the present study contributes to the

existing literature by introducing additional measures from related disciplines.

This chapter begins with a short definition of synchronization. Section 3.2 then in-

troduces different measures to test for the extreme cases of full independence and

perfect synchronization. Finally, Sections 3.3 and 3.4 present methods for mea-

suring intermediate degrees of synchronization. These measures will support the

3Camacho and Perez-Quiros (2006) remarked that univariate regime-switching models accurately de-
fine independent cycles. However, in case the two univariate cycles are dependent, typical synchronization
measures underestimate this degree. For this reason, the current chapter introduces more advanced tech-
niques to correct for serial correlation inherent in Markov chains. These techniques promise to measure
the degree of synchronization between two dependent cycles more exactly.
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development of a regime-switching model that appropriately accounts for the syn-

chronization dynamics between underlying regime cycles (see Chapter 5).

3.1 Definition of Synchronization

The term synchronization derives from Greek and means the same time or common

time. Synchronization implies that things happen at the same time and speed. The

degree of synchronization is thereby a measure of similarity across two or more

cycles. However, there exists no unique approach to measuring this degree.

Harding and Pagan (2006), for example, assumed three basic degrees of synchro-

nization. The first case describes identical cycles and is called strong perfect positive

synchronization (SPPS). The second case describes cycles that behave exactly op-

posite to each other and is referred to as strong perfect negative synchronization

(SPNS). Finally, the third case describes two independent cycles that are strongly

non-synchronized (SNS).

Candelon, Piplack and Straetmans (2008, 2009) remarked that these cases might be

too restrictive. They proposed an intermediate degree of synchronization between

SNS and SPPS. Their test of imperfect multivariate synchronization, however, pro-

vides only a joint synchronization value (Candelon et al., 2009). This value defines

the average synchronization among all cycle pairs. The current chapter, by way of

contrast, focuses on pairwise synchronization. The emphasis on pairwise structures

prevents a possible dilution of individual synchronization effects. Accordingly, al-

ternative measures, which test for intermediate synchronization across two cycles,

need to be specified.

Further analysis thereby distinguishes three forms of synchronization. First, in-phase

synchronization focuses on the contemporaneous behavior of two cycles (Section

3.2). The measures presented by Harding and Pagan (2006) belong to this category.

Second, phase-shifted synchronization assumes common but possibly time-shifted

cycle dynamics (Section 3.3). Finally, time-varying synchronization focuses on de-

pendence dynamics that change over time (Section 3.4). The next sections introduce

different measures to test for these forms of synchronization. In Chapter 4, these
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measures will then help to determine the dynamics among assets and support the

subsequent model development and calibration.

Most research on regime-cycle synchronization has emerged from business-cycle

analysis. However, business cycles are characterized by their binary specification. A

cycle resides either in an expansion or in a contraction phase.4 In contrast, the state

probabilities in a regime-switching model show a continuous structure.

Despite the favorable structure of continuous state probabilities, some synchroniza-

tion measures in this chapter rely on binary probabilities. For this reason, a marginal

transform function F (·) transforms continuous state probabilities into binary prob-

abilities F (Si
t) = Ši

t , ∀i where necessary. Here, Si
t is a process of filtered or

smoothed state probabilities (the original regime process) and Ši
t is a regime pro-

cess with binary probabilities. This thesis uses the indicator function as a marginal

transform function. Regime probabilities equal or greater than 0.5 transform to unity

and regime probabilities smaller than 0.5 transform to zero F (·) = Iξt|t≥0.5. As this

transformation causes a loss of information, binary state probabilities are used only

where appropriate.

3.2 Measuring In-Phase Synchronization

This section focuses on synchronization measures that analyze the contemporaneous

behavior of two cycles. Hereby, measures that test for full independence or per-

fect synchronization are of particular interest (SNS and SPPS). A rejection of these

polar cases justifies the search for alternative specifications of multivariate regime-

switching models, which do not follow one of the polar dependence assumptions.

4This binary classification is adopted by research institutes such as the National Bureau of Economic
Research (NBER), and is inherent in certain tests of synchronization.
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3.2.1 Pairwise Correlation

Pairwise correlation is one of the simplest and most intuitive approaches to measur-

ing the relationship between two regime cycles

ρSxy =
E
(

Šx
t Šy

t

)
− µxµy√

µx (1 − µx) µy (1 − µy)
for t = 1, ..., T, (3-1)

where µi = E
(

Ši
t

)
for i = x, y. This measure relies on the density of its underlying

regime processes. It is therefore applicable to either binary
(

Ši
t

)
or smoothed state

probabilities
(
Si

t

)
.5

3.2.2 Concordance Index

The concordance index measures the fraction of time of two cycles residing in the

same phase. This measure was advocated by Harding and Pagan (2002, 2006) and

can be specified by

Î = 1
T

{
T∑

t=1
Šx

t Šy
t +

T∑
t=1

(
1 − Šx

t

)(
1 − Šy

t

)}
. (3-2)

Equation 3-2 shows that the concordance index relies on regime phases rather than

on regime cycle densities. Consequently, the index requires binary state probabilities

as input variables. It returns a maximum value of unity when two cycles are identical.

The index equals zero in case two cycles are strongly negatively synchronized.

One of the problems that Harding and Pagan (2006) raised is the event of independent

cycles. In this case, Î is expected to be close to 0.5. In reality, however, Î turns

out to be much higher. This misspecification is due to the structure of the regime

cycles, which are relatively time-consistent (serially correlated). Consequently, their

5Note that the specification in 3-1 focuses solely on binary probabilities. For smoothed state proba-
bilities, the corresponding function resembles the definition of Pearson’s correlation coefficient.
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expected probabilities for one of the two regimes are more likely to be close to unity

than to 0.5. Harding and Pagan (2006) demonstrated that this property results in an

overestimation of the concordance index value.6

3.2.3 Strong Perfect Non-Synchronization

To test for strong perfect non-synchronization, Harding and Pagan (2006) analyzed

the correlation between two business cycles. This pairwise analysis can be conducted

for each cycle pair in the sample. However, whereas Harding and Pagan relied on

binary state probabilities, this thesis uses smoothed state probabilities. The latter are

expected to provide more accurate results for regime cycles.

Harding and Pagan (2006) proposed a generalized method of moments (GMM) es-

timation to calculate the pairwise correlation between two cycles. The advantage of

GMM estimation is its robust standard errors. By definition, Markov chains show a

high degree of serial correlation. To account for this serial correlation, GMM pro-

vides heteroskedastic and autocorrelation consistent (HAC) covariance matrix esti-

mates. Therefore, GMM helps to estimate unbiased moments and standard errors.

The HAC standard errors in this thesis are thereby specified with Bartlett weights and

with five Newey and West (1994) lags. This correction is especially useful when test-

ing the null hypothesis of ρS = 0. Harding and Pagan (2006) showed that positive

serial correlation in cycles increases chances that this null hypothesis is incorrectly

rejected when HAC is not considered.

To estimate the correlation between two regime processes, the moment condition is

specified as

E

[
(Sx

t − µx) (Sy
t − µy)

σxσy
− ρS

]
= 0, (3-3)

6Artis et al. (2004) proposed a standardization of this index to test the null hypothesis of independent
regime cycles. The standardized index Î∗ is thereby defined as Î∗ = Î − Ī , where Ī is an estimate of the
expected value of Î . This estimate relies on the assumption that the two cycles are independent. To test
for the null of independent cycles, Î∗ is divided by its asymptotic standard error.
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where µi = E
(
Si

t

)
is the expectation for being in regime 1 and where σ2

i =
E
[(

Si
t − µi

)2
]

denotes the variance of this estimate for i = x, y. The correspond-

ing sample moments are then defined by

1
T

∑T

t=1
Si

t − µ̂i = 0, (3-4)

1
T

∑T

t=1

(
Si

t − µ̂i

)2 − σ̂2
i = 0, (3-5)

and

1
T

T∑
t=1

(Sx
t − µ̂x) (Sy

t − µ̂y)
σ̂xσ̂y

− ρ̂S = 0, (3-6)

where the hat operator indicates a parameter estimate. Harding and Pagan (2006)

remarked that equation 3-6 requires each cycle’s mean and variance estimates (3-4

and 3-5) to calculate the correlation ρ̂S . To test the null of ρS = 0, however, mean

and variance terms can be estimated in a preceding step. The correlation parameter is

then separately estimated in a subsequent step. This correlation presents a sequential

method of moments estimator (Newey, 1984; Harding & Pagan, 2006). Accordingly,

the moment condition in 3-3 can be restated as

E [mt (θ, Sx
t , Sy

t ) − ρS ] = 0, (3-7)

where mt is a separate method of moments function. The mean and variance parame-

ters are estimated in this separate function and have the following moment conditions

E

 Sj
t − µj(

Sj
t − µj

)2
− σ2

j

 = 0. (3-8)

The estimation of the correlation parameter in 3-7 is then conditioned on these input

parameters θ = {µx, µy, σx, σy}.7

7The separate estimation of the mean and variance parameters does not influence the asymptotic
N (0, 1) distribution of T 1/2ν̂−1/2 (ρ̂S − ρS), where T is the sample length, and where ν̂ is the asymp-
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3.2.4 Strong Perfect Positive Synchronization

Strong perfect positive synchronization (SPPS) can be tested in a similar vein to SNS.

However, the null hypothesis of ρS = 1 implies matching cycle means. Therefore, a

test for equal means is initially conducted

E (Sy
t − Sx

t ) = 0.

Again, the method of moments procedure delivers HAC standard errors to determine

the statistical significance of results. SPPS is already rejected if the means signifi-

cantly differ from each other.

If the null of equal means is not rejected, the regime correlation is analyzed in a

second step. Thereby, the test for perfect correlation is structured similarly as in the

SNS case. However, the null hypothesis is now ρS = 1. The sequential method of

moments estimator no longer holds under this assumption because E [δmt/δθ] ̸= 0.

Accordingly, the moment conditions need to be jointly estimated. They are specified

as

E
[
Sj

t − µj

]
= 0

E

[(
Sj

t − µj

)2
− σ2

j

]
= 0 for j = x, y

and as

E

[
(Sx

t − µx) (Sy
t − µy)

σxσy
− ρS

]
= 0.

totic variance of T 1/2 (ρ̂S − ρS). The independence of parameters and asymptotic distribution is due to
E [δmt/δθ] = 0, given the null hypothesis of ρS = 0.
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The corresponding sample moments are defined by

ht(θ, Sx
t , Sy

t ) =


Si

t − µ̂i(
Si

t − µ̂i

)2 − σ̂2
i

(Sx
t −µ̂x)(Sy

t −µ̂y)
σ̂xσ̂y

− ρ̂S


and by

f (θ, Sx, Sy) = 1
T

T∑
t=1

ht (θ, Sx
t , Sy

t ) .

The test for ρS = 1 reveals another problem because the correlation bounds are

|ρS | ≤ 1. Consequently, the test of the null hypothesis is conducted on the “boundary

of the parameter space” (Harding & Pagan, 2006, p. 68). As a result, T 1/2ν̂−1/2ρ̂S

is no longer asymptotically N (0, 1) distributed. Again, T defines the sample length

and ν̂ is the variance of T 1/2ρ̂S .

A solution to this problem is to use T 1/2ν̂−1/2(ρ̂S − 1). Chant (1974), Andrews

(2001), and Harding and Pagan (2006) pointed out that this solution asymptotically

follows a half-normal distribution.

3.3 Measuring Phase-Shifted Synchronization

Measures of in-phase synchronization determine the contemporaneous resemblance

of two cycles. However, a particular cycle might lead or lag another by a certain

period. In this case, in-phase analysis would reveal biased synchronization values.

The approaches in this section take into account different forms of such phase-shifts.

Figure 3.1 illustrates three possible forms of synchronization. The top-left graph

shows the basic in-phase analysis. Corresponding measures conduct a one-to-one

point comparison of contemporaneous events. Further, the top-right graph shows

a form of phase-shifted synchronization analysis, which also applies a one-to-one

point comparison. However, the phase-shifted comparison might allow for a fixed
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lag between two underlying cycles. The cross-correlation represents a particular

technique that belongs to the class of phase-shifted synchronization measures.

Finally, the bottom graphs represent non-metric functions of phase-shifted synchro-

nization. These functions allow for one-to-many (and many-to-one) point compar-

isons. They imply that a particular observation in the first cycle might match multiple

observations in the second cycle and vice versa.8 Likewise, some observations might

reside fully unmatched. Dynamic time warping and longest common subsequence

represent corresponding measures, which are presented below. Given that the polar

cases of in-phase synchronization can be rejected, these techniques will help to de-

tect alternative synchronization dynamics between regime cycles and will therefore

support the definition of a more appropriate regime-switching model.

Metric distance functions

(e.g. Euclidean distance, correlation)

Dynamic time warping (DTW)

Metric shifted distance functions

(e.g. cross-correlation)

Longest common subsequence (LCSS)

Non-metric distance functions Non-metric distance functions

Figure 3.1: Possible forms of synchronization

3.3.1 Cross-Correlation

In a simple form, pairwise cross-correlation relies on the correlation function in 3-1,

but applies a time-lag to one of the input series Sx or Sy . This lag-structure al-

lows one to account for phase-shifts when measuring the pairwise correlation of two

8This structure accounts for symmetric or asymmetric shifts in regime cycles.
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cycles. For example, the analysis of monthly lags between zero and six months pro-

vides thirteen different correlations for these cycles. If a particular correlation turns

out significantly higher, its corresponding lag might indicate the length of the shift

across cycles.

3.3.2 Dynamic Time Warping

Dynamic time warping (DTW) is another way of measuring synchronization among

phase-shifted regimes. The DTW algorithm is used in time series analysis to find the

optimal alignment of two time-dependent sequences. These sequences are warped

in a nonlinear way to optimally match each other.9 The DTW algorithm is thereby

specified as

DTW (i, j) =


d
(
Sx

i , Sy
j

)
+ min {DTW (i − 1, j − 1), ...

DTW (i − 1, j), DTW (i, j − 1)} if |i − j| < δ

∞ otherwise,

(3-9)

where d
(
Sx

i , Sy
j

)
measures the metric difference between Sx

i and Sy
j , and where δ is

a global constraint, which limits the period of phase-shift (Oates et al., 1999; Morse

& Patel, 2007; Cassisi et al., 2012). Further, DTW (·, 0) = DTW (0, ·) = 0 holds,

and 1 ≤ i, j ≤ T . The δ factor thereby constrains the lead and lag length among

cycles (known as Sakoe-Chiba band) to avoid warping paths with large phase-shifts.

The DTW function aims to find the optimal warping path. This path indicates the

smallest distance between Sx and Sy along time. As a result, the final observation

DTW (T, T ) indicates the minimum distance among the – possibly phase-shifted

– cycles.10 This value is important for assessing the similarity of two processes.

However, the optimal warping path itself is of comparable interest. The optimal path

9For a detailed analysis of DTW and its estimation algorithm, see Oates, Firoiu and Cohen (1999)
and Cassisi, Montalto, Aliotta, Cannata and Pulvirenti (2012).

10The structure in 3-9 reveals that DTW follows a dynamic programming approach.
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indicates the time-varying phase-shifts along time, which do not become apparent

from the DTW (T, T ) value.

To determine the distance between Sx and Sy , metric distance measures can be

applied (Oates et al., 1999; Morse & Patel, 2007; Cassisi et al., 2012). The Euclidean

distance presents a common measure for this task11

d
(
Sx

i , Sy
j

)
= |Sx

i − Sy
j |.

Figure 3.2 illustrates a sequence of an optimal warping path between the US and the

UK regime process. The solid blue line and the dotted red line represent paths with

different lead-lag constraints (three and six months). The warping paths reveal the

time-varying lead and lag relationship between the cycles of the US and the UK.

 

 

Lag = 3 months

Lag = 6 months

0 0.5 1

Feb 05

Dec 05

Oct 06

Aug 07

Jun 08

Apr 09  

 

US

Feb 05 Dec 05 Oct 06 Aug 07 Jun 08 Apr 09
0

0.5

1

 

 

UK

Figure 3.2: DTW synchronization path for the regime processes of the US and
the UK between February 2005 and April 2009. The two subplots depict the
univariate regime processes of the respective country. The main plot illustrates
the synchronization of the two countries. The continuously decreasing line in-
dicates perfect synchronization without any phase shifts. Values below this line
describe a leading US cycle, values above describe a leading UK cycle.

The advantage of DTW is its one-to-many point comparison. Traditional measures,

as for example the correlation, conduct only one-to-one point comparisons. In con-

11Alternative distance measures, such as the Manhattan distance or the Minkowski distance, can also
be applied.
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trast, DTW recognizes similar cycle shapes even if their signal is transformed, that

is, if it is shifted or scaled (Cassisi et al., 2012). This feature allows DTW to detect

possible asymmetries in regime cycles.12

3.3.3 Longest Common Subsequence

Longest common subsequence (LCSS) is another similarity measure that allows for

one-to-many point comparisons. However, whereas DTW matches all sample points,

LCSS ignores certain outliers (see also Figure 3.1). This feature makes LCSS less

resilient to noise. As a consequence, its similarity measure is less distorted.

Figure 3.1 shows that the LCSS specification resembles that of DTW. However,

LCSS measures the similarity of two cycles in terms of relative and not in terms

of absolute distance. Two cycles Sx and Sy are considered to be similar as long as

their distance is below a certain threshold value ϵ

LCSS(i, j) =


0 if i = 0 or j = 0

LCSS(i − 1, j − 1) + 1 if |Sx
i − Sy

j | < ϵ

max {LCSS(i, j − 1), LCSS(i − 1, j)} otherwise,

where 0 ≤ i, j ≤ T (Morse & Patel, 2007; Cassisi et al., 2012). The recurrence func-

tion LCSS(·, ·) measures the period length during which the distance of individual

cycle observations is below the value ϵ.13 Adding the side condition |i−j| < δLCSS

further constrains the shift size. Otherwise, large cycle shifts could result in arbitrary

matches due to similar but unrelated events of two cycles.

Figure 3.3 exemplifies the LCSS path between the US and the UK process. Similar to

DTW, the LCSS path shows phases where the US regime cycle leads the UK regime

cycle and vice versa. As expected, DTW and LCSS reveal similar patterns.

12Cakmakli et al. (2011) presented a regime-switching model that relies on a similar synchronization
assumption as the DTW algorithm.

13Similar to DTW, the longest common subsequence algorithm is based on dynamic programming.
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Figure 3.3: LCSS synchronization path for the regime processes of the US and
the UK between February 2005 and April 2009. The two subplots depict the
univariate regime processes of the respective country. The main plot illustrates
the synchronization of the two countries. The continuously decreasing line in-
dicates perfect synchronization without any phase shifts. Values below this line
describe a leading US cycle, values above describe a leading UK cycle.

In the DTW algorithm, the final value DTW (T, T ) returns the minimum cycle dis-

tance. In contrast, the value LCSS(T, T ) only indicates the length of the common

cycle. However, the transformation LCSS(T, T )/T returns a relative measure of

similarity. A value closer to unity reveals a better match.

3.4 Measuring Time-Varying Synchronization

The measures specified so far determine synchronization across the full sample his-

tory. The focus on the full history follows the specification of standard univariate

and multivariate regime-switching models. These models infer the regime process

for the full length of the time series. Accordingly, corresponding tests for fully inde-

pendent or perfectly synchronized cycles should also consider the full length of the

time series.

However, alternative synchronization assumptions need to be tested for if these two
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polar cases are rejected. The previous section presented one particular case that

assumed that the regime cycles exhibit a phase-shifted dependence structure.

The current section proposes an alternative possibility. Individual cycles might show

time-varying degrees of synchronization. To test for this hypothesis, no additional

synchronization measures are required. Existing techniques can be applied on a

rolling-window basis.14 This approach will nest all previous model specifications.

Hamilton and Owyang (2012) and Leiva-Leon (2012a, 2012b) proposed similar as-

sumptions with regard to the dynamic structure of regime cycles. They showed that

the synchronization dynamics change over time and that a time-varying synchroniza-

tion factor might be considered.

14This specification raises the question if filtered or smoothed regime probabilities should be used.
The analysis can in fact rely on smoothed regime probabilities. However, the probabilities may only be
smoothed over the rolling-window period t − p to t

(
ξt−p|t

)
, but not over the entire sample period t − p

to T
(

ξt−p|T
)

, where p indicates the length of the rolling-window.
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Chapter 4

Data Analysis

The aim of this thesis is to develop a flexible multivariate regime-switching model

that allows individual assets to follow their own switching dynamics. This specifi-

cation requires multiple regime processes, which follow individual – possibly syn-

chronized – Markov chain dynamics. To specify such a model, it is necessary to

understand the synchronization dynamics in detail. The previous chapter presented

different techniques to measure these dynamics. Below, these techniques will be

applied to empirical data.

The results of this analysis shed light on three different areas. First, they determine

the empirically observable regime synchronization. Second, the results point out

potential shortcomings of the univariate and multivariate benchmark models. Finally,

they define the structural guidelines for a more flexible regime-switching model.

This chapter first describes the dataset and conducts a descriptive analysis. Sub-

sequently, the dataset is used to estimate the benchmark regime-switching models.

This step includes the parameter estimation and the inference of regime processes.

Finally, the regime processes of the univariate models are analyzed with respect to

their pairwise synchronization.

4.1 Dataset

This thesis uses gross total return indices from Datastream for the following six

markets: United States, United Kingdom, Germany, Japan, Pacific ex Japan, and
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Switzerland. The US, Germany, and the UK build the core sample and match that

of Ang and Bekaert (1999, 2002a, 2002b). Japan is excluded from the core sample

despite its higher market capitalization compared to the UK and Germany. This

exclusion is due to the liberalization process Japan underwent in the 1980s.

Japan, Pacific ex Japan1, and Switzerland extend the core sample. They lead to a

balanced representation of the three world regions North America, Europe, and Asia-

Pacific (see Schwendener, 2010). The core and the extended sample represent ap-

proximately 60.0% and 81.6% of the developed-country market capitalization. The

separation into core and extended sample will better illustrate the drawbacks of stan-

dard multivariate regime-switching models.

The sample period ranges from December 1975 to February 2014, for a total of

458 monthly return observations. All return series are based on USD denominated

indices and are continuously compounded. The starting date was selected due to the

1973/1974 stock market crash, which ended in December 1974. The exclusion of

this crash results in a balanced occurrence of bull and bear market cycles.

4.2 Descriptive Statistics

Table 4.1 presents the descriptive statistics for the six market indices. The annualized

mean of the monthly returns lies between 8.2% for Japan and 12.4% for Switzerland.

Mean returns turned out relatively similar across the sample. Japan represents the

only exception. Its low mean is due to the Japanese asset price bubble in the 1990s.

This price bubble is also one of the reasons for Japan’s exclusion from the core

sample. The annualized standard deviations range from 15.2% for the US to 23.1%

for Pacific ex Japan.

Japan and Pacific ex Japan further show relatively low values in terms of return per

unit of risk. For Japan, this is in line with the previous argumentation. For the Pacific

area, the low return per unit of risk is mainly due to Black Monday. In October 1987,

the Pacific area showed an extreme monthly return minimum of -48.1%. In fact, the

1Note that the Pacific index does not represent a country, but a regional index.
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return minima of most analyzed markets date back to this event. For the return

maxima the dates are less conclusive.

Table 4.1: Descriptive statistics of the sample, covering monthly returns from
December 1975 to February 2014.

Mean Med. Min. Max. Std. Skew. Kurt. JB-stat.

US 11.3% 15.6% -23.3% 12.6% 15.2% -0.85 5.88 213.0***
UK 12.2% 15.3% -23.9% 18.8% 19.2% -0.51 4.87 86.7***
Germany 10.1% 17.3% -23.1% 17.7% 20.7% -0.70 4.59 86.1***
Japan 8.2% 8.5% -19.3% 24.0% 20.8% 0.06 3.75 11.0***
Pacific ex Japan 11.3% 14.7% -48.1% 21.9% 23.1% -1.31 10.18 1113.7***
Switzerland 12.4% 16.5% -20.1% 14.5% 17.2% -0.61 4.39 65.5***

Values are shown on an annualized basis; JB-stat. shows the Jarque-Bera test statistics.
*** indicates the significance of the Jarque-Bera test statistics at the 1% level.

Most markets show returns that are skewed to the left. Japan represents an exception

with a positive skewness of 0.06. Moreover, all the markets are leptokurtic, with

Japan showing the lowest kurtosis of 3.75 and Pacific ex Japan showing the highest

kurtosis of 10.18. The Jarque-Bera test for normally distributed returns is rejected

for all markets at the 1% level. Especially the statistics for the US and the Pacific

area are clearly at odds with the normal distribution. These initial results indicate

that a linear return model would describe the behavior of the underlying time series

only insufficiently.

Table 4.2: Unconditional correlation parameters of the sample, cov-
ering monthly returns from December 1975 to February 2014.

US UK GE SW JP PA

US 1
UK 0.65 1
Germany 0.60 0.63 1
Switzerland 0.57 0.66 0.77 1
Japan 0.36 0.46 0.40 0.48 1
Pacific ex Japan 0.60 0.63 0.55 0.43 0.53 1

Legend: GE = Germany; SW = Switzerland; JP = Japan; PA = Pacific
ex Japan.
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Table 4.2 presents the unconditional correlation matrix for the six markets. For better

interpretation, the data are sorted by their geographical region. The correlations show

a connection between European markets and the US, as well as between the US and

the other markets. In contrast, Japan displays a more idiosyncratic behavior. To a

lesser extent, this behavior is also observed for the Pacific area.

4.3 Regime-Switching Analysis

The subsequent regime-switching analysis relies on the benchmark models of Chap-

ter 2. Analysis will reveal additional details about the switching behavior and the

structure of the sample. These insights will support the model specification in Chap-

ter 5.

4.3.1 Univariate Regime-Switching Results

Table 4.3 presents the parameter estimates for the six markets. Each market is spec-

ified by a univariate model and follows two distinct regimes. In regime 1, the mar-

kets show higher mean returns and lower volatilities than in regime 2.2 Moreover,

regime 1 depicts higher state transition probabilities than regime 2. The correspond-

ing duration values indicate that the country and region indices reside between 8

and 50 months in regime 1. In contrast, they only last between 3 and 25 months in

regime 2.

The two regimes resemble the typical behavior of equity data. Regime 1 can be

interpreted as a bull market state (lower volatility and correlations, higher returns)

whereas regime 2 resembles the behavior of a bear market state (higher volatilities

and correlations, lower returns; see, for instance, Ang & Bekaert, 2002a). Despite

2The regime-switching models in this thesis were generally specified as having lower volatilities in
regime 1 than in regime 2. This specification was necessary to identify the two regimes and to avoid label
switching problems (see Hamilton & Owyang, 2012).
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these observable stylized features, there is no consensus in academic literature about

the exact definition of bull and bear market states (Candelon et al., 2008).

Table 4.3: Parameter estimates for the six sample markets based on a univari-
ate regime-switching model, covering monthly returns from December 1975 to
February 2014. Means and volatilities are treated as regime-dependent.

µ1 µ2 σ1 σ2 p11 p22 Dura1 Dura2 Lik

US 0.17*** -0.15 0.12*** 0.24*** 0.96*** 0.84*** 22.3 6.1 859.0
(0.035) (0.142) (0.010) (0.002) (0.026) (0.083)

UK 0.15*** -0.14 0.16*** 0.42*** 0.98*** 0.86*** 49.5 7.1 718.7
(0.030) (0.207) (0.007) (0.002) (0.010) (0.072)

Germany 0.17*** 0.02 0.14*** 0.27*** 0.95*** 0.94*** 21.4 16.1 714.9
(0.034) (0.070) (0.009) (0.002) (0.024) (0.038)

Japan 0.12*** 0.02 0.14*** 0.25*** 0.96*** 0.96*** 25.7 25.4 702.5
(0.041) (0.060) (0.008) (0.001) (0.021) (0.020)

Pacific ex Japan 0.23*** -0.18*** 0.14*** 0.37*** 0.95*** 0.89*** 19.1 8.9 666.1
(0.032) (0.007) (0.008) (0.002) (0.018) (0.036)

Switzerland 0.21*** -0.10 0.12*** 0.25*** 0.87*** 0.70*** 7.7 3.3 790.4
(0.033) (0.107) (0.009) (0.002) (0.053) (0.045)

Values are shown on an annualized basis; standard errors are depicted in parentheses; Durai defines the duration
of regime i (in months), where Durai = 1

1−pii
; p11 and p22 indicate the probability of remaining in regime 1 or 2,

respectively; and Lik is the log-likelihood.
*** indicates the significance of the parameter estimates (different from zero) at the 99% level.

Most of the estimated parameters are significantly different from zero at the 99%

level (indicated by ***). In regime 2, however, all means except for Pacific ex Japan

show insignificant deviations from zero. There are several reasons for this behavior.

On the one hand, regime 2 might describe a state in which returns do not significantly

differ from zero. However, the relatively high magnitude of the means of regime 2

indicate that this assumption can be rejected.

On the other hand, the data might not underlie any switching in means. In fact, the

standard errors for the means in regime 2 are very high. Such high standard errors

might be due to few observations in this regime. Under these circumstances, the same

problem would be observed for volatilities in regime 2. This is, however, not the

case and indicates the irrelevance of switching means for most markets. Therefore,

the benchmark models subsequently specify their means as non-switching (ceteris

paribus). Undisclosed likelihood ratio tests further supported this decision (see also

Section 4.3.3 for the multivariate likelihood ratio test).
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Table 4.4 presents the univariate specification without switching means. The stan-

dard deviations and the regime durations remain almost unchanged. Even the de-

crease in marginal likelihood is very low. This outcome clearly supports the decision

of restricting the means, as they do not significantly influence the parameter set.

The non-switching mean values are a weighted average of the previously observed

regime-dependent means. In Table 4.4, they range from 9% for Japan to 18% for

Pacific ex Japan. All of these means are highly significant and even slightly higher

than in the descriptive statistics (Table 4.1).3

Table 4.4: Parameter estimates for the six sample markets based on a univari-
ate regime-switching model, covering monthly returns from December 1975 to
February 2014. Means are treated as regime-independent.

µ σ1 σ2 p11 p22 Dura1 Dura2 Lik

US 0.14*** 0.11*** 0.22*** 0.95*** 0.87*** 19.3 7.6 808.0
(0.023) (0.009) (0.002) (0.025) (0.087)

UK 0.16*** 0.11*** 0.23*** 0.96*** 0.98*** 26.6 41.5 700.5
(0.028) (0.014) (0.004) (0.032) (0.017)

Germany 0.13*** 0.14*** 0.29*** 0.95*** 0.92*** 19.7 12.0 667.7
(0.029) (0.010) (0.002) (0.027) (0.056)

Japan 0.09*** 0.14*** 0.26*** 0.96*** 0.96*** 24.5 23.5 653.7
(0.031) (0.013) (0.002) (0.023) (0.024)

Pacific ex Japan 0.18*** 0.14*** 0.34*** 0.94*** 0.88*** 16.5 8.5 634.0
(0.031) (0.010) (0.002) (0.022) (0.045)

Switzerland 0.15*** 0.12*** 0.27*** 0.89*** 0.69*** 9.0 3.2 744.9
(0.025) (0.010) (0.002) (0.049) (0.104)

Values are shown on an annualized basis; standard errors are depicted in parentheses; Durai defines the
duration of regime i (in months), where Durai = 1

1−pii
; p11 and p22 indicate the probability of remaining

in regime 1 or 2, respectively; and Lik is the log-likelihood.
*** indicates the significance of the parameter estimates (different from zero) at the 99% level.

The standard deviations for the two regimes are very distinct. Regime 2 depicts

values twice as high as those in regime 1. In the first regime, annualized standard

deviations range from 11% for the US and the UK to 14% for Germany, Japan, and

the Pacific area. In the second regime, they range from 22% for the US to 34% for

Pacific ex Japan. This relation between the two regimes persists across all markets.

3This might be attributed to the dynamic structure of the regime-switching model.
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Table 4.4 further depicts the transition probabilities p11 and p22. Most markets show

probabilities above 0.90, which indicates long cycle durations. The persistence of

regime 1 is generally higher than that of regime 2. This persistence confirms previous

observations that assets spend relatively more time in bull market regimes than in

bear market regimes (see Ang & Bekaert, 2002a; Schwendener, 2010). However,

a detailed analysis of individual transition probabilities reveals some idiosyncrasies

among markets. The US, Pacific ex Japan, and Switzerland, for example, show

relatively low persistent transition probabilities in bear markets. Consequently, these

countries experience shorter bear phases than other countries. Overall, Switzerland

shows relatively low transition values in both states.
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Figure 4.1: Filtered and smoothed regime probability processes for the six sam-
ple markets based on the univariate regime-switching model (dashed red line:
filtered probabilities; solid blue line: smoothed probabilities). Probabilities
are depicted for regime 1. The period under study is from December 1975 to
February 2014.

The six graphs in Figure 4.1 visualize the previous observations. The solid blue lines

illustrate smoothed probabilities and the dashed red lines display filtered probabili-

ties for regime 1. The six univariate regime cycles show phases of synchronization

and phases of independence. The US and Germany in particular demonstrate very
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similar cycle dynamics. The next sections will assess the similarity of these cycles

with different synchronization measures.

4.3.2 Multivariate Regime-Switching Results

This section focuses on multivariate benchmark regime-switching models. Table 4.5

illustrates parameter estimates for the extended sample with non-switching means.4

The moments of the US, the UK, and Germany in the core sample analysis turned

out to be very similar to those in Table 4.5 and were therefore omitted.

The similarity between results of the core and the extended sample indicates the sta-

bility of multivariate models. Figure 4.2 illustrates this behavior for the smoothed

probabilities of the core (solid blue line) and the extended sample (dashed red line).

As for the moment parameters, both samples show similar dynamics in their regime

processes. This observation is surprising given the different sample sizes and the di-

verging univariate dynamics. However, given a dominant group of assets, individual

regime dynamics might vanish. Occasionally, however, the two cycles in Figure 4.2

differ strongly. In these instances, a different formation might determine the under-

lying dynamics (in the two samples).
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Figure 4.2: Smoothed regime probabilities for the core and the extended sam-
ple based on multivariate regime-switching inference. The figure indicates the
probability of staying in a bull market regime (regime 1). The period under
study is from December 1975 to February 2014.

4Undisclosed results for the multivariate model with switching means revealed the same picture as
for the univariate model. In regime 2, means have also turned out to be insignificant.
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The results clearly indicate that multivariate models might ignore the differing switch-

ing dynamics of individual assets. Simply extending the model to a larger sam-

ple therefore does not sufficiently account for individual regime dynamics. Conse-

quently, a trade-off between model accuracy and simplicity exists. The impact of

these differences across cycles will be assessed throughout this chapter.

Table 4.5 illustrates the parameter estimates for the multivariate model. In the first

regime, standard deviations range from an annualized 15% in the US to 24% in

the Pacific area. In the second regime, they range from 17% in the US to 25% in

Germany. Compared to the univariate results, standard deviations across regimes are

more similar. The regime-dependent correlations can partially explain this similarity.

The correlations absorb some of the regime-dependence inherent in the covariance

matrix. Pelletier (2006) gives further details about this behavior.

Table 4.5: Parameter estimates for the six sample markets based on a multivari-
ate regime-switching model, covering monthly returns from December 1975 to
February 2014. Means are treated as regime-independent.

µ σ1 σ2

US 0.11*** 0.15*** 0.17***
(0.023) (0.007) (0.001)

UK 0.12*** 0.20*** 0.21***
(0.029) (0.008) (0.001)

Germany 0.11*** 0.20*** 0.25***
(0.033) (0.008) (0.001)

Japan 0.08** 0.21*** 0.21***
(0.033) (0.009) (0.001)

Pacific ex Japan 0.13*** 0.24*** 0.24***
(0.035) (0.010) (0.001)

Switzerland 0.13*** 0.18*** 0.18***
(0.027) (0.008) (0.001)

P s1 s2

s1 0.99 0.02
s2 0.01 0.98

Duration 76.3 63.8

Log Lik 4931.4
dim(θ) 50

AIC -9762.9
BIC -9556.5
HQ -9681.6

Values are shown on an annualized basis; standard errors are depicted in parentheses; the regime duration
(in months) is measured by Duration = 1

1−pii
; P is the transition probability matrix and s1 and s2 are the

corresponding states; Log Lik is the log-likelihood; dim(θ) gives number of model parameters; and AIC,
BIC, and HQ are the Akaike, Bayes-Schwarz, and the Hannan-Quinn information criterion.
*, **, and *** indicate the significance of the parameter estimates (different from zero) at the 90%, 95%,

and 99% level.
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Table 4.6 further presents the correlations across bull and bear market regimes (re-

gimes 1 and 2). The lower triangular values represent the correlations in regime 1

and the upper triangular values those in regime 2. The bull market regime mostly

shows lower correlations than the bear market regime. These observations are in line

with common regime-switching literature. Contagion thereby causes equity markets

to react more similarly in negative market environments (Schwendener, 2010).

Table 4.6: Regime-dependent correlation matrices for the six
sample markets based on a multivariate regime-switching model,
covering monthly returns from December 1975 to February 2014.
Lower triangular matrix: bull market state; upper triangular ma-
trix: bear market state.

US UK GE JP PA SW

US 0.90 0.90 0.66 0.85 0.82
UK 0.52 0.92 0.72 0.90 0.89
Germany 0.40 0.46 0.64 0.87 0.87
Japan 0.27 0.37 0.33 0.69 0.69
Pacific ex Japan 0.48 0.50 0.38 0.35 0.82
Switzerland 0.45 0.55 0.73 0.41 0.41

Legend: GE = Germany; JP = Japan; PA = Pacific ex Japan;
SW = Switzerland.

In fact, most stylized facts of financial data can be observed within this regime-

switching framework. Schwendener (2010) provides a good overview of the styl-

ized facts inherent in financial data. These include asymmetry of returns, correlation

breakdown, volatility clustering, volatility co-movement, contagion, decoupling, and

safe haven. Schwendener shows that regime-switching models can cover these fea-

tures more efficiently than linear market models. The previous results have con-

firmed most of the features that apply to equity markets.

Figure 4.3 compares the smoothed bull market regime probabilities of the multivari-

ate and the univariate models. The multivariate regime cycles remove noise and show

a very distinct structure. However, during the first half of the sample, the multivariate

regime cycles show a markedly different behavior than the univariate regime cycles.

Even if the univariate regime processes did not reveal any clear interrelationship so
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far, their behavior can at least be differentiated from that of a common multivariate

cycle. These observations further support the assumption that standard multivariate

regime-switching models insufficiently cover the switching dynamics of individual

assets.
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Figure 4.3: Comparison of smoothed regime probabilities inferred from the
univariate and the multivariate regime-switching models (probability of resid-
ing in a bull market regime). The period of analysis is from January 1976 to
February 2014. Results are depicted for the core and the extended sample.

4.3.3 Likelihood Ratio Tests

Chapter 2 specified the benchmark models with switching mean, switching variance,

and switching correlation parameters. This specification allows for flexible model

structures. However, each switching variable comes at the price of an extended pa-

rameter set. At the same time, the switching of these variables might be unneces-
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sary. The previous section, for example, demonstrated that switching means might

not contribute significant information.

A restriction of certain parameters can simplify the model estimation. Restricting

means to be non-switching can thereby be of particular value. Switching means

might be the source of unconditional density functions with multiple local modes.

Multimodality causes the MLE optimization to stop at a local instead of the global

maximum.5 These problems are circumvented by restricting means to being regime-

independent. The optimization of restricted models can consequently result in more

feasible solutions. However, such a simplification must not significantly influence

the model likelihood.

The likelihood ratio test (LR-test) evaluates unrestricted and restricted models with

respect to their differences in likelihood. The test assumes the twofold difference of

these likelihoods to be approximately Chi-square distributed

2[log L(θ̂) − log L(θ̃)] ≈ χ2
m,

where the degree of freedom m equals the number of parameter restrictions, where

L(θ̂) is the likelihood of the unrestricted model, and where L(θ̃) is the likelihood of

the restricted model (Hamilton, 1994). For m = 1, critical values to reject the null

hypothesis of equal likelihoods are 2.70, 3.84, and 6.64 for the 10%, 5%, and 1%

levels of significance, respectively.

Note that the LR-test requires the restricted model to be a nested version of the

unrestricted model. Accordingly, models with different regime numbers cannot be

compared due to nuisance parameters. For example, the null hypothesis of only

one regime (non-switching model) would not satisfy the regularity conditions of a

standard regime-switching model, as some parameters would remain unidentified

(Hamilton, 2005).

Table 4.7 illustrates different specifications of the multivariate benchmark models.

5The Gibbs sampling algorithm partially prevents this problem. The algorithm applies Markov chain
Monte Carlo (MCMC) simulation instead of a gradient descent method (commonly used in MLE opti-
mization). The former approach runs through a predefined number of simulations and can jump out of
local maxima. The latter approach stops as soon as a feasible optimum is found, which, however, is not
necessarily the global maximum.
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The fully specified model allows for switching means, switching standard deviations,

and switching correlations. Moreover, this specification defines the initial state prob-

abilities ξ1|0 as additional parameters to be estimated.6 The basic specification, on

the other hand, considers the case of non-switching means and fixed initial probabil-

ities. The last four columns in Table 4.7 refer to cases where some parameters are

restricted to being regime-independent or exogenously defined.

Table 4.7: Likelihood ratio statistics for the core and the extended sample. The
period of analysis is from December 1975 to February 2014.

Full
specification

Basic
specification

Parameter restrictions

Mean Std. Correlation Initial probs.

Core sample 2449.7 2449.0 2449.0 2444.2** 2401.8*** 2449.7
21 17 18 18 18 20

Extended sample 4933.0 4931.4 4931.4 4922.9*** 4917.6*** 4932.9
57 50 51 51 42 56

The table shows the likelihood values for the core and the extended sample. Italic values indicate the corre-
sponding number of estimated parameters. Likelihood values are depicted for the fully specified benchmark
regime-switching model and for the basic specification with restricted means and initially set regime prob-
abilities (0.5). The last four columns indicate individual parameter restrictions. These four specifications
have been tested for differences in model fit compared to the fully specified model setup.
*, **, and *** indicate statistically significant differences in model fit at the 10%, 5%, and 1% level.
The likelihood ratio test is defined by 2

[
log L(θ̂) − log L(θ̃)

]
≈ χ2

m.

Table 4.7 depicts the likelihood values for the core (3 markets) and the extended sam-

ple (6 markets). In addition, values in italics depict the number of model parameters.

For the LR-test, the fully specified model defines the unrestricted likelihood L(θ̂).

For the case of restricted means, the likelihood differences turn out to be insignifi-

cant. This observation confirms the previous conditioning of the benchmark models.

In contrast, the restriction of standard deviations or correlations causes significant

differences in model fit for both samples. Finally, predetermined initial probabilities

cause only insignificant differences. This is due to the relatively long data series,

which reduces the influence of steady-state probabilities on the likelihood function.

These insights substantiate the decision to subsequently restrict the means of the

benchmark models. This restriction will improve model convergence and reduce

6In the case of fixed initial state probabilities, these are exogenously defined as 0.5 in both states.
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the parameter set. The assumption of non-switching means is especially useful for

the convergence of the flexible model in Chapter 5. Further, it supports the asset

allocation problem in Chapter 7. Portfolio optimization is generally very sensitive to

return expectations. Switching means might therefore cause more extreme portfolio

allocations and turnovers. In what follows, these considerations justify the use of

non-switching means.

On the other hand, the results clearly confirm the importance of switching standard

deviation and correlation terms. These parameters significantly contribute to the

model likelihood.

4.4 Regime Synchronization Analysis

The previous analysis revealed initial discrepancies between the univariate regime

cycles of individual assets. Further, the analysis of multivariate models has shown

that the aggregation of data in a joint cycle does not necessarily deliver more accurate

or more stable results.

Figure 4.4 extends these analyses. The six quadrants present scatterplots for pairwise

combinations of the univariate regime cycles. Each quadrant depicts the US regime

probabilities (x-axis) against the regime probabilities of one of the remaining mar-

kets (y-axis).7 In addition, the top-left quadrant plots the US probabilities against

themselves. This graph visualizes perfect synchronization. The opposite case of

fully independent regime cycles would result in evenly distributed plot points within

the unit field.

Most country pairs show clusters in the lower-left or upper-right corner. In these

cases, both processes jointly reside in regime 2 or in regime 1. However, some

country pairs reveal additional clusters. For example, the US-UK graph depicts a

cluster in the lower-right corner. In this case, the US resides in a bull regime whereas

the UK returns are driven by a bear regime. The US-UK, the US-Germany, and the

US-Japan plots further show sparse upper-left corners. This behavior indicates that

7Each cross in the six quadrants (Figure 4.4) depicts the observation of two countries’ univariate
regime probabilities at a particular point in time.
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the UK, the German, and the Japanese markets are unlikely to reside in a bull regime

while the US market is in a bear regime. However, the scatter plots cannot assess

which market leads or lags the other. For example, the plot for the Japanese market

might imply that the US is rarely in a bear regime while Japan is still in a bull regime.

However, it might also imply that Japan is rarely in a bull regime while the US still

resides in a bear regime. The following results on the synchronization of regime

cycles will analyze these dependence structures in more detail.
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Figure 4.4: Scatterplots of pairwise univariate regime probabilities. The figure
plots jointly occurring regime probabilities of the US and a corresponding sam-
ple market (to stay in a bull market). The x-axis depicts the probability of the
US and the y-axis the probability of the other market. The period under study is
from January 1976 to February 2014.
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4.4.1 Analysis of In-Phase Synchronization

Pairwise Correlation and Concordance

Table 4.8 presents initial results for the pairwise synchronization of regime cycles.

The lower triangular values depict the correlations between two regime processes.

The upper triangular values illustrate the concordance between these processes.

In terms of correlation, the in-phase synchronization among individual regime cycles

is generally low. Only Germany shows a moderate degree of regime correlation with

the US and Switzerland. In accordance with previous results, the regime correlations

of Japan, Pacific ex Japan, and the UK are rather low.

For the concordance values, a similar picture emerges with respect to the relative

concordance between individual markets. Due to the transformation into binary

probabilities, concordance values generally turn out higher. Except for Japan, all

countries show concordance values above 0.70. Note, however, that these values

might be biased. Due to the serial correlation of the Markov processes, uncorrelated

cycles tend to indicate higher concordance values than expected. The analysis of

SPPS and SNS will therefore provide more reliable information.

Table 4.8: Correlation parameters (lower triangular values) and
concordance indices (upper triangular values) between univari-
ate regime processes, covering the period from December 1975 to
February 2014.

US UK GE JP PA SW

US 0.54 0.79 0.67 0.75 0.79
UK 0.40 0.68 0.53 0.52 0.51
Germany 0.69 0.54 0.60 0.64 0.74
Japan 0.43 0.12 0.21 0.71 0.61
Pacific ex Japan 0.56 0.23 0.32 0.41 0.71
Switzerland 0.51 0.40 0.61 0.24 0.37

Legend: GE = Germany; JP = Japan; PA = Pacific ex Japan;
SW = Switzerland.
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SPPS and SNS

Table 4.9 presents the results for SPPS and SNS. The lower triangular values dis-

close the difference between the mean regime probabilities of two markets. The

corresponding significance for the null hypothesis of equal means is indicated by

***, **, and * for the 1%, 5%, and 10% level of significance.

These results reject the null of equal means for most country pairs. Significant ex-

ceptions are described. However, the analysis of means presents only the first step

to testing for perfect correlation. The upper triangular values show GMM estimated

correlations between the regime processes. In some cases, these differ significantly

from the unadjusted correlations in Table 4.8. The standard errors to test for perfect

correlation are again HAC consistent estimates. Despite this HAC correction, the

hypothesis of perfect correlation is rejected for each pair of regime cycles.

Table 4.9: Tests for strong perfect positive synchronization (SPPS) and strong
non-synchronization (SNS) between univariate regime processes, covering the
period from December 1975 to February 2014. Lower triangular matrix: differ-
ences between the mean regime probabilities of two processes; upper triangular
matrix: pairwise correlations between regime probability processes estimated
with GMM.

US UK GE JP PA SW

US 0.28 0.54 0.33 0.38 0.36
UK -0.40 0.47 0.10”’ 0.16”’ 0.26
Germany -0.13 0.27 0.17”’ 0.21 0.41
Japan -0.21 0.19* -0.08*** 0.40 0.19
Pacific ex Japan -0.09** 0.31 0.04*** 0.12** 0.25
Switzerland 0.07*** 0.47 0.20 0.28 0.16

Legend: GE = Germany; JP = Japan; PA = Pacific ex Japan; SW = Switzerland.
*, **, and *** indicate equal means between two regime processes at the 1%,

5%, and 10% level of statistical significance.
”’ indicates that pairwise correlations are not statistically significantly different

from zero at the 1% level.

The correlation estimates in the upper triangular matrix are also used to testing for

strong non-synchronization. The 10%, 5%, and 1% significance levels for the null
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of non-synchronization are depicted by ’, ”, and ”’. The results indicate that the

UK regime process is uncorrelated with those of Germany and Japan. This result is

consistent with previous observations, where the UK’s switching behavior differed

significantly from other markets.

The results of in-phase synchronization analysis confirm that the two polar assump-

tions of standard regime-switching models can generally be rejected. However, this

synchronization analysis has two main problems: first, it detects only contemporane-

ous effects; and second, it averages out possible observations over the sample path.

The next section will resolve the first issue by allowing for possible shifts among

regime processes. Rolling-window analysis presents a possible solution to the latter

issue. This technique will be introduced in Section 4.4.3.

4.4.2 Analysis of Phase-Shifted Synchronization

Cross-Correlation

Simple correlation analysis revealed only moderate signs of dependence among in-

dividual regime processes. The analysis of cross-correlations should partially relax

this problem. Table 4.10 shows the cross-correlations between regime cycles. The

lag period is defined as a maximum of six months. Upper triangular values depict the

optimal number of leads or lags between two cycles. The optimal lag is thereby de-

termined by the highest observed correlation over all lags. Corresponding correlation

values are illustrated in the lower triangular matrix.

Despite this additional flexibility, the correlation only gradually increases. Most

country pairs indicate that zero-lag correlations return the best results. Only the

regime processes of Japan and the Pacific area show shifted dependence with the

US, the UK, and Germany. However, the correlations increase only insignificantly

with these additional lags. These results illustrate that a symmetric shift in cycles

can generally be rejected.
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Table 4.10: Analysis of cross-correlation between two univariate
regime processes, covering the period from December 1975 to Febru-
ary 2014. Upper triangular values depict the lag with the highest
correlation (in months) and lower triangular values return the corre-
sponding correlation value (maximum lag: 6 months).

US UK GE JP PA SW

US 0 -1 2 1 0
UK 0.40 1 2 1 0
Germany 0.70 0.56 4 4 0
Japan 0.45 0.14 0.23 0 0
Pacific ex Japan 0.57 0.23 0.37 0.41 0
Switzerland 0.51 0.41 0.61 0.24 0.37

Legend: GE = Germany; JP = Japan; PA = Pacific ex Japan;
SW = Switzerland.

Dynamic Time Warping

Previous techniques mainly focused on the two polar cases of synchronization. How-

ever, it would be interesting to see if non-linear transformations result in intermedi-

ate degrees of synchronization. Table 4.11 therefore presents results for the dynamic

time warping of regime cycles. The depicted values represent the relative distance

between two cycles.8 Unity indicates perfect negative dependence and implies that

the cycles always reside in opposite states. In contrast, a value of zero indicates

perfect – possibly time-shifted – synchronization among cycles.

The lower triangular matrix depicts the results for a maximum lag of six months

and the upper triangular matrix shows the results without any lag. Lower DTW

values thereby imply better matching cycles. The potential synchronization among

two cycles significantly improves with the lag size. Most country pairs were able to

markedly reduce their standardized DTW values with increasing lags.

8This distance is measured as the total cycle distance divided by the sample length DT W (T, T )/T .
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Table 4.11: Analysis of dynamic time warping between two uni-
variate regime processes for a maximal lag length of zero (upper
triangular values) and six months (lower triangular values). The
period under study is from December 1975 to February 2014.

US UK GE JP PA SW

US 0.25 0.19 0.32 0.23 0.20
UK 0.21 0.35 0.45 0.26 0.27
Germany 0.09 0.31 0.34 0.30 0.22
Japan 0.24 0.41 0.26 0.32 0.33
Pacific ex Japan 0.15 0.19 0.20 0.24 0.26
Switzerland 0.14 0.24 0.15 0.27 0.20

Legend: GE = Germany; JP = Japan; PA = Pacific ex Japan;
SW = Switzerland.
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Figure 4.5: Dynamic time warping of the US and the German regime process.
a) Original regime processes; b) phase-shifted regime processes. The period
under study is from January 1976 to December 2014. The x-axis of the lower
graph indicates the length of the warping path. Due to the one-to-many point
comparison, the warping paths are of different length than the original cycles.

Figure 4.5 shows how the original regime cycles of the US and Germany are warped

to better fit the opposing cycle. Especially phases with minor noise can be adapted.
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Moreover, the visual inspection reveals that regime-switches are occasionally shifted

by some months. These results support the use of DTW to identify asynchronous

regime dependencies.

Further, Figure 4.6 matches cycles of the US and Germany for the period between

December 2000 and April 2009. Parallel moving red lines indicate that the two

cycles are synchronized. As soon as multiple lines concentrate in one point, this

might indicate a change of synchronization. During such transitional stages, the US

changes its regime whereas Germany still resides in its original state. The German

process cannot match the new regime probability of the US. Therefore, it is linked

to an earlier point. As soon as Germany switches its state, its regime probabilities

once again match those of the US, and the regime cycles are resynchronized.9 This

behavior clearly reveals the time-varying structure of regime cycle synchronization

and puts further emphasis on the analysis in Section 4.4.3.
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Figure 4.6: Matching of the US and the German univariate regime processes
using dynamic time warping (up to six months lag). The period under study is
from December 2000 to April 2009.

Longest Common Subsequence

A potential drawback of the DTW technique is that it matches each individual ob-

servation. This assumption might be too restrictive, given the possibility that two

regime cycles temporarily behave independently. The LCSS approach resolves this

problem and ignores phases without resemblance.
9The same behavior also applies vice versa.
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Table 4.12: Analysis of longest common subsequence between
two univariate regime processes for a maximal warping length of
zero (upper triangular values) and six months (lower triangular
values). The period under study is from December 1975 to Febru-
ary 2014.

US UK GE JP PA SW

US 0.41 0.68 0.45 0.64 0.70
UK 0.45 0.53 0.40 0.41 0.38
Germany 0.81 0.60 0.40 0.53 0.62
Japan 0.54 0.48 0.51 0.48 0.43
Pacific ex Japan 0.74 0.47 0.65 0.56 0.58
Switzerland 0.78 0.44 0.71 0.50 0.68

Legend: GE = Germany; JP = Japan; PA = Pacific ex Japan;
SW = Switzerland.

Table 4.12 presents the results of the LCSS approach. In contrast to DTW, a unit

LCSS value describes perfectly matched regime processes, whereas a zero value de-

picts perfect non-synchronization.10 The measure indicates the relative frequency of

events when two – possibly phase-shifted – cycles show similar regime probabili-

ties. Similarity is thereby conditioned on a threshold function. For the underlying

example, the threshold value is set at 0.20. Accordingly, the difference between

two regime probabilities needs to be lower than 20% for the cycles to be consid-

ered equal. Again, the upper triangular matrix represents the case of no lags. The

lower triangular matrix allows for up to six months of lag between the two regime

processes.

The results in Table 4.12 indicate the similarity of the US to other cycles. In the case

of the six-month phase shift, the values increase markedly. Especially the Pacific area

and Switzerland show much closer resemblance to the assets in the core sample.

Figure 4.7 presents the regime shifts between the US and the UK when dynamically

adjusted by LCSS. These shifts take a similar form as for DTW. When accounting

for the non-synchronous switches through LCSS, most distortions of the cycles can

10Note that the standardized LCSS value is not bounded by unity. However, the best possible matching
is indicated by unity.
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be eliminated or at least reduced. Due to the focus on similarity, periods of indepen-

dence are accurately detected. The significant reduction of the cycle probabilities

before the 1990s confirm this effect. The LCSS results therefore provide further

input for the specification of an appropriate regime-switching model.
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Figure 4.7: Longest common subsequence of the US and the UK regime pro-
cess. a) Original regime processes; b) phase-shifted regime processes. The
period under study is from January 1976 to December 2014. The x-axis of the
lower graph indicates the length of the warping path. Due to the one-to-many
point comparison, the warping paths are of different length than the original
cycles.

Finally, Figure 4.8 presents the matching of the US and the German regime cycle.

Red lines indicate these matches. Given the LCSS threshold value, non-matching

phases are ignored. These phases are depicted by blank spaces and can be interpreted

as times of non-synchronization. Whenever the red lines reveal a vertical structure,

they imply in-phase synchronization. However, if the lines are skewed to the left or to

the right, they imply some form of phase-shifted synchronization. Again, the patterns

are very conclusive and persist for a limited time. This behavior further supports the

hypothesis that regime processes change their degrees of synchronization across time

and should therefore be analyzed for time-varying synchronization.
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Figure 4.8: Matching of the US and the German univariate regime processes
using longest common subsequence (up to six months lag). The period under
study is from February 2005 to June 2013.

4.4.3 Analysis of Time-Varying Synchronization

The DTW and LCSS analysis presented initial evidence for time-varying synchro-

nization across regime processes. At certain times, the cycles are perfectly synchro-

nized. At other times, however, their behavior is purely idiosyncratic. Of course,

there is no unique model able to capture all of these dependencies. Rolling-window

analysis, however, might help to capture some of these effects.

Figure 4.9 exemplifies such an analysis, which determines the correlations over a

60-month rolling window. The correlations are thereby measured between the world

regime process and a specific country’s regime process. The six market cycles were

separated into three groups based on visual inspection.

The correlations between the country cycles and the world cycle are mostly non-

negative. Periods of perfect correlation or full independence are thereby of limited

nature and strongly depend on the selected asset. Only the US, Germany, and the

UK show periods of almost perfect correlation with the world regime cycle (mainly

after 1998). This might be an indication for world market integration and for a pos-

sible increase in regime synchronization of individual markets. Nevertheless, most

markets still show significant differences in their correlations with the world cycle.

These observations further highlight the time-varying degree of synchronization and
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therefore advocate the specification of a regime-switching model, which dynamically

accounts for the dependence structure of individual regime cycles.

Figure 4.9 illustrates that some assets show more similar behavior than others. These

assets might therefore be clustered and governed by a joint regime process. Figure

4.10 further presents the squared differences between the regime probabilities of the

US and the other two assets in the core sample. It shows that the cycles of the US and

Germany are very similar most of the time. The UK, on the other hand, experiences

strong deviations from the US regime cycle. These results indicate that some assets

might show more similar switching dynamics over time than other assets. Their joint

analysis therefore presents a logical next step.
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Figure 4.9: Time-varying correlation dynamics of univariate regime processes
(using a 60-month rolling window). Time-varying correlation is measured be-
tween sample cycles and the world index regime cycle. Markets are grouped
based on visual inspection. The period under study is from January 1976 to
February 2014.
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Figure 4.10: Squared differences between the regime probabilities of the US
and the other two markets in the core sample. The period under study is from
January 1976 to February 2014.

The rolling-window analysis in this section has partially explained the low depen-

dence structures among regime cycles. Put simply, the structure is not constant over

time. The model presented in Chapter 5 will incorporate these findings into the spec-

ification of a more flexible regime-switching model.

4.5 Summary

This chapter analyzed different country and regional indices for their regime-switch-

ing dynamics. Analysis revealed that neither univariate nor multivariate models ap-

propriately cover the regime dynamics among assets.

Multivariate regime-switching models imply that all underlying assets follow the

same or fully independent regime process(es). Tests for perfect synchronization and

for strong non-synchronization rejected these assumptions.

Consequently, an alternative form of synchronization seems to govern inter-regime

dynamics. Subsequent analysis has tested for phase-shifted and time-varying degrees

of synchronization. Phase-shifted techniques were able to partially improve the de-

gree of synchronization. However, the optimal LCSS path initially indicated that the

dependence of regime cycles varies over time. Subsequent rolling-window analy-

sis confirmed this dynamic synchronization. An appropriate model should therefore
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consider not only regime processes but also the dependence structures between these

processes to be time-varying.

Additional synchronization tests showed that some assets resemble a more homoge-

neous switching behavior than others. A regime-switching model should therefore

cluster these assets. To keep the model parsimonious, the regime dynamics would

subsequently be measured among these clusters.

The next chapter builds on these insights to specify a flexible regime-switching

model. This model allows groups of assets to be governed by individual Markov

chains, where these Markov chains underlie a time-varying degree of synchroniza-

tion.
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Chapter 5

Flexible Regime-Switching
Models

Standard multivariate regime-switching models a priori assume switches in regimes

to be perfectly synchronized or fully independent across assets. However, the anal-

ysis of empirical data in this study has revealed a different picture. Neither perfect

synchronization nor full independence appropriately describe the switching behavior

across time series. In fact, individual time series show changing regime-dependence

structures.

This chapter introduces a model which resembles these regime and synchronization

dynamics. The combination of the two polar dependence assumptions allows the

model to replicate intermediate degrees of synchronization.

Phillips (1991) was among the first to propose the idea of non-perfectly correlated

regime cycles in a joint model. Two lines of research have emerged from this idea

(see Table 5.1 for a summary of the most important studies).

The first line of research assumes the existence of a common regime cycle, which

is shared by all underlying assets. However, individual assets might depend on this

cycle with a time lag, and shifts are either synchronous (Hamilton & Perez-Quiros,

1996; Paap et al., 2009) or asynchronous (Ang & Bekaert, 1999, 2002a; Cakmakli

et al., 2011). Synchronous shifts imply identical lead or lag times irrespective of the

prevailing regime. For example, asset a might lead switches in asset b by a certain

time period irrespective of whether it switches from a bear to a bull state or vice

versa. In contrast, asynchronous shifts depend on the prevailing regime. In regime 1,
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asset a might lead switches in asset b by a different period length than in regime 2

(Cakmakli et al., 2011).

The second line of research assumes that each asset follows its own regime process.

However, individual processes show some degree of synchronization. If regime cy-

cles are assumed to be perfectly synchronized, the assets follow a joint Markov chain

process. On the other hand, if cycles are assumed to behave fully independently,

assets are driven by individual processes. The actual degree of synchronization

emerges from the weighted linear combination of these two extreme cases of interde-

pendence (Bengoechea et al., 2006; Camacho & Perez-Quiros, 2006). The weights

of these cases are inferred from the data and can be either constant or time-varying.

This approach has been applied by Camacho and Perez-Quiros (2006), Bengoechea

et al. (2006), Hamilton and Owyang (2012), and Leiva-Leon (2012a, 2012b).

So far, most research on the dynamics of regime synchronization has been limited to

bivariate time series (see Table 5.1). This limitation is mainly motivated by the size

of the parameter set and by the model complexity. Larger time series cause a rapid

increase in both dimensions, as every additional asset requires its own Markov chain

process.

The present study introduces a feasible solution to partially circumvent these prob-

lems. This solution derives from the model specification of Camacho and Perez-

Quiros (2006) and Leiva-Leon (2012a, 2012b). Individual regime processes thereby

show a dynamic degree of dependence. However, whereas the previous models as-

sumed that each process governs a single asset, the specification presented here ap-

plies to asset groups.

The dynamic dependence structure and the focus on asset groups are motivated by

the results in Chapter 4. The analysis of pairwise regime cycles highlighted the

finding that the synchronization of individual regime cycles changes over time but

that some assets show more similar switching dynamics than others. These assets

can therefore be clustered. Consequently, assets show relatively similar dynamics

within a group but heterogeneous dynamics across groups. As a result, the proposed

model does not imply an individual Markov chain for each asset. Instead, assets in

the same cluster are governed by a joint Markov chain process.
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Following the basic model setup of Camacho and Perez-Quiros (2006), these joint

Markov chains, in turn, show some degree of – possibly time-varying – synchro-

nization. In line with Billio et al. (2006) and Otranto (2010), this specification is

subsequently called the flexible regime-switching model.1 The term “flexible” refers

to the instance that underlying asset groups can reside in different states, but are

covered in a joint model.

The flexible model clearly competes with standard multivariate regime-switching

models that allow for more than two regimes. Guidolin and Timmermann (2007)

showed that the consideration of more than two regimes significantly increases the

explanation power of a model. The additional regimes capture stages of transition.

This feature is especially useful when analyzing different asset classes, as they might

show more heterogeneous switching behaviors. A model that infers this data from

just two regimes might thus return weak results.

However, a model with more than two regimes poses two potential drawbacks: first,

even if regimes might cover stages of transition, all assets still follow the same com-

mon regime process; and second, the parameter set significantly increases with every

additional regime. The latter argument describes a particular strength of the flexible

regime-switching model. Every asset in this model follows only two regimes. The

combination of these regimes already results in a higher state space. Whether asset b

resides in the same regime as asset a is thereby irrelevant for the moments of asset a.

As a consequence, the parameter set remains low because the moment parameters

are reused in non-synchronized states. The synchronization of the Markov chains is

then inferred from the data.

The next section specifies the general structure of the flexible regime-switching

model. Following the framework in Chapter 2, it first describes the model’s data-

generating process, followed by the Markov chain process. The subsequent sections

then present corresponding state inference and parameter estimation techniques.

1Otranto (2010) presented a flexible regime-switching model, which clustered multivariate time se-
ries. However, Otranto did not state particular synchronization dynamics. He therefore estimated a large
parameterized model with a transition probability matrix that matched the size of the state space. This the-
sis, in contrast, specifies a model that infers corresponding synchronization dynamics across clusters. This
setup significantly reduces the parameter set. Furthermore, the model provides a factorization algorithm
to efficiently estimate PSD correlation matrices.
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5.1 General Model Specification

5.1.1 Data-Generating Process

The multivariate DGP of Chapter 2 is readily extended to the flexible regime-switch-

ing model. To simplify the flexible model, its mean vector is assumed to be regime-

independent µst
= µ. Previous likelihood ratio tests demonstrated that regime-

invariant means do not significantly reduce the likelihood of the analyzed models.

Chapter 6 will confirm these results for the flexible model.

Similar to the baseline specification, the covariance matrix Σst is defined as being

regime-dependent. This assumption is also in line with previous likelihood ratio test

statistics. The covariance matrix is again decomposed into standard deviation and

correlation terms

yt = µst
+ Σ1/2

st εt εt ∼ N (0, I)
Σst = DstRtDst

Rt = Rst ,

(5-1)

where Dst
is a diagonal matrix of regime-dependent standard deviations, and where

Rst is a regime-dependent correlation matrix.

Chapter 2 already stated different causes for decomposing the covariance matrix.

The flexible model specification reveals a further reason: in this model, individual

assets might reside in different states at the same time. Consequently, standard de-

viation parameters – and to some extent correlation parameters – can be reused in

intermediate states. However, this approach does not as easily apply to covariances.

The next section will illustrate this reuse of parameters and the corresponding algo-

rithm in detail.
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5.1.2 Bivariate Model with Multiple Markov Chains

The previous DGP specification has not revealed any structural differences between

the flexible model and the benchmark model of Chapter 2. In fact, most differences

emerge from the regime-generating process.

Similar to the benchmark specification, flexible regime-switching underlies a Marko-

vian regime-generating process. In the multivariate benchmark model, however, all

assets follow a common Markov chain. The flexible model, in contrast, assumes

that assets underlie individual regime processes. For example, a simple two-state

bivariate model implies that both assets reside either in regime 1 or in regime 2. The

flexible model extends this state space. Table 5.2 shows how the same two regimes

define four different states s∗
t . Asset a can reside in one of the two regimes irrespec-

tive of asset b’s current regime.

This specification does not imply that the two regime processes are fully indepen-

dent. In fact, their dependence structure needs to be inferred from the data. For ex-

ample, the two processes might be perfectly synchronized. In this case, they would

reside exclusively in s∗
t = 1 and s∗

t = 4. Phillips (1991) pointed out that the true

dependence structure is expected to lie somewhere between full independence and

perfect synchronization. A flexible regime-switching model approximates this be-

havior.

s∗
t sa

t sb
t

1 1 1
2 1 2
3 2 1
4 2 2

Table 5.2: State space of the bivariate switching model.

The flexible setup is akin to a standard multivariate model with four instead of two

regimes. However, the flexible model’s specification reveals a particular strength: It

depends only on two basic regimes. Accordingly, moment parameters need not be

estimated for four different states. For example, whether the overall state resides in
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s∗
t = 1 or in s∗

t = 3 does not influence the moment parameters of asset a. In both

cases, asset a resides in regime 1, irrespective of asset b’s current regime.

States s∗
t = 1 and s∗

t = 4 describe the known regimes of the multivariate benchmark

model. In these states, both assets reside in the same regime and their switches

are perfectly synchronized. In the intermediate cases s∗
t = 2, 3, parameters can

be reused from the polar states s∗
t = 1, 4.2 Formulas 5-2 and 5-3 exemplify this

approach for a bivariate two-state specification. For ease of exposition, both mean

and covariance terms are defined as regime-dependent. The vectors in 5-2 combine

the means of individual assets according to their prevailing regime. In formula 5-3,

the same applies to standard deviations

µ1 =

(
µa

1

µb
1

)
µ2 =

(
µa

1

µb
2

)
µ3 =

(
µa

2

µb
1

)
µ4 =

(
µa

2

µb
2

)
(5-2)

Σ1 =

(
(σa

1 )2 ρ1σa
1 σb

1

ρ1σa
1 σb

1 (σb
1)2

)
Σ2 =

(
(σa

1 )2 ρ2σa
1 σb

2

ρ2σa
1 σb

2 (σb
2)2

)

Σ3 =

(
(σa

2 )2 ρ3σa
2 σb

1

ρ3σa
2 σb

1 (σb
1)2

)
Σ4 =

(
(σa

2 )2 ρ4σa
2 σb

2

ρ4σa
2 σb

2 (σb
2)2

)
,

(5-3)

where µi
k and σi

k depict the mean and standard deviation of asset i in state k, and

where ρk defines the state-dependent correlation between the two assets.

However, this approach does not apply to the parameters of the correlation matrix.

Correlation coefficients of states 1 and 4 cannot simply be reused in states 2 and 3.

In contrast to moment parameters, correlation defines the interrelation between two

time series. A correlation matrix should therefore not be specified solely with regard

to the prevailing regime of asset a or asset b. States 2 and 3 thus require separately

estimated correlation parameters ρ2 and ρ3.

Again, different ways exist to specify such correlation dynamics. Models with a

2Of course, parameters from the intermediate cases could also be reused to define the two polar
states. However, the standard regime-switching specification implies that the polar states should be used
as reference cycles.
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shifted regime cycle often assume the leading asset’s state to determine the cor-

relation matrix (see Cakmakli et al., 2011). In dynamic synchronization models,

the covariance or correlation matrix is usually defined as being regime-independent

(Camacho & Perez-Quiros, 2006; Leiva-Leon, 2012a, 2012b), as following a diag-

onal structure (Hamilton & Owyang, 2012), or as being fully parameterized in each

state (Otranto, 2010).

However, none of these solutions seems appropriate. Either they ignore the content

of information inherent in regime-dependent correlations or they over-parameterize

the model. The latter point is of particular relevance for multivariate flexible models,

as their parameter sets increase faster than the size of the underlying time series.

This thesis develops a novel approach to limiting this increase in correlation param-

eters. After introducing the multivariate flexible model, Section 5.3 will specify this

algorithm.

Synchronization of the Markov Chains

The state space extension presents an efficient way of accounting for different forms

of regime dependence. However, the previous setup did not reveal any information

about the dependence structure of the underlying Markov chains. To complete the

model specification, these synchronization dynamics need to be specified:

sync(sa
t , sb

t).

The conventional approach in the literature is to a priori define this relationship

structure (Leiva-Leon, 2012b, 2012a). Regime cycles are thereby commonly as-

sumed to be either fully synchronized or completely independent. By contrast, the

model presented here proposes an intermediate degree of synchronization, located

between these two polar cases (following Camacho & Perez-Quiros, 2006; Leiva-

Leon, 2012b, 2012a). As this intermediate dependence is unknown, however, the

model is best described in terms of the two polar cases (Phillips, 1991; Camacho &

Perez-Quiros, 2006; Bengoechea et al., 2006; Leiva-Leon, 2012a, 2012b). In case
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the regime processes of asset a and asset b are completely independent

Pr(sa
t = ja, sb

t = jb|δt = 0) = Pra(sa
t = ja)Prb(sb

t = jb) (5-4)

holds, where δt = 0 indicates full independence and where Pr(sa
t = ja, sb

t = jb|δt =
0) is the conditional joint state probability.3 Further, Pra(sa

t = ja) and Prb(sb
t = jb)

describe the filtered marginal regime probabilities of asset a and b.

In contrast, if the two assets are fully dependent (or synchronized), both assets are

assumed to be governed by the same regime process

Pr(sa
t = ja, sb

t = jb|δt = 1) = Prab(sa
t = sb

t = ja), (5-5)

where δt = 1 describes perfect synchronization. In both specifications, the proba-

bility law of Pra(sa
t = ja), Prb(sb

t = jb), and Prab(sa
t = sb

t = ja) is defined by in-

dividual Markov chain processes. Consequently, each process has its own transition

probability matrix. This separation into individual processes reduces the parameter

set and makes the model more flexible.4

Specifications 5-4 and 5-5 reveal the conditionality of the joint state-probabilities on

δt. Camacho and Perez-Quiros (2006) and Bengoechea et al. (2006) found that the

synchronization of regime cycles can be described by (1−δt) times 5-4 and δt times

5-5, where 0 ≤ δt ≤ 1. In line with Camacho and Perez-Quiros (2006), the weight

δt represents a measure of regime cycle synchronization.

To combine the information inherent in 5-4 and 5-5, a probability law for δt needs to

be defined. Camacho and Perez-Quiros (2006) assumed a time-invariant dependence

structure among the two cycles, that is, δt = δ. Consequently, they defined a fixed

3For ease of exposition, the conditionality on past information (filtration) and on the parameter set θ
is omitted.

4Applied to the example in Table 5.2, this implies that no (4×4) matrix, but three individual (2 ×2)
matrices need to be estimated. Two of these (2 × 2) matrices cover the individual regime dynamics and
the third matrix covers the joint dynamics. This approach reduces the parameter set from 12 parameters
(4 × 4 matrix) to only six parameters (2 × 2 matrices). Further, Chapter 7 will show that this specification
offers additional advantages for the multistage optimization procedure, as the regime processes can be
simulated individually.
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term δ as part of the parameter set θ. The factors δ and (1 − δ) can then be expressed

in terms of probabilities and serve as weights for the conditional joint probabilities.

Based on these weights, an unconditional joint probability results from

Pr(sa
t = ja, sb

t = jb) =Pr(sa
t = ja, sb

t = jb|δ = 0)Pr(δ = 0)+

Pr(sa
t = ja, sb

t = jb|δ = 1)(1 − Pr(δ = 0)).

However, the results in Chapter 4.4 illustrated a dynamic dependence structure

among individual regime cycles. These results contradict a time-invariant specifica-

tion of δt. Similar to Leiva-Leon (2012a, 2012b), this thesis thus follows a dynamic

approach and assumes a time-varying synchronization factor δt. Leiva-Leon (2012a,

2012b) proposed that this factor is driven by an additional Markov chain. The unob-

served state variable sδ
t of this process is time-varying. Similar to the other Markov

chains, it is inferred from the data.

Due to this additional regime-variable, the state space in Table 5.2 is extended by

another dimension. Table 5.3 presents this extended state space, where the last col-

umn indicates the regime of δt. In case sδ
t = 1, the regime cycles of a and b are

independent. In case sδ
t = 2, asset a and b follow a common regime cycle. This

information is collected in the joint state variable s∗
t . The joint probability of each

case is thereby described by

Pr(s∗
t = j) = Pr(sa

t = ja, sb
t = jb, sδ

t = jδ)

= Pr(sa
t = ja, sb

t = jb|sδ
t = jδ)Pr(sδ

t = jδ), (5-6)

where Pr(sa
t = ja, sb

t = jb|sδ
t = jδ) is defined as in 5-4 and 5-5. A particular

strength of this approach is its low level of complexity. The additional Markov chain

does not increase the set of moment parameters. Further, it also maintains the size

of the conditional density function. The conditional pdfs for states 1 to 4 resemble

the same information as those for states 5 to 8. Hence, the state variable sδ
t does not

influence the conditional pdf but only the probabilities of its conditional states.
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s∗
t sa

t sb
t sδ

t

1 1 1 1
2 1 2 1
3 2 1 1
4 2 2 1
5 1 1 2
6 1 2 2
7 2 1 2
8 2 2 2

Table 5.3: Extended state space with an additional synchronization factor.

Leiva-Leon (2012a, 2012b) showed that the results in Table 5.2 can be replicated by

integrating Pr(sa
t = ja, sb

t = jb, sδ
t = jδ) through sδ

t . However, the joint probability

Pr(sa
t = ja, sb

t = jb, sδ
t = jδ) is in fact better suited to calculate the different regime

processes of a, b, ab, and δ. Section 5.2 will discuss this process in more detail.

5.1.3 Multivariate Model with Multiple Markov Chains

So far, research on dynamic regime synchronization has focused mainly on bivariate

time series. This emphasis clearly emerges from the argumentation presented in the

previous section. First, more than two assets would require a synchronization factor

δt for each pair of regime cycles in the sample. Second, the state space and the

parameter set would significantly increase with every additional asset.

This study contributes to the solution of this problem. The proposed structure im-

plies that multiple assets jointly define a regime cycle. Such asset groups underlie

the same properties as in the previous model. However, regime processes are no

longer inferred for univariate but for clustered time series. Assets within a cluster

contemporaneously switch their regimes. Across clusters, the switching behavior is

heterogeneous. The degree of synchronization across these clusters is thereby still

measured by δt.
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Based on this specification, the bivariate model is readily extended to multivariate

time series. Mean and standard deviation parameters linearly increase with the sam-

ple size. Intermediate states s∗
t = 2, ..., Knc−1 reuse the moments of s∗

t = 1, Knc.

Thereby, K defines the number of states that each cluster follows (usually two) and

the exponent nc accounts for the number of clusters.5

Given the above reasons, however, this approach does not apply to correlation matri-

ces. An alternative specification would be to condition the correlation matrix on the

regime of a particular asset or – as in the prevailing case – that of a particular cluster.

The correlation matrix in equation 5-7, however, illustrates another solution. This

“composite correlation matrix” is defined by two clusters a and b, which follow

individual regime processes. In case s∗
t = 1 or s∗

t = K2, both clusters follow the

same regime (sa
t = sb

t). Consequently, the correlation across all assets is conditioned

on either regime 1 or regime 2. In intermediate states s∗
t = 2, 3, the clusters reside in

different regimes and the correlation matrix follows a more complex specification:

Rs∗
t =2 =


[

ρ11|sa
t =1 ρ12|sa

t =1

ρ21|sa
t =1 ρ22|sa

t =1

]
· · ·[

ρ31|sa
t =1,sb

t =2 ρ32|sa
t =1,sb

t =2

ρ41|sa
t =1,sb

t =2 ρ42|sa
t =1,sb

t =2

] [
ρ33|sb

t =2 ρ34|sb
t =2

ρ43|sb
t =2 ρ44|sb

t =2

]
 . (5-7)

Equation 5-7 exemplifies this concept for the intermediate state s∗
t = 2. In this state,

cluster a is driven by regime 1 (sa
t = 1) and cluster b is driven by regime 2 (sb

t =
2).6 Formula 5-7 shows that the correlation within a cluster is solely conditioned on

this cluster’s regime. Consequently, the regime in cluster a does not influence the

correlation parameters in cluster b and vice versa.

This specification implies that the correlations within cluster a and b resemble the

values of s∗
t = 1 and s∗

t = 4. Hence, as the values of s∗
t = 1, 4 can be reused for

s∗
t = 2, 3, no additional parameters are required in the MLE parameter set θ so far.

A different picture emerges for the off-diagonal blocks. For ease of exposition, for-

5The bivariate model structure implies that nc = 2. Further, it is assumed that K = 2 for all clusters.
6This specification resembles state s∗

t = 2 in Table 5.3.
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mula 5-8 abstracts the content of 5-7:

Rs∗
t =2 =

[
Asa

t
M ′

s∗
t

Ms∗
t

Bsb
t

]
, (5-8)

where Asa
t

is an (m × m) regime-dependent correlation matrix for the assets in

cluster a. The same structure applies to the (n × n) matrix Bsb
t
.

A different structure applies to the (n × m) matrix Ms∗
t
. This matrix measures

the correlations between assets of different clusters. It is therefore conditioned on

the regimes of both clusters. The conditionality of this matrix is best expressed in

terms of the overall state s∗
t . Again, if both clusters reside in the same regime, the

correlations resemble those in s∗
t = 1, 4. However, in intermediate cases s∗

t = 2, 3,

new correlation information emerges. The correlation matrices of s∗
t = 1, 4 do not

contain these parameters. Values in Ms∗
t

thus represent additional parameters to be

included in θ.

This specification leads to a slower growth of the parameter set, compared to a stan-

dard four-state multivariate regime-switching model. The latter would estimate the

entire correlation matrix for each state. The current specification, however, requires

only the correlation matrices of states s∗
t = 1, K2 and the parameters in Ms∗

t
for

s∗
t = 2, 3. Especially for time series with a larger number of assets, this approach

significantly reduces the parameter set compared to a four-state model.7 At the same

time, it covers the full dynamics of the data.

However, a particular problem arises with regard to the parameter estimation. Chap-

ter 2 stated different reasons for estimating Cholesky decomposed parameters instead

of correlation parameters. The main reason was to guarantee PSD matrices. The

same problem applies to the current specification. Especially the correlation matrices

in s∗
t = 2 and s∗

t = 3 might be subject to non-PSD results. The corresponding cor-

relation matrices resemble information from assets that remain in different regimes,
7Note that a standard multivariate regime-switching model usually implies that the returns in indi-

vidual regimes are normally distributed. Their weighted combination then allows one to replicate the
non-normality of underling data. Given the combination of clusters with different regimes in the same
correlation matrix, however, the i.i.d. assumption should no longer hold as regime-dependent parameters
are not independently observed for a particular regime. Nevertheless, the assumption still holds because
the state spaces in Table 5.2 and 5.3, and not the individual regime processes, describe the final states.
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which increases the chances of negative correlations. Consequently, a PSD structure

is difficult to guarantee when optimizing the parameter set element-by-element.8

Cholesky decomposition allows one to partially circumvent these problems. How-

ever, it poses a further difficulty: Formulas 5-7 and 5-8 clearly separate the different

clusters and define by which regime(s) a particular parameter is governed. This

uniqueness does not apply to Ls∗
t
, which defines the lower triangular Cholesky fac-

tor. The parameters in Ls∗
t

that define the block Asa
t

also influence the parameters

in block Bsb
t

and Ms∗
t
.9 Consequently, the information of Ls∗

t
in s∗

t = 1, 4 cannot

simply be reused in s∗
t = 2, 3. To calculate Ls∗

t
in s∗

t = 2, 3, an alternative approach

needs to be defined. This approach must guarantee that the resulting correlation ma-

trix Rs∗
t

is PSD and that it depicts the same block-diagonal correlations in s∗
t = 2, 3

as in s∗
t = 1, 4.

Chapter 5.3 develops an efficient algorithm to calculate these correlations in s∗
t =

2, 3. This algorithm presents one of the main contributions of this thesis to existing

research.

Model Specification with More Than Two Clusters

The previous section illustrated a simple way of extending the bivariate synchroniza-

tion model to multivariate time series. At the same time, the state space remained

unaffected, as the model was still governed by only two Markov chains. The un-

derlying assets were simply divided into two homogeneous subgroups, which were

driven by the same two regime processes.

Larger samples, however, might show more distinct switching behavior. A separa-

tion into two clusters might thus be too restrictive. Clearly, increasing the number

of clusters presents a trade-off between within cluster similarity and model feasibil-

ity. Additional clusters enable groups with more homogeneous switching behavior.

However, they also imply a larger parameter set and a higher model complexity.

8Due to negative correlation values in the intermediate cases, the estimation of weakly bounded
(−1, +1) correlation matrices might often violate the PSD property.

9Note that the opposite does not hold, because the Cholesky algorithm starts from the upper-left
corner of L.
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Chapter 6 will show that a separation into two and three clusters provides accurate

results. The previous specification with two clusters is thus extended by another

cluster c. Following this specification, the processes of the three clusters are either

fully independent or perfectly synchronized. In case the regime processes of the clus-

ters are independent, specification 5-4 is extended by another marginal probability

process for cluster c

Pr
(
sa

t = ja, sb
t = jb, sc

t = jc|δt = 0
)

= Pra (sa
t = ja) Prb

(
sb

t = jb

)
Prc (sc

t = jc) . (5-4′)

Contrastingly, if the individual clusters are fully dependent, all assets are governed

by the joint regime process

Pr
(
sa

t = ja, sb
t = jb, sc

t = jc|δt = 1
)

= Prabc

(
sa

t = sb
t = sc

t = ja

)
. (5-5′)

Similar to the bivariate model, 5-4′ and 5-5′ are weighted by the probability process

of δt. So far, the factor has determined the pairwise synchronization of two cycles

by weighting their extreme forms of dependence. However, in case of more than

two clusters, this feature no longer applies. The factor δt jointly applies to all three

clusters. Consequently, it presents an average measure of synchronization between

the possible cycle combinations (the tupels a − b, a − c, and b − c).10 The specifi-

cation of pairwise synchronization measures, in contrast, would further increase the

parameter set and would make the model infeasible to estimate.

Further, the correlation matrix in 5-9 shows that the additional cluster creates smaller

cluster blocks and increases the number of submatrices. The matrix in 5-9 shows that

an increase in clusters leads to an increase in off-diagonal block parameters. If each

asset were finally defined by an individual cluster with two regimes, the number of

correlation parameters would equal that of a standard four-regime model.11 Note

10This procedure partially resembles the multivariate analysis of average cycle correlation applied by
Candelon et al. (2008, 2009).

11Every asset would represent an individual cluster. Consequently, each asset pair would be defined
by two correlations when both assets reside in the same regime and by two correlations when they reside
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that the current specification would still allow for more flexibility, as every asset can

reside in its own regime.

Rs∗
t

=



[
ρ11|sa

t =1 ρ12|sa
t =1

ρ21|sa
t =1 ρ22|sa

t =1

]
· · · · · ·

...

[
ρ33|sb

t =2 ρ34|sb
t =2

ρ43|sb
t =2 ρ44|sb

t =2

]
...

· · ·
[
ρ53|sb

t =2,sc
t =2 ρ54|sb

t =2,sc
t =2

] [
ρ55|sc

t =2

]


(5-9)

5.2 State Inference

The state inference procedure follows Hamilton’s (1989, 1994) basic algorithm. Due

to the inclusion of multiple regime cycles, however, it needs to be extended.12 This

extended algorithm underlies the same two-step procedure as in Hamilton (1989): an

updating step and a forecasting step.

Step 1: The first step calculates the likelihood function and updates the state prob-

abilities. Given the estimated parameters θ, the conditional joint densities can be

calculated as the product of the state-specific density and the state probability

p
(
yt, sa

t = ja, sb
t = jb, sδ

t = jδ|Ωt−1; θ
)

=

f
(
yt|sa

t = ja, sb
t = jb, sδ

t = jδ, Ωt−1; θ
)

× Pr
(
sa

t = ja, sb
t = jb, sδ

t = jδ|Ωt−1; θ
)

,

where f
(
yt|sa

t = ja, sb
t = jb, sδ

t = jδ, Ωt−1; θ
)

is the conditional density function

and where Pr
(
sa

t = ja, sb
t = jb, sδ

t = jδ|Ωt−1
)

is defined as in 5-6.13 As shown in

Table 5.3, the different regime processes can be combined in the joint state s∗
t . This

in different regimes: 2N(N − 1)/2 + 2N(N − 1)/2. This parameter number matches the number of
correlations in a standard four-state regime-switching model: 4N(N − 1)/2.

12This extension follows the remarks in Camacho and Perez-Quiros (2006) and in Leiva-Leon (2012a,
2012b).

13Illustrated for the case with two clusters.
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adjustment results in a simpler notation of the conditional joint densities

p (yt, s∗
t = j|Ωt−1; θ) = f (yt|s∗

t = j, Ωt−1; θ) × Pr (s∗
t = j|Ωt−1; θ) ,

where Pr (s∗
t = j|Ωt−1; θ) is specified as shown in equation 5-6.

The next step is to calculate the marginal densities of a specific state variable. This

is done by summing the conditional joint densities over the remaining state variables

(see also Leiva-Leon, 2012a, 2012b)

f (yt, sa
t = ja|Ωt−1; θ) =

2∑
jb=1

2∑
jδ=1

p
(
yt, sa

t = ja, sb
t = jb, sδ

t = jδ|Ωt−1; θ
)

f
(
yt, sb

t = jb|Ωt−1; θ
)

=
2∑

ja=1

2∑
jδ=1

p
(
yt, sa

t = ja, sb
t = jb, sδ

t = jδ|Ωt−1; θ
)

f
(
yt, sa

t = sb
t = ja|Ωt−1; θ

)
=

2∑
jδ=1

p
(
yt, sa

t = ja, sb
t = ja, sδ

t = jδ|Ωt−1; θ
)

f
(
yt, sδ

t = jδ|Ωt−1; θ
)

=
2∑

ja=1

2∑
jb=1

p
(
yt, sa

t = ja, sb
t = jb, sδ

t = jδ|Ωt−1; θ
)

.

(5-10)

Step 2: The second step of the algorithm updates and forecasts the state probabili-

ties. The marginal distributions in 5-10 are therefore divided by their unconditional

densities

Pr (sa
t = ja|Ωt; θ) = f (yt, sa

t = ja|Ωt−1; θ)
f (yt|Ωt−1; θ)

Pr
(
sb

t = jb|Ωt; θ
)

=
f
(
yt, sb

t = jb|Ωt−1; θ
)

f (yt|Ωt−1; θ)

Pr
(
sa

t = sb
t = jab|Ωt; θ

)
=

f
(
yt, sa

t = sb
t = ja|Ωt−1; θ

)∑2
jm=1 f

(
yt, sa

t = sb
t = jm|Ωt−1; θ

)
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Pr
(
sδ

t = jδ|Ωt; θ
)

=
f
(
yt, sδ

t = jδ|Ωt−1; θ
)

f (yt|Ωt−1; θ)
,

where

f (yt|Ωt−1; θ) =
2∑

ja=1

2∑
jb=1

2∑
jδ=1

p
(
yt, sa

t = ja, sb
t = jb, sδ

t = jδ|Ωt−1; θ
)

. (5-11)

Further, summing the logarithm of 5-11 over time returns the log-likelihood value

of the time series. The resulting state probabilities are collected in the vectors

ξa
t+1|t, ξb

t+1|t, ξab
t+1|t, and ξδ

t+1|t, where ξi
t+1|t =

(
Pr
(
si

t+1 = 1|Ωt; θ
)

Pr
(
si

t+1 = 2|Ωt; θ
) ) for

i = a, b, ab, and δ. Due to the independence of the different Markov chains, each

process is updated individually

ξa
t+1|t = Paξa

t|t

ξb
t+1|t = Pbξb

t|t

ξab
t+1|t = Pabξab

t|t

ξδ
t+1|t = Pδξδ

t|t,

where Pi represents the corresponding transition probability matrix for i = a, b, ab,

or δ. Following 5-6, the updated state probabilities are again combined to build the

joint state probabilities.

These two steps are subsequently repeated for t = 1, ..., T .

5.3 Parameter Estimation

Section 5.1 highlighted central aspects of the flexible regime-switching model. Three

features are thereby of particular relevance for parameter estimation: the factoriza-

tion of correlation matrices (composite correlation matrices), the clustering of under-
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lying assets, and the definition of appropriate starting and boundary values. These

features are subsequently analyzed in greater detail.

5.3.1 Factorization of Correlation Matrices

The previous section presented an intuitive approach to reusing certain correlation

parameters in different states of the flexible model. In this model, the two states

s∗
t = 1, Knc match those of common regime-switching models, where all assets

reside in the same regime (see Table 5.3).14 However, the flexible model can also

follow intermediate states s∗
t = 2, ..., Knc−1, where individual asset clusters reside

in different regimes. Clearly, the correlations within an asset cluster resemble those

in s∗
t = 1 or s∗

t = Knc. Only the correlations across groups contain new infor-

mation. Step 1 in Figure 5.1 illustrates this situation for a two-regime (K = 2)
two-cluster (nc = 2) model.

Below, this thesis develops an algorithm that incorporates this reuse of correlation

parameters for all intermediate states s∗
t = 2, ..., Knc−1. In general, the combina-

tion of these correlation submatrices is intuitive. However, the simple exchange of

certain submatrices – as shown in step 1 – does not guarantee PSD correlation ma-

trices. Consequently, the algorithm has to rely on the previously presented Cholesky

decomposition.

In Chapter 2, this decomposition was simple. For each regime, the model defined

independent Cholesky factors L, which were then reassembled within the MLE pro-

cedure. However, this simplicity does not apply to the intermediate states of the

flexible model. The Cholesky factors in these states are subject to an additional con-

straint. The reassembled correlation matrix Rs∗
t

= Ls∗
t
L′

s∗
t

in s∗
t = 2, ..., Knc−1

must contain the same block-diagonal correlations as in s∗
t = 1 or s∗

t = Knc (see

step 1 in Figure 5.1). As shown in Section 5.1.3, the conditionality of the correlations

in Rs∗
t

is clearly observable (either conditioned on the regime of one cluster: block-

14Note that the state space effectively follows 2Knc states due to the synchronization factor δt, which
defines an additional dimension (see also Table 5.3). However, this additional dimension does not influ-
ence the number of conditional pdfs, but solely their weights. Consequently, the moment and correlation
parameters for states 1 to Knc depict the same information as those for states Knc + 1 to 2Knc.
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diagonal; or on the regimes of both clusters: off-block-diagonal). However, this

conditionality is not as easily observable for the parameters in Ls∗
t
. Consequently,

for s∗
t = 2, ..., Knc−1 the parameters in Ls∗

t
must be recursively adjusted to guaran-

tee that the block-diagonal correlations resemble those in s∗
t = 1 or s∗

t = Knc.

Recursive hereby refers to the initial specification of the correlation matrices in

s∗
t = 1, Knc and to the subsequent adjustment of the Cholesky factors Ls∗

t
in

s∗
t = 2, ..., Knc−1. Steps 2 and 3 in Figure 5.1 depict this recursive procedure

(for two clusters):

In step 2, the correlation matrices of the two polar states s∗
t = 1, 4 are Cholesky de-

composed. In contrast, the Cholesky factors of intermediate states s∗
t = 2, 3 extend

the parameter set only by their off-block-diagonal elements M̆s∗
t
: θ =

{
..., Ls∗

t =1,

Ls∗
t =Knc , M̆s∗

t =2, ..., M̆s∗
t =Knc−1, ...

}
.15 The matrices in 5-12 exemplify the ele-

ments of this block structure for a two-cluster model

Rs∗
t

=

[
Asa

t
M ′

s∗
t

Ms∗
t

Bsb
t

]
Ls∗

t
=

[
Ăs∗

t
0

M̆s∗
t

B̆s∗
t

]
, (5-12)

where the elements {A, B, M} and
{

Ă, B̆, M̆
}

define the cross-cluster parameters

for the correlation matrix and for the Cholesky decomposed matrix, respectively.

The parameter set θ is subsequently fed into the MLE optimization routine. The

algorithm in Figure 5.2 (part 1) illustrates the above procedure in technical terms.

Step 3 in Figure 5.1 describes the process within the optimization routine. In a first

step, the correlation matrices for s∗
t = 1, 4 are reassembled. The Cholesky factors

Ls∗
t

for s∗
t = 2, 3 are then modified by the factorization algorithm. This algorithm

adjusts the elements in Ls∗
t
, which match the block-diagonal clusters (indicated in

gray in Figure 5.1). In contrast, the off-block-diagonal input parameters M̆s∗
t

enter

into the matrix Ls∗
t

unadjusted.

15To initialize the MLE optimization, M̆s∗
t

for s∗
t = 2, ..., Knc − 1 is, for example, defined by M̆1

or M̆Knc . Alternatively, the parameters in M̆s∗
t

for s∗
t = 2, ...Knc − 1 could also be set to zero. The

solution applied in this thesis will be described in Section 5.3.3.
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Again, the factorization algorithm in Figure 5.2 (part 2) describes this procedure

in technical terms. It is conducted for s∗
t = 2, ..., Knc − 1 and follows the order

of the Cholesky-Banachiewicz algorithm. The procedure therefore starts from the

upper-left corner and proceeds row-by-row.

The basic Cholesky algorithm applies to diagonal elements in Ls∗
t

(i = j; see also

formula 2-18). In addition, the test for Ls∗
t ;jj /∈ R+ after each full iteration of i

ensures that these diagonal elements in Ls∗
t

are non-negative and therefore that the

solution is unique.

In case element (i, j) in Rs∗
t

belongs to one of the block-diagonal clusters(
Rs∗

t ;ij ∈ ζs∗
t
, where ζs∗

t
=
{

Asa
t
, Bsb

t

})
, the corresponding element Ls∗

t ;ij is ad-

justed (see second line in the algorithm; part 2). Hereby, ζs∗
t

=
{

Asa
t
, Bsb

t

}
defines

the set of within-cluster correlations. It is defined by the prevailing intermediate

state s∗
t = 2 or s∗

t = 3. Consequently, cluster a and cluster b do not reside in

the same regime, and their corresponding submatrices A and B depict correlations

from different regimes. For example, if s∗
t = 2, then Table 5.3 implies that clusters

a and b are in regimes 1 and 2, respectively. As a result, ζs∗
t =2 would be defined

by
{

Asa
t =1, Bsb

t =2

}
. In case (i, j) in Rs∗

t
represents an off-block-diagonal element(

Rs∗
t ;ij /∈ ζs∗

t

)
, the corresponding element in M̆s∗

t
enters into Ls∗

t
.

Finally, the resulting Cholesky factors Ls∗
t

for s∗
t = 2, ..., Knc − 1 are reassem-

bled to build the correlation matrices.16 The above-mentioned test for Ls∗
t ;jj /∈ R+

guarantees that these correlation matrices are PSD.

16An alternative solution would be to define the Cholesky factors Ls∗
t

for s∗
t = 1, Knc, to re-

assemble them inside the optimization routine, and to assign the corresponding correlation terms to
s∗

t = 2, ..., Knc − 1. The off-diagonal blocks of correlations would then present part of the param-
eter set. This solution would guarantee PSD results for s∗

t = 1, Knc, but not for the intermediate states
s∗

t = 2, ..., Knc − 1.
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B 4

Step 2: Cholesky decomposition of the regime-specific correlation matrices R 1  and R 4

A 2=A 1 M 2

M 2 B 2=B 4

R 2

A 1

B 1M 1

M 1

R 1 =

=

M 1 reflects regular 

correlations between assets 

in A 1  and B 1

(both in regime 1)

M 4  reflects regular 

correlations between assets 

in A 4  and B 4

(both in regime 2)

Aim:  Estimate M 2 , which

reflects correlations between 

assets in A 1  (in regime 1) and  

B 4  (in regime 2)

All clusters in
regime 1

All clusters in
regime 2

R 4 ==

A 4 M 4

M 4

Cluster a in regime 1
Cluster b in regime 2

L 1 = L 2 = L 4

M 1 M 2 M 4

Step 1: Specification of initial correlation matrices R 1  and R 4

A1

B1

A4

B4

M 4

Step 3: Vectorization of lower triangular matrices L i={A i ,B i ,M i } for i = 1,4

and of off-block-diagonal matrices M i  for i = 2,3;

reassembling of the correlation matrices R i=L i L i ' within the likelihood function

The block-diagonal elements of L 2  and L 3  (states where the clusters reside in different regimes)

are specified so that they resemble the block-diagonal correlation values of R 1  and R 4 .

Only the values of clusters M 2  and M 3  are estimated in the optimization routine (for L 2  and L 3 ).

M 1 M 2 M 4 B 4

A 1 M 1

B 1

R 1 = L 2 = R 4 =

A 4

B1 B4

Figure 5.1: Illustration of the factorization algorithm to calculate the compos-
ite correlation matrices for the flexible regime-switching models.
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Part 1: Specification of initial parameter set (outside optimization routine):

1. Cholesky decomposition of Rs∗
t

: Ls∗
t

= chol
(
Rs∗

t

)
for s∗

t = 1, K2

2. Specify naïve input for the off-block-diagonal elements M̆s∗
t

for
s∗

t ̸= 1, K2, where

Ls∗
t

=
[

Ăs∗
t

0
M̆s∗

t
B̆s∗

t

]
,

and where Ăs∗
t

∈ Rm×m, B̆s∗
t

∈ Rn×n, M̆s∗
t

∈ Rn×m

3. Stack parameters in

θ =
{

..., vech (L1) , vech (LK2) , vec
(

M̆2

)
, ..., vec

(
M̆K2−1

)
, ...
}

,

where vech(·) is a half-vectorization and where vec(·) defines a vector-
ization.

Figure 5.2: Factorization algorithm to define composite correlation matrices.
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Part 2: Factorization algorithm (within optimization routine):

1. Reassemble Ls∗
t

and reverse the Cholesky factorization:

Rs∗
t

= Ls∗
t
L′

s∗
t

for s∗
t = 1, Knc

2. Build the lower triangular matrices Ls∗
t

for s∗
t = 2, ..., Knc−1 according

to the following algorithm:

for i = 1 to N do
for j = 1 to N do

Ls∗
t ;ij =



√
1 −

∑i−1
m=1 L2

s∗
t ;im, if i = j

1
Ls∗

t
;jj

(
Rs∗

t ;ij −
∑j−1

m=1 Ls∗
t ;imLs∗

t ;jm

)
, if i > j ∩ Rs∗

t ;ij ∈ ζs∗
t

M̆s∗
t ;i−m,j , if i > j ∩ Rs∗

t ;ij /∈ ζs∗
t

0, otherwise,

where ζs∗
t

=
{

Asa
t
, Bsb

t

}
,

and where m is the size of cluster a.

end for
Stop: if Ls∗

t ;jj /∈ R+

end for

Figure 5.2 (cont.): Factorization algorithm to define composite correlation ma-
trices.
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5.3.2 Clustering of Assets

The developed factorization algorithm presents an efficient way of reusing corre-

lation parameters in different states. However, the specification of this algorithm

strongly depends on the structure of the underlying clusters. An appropriate cluster-

ing technique therefore presents an integral part of the multivariate flexible regime-

switching model.

This thesis applies two different data-clustering techniques: k-means clustering and

hierarchical clustering. For a detailed description of k-means and hierarchical clus-

tering, one is referred to Everitt, Landau, Leese and Stahl (2011) and to Ritter (2014).

The current section focuses on the adaptation of these techniques to regime pro-

cesses.

k-means clustering aims to partition the underlying univariate regime processes of

the N assets, S =
{

S1, ..., SN
}

, into K mutually exclusive clusters so that the

within-cluster sum of distance is minimized

min
{mk}K

k=1

K∑
k=1

∑
S∈Ck

d (S, mk) ,

where mk is the centroid of cluster Ck, K is the number of clusters, and d com-

putes the distance between regime processes and the corresponding centroid mk

(Wu, 2012; Aggarwal & Reddy, 2014). This centroid is typically defined by the

mean of the within-cluster observations µk.17 Moreover, the distance function d is

most widely represented by the squared Euclidean distance ∥S − m∥2 (Wu, 2012;

Aggarwal & Reddy, 2014).

Note, that a regime process moves between zero and unity. However, its mean does

not reveal any information about the behavior of the regime-switching process over

time. For example, the mean of a regime process with the balanced occurrence

of bull and bear states is close to 0.5. This number gives no further information

about the underlying regime dynamics and is therefore uninformative.18 The same

17k-means specifically refers to the K different means {µk}K
k=1.

18The only exception is a process that resides mostly in one regime.
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applies to the mean of a cluster mk = µk. For this reason, regime cycles need to be

standardized relative to a reference cycle. This standardization determines the degree

of deviation between two processes and returns appropriate input data for k-means

clustering.

The univariate regime cycle of the Datastream World Index builds the reference cycle

in this thesis. To standardize individual cycles, their absolute distance to the world

regime cycle is calculated

d (Sa
t − Sw

t ) = |Sa
t − Sw

t |, ∀t

where Sa
t and Sw

t describe particular observations of the regime cycles of asset a

and of the world index.

Clearly, this approach is biased by the assumption that the world index resembles the

true regime process. A further problem arises when the world regime probability is

close to 0.5. In this case, assets in bull states (Si
t close to unity) and in bear states

(Si
t close to zero) depict the same distance to the world index even though the cycles

are totally different.

Agglomerative hierarchical clustering represents a valuable alternative. This tech-

nique initially treats each univariate regime process S =
{

S1, ..., SN
}

as an in-

dividual cluster. The most similar pair of clusters is then merged. The algorithm

continues with this new set and merges clusters until the intended number of clusters

is reached (Aggarwal & Reddy, 2014; Ritter, 2014). Whereas k-means relies on ac-

tual observations, hierarchical clustering bases on dissimilarity measures (distance

metrics). These measures adopt the previous standardization of regime cycles and

therefore make this step redundant.

Hierarchical clustering follows a two-step approach. In a first step, it calculates the

direct distance between two individual regime processes. This distance is determined

for each combination of regime cycles and is typically defined by Euclidean distance.

In a second step, the linkage criteria compares distance information of step one to

determine the proximity of clusters. This thesis uses single linkage selection, where
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distance is measured as the shortest distance among the observations of the two clus-

ters

min
Sa∈Ci,Sb∈Cj

d
(
Sa, Sb

)
,

where d describes the distance measure defined in step one (Aggarwal & Reddy,

2014).

Hierarchical clustering clearly circumvents the specification of a reference cycle.

Nevertheless, the structure of the underlying univariate regime cycles still repre-

sents a weakness. The univariate regime-switching model ignores any dependence

structure across individual assets. According to Camacho and Perez-Quiros (2006),

perfect synchronization therefore tends to be underestimated. This shortcoming is of

particular relevance for the clustering of cycles, as perfectly synchronized cycles are

harder to detect. Nevertheless, the clustering results still present a valuable source of

information to segregate the sample into individual groups.

Clustering based on the full sample history poses a further problem. These clusters

rely on information that was not available at the time of their formation. Theoreti-

cally, the clusters should be specified at time t, with respect to univariate smoothed

regime probabilities until that date:
{

ξi|t
}t

i=0. Based on these clusters, the flexible

model’s regime probabilities would then be estimated until a later date T :
{

ξi|i
}T

i=t
.

The analysis of subperiods, however, has shown that clusters remain relatively stable

over time. Therefore, the overlapping of cluster formation and regime calculation

periods does not significantly distort the structure of the clusters.

5.3.3 Use of Prior Information

This thesis estimates the underlying regime-switching models using maximum like-

lihood estimation (MLE). In general, this estimation technique presents an efficient

way of maximizing a likelihood function. However, the mixture distribution of a

regime-switching model may show many local maxima. As a result, the optimiza-

tion of the corresponding likelihood surface might stop at a local instead of the global
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maximum. Nevertheless, this local optimum might still present a valuable solution

if it resides closely to the global maximum.

To ensure this closeness, appropriate starting and boundary values for the underlying

parameters need to be defined. The specification of these values requires reliable

prior information, which will be defined below.

The underlying assumption of regime-independent means partially mitigates the pre-

viously mentioned problem. Due to non-switching means, the density function be-

comes unimodal and the optimization of the likelihood function always stops at the

global maximum. Despite this simplification, starting and boundary parameters, if

set appropriately, might still support the estimation procedure for three reasons: First,

given appropriate starting values, the likelihood function shows a faster convergence

rate. Second, some parameters still require boundary conditions (for example, tran-

sition probabilities, standard deviations, or correlations). Finally, without already

approaching the global solution, the search method might be unable to optimize like-

lihood functions with large parameter sets.

Optimal Starting Values

Defining appropriate starting values for the flexible model seems quite complex at

first. However, its structure presents a particular advantage. If the underlying as-

sets reside in a regime of perfect synchronization
(
sδ

t = 2
)
, the sample mimics the

properties of the multivariate benchmark model. In contrast, if the underlying assets

reside in a regime of full independence
(
sδ

t = 1
)
, the sample can be divided into

individual clusters. In turn, each of these clusters once again exhibits the properties

of the benchmark model.19

The resulting parameter estimates of the benchmark models therefore provide good

start-up parameters for the flexible setup. This approach is very supportive, given the

fact that standard benchmark models are simpler to estimate than the flexible regime-

switching models. Clearly, the DGP setup needs to be equal in the flexible and

19Depending on the size of the cluster, this is either a univariate or a multivariate benchmark regime-
switching model.
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the benchmark model. This restriction also applies to the definition of the regime-

dependent variables. Moreover, the estimation in the benchmark models should rely

on the same observation period as in the flexible model.20

Given these assumptions, benchmark models provide good start-up values for most

parameters of the flexible setup. In the case of non-synchronized states
(
sδ

t = 1
)
, for

example, benchmark models return starting values for the sample moments and for

the transition probabilities of each cluster.

In the case of perfectly synchronized states
(
sδ

t = 2
)
, all assets reside in the same

regime. Consequently, the multivariate benchmark model provides starting values

for the joint transition probability matrix Pab or Pabc as well as for the correlation

matrices. The latter are additionally Cholesky-decomposed to receive the final input

factors Ls∗
t
.

The above specification provides a very intuitive approach to defining the starting

values of the flexible model. However, this setup leaves unanswered how the bench-

mark models initially set their starting values. Hereby, a different approach applies.

Schwendener (2010) remarked that the starting values should already possess the

observed stylized facts of financial markets. This specification increases the chances

that the estimated likelihood will end up close to the global maximum on the like-

lihood surface. In this respect, standard deviation well describes the properties of

the different regimes (at least for two regimes; see Schwendener, 2010; Spremann,

2007; Spremann & Gantenbein, 2007). Consequently, the sample observations are

separated into two pools, based on the standard deviation of a reference cycle. For

this purpose, the Datastream World Index serves as a reference cycle. It separates the

two pseudo-regimes based on the median standard deviation of its returns (24-month

rolling window). Observations at time t that show a lower standard deviation than

the median belong to regime 1
(
σworld

med > σworld
t

)
, and vice versa. Moment and

correlation parameters are then estimated for the observations of the corresponding

regime. These parameters serve as starting values for the benchmark model. Simi-

larly, starting values for the transition probabilities can be estimated from the relative

frequency of changes between
(
σworld

med > σworld
t

)
and

(
σworld

med ≤ σworld
t

)
.

20This approach does not bias the results of the flexible model. The starting values depend only on
information that was available at the time of the flexible model’s specification (no posterior information).
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Thus far, two parameters of the flexible model have not been analyzed. These in-

clude the transition probabilities of the synchronization factor sδ
t and the correlation

matrices of intermediate states. The former are initially set at 0.95 for pδ
11 and pδ

22.

Analysis of the dynamic synchronization measures in Chapter 4.4.3 revealed similar

numbers.

The correlation matrices in intermediate states follow the same reference-cycle-

approach as presented above. However, the current setup is slightly different, as the

sample is governed by more than one regime process. Consequently, standard devi-

ation is not defined globally by the Datastream World Index but by selected assets in

the corresponding clusters. For example, the joint event (σa
med > σa

t )∩
(
σb

med ≤ σb
t

)
defines the observations in the intermediate state s∗

t = 2, where cluster a is in

regime 1 and cluster b is in regime 2. Each cluster further needs to define a par-

ticular asset as its volatility indicator. The correlations can then be calculated for the

observations in the corresponding regime pool. Finally, Cholesky decomposition is

applied and the off-block-diagonal elements in the lower triangular matrix are used

as starting values M̆s∗
t
.

Optimal Parameter Bounds

Appropriate parameter bounds are defined much easier than the previously defined

start-up values. In fact, the latter even support the definition of appropriate parameter

bounds. This definition applies to both the flexible and the benchmark models.

Boundaries for means can be set very unrestrictedly. Basically, they can range from

−∞ to +∞. However, to improve the convergence of the search algorithm, bound-

aries can be set more restrictively. Given well-defined starting values, means are

limited by lower and upper bounds of -2.0% and +2.0% around the starting value.

These bounds result in an annualized return bandwidth of 48.0%. In case of regime-

dependent means, the corresponding boundaries are set relative to the mean of the

respective regime.

For standard deviations, boundaries need to be set more restrictively. However, as

illustrated in connection with covariance factorization (see Chapter 2), standard de-

viations are only weakly bounded. To avoid singularities in the likelihood function,
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standard deviations only need a fixed lower limit. This is set at 1.0% annualized

volatility. To improve likelihood convergence, the upper limit was set at 60.0% an-

nualized volatility. However, neither limit has ever been reached.

For the correlation parameters and the Cholesky factors, the limits are easily set at

−1 and +1 and need no further specification.

Finally, the specification of the transition probability matrices is already restricted by

the properties of probabilities. Consequently, the probability values need to lie be-

tween zero and unity. However, given the implied assumptions about Markov chains,

these bounds need to be additionally restricted (see Section 2.2.2). The probabilities

of residing in the respective regime (p11 and p22) are limited by lower and upper

bounds of 0.75 and 0.99, respectively. The lower limit guarantees stable regime

dynamics, whereas the upper limit assures ergodicity and irreducibility. Finally,

the lower bounds for the transition probabilities of the flexible model (p11 and p22)

were additionally restricted by max {0.75, (1 − 0.2) · starting value}. For the upper

bounds, similar limits were set by min {0.99, (1 + 0.2) · starting value}.

5.4 Summary

This chapter has introduced a multivariate regime-switching model, which allows

individual groups of assets to reside in different regimes. Previous research mainly

analyzed this model structure in a bivariate context. Particular reasons for this limita-

tion are the increasing model complexity and the structure of the covariance matrix.

This study presents a robust solution to these problems. Assets with similar regime

processes can be clustered to reduce the number of underlying Markov chains. Fur-

ther, different clustering techniques have been presented to group these cycles.

Moreover, the use of composite correlation matrices reduces the increase in the num-

ber of parameters to estimate. The corresponding factorization algorithm is a partic-

ular contribution of this thesis and allows the model to incorporate more flexible

correlation structures.
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Chapter 6

Empirical Analysis

The empirical analysis of flexible regime-switching focuses on two particular model

features: first, the synchronization dynamics between asset clusters; and second, the

specification of the composite correlation matrix and its impact on model likelihood.

These two aspects represent major contributions of the present work to research in

this field and will receive special attention throughout the current chapter.

The following section analyzes these features by comparing different model setups.

Section 6.2 then presents detailed results for the flexible model with two and three

clusters. These models are applied to the core and the extended sample, which will

highlight the importance of appropriate sample clustering.1 Moreover, it will in-

tuitively demonstrate the shortcomings of standard multivariate regime-switching

models. Section 6.3 evaluates the capacity of the flexible model to capture the true

degree of regime cycle synchronization. This analysis is conducted by means of a

kernel density estimation. Section 6.4 then compares the forecasting power of the

different models. Finally, the main findings of this chapter are summarized in Sec-

tion 6.5.

6.1 Model Comparison

Chapter 4 clearly illustrated the synchronization dynamics between the regime pro-

cesses of individual assets. Results revealed the necessity of considering time-varying

1The underlying dataset is the same as in Chapter 4.
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synchronization in multivariate regime-switching models. This claim, in turn, led to

a more complex model setup (see Chapter 5). The flexible model allows for a dy-

namic switching behavior, but requires additional parameters. To assess this trade-

off between model accuracy and complexity, the flexible model is evaluated in two

ways.

First, the DGP specification of the flexible model is tested for possible restrictions

of the composite correlation matrix. In theory, this correlation matrix and the corre-

sponding factorization algorithm seem very efficient. However, it needs to be evalu-

ated whether the additional flexibility contributes significantly to the model fit. Due

to the nested structure of the DGP, likelihood ratio tests apply to this comparison.

Second, the flexible model is compared to alternative regime-switching and non-

switching models. This comparison determines the value of synchronization dynam-

ics in the flexible setup. The different models are, however, non-nested and can

therefore not be compared directly. Information criteria thus help to evaluate the

relative quality of these non-nested models through penalized likelihood functions.

Table 6.1 illustrates the first part of the model comparison. It depicts the log-likeli-

hood values and the size of the parameter set for different models. Panel A presents

the results for the core sample and panel B for the extended sample.

The columns in Table 6.1 describe different model specifications. The full and ba-

sic specifications match those in Chapter 4. Again, full specification implies no

switching restrictions and resembles the DGP in formulas 2-16 and 5-1. In contrast,

the basic specification assumes regime-independent means and fixed initial regime

probabilities (steady-state probabilities). Further, columns four and five depict mod-

ified versions of the basic specification. Column four restricts the correlation matrix

to be regime-independent. The specification in column five, in contrast, assumes that

the correlation matrix is regime-dependent, but relies solely on the state of the US

cluster.2 Similar to Cakmakli et al. (2011), the regime of a specific underlying asset

defines the state of the entire correlation matrix. This restriction helps to evaluate

the information content of the proposed composite correlation matrix. The restric-

tion applies only to the flexible model, as all other regime-switching models already
2For ease of exposition, this asset group is called the US cluster, although the US might only be one

of many equally important assets in that cluster.
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imply that all assets reside in the same regime. Columns four and five depict the

corresponding LR-test statistics next to the likelihood values (indicated by stars).

The basic model specification thereby defines the unrestricted model for the LR-test.

Statistically significant differences in model fit at the 1%, 5%, and 10% level are

indicated by ***, **, and *, respectively.

The rows in Table 6.1 describe five different models, which belong to three cate-

gories: First, the linear model (LIN) presents a simple non-switching one-regime

model. Its corresponding parameter set consists solely of moment parameters and of

a single correlation matrix.

Second, the two multivariate models (MV_2 and MV_4) belong to the category of

standard regime-switching and follow the baseline specification in Chapter 2. In

line with Guidolin and Timmermann (2007), one of these models follows a four-

regime process (MV_4). Due to its increased state space, this model should partially

resemble the properties of flexible regime-switching.

Finally, the last two models implement the structure from Chapter 5. These models

belong to the category of flexible regime-switching. The two specifications differ

with regard to the number of underlying clusters (two clusters: FLEX_2C; three

clusters: FLEX_3C).3

Table 6.1 provides five main insights: First, the likelihood values of the full spec-

ification and the basic specification differ only marginally. Undisclosed LR-tests

have shown no significant differences in model fit between the two specifications.

This observation holds true both across models and across sample sizes. These re-

sults further support the flexible model’s DGP setup, where means are defined as

non-switching (corresponds to the basic specification).

Second, non-switching correlations significantly reduce the likelihood value of all

models (see column 4). These results confirm previous observations that switch-

ing correlations significantly contribute to the model fit. Moreover, they support

Pelletier’s observation (2006) that standard deviations as well as correlations need to

be regime-dependent.4

3The next section defines the corresponding clusters of the sample.
4LR-test results for the variances are omitted. However, these are at a level of significance similar to

that of the correlation results.
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Table 6.1: Comparison of different models and specifications in terms of
marginal log-likelihood. The period of analysis is from December 1975 to
February 2014.

Full
specification

Basic
specification

Restriction of correlation matrix

Non-switching
Driven by

the US

Panel A: Core sample

Linear model 2360.0
9

Multivariate model (2 regimes) 2449.7 2449.0 2360.0***
21 17 14

Multivariate model (4 regimes) 2508.2 2484.8 2360.0***
51 39 30

Flexible model 2 clusters 2482.5 2478.9 2456.2*** 2460.6***
34 27 20 23

Flexible model 3 clusters 2503.9 2500.3 2453.4*** 2480.8***
39 31 22 25

Panel B: Extended sample

Linear model 4770.1
27

Multivariate model (2 regimes) 4933.0 4931.4 4770.1***
57 50 35

Multivariate model (4 regimes) 5024.7 5004.6 4770.1***
123 102 57

Flexible model 2 clusters 4963.6 4956.5 4925.8*** 4951.6
76 66 41 56

Flexible model 3 clusters 5000.9 4991.9 4938.0*** 4973.3***
87 76 43 58

The table shows the likelihood values for the core and the extended sample. Italic values indicate the corresponding
number of estimated parameters. Likelihood values are depicted for the fully specified benchmark regime-switching
model and for the basic specification with restricted means and initially set regime probabilities (0.5). The last two
columns indicate restrictions of the correlation matrix. Column five assumes the cluster in which the US resides to
define the overall state of the correlation matrix. The last two specifications have been tested for differences in model
fit compared to the basic specification.
*** indicate statistically significant differences in model fit at the 1% level.
The likelihood ratio test is defined by 2

[
log L(θ̂) − log L(θ̃)

]
≈ χ2

m.

Consequently, non-switching correlations present no alternative to the composite

correlation matrix in the flexible model. However, the rejection of non-switching

correlations does not yet support the use of composite correlation matrices. In line

with Cakmakli et al. (2011), the correlation matrix can alternatively be conditioned

on the regime process of a particular asset. Even large state spaces would subse-
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quently be governed by only K different correlation matrices. This restriction would

result in a smaller parameter set and would simplify the flexible model.

Column five presents the results of this restriction. Thereby, the cluster with the US

index conditions the entire correlation matrix. The LR-test statistics indicate signif-

icant differences in model fit compared to the basic specification.5 The composite

correlation structure thus adds statistically significant value to the model likelihood.

Third, insights one and two apply to both sample sizes. Despite its larger param-

eter set, the flexible model is still competitive in the extended sample. FLEX_2C

represents the only exception. Its parameter set would justify a restriction of the

correlation matrix to depend solely on the US regime (column 5). Section 6.2.3 will

show that this is due to the model’s low number of clusters in relation to the size of

its sample. Despite this exception, the likelihood values of both flexible models still

compete with alternative setups.

Fourth, flexible regime-switching models more closely resemble the likelihood value

of the multivariate benchmark model with four instead of two regimes (MV_4). At

the same time, however, the pace of parameter extension in the flexible models more

closely resembles MV_2.

Finally, the likelihood values of the flexible models are very competitive considering

the size of their parameter sets. Unfortunately, as these models are non-nested, their

likelihood values cannot be compared directly. Due to the presence of nuisance

parameters, the LR-test statistic would no longer follow a Chi-squared distribution.

However, information criteria present an alternative way of comparing such non-

nested models.

Table 6.2 proposes three information criteria for comparing the quality of different

models: the Akaike information criterion (AIC), the Bayes-Schwarz information

criterion (BIC), and the Hannan-Quinn information criterion (HQ). These measures

of fit are very intuitive, as they simply penalize a model’s likelihood value according

to the dimension of its parameter set. This trade-off between in-sample fit and model

parsimony supports the comparison of different models (Guidolin, 2013). However,

information criteria give no indication as to the absolute model quality, but solely

5Note that the latter relies on composite correlation matrices (as introduced in Chapter 5).
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as to its relative strength compared to other models. Further, the structure of the

penalizing function depends on the chosen information criterion. For example, the

Akaike information criterion is specified as

AIC = 2dim (θ) − 2 log (L (θ)) ,

where dim(θ) measures the size of the parameter set and where log (L (θ)) depicts

the log-likelihood value. Guidolin (2013) demonstrated that this criterion has opti-

mal asymptotic properties, but tends to select too-large non-linear models in small

samples.

Similarly, the Bayes-Schwarz information criterion can be specified as

BIC = dim (θ) log (T ) − 2 log (L (θ)) ,

where T measures the length of the observation period. This specification reveals

that BIC penalizes the parameter size more strongly than AIC. Consequently, BIC

tends to select simpler model specifications. Finally, the Hannan-Quinn information

criterion is defined by

HQ = 2dim (θ) log (log (T )) − 2 log (L (θ)) .

According to Guidolin (2013), this criterion performs strongly in both small samples

and non-linear models. Further, the HQ criterion tends to return values between

those of AIC and BIC.

Table 6.2 presents the sample results for these measures. The model with the low-

est information criterion thereby presents the best relative quality. For this purpose,

Table 6.2 illustrates the two lowest values for each criterion in bold numbers. In addi-

tion, it also depicts the saturation ratio, measured as total observations (NT ) divided

by the number of model parameters dim(θ): NT/dim(θ), where N is the number of

underlying assets. Guidolin (2013) showed that values around 35 and above present
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a good trade-off between sample size and parameter number. However, the absolute

size of the parameter set might still be burdensome for model estimation.

Table 6.2 reveals that all models show comparably high saturation values, with

MV_4 being the only exception. However, the extended sample limits the validity

of this statement, as some models already exhibit high absolute parameter numbers.

For example, FLEX_3C and MV_4 require 76 and 102 parameters.

Table 6.2: Comparison of different models with respect to their information
criteria. The period of analysis is from December 1975 to February 2014.

dim(θ) Sat.
ratio Lik AIC BIC HQ

Panel A: Core sample

Linear model 9 164.7 2360.0 -4702.1 -4664.9 -4687.4
Multivariate model (2 regimes) 17 87.2 2449.0 -4863.9 -4793.8 -4836.3
Multivariate model (4 regimes) 39 38.0 2484.8 -4891.5 -4730.6 -4828.1
Flexible model 2 clusters 27 54.9 2478.9 -4903.9 -4792.4 -4860.0
Flexible model 3 clusters 31 47.8 2500.3 -4938.5 -4810.6 -4888.1

Panel B: Extended sample

Linear model 27 109.8 4770.1 -9486.3 -9374.8 -9442.4
Multivariate model (2 regimes) 50 59.3 4931.4 -9762.9 -9556.5 -9681.6
Multivariate model (4 regimes) 102 29.1 5004.6 -9805.1 -9384.2 -9639.4
Flexible model 2 clusters 66 44.9 4956.5 -9780.9 -9508.5 -9673.6
Flexible model 3 clusters 76 39.0 4991.9 -9831.9 -9518.2 -9708.3

Saturation ratio is defined as NT /dim(θ), where N is the number of parameters, T the time series length,
and dim(θ) is the size of the parameter set. Lik is the log-likelihood. AIC depicts the Akaike information
criterion, BIC the Bayes-Schwarz information criterion, and HQ the Hannan-Quinn information criterion.

Despite these objections, flexible models generally show the lowest information cri-

teria. For the core sample, these results are very distinct. Except for the BIC value

of FLEX_2C, the flexible models return the lowest values in the sample. FLEX_3C

even performs slightly better than FLEX_2C. This behavior is due to the small dif-

ference in parameter size in relation to the additional model flexibility.

For the extended sample, FLEX_3C still presents the best overall results. However,

these results are no longer as distinct. The convergence of information criteria across
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models might be due to the overly increased parameter set of the two flexible models.

Further, FLEX_2C performs poorly due to its low number of clusters. Section 6.2.3

will show that two clusters underrepresent the extended sample. Consequently, the

model fit of FLEX_2C is expected to be comparably weak for the extended sample.

Due to the BIC’s preference of simpler models, MV_2 shows the lowest BIC value

again. Overall, however, the results still favor flexible regime-switching (FLEX_3C).

6.2 Empirical Results of the Flexible Model

The previous observations have demonstrated the quality of flexible regime-switch-

ing models. The following subsections analyze these models in greater detail, focus-

ing on their parameter sets and switching dynamics.

To further emphasize the power of the flexible setup, its results are again compared

to benchmark models by considering the univariate and the multivariate model with

two regimes (UV_2 and MV_2). The choice of these models is motivated by their

widespread use. Moreover, they enable direct comparison with the flexible model,

as the latter relies only on two basic regimes (despite its larger state space).

Below, the parameters of the flexible models will be analyzed for the core and the ex-

tended sample. The insights of this analysis prove to be of particular value in at least

three ways: first, they highlight the importance of appropriately specified clusters;

second, they show the influence of sample size on the cluster number; and third, they

reveal the potential bias of standard multivariate regime-switching models. Analy-

sis will show that even a single asset with diverging switching dynamics might bias

the entire parameter set of the multivariate benchmark model. Before analyzing the

flexible models, however, their clusters will be defined for the two samples.

6.2.1 Clustering of Data

The clustering of assets with similar switching dynamics forms a vital part of flex-

ible regime-switching. Chapter 5 presented two different techniques for clustering
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regime cycles: k-means and hierarchical clustering. Interestingly, the resulting clus-

ters turned out similarly across these techniques. The following analysis therefore

focuses on the results of k-means clustering.

Table 6.3: Grouping of sample markets using k-means clustering. a) Core sam-
ple; b) extended sample. The period under study is from December 1976 to
February 2014, based on univariate regime processes.

Core sample Extended sample

US UK GE US UK GE JP PA SW

2 Clusters a b a a a a b a a
3 Clusters a b c a c a b a a

Legend: GE = Germany; JP = Japan; PA = Pacific ex Japan;
SW = Switzerland.

Table 6.3 highlights the k-means results for two and three clusters. The comparison

of the core and the extended sample indicates that the US and Germany belong to

the same group, irrespective of the sample size. As already observed in Chapter 4,

the UK shows more individual cycle dynamics.

Of course, the assumption of three clusters in the core sample results in a separate

group for each country. This resembles the structure of a multivariate model with

independent regime dynamics. In comparison, however, the flexible model still ac-

counts for additional synchronization dynamics.

The extended sample further reveals the heterogeneous behavior of Japan. Its allo-

cation to a separate group applies to the model with two and three clusters. To assess

the stability of the groups, a 60-month rolling-window analysis for the period from

January 1986 to February 2014 was performed. The resulting asset groups remained

relatively constant, irrespective of the number of assets and clusters.

Furthermore, the sample was tested for the optimal number of clusters. Figure 6.1

shows the silhouette values for the k-means clustering approach of the extended

sample. Very low or negative values in a particular group indicate a weak cluster-

ing pattern. However, the silhouette values for two and three clusters in Figure 6.1

are stable. An increase in the number of clusters causes a lot of groups that cover
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only a single asset. Consequently, two and three clusters are an appealing choice

for the current sample. More than three clusters would not further improve results.

Hamilton and Owyang (2012) observed similar numbers for their multivariate sam-

ple of the 50 US states. Even for this large sample they found that two and three

clusters return good results.
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Figure 6.1: Silhouette values of k-means clustering (x-axis) using different
cluster numbers: a) Two clusters, b) three clusters.

6.2.2 Analysis of the Core Sample

This section applies the two flexible models to the core sample. The resulting pa-

rameters and regime processes will help to evaluate the models in a relatively stable

environment. In Section 6.2.3, these initial findings will be used to further analyze

the results of the extended sample. Analysis will demonstrate the power of the flex-

ible model and the importance of a sufficient amount of clusters. In fact, analysis

will show that standard multivariate regime-switching models suffer from the same

problem. Theoretically, their sample belongs to a single cluster and can therefore not

appropriately cover the switching dynamics of individual assets.
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Flexible Model with Two Clusters

Table 6.4 shows the parameter estimates for the core sample. For better visual in-

spection, underlying markets were sorted with respect to their clusters. The US and

Germany form cluster a (white background) and the UK forms cluster b (gray back-

ground).

The moment parameters in Table 6.4 closely resemble those of UV_2 (see Table 4.4).

This similarity is explained by the structure of the flexible model. Due to the multiple

regime processes and well-chosen asset clusters, the flexible model resembles the

dynamics of individual assets much closer than the multivariate model. Such assets

are no longer forced to match a single overall regime cycle.

At the same time, the flexible model accounts not only for correlation across un-

derlying assets but also for synchronization among individual regime processes.

These features, in turn, do not apply to univariate models. Clearly, the flexible

setup presents an optimal mixture of the features of both univariate and multivariate

regime-switching models.

The previous statement is further confirmed as the moment parameters in Table 6.4

strongly differ from those in MV_2 (see Table 4.5).6 In the latter, means are com-

parably low and standard deviations for the two regimes lie close together. This

indicates a potential bias in the switching dynamics of MV_2. As stated throughout

this thesis, the aggregation of all information into a common regime process presents

a particular drawback of standard multivariate regime-switching models. This aggre-

gation is also responsible for the poorly diverging regime properties of MV_2.7 The

flexible model, on the other hand, depicts higher means and shows statistically sig-

nificant differences between the standard deviations of regime 1 and 2.

6Note that Table 4.5 presents only the results for the extended sample. However, as remarked in
Chapter 4, the moment parameters of the core sample differ only insignificantly.

7The simplest way of inferring more individual dynamics in MV_2 would be to downsize the under-
lying sample. The sample would have to be reduced until it consists solely of homogeneously switching
assets. This approach would put more emphasis on the switching dynamics of individual assets as these
more closely resemble the joint regime process.
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Table 6.4: Flexible regime-switching results for the core sample with two clus-
ters. The period under study is from December 1975 to February 2014.

µ σ1 σ2

US 0.13*** 0.10*** 0.21***
(0.022) (0.007) (0.001)

Germany 0.14*** 0.14*** 0.28***
(0.029) (0.008) (0.001)

0.13*** 0.11*** 0.23***UK
(0.023) (0.007) (0.001)

Log Lik 2478.9
dim(θ) 27

AIC -4903.9

BIC -4792.4

HQ -4860.0

White background: cluster a; gray background: cluster b. Values are shown on an annu-
alized basis; standard errors are depicted in parentheses.
Log Lik is the log-likelihood. dim(θ) is the size of the parameter set. AIC depicts the

Akaike information criterion, BIC the Bayes-Schwarz information criterion, and HQ the
Hannan-Quinn information criterion.
*** indicates the significance of the parameter estimates (different from zero) at the 99%

level.

Formula 6-1 further highlights the transition probabilities of the flexible model.

Cluster a’s probabilities to remain in regime 1 or 2 are 0.86 and 0.80. These are

lower than in the univariate models of the US and Germany.8

Pa =

[
0.86 0.20
0.14 0.80

]
Pb =

[
0.80 0.02
0.20 0.98

]

Pab =

[
0.90 0.19
0.10 0.81

]
Pδ =

[
0.99 0.01
0.01 0.99

] (6-1)

Analysis has shown that the probabilities of staying in the prevailing regime (p11 and

p22) generally turn out lower in the flexible model than in the benchmark models.

This effect is due to the synchronization dynamics of the flexible model. For ex-

ample, Pa describes the transition probabilities in case cluster a switches its regime

independently (δ = 0). In contrast, Pab depicts the transition probabilities if the

regimes of both clusters are synchronized (δ = 1). This separation enables each

8The results of a bivariate benchmark model for the US and Germany would be even more meaning-
ful, as these would best mimic cluster a’s behavior. Undisclosed results confirmed this assumption.
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asset to be driven by two individual regime processes, where each process covers

particular subperiods of the sample.9 Thus, the model covers more dynamics of the

individual assets, as the data is not aggregated in a single joint Markov chain. The

resulting regime processes tend to be more reactive and therefore generally show

lower probabilities of remaining in the preceding regime.

When UV_2 and MV_2 are applied to a selected subperiod, a similar effect can

be observed. This analysis has been conducted for cluster a, cluster b, and the

entire core sample. The subperiods were selected according to the start and end

points of Pr
(
sδ

t = 1
)

> 0.5 in the flexible model. Transition probabilities in MV_2

(cluster a or b) have turned out similar to those in Pa and Pb.10 This analysis was

also conducted for the opposite case of full synchronization. Likewise, the transition

probabilities of MV_2 (core sample) have resembled the data in Pab of the flexible

model.

Despite their lower values in cluster a, probabilities p11 and p22 still indicate that as-

sets reside longer in bull market states (regime 1) than in bear market states (regime 2;

see Formula 6-1). This behavior is generally observed for financial markets (see Ang

& Bekaert, 1999, 2002a).

A different picture emerges for cluster b, which contains only the UK index. Cluster b

shows higher transition probabilities for the bear market than for the bull market.

However, this behavior is in line with the UK’s univariate benchmark results. Chap-

ter 4 showed that the UK has a higher transition probability in regime 2 (0.98) than

in regime 1 (0.96). The bear market probability in Formula 6-1 matches this obser-

vation. However, cluster b’s bull market probability turns out to be much lower than

in the univariate case. Again, this can be explained by the additional synchroniza-

tion dynamics. The UK jointly underlies most bull market events with the rest of

the sample. Hence, transitions are governed by Pab. In contrast, the remaining (id-

iosyncratic) bull markets of the UK describe only temporary events of much shorter

duration.

Matrix Pab depicts the joint transition probabilities, in case both clusters reside in the

same regime. These probabilities should therefore match the results in MV_2 (0.98

9Not accounting for the additional regime process of the synchronization factor δ.
10Note that cluster b consists solely of the UK and would therefore be described by UV_2.
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in both regimes; see Table 4.5). The high outcome of the values in MV_2 thereby

describes a typical shortcoming of standard multivariate regime-switching models.

The regime process is generally governed by the best sample fit. Consequently,

the dynamics of individual assets only marginally influence the underlying regime

process. This leads to higher regime durations, because only switches across all

assets can significantly influence the regime cycle in MV_2.

The flexible model, on the other hand, accounts for individual dynamics across clus-

ters. Pab measures only the transition probabilities when all assets truly reside in the

same regime. Consequently, it presents a more realistic picture of the true switch-

ing dynamics. This results in lower probabilities of staying in regime 1 or 2 (0.90

and 0.81). Irrespective of their absolute values, these observations again confirm the

longer relative duration of bull market regimes.

Finally, the transition probability matrix of the synchronization factor Pδ indicates

that the stages of regime synchronization and desynchronization are very persistent

(both 0.99). However, this observation depends strongly on cluster definition. An

appropriate grouping of the underlying assets causes stable synchronization dynam-

ics.11 On the other hand, the synchronization factor might undergo more volatile

dynamics either in case of asset misclassifications or in case of an insufficient num-

ber of clusters.

Table 6.5: Correlation matrices of the flexible model with two clusters (core
sample). The period under study is from December 1975 to February 2014.

State 1 State 2 State 3 State 4

US GE UK US GE UK US GE UK US GE UK

US 1 US 1 US 1 US 1
GE 0.56 1 GE 0.56 1 GE 0.61 1 GE 0.61 1
UK 0.53 0.82 1 UK 0.43 0.39 1 UK -0.65 -0.95 1 UK 0.79 0.74 1

Legend: GE = Germany; light-gray shaded areas: regime 1; dark-gray shaded areas: regime 2.

11Of course, the grouping also depends on the structure of the underlying sample. For example, a more
heterogeneous group of assets would require more clusters than a homogeneous group. The analysis of
the extended sample will further illustrate this point.
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Table 6.5 presents the correlation matrices for the four states. These states refer to the

extended state space s∗
t presented in Table 5.3.12 States 1 and 4 resemble the known

(unmixed) correlation matrices of the benchmark model. In contrast, intermediate

states 2 and 3 define mixed correlation matrices (composite matrices estimated with

the factorization algorithm). The gray-marked clusters in these two matrices reuse

correlation parameters of state s∗
t = 1 or s∗

t = 4. Light-gray areas thereby indicate

that the correlations belong to regime 1. Dark-gray areas depict the same information

for regime 2.

Due to this structure, only inter-cluster correlations had to be estimated separately

for states 2 and 3 (white areas). Interestingly, the inter-cluster correlations turned out

negative in state 3.13 These results are very appealing, given that so far none of the

benchmark models has revealed negative correlations (not even MV_4).

Figure 6.2 shows that state 3 only occurred during the first half of the sample period.

The provision for such events might be of particular interest for asset allocation

decisions.
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Figure 6.2: Smoothed regime probabilities of state 3 in the flexible regime-
switching model with two clusters.

Figure 6.3 further depicts the smoothed state probabilities of clusters a and b (prob-

abilities to stay in a bull market). In addition, it presents the corresponding synchro-

nization process (probability of synchronized cycles, sδ
t = 2).

12Even though the state space was extended by the synchronization dimension, this has no influence
on the conditional pdfs.

13In this state, cluster a resides in a bear regime and cluster b in a bull regime.
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The regime processes in the top graph exhibit a volatile behavior. This is due to the

low probabilities of cluster a and b for staying in their prevailing regime (p11 and

p22). Nevertheless, phases of synchronization and independence are clearly evident.

The top graph shows how the Markov chains of the two clusters become synchro-

nized after 1993.
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Figure 6.3: Smoothed state probabilities for the flexible model with two clusters
(core sample). a) Probability process for clusters a and b; b) probability process
for regime synchronization sδ

t .

The synchronization process, in contrast, is very stable and shows one particular

jump (bottom graph). Between March 1993 and November 1995, the cycle switches

from near zero to near unity. This behavior illustrates a change from fully indepen-

dent Markov chains to perfectly synchronized processes. The end of the recessions

in the early 1990s can partially explain this behavior. The US, the German, and

the UK financial markets jointly switched to a bull regime and adapted their future

switching behavior. Due to this adaption of world-wide equity market behavior, the

probability for synchronized regimes remained high after the switch in 1993.
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Flexible Model with Three Clusters

In FLEX_3C, the US, the UK, and Germany each represent a separate cluster. The

previous analysis has revealed the similarity between the moment parameters of the

flexible model, on the one hand, and the corresponding univariate benchmark mod-

els, on the other. This similarity also applies to FLEX_3C. The estimated moment

parameters of this model are therefore omitted.

Pa =

[
0.83 0.20
0.17 0.80

]
Pb =

[
0.80 0.04
0.20 0.96

]
Pc =

[
0.83 0.20
0.17 0.80

]

Pabc =

[
0.92 0.11
0.08 0.89

]
Pδ =

[
0.99 0.01
0.01 0.99

] (6-2)

Formula 6-2 presents the transition probabilities for the three cluster model. In

FLEX_2C, the US and Germany were aggregated in cluster a. The current specifica-

tion divides the two countries into separate clusters (a and c). However, as expected,

the transition probabilities for the two clusters turn out to be similar. This observation

supports the decision in FLEX_2C to group the two underlying assets. Likewise, the

transition probabilities of cluster b match those of the UK in FLEX_2C. However,

the joint transition probability Pabc reveals significant differences. The probability

of staying in a bear market regime is markedly higher (0.89) than in the two cluster

model (0.81). Consequently, joint bear market regimes last almost twice as long in

the three cluster model (9.1 months vs. 5.3 months). This increased duration is due

to the specification of the synchronization factor. The individual regime processes

tend to be more volatile. However, the joint regime process covers only those events

where all assets reside in the same regime. These events are usually described by a

certain stability.

The synchronization process behaves similarly as in FLEX_2C (see also Figure

6.4). Except for a short trough between December 1994 and December 1997, the

smoothed synchronization processes of FLEX_2C and FLEX_3C closely match each

other. The Mexican peso crisis, which started in December 1994, presents a potential

reason for this trough. At first glance, this emerging market crisis should not have
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influenced developed market regimes. However, the US intervened in the Mexican

peso crisis, and thus its market was more affected by this crisis. Because synchro-

nization dynamics were averaged across clusters, the US market therefore influenced

synchronization across all markets.
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Figure 6.4: Smoothed synchronization process for the flexible models with two
and three clusters (core sample).

6.2.3 Analysis of the Extended Sample

Flexible Model with Two Clusters

Table 6.6 presents results for the flexible model as applied to the extended sample.

The US, the UK, Germany, Switzerland, and the Pacific area belong to cluster a

(white background) while Japan defines cluster b (gray background).

In Table 6.6, the moment parameters of cluster a show similar values compared to the

benchmark model MV_2 (see Table 4.5). Means are comparably low and standard

deviations do not show large differences between regimes 1 and 2. However, the

moment parameters in cluster a strongly differ from those in UV_2 (see Table 4.4).

The univariate model displays significantly higher means for each asset. Further, its

standard deviations differ across the two regimes. The diverging parameter values

in the flexible model and the univariate models indicate a possible misspecification

of cluster a. Further, the flexible model’s close resemblance with the parameters in

MV_2 is a clear sign for the missing flexibility in cluster a.
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In general, moment parameters strongly depend on the grouping of the assets in

the sample. The assets in cluster a underlie heterogeneous switching dynamics and

thus should not belong to the same group. However, cluster analysis revealed even

stronger switching heterogeneity between the assets of cluster a and the Japanese

market. Therefore, the current groups present the best possible solution in case of

two clusters. However, the above results generally question whether two clusters

appropriately cover the extended sample.

Table 6.6: Flexible regime-switching results for the extended sample with two
clusters. The period under study is from December 1975 to February 2014.

µ σ1 σ2

US
0.11*** 0.15*** 0.17***
(0.025) (0.007) (0.001)

UK
0.12*** 0.20*** 0.20***
(0.034) (0.009) (0.001)

Germany
0.11*** 0.19*** 0.25***
(0.034) (0.009) (0.001)

Switzerland
0.13*** 0.18*** 0.18***
(0.028) (0.009) (0.001)

Pacific ex Japan
0.12*** 0.24*** 0.24***
(0.035) (0.010) (0.001)

0.07* 0.17*** 0.27***
Japan

(0.040) (0.011) (0.001)

Log Lik 4956.5

dim(θ) 66

AIC -9780.9

BIC -9508.5

HQ -9673.6

White background: cluster a; gray background: cluster b. Values are shown on an annual-
ized basis; standard errors are depicted in parentheses.
Log Lik is the log-likelihood. dim(θ) is the size of the parameter set. AIC depicts the

Akaike information criterion, BIC the Bayes-Schwarz information criterion, and HQ the
Hannan-Quinn information criterion.
***, **, and * indicate the significance of the parameter estimates (different from zero) at

the 99%, 95% and 90% level.

A different picture emerges for cluster b. The standard deviation of Japan is more

than 50% higher in regime 2 than in regime 1. Cluster b thereby closely resembles

Japan’s results in UV_2 (see Table 4.4). This behavior is in line with the previous

argumentation: Japan shows a strong switching heterogeneity compared to the other
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assets in cluster a. It therefore needs to follow an individual regime process, which,

in turn, accounts for these dynamics.

Interestingly, the misclassification in cluster a does not influence the moment param-

eters in cluster b. This observation is clearly due to the stability of the flexible model.

In standard multivariate regime-switching models, a single asset might already bias

all parameters in the sample. In the flexible model, in contrast, this problem is mainly

limited to a particular cluster.

Formula 6-3 further presents the corresponding transition probabilities. As expected,

cluster a shows very high probabilities of residing in the underlying regime and im-

plies a stable process. The high probabilities most likely are due to the misspecifi-

cation of cluster a. Its regime process governs only switches that apply jointly to a

multitude of assets. Individual dynamics are averaged out, which makes the process

highly consistent.

Pa =

[
0.99 0.01
0.01 0.99

]
Pb =

[
0.95 0.09
0.05 0.91

]

Pab =

[
0.80 0.20
0.20 0.80

]
Pδ =

[
0.99 0.10
0.01 0.90

] (6-3)

Given the insights from the core sample analysis, at least the UK should be excluded

from cluster a. Because the assets in this cluster underlie too heterogeneous switch-

ing dynamics, the joint process cannot capture the assets’ individual dynamics. Sub-

sequent analysis with three clusters will shed further light on this aspect. Cluster b,

in contrast, shows stable but short-lived cycle dynamics.

Formula 6-3 also depicts the transition probability matrix of the synchronization pro-

cess. The probability of staying in the regime of perfect synchronization is compara-

bly low (0.90). Consequently, synchronization phases only last a few months. Given

the heterogeneous sample in cluster a, this result has only limited force. FLEX_3C

in the extended sample will further clarify whether this behavior describes the true

structure of the underlying assets.

Figure 6.5 confirms the previous observations for the synchronization factor in gen-

erally depicting low synchronization between the Markov chains of the two clusters.
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The processes only show some degree of synchronization after the end of the East

Asian and the Russian crises in 1998, and during the start of the dot-com bubble.

However, with the burst of the dot-com bubble, the cycles became fully independent

again. The second synchronization event occurred between August 2008 and April

2009. This event describes the collapse of Lehman Brothers and the subsequent be-

ginning of the worldwide financial crisis. Except for these two events, however, the

regime cycles behaved fully independently.
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Figure 6.5: Smoothed state probabilities for the flexible model with two clusters
(extended sample).

Flexible Model with Three Clusters

The application of FLEX_2C proved to be efficient in small samples. However, the

previous analysis has shown that the extended sample cannot be appropriately segre-

gated by only two clusters. FLEX_3C therefore presents a possible model extension.

Note, however, that the synchronization factor no longer measures the pairwise de-

pendence between two clusters. Instead, it measures the average synchronization

among all three clusters.

Cluster a in FLEX_2C consisted of the US, the UK, Germany, Switzerland, and

Pacific ex Japan. These markets were clustered because the Japanese market revealed

even more heterogeneous switching dynamics. The additional cluster in FLEX_3C

is expected to improve this classification and to return more reliable results. The

three clusters in FLEX_3C are thereby defined by the US, Germany, Switzerland,

and the Pacific area (cluster a), by Japan (cluster b), and by the UK (cluster c).
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Due to the additional cluster, the model is able to more closely mimic the switching

dynamics of its underlying assets. The estimated moment parameters resemble those

in UV_2 (see Table 4.4) and were therefore omitted. However, formula 6-4 presents

the corresponding transition probabilities of FLEX_3C. The transition probabilities

of cluster a thereby turn out similar to those of cluster a in FLEX_2C (core sample).

This is due to the homogeneous switching dynamics of the underlying assets. The

transition probabilities of cluster b and c resemble those of Japan and the UK in

UV_2 (see Table 4.4), respectively.

In contrast, the transition probabilities of the synchronization process turn out lower

than before (see formula 6-4). The duration of the synchronization regime is still

very high, but allows for more switches in cycle synchronization. In fact, this be-

havior became already evident from the synchronization factor in the core sample

(FLEX_3C) and is now even more distinct (see the Mexican peso crisis). Poten-

tial reasons for this observation are the increased sample size and the setup of the

synchronization factor for describing average dependence across all three clusters.

Pa =

[
0.95 0.19
0.05 0.81

]
Pb =

[
0.92 0.11
0.08 0.89

]
Pc =

[
0.86 0.02
0.14 0.98

]

Pabc =

[
0.92 0.12
0.08 0.88

]
Pδ =

[
0.94 0.04
0.06 0.96

] (6-4)

Table 6.7 presents the composite correlation matrices for the eight states s∗
t . Again,

the gray-shaded areas present the three diagonal cluster-blocks. The reuse of cor-

relation parameters in states 2 to 7 is clearly observable. At first glance, this effect

mainly concerns cluster a, as cluster b and c consist solely of one asset.

However, visual inspection of the correlation parameters shows that the reuse of pa-

rameters also applies to off-block-diagonal elements. The factorization algorithm

ensures that elements are reused when the regimes of the corresponding assets re-

main the same across two states s∗
t . For example, the correlation between Japan and

the US is the same in s∗
t = 1 and s∗

t = 2 because the regimes of their clusters remain

unchanged in these states. In contrast, the correlations of these assets with the UK

are affected by a regime-change in cluster c.
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Table 6.7: Correlation matrices of the flexible model with three clusters (ex-
tended sample). The period under study is from December 1975 to February
2014.

State 1 State 2

US GE SW PA JP UK US GE SW PA JP UK

US 1 0.66 0.57 0.57 0.42 0.74 US 1 0.66 0.57 0.57 0.42 0.42
GE 0.66 1 0.73 0.59 0.39 0.80 GE 0.66 1 0.73 0.59 0.39 0.45
SW 0.57 0.73 1 0.54 0.49 0.76 SW 0.57 0.73 1 0.54 0.49 0.50
PA 0.57 0.59 0.54 1 0.46 0.70 PA 0.57 0.59 0.54 1 0.46 0.45
JP 0.42 0.39 0.49 0.46 1 0.51 JP 0.42 0.39 0.49 0.46 1 0.45
UK 0.74 0.80 0.76 0.70 0.51 1 UK 0.42 0.45 0.50 0.45 0.45 1

State 3 State 4

US GE SW PA JP UK US GE SW PA JP UK

US 1 0.66 0.57 0.57 0.05 0.74 US 1 0.66 0.57 0.57 0.05 0.42
GE 0.66 1 0.73 0.59 0.29 0.80 GE 0.66 1 0.73 0.59 0.29 0.45
SW 0.57 0.73 1 0.54 0.39 0.76 SW 0.57 0.73 1 0.54 0.39 0.50
PA 0.57 0.59 0.54 1 0.19 0.70 PA 0.57 0.59 0.54 1 0.19 0.45
JP 0.05 0.29 0.39 0.19 1 0.61 JP 0.05 0.29 0.39 0.19 1 0.45
UK 0.74 0.80 0.76 0.70 0.61 1 UK 0.42 0.45 0.50 0.45 0.45 1

State 5 State 6

US GE SW PA JP UK US GE SW PA JP UK

US 1 0.54 0.55 0.58 0.00 0.17 US 1 0.54 0.55 0.58 0.00 0.68
GE 0.54 1 0.77 0.50 0.47 0.57 GE 0.54 1 0.77 0.50 0.47 0.59
SW 0.55 0.77 1 0.46 0.11 0.48 SW 0.55 0.77 1 0.46 0.11 0.65
PA 0.58 0.50 0.46 1 0.55 0.01 PA 0.58 0.50 0.46 1 0.55 0.62
JP 0.00 0.47 0.11 0.55 1 0.51 JP 0.00 0.47 0.11 0.55 1 0.45
UK 0.17 0.57 0.48 0.01 0.51 1 UK 0.68 0.59 0.65 0.62 0.45 1

State 7 State 8

US GE SW PA JP UK US GE SW PA JP UK

US 1 0.54 0.55 0.58 0.44 0.17 US 1 0.54 0.55 0.58 0.44 0.68
GE 0.54 1 0.77 0.50 0.37 0.57 GE 0.54 1 0.77 0.50 0.37 0.59
SW 0.55 0.77 1 0.46 0.51 0.48 SW 0.55 0.77 1 0.46 0.51 0.65
PA 0.58 0.50 0.46 1 0.47 0.01 PA 0.58 0.50 0.46 1 0.47 0.62
JP 0.44 0.37 0.51 0.47 1 0.61 JP 0.44 0.37 0.51 0.47 1 0.45
UK 0.17 0.57 0.48 0.01 0.61 1 UK 0.68 0.59 0.65 0.62 0.45 1

Legend: GE = Germany, SW = Switzerland, PA = Pacific ex Japan, JP = Japan; light-gray shaded areas:
regime 1; dark-gray shaded areas: regime 2.
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In addition, the estimated correlations reveal two interesting features: first, contagion

does not emerge as pronounced for s∗
t = 1 and s∗

t = 8, as correlations turn out

relatively similar across these states; and second, in the intermediate states 2 to 7,

Japan (cluster b) and the UK (cluster c) show very low correlations with some assets

(close to zero). These features can be very appealing for portfolio allocation and risk

management.

Finally, Figure 6.6 depicts the regime process of the synchronization factor. The

process indicates a more volatile synchronization behavior, confirming the initial

assumptions of time-varying regime dependence. Further, even after the switch in

1993, the process shows some volatile tendencies. These are clearly caused by the

different financial and economic crises in the 1990s and 2000s.
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Figure 6.6: Smoothed synchronization process for the flexible model with three
clusters (extended sample).

The previous results clearly illustrate the power of FLEX_3C to appropriately detect

corresponding asset dynamics in large samples. This information is useful in many

respects and allows one not only to detect the switching dynamics of individual assets

but, as the next section will show, to produce even more stable results.



6.2. EMPIRICAL RESULTS OF THE FLEXIBLE MODEL 127

6.2.4 Model Robustness

The robustness of the flexible models is evaluated in two ways: first, with respect to

the stability of the synchronization factor in individual subperiods; and second, with

respect to the impact of misclassified assets on model stability (assignment to wrong

cluster).

Figure 6.7 illustrates the synchronization factor for the core sample. The flexible

models with two clusters (FLEX_2C) has been analyzed pre- and post-September

1993. This date marks the switch of the synchronization factor from fully indepen-

dent to perfectly synchronized cycles. Consequently, it presents the optimal date for

separating the sample. A well-defined model is thereby expected to return similar

synchronization dynamics for respective subperiods as for the full sample.
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Figure 6.7: Smoothed regime process for the synchronization factor: Analysis
of subperiods (core sample).

The results in Figure 6.7 confirm this claim. The pre-1993 sample returns only very

moderate probabilities for sδ
t = 2 (perfect synchronization). In contrast, the regime

process of the sample after 1993 shows mainly probabilities very close to unity. Fig-

ure 6.7 shows that the two subperiods closely match the process of the full sample.

Similar dynamics have also been detected for the extended sample with FLEX_3C

(not shown). Furthermore, both models have returned very stable and similar mo-

ment and correlation parameters both in the subsamples and in the full sample. The

flexible setup clearly outperforms standard regime-switching models in terms of sta-
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bility. This is very appealing given its comparably low increase in the parameter set

compared to MV_2.

The second test for robustness analyzed the appropriate clustering of individual as-

sets. Previous results have already revealed the sensitivity of flexible models towards

the appropriate number of clusters. This problem is evident and can only be circum-

vented through detailed investigation of the sample. However, analysis has shown

that this problem also affects standard multivariate regime-switching models.

The current analysis focuses specifically on the misclassification of individual as-

sets. Therefore, the clusters of the extended sample were adjusted to the US, Ger-

many, and Switzerland (cluster a), the UK (cluster b), and Japan and the Pacific area

(cluster c). These clusters were formed based on a second-best clustering solution.

Consequently, the groups do not represent completely arbitrary clustering choices.

Pa =

[
0.85 0.25
0.15 0.75

]
Pb =

[
0.77 0.07
0.23 0.93

]
Pc =

[
0.82 0.03
0.18 0.97

]

Pabc =

[
0.92 0.25
0.08 0.75

]
Pδ =

[
0.98 0.01
0.02 0.99

] (6-5)

Formula 6-5 presents corresponding transition probabilities for the alternative model

based on FLEX_3C. The original FLEX_3C results and those in formula 6-5 show

very similar switching dynamics. Visual inspection of their corresponding synchro-

nization processes in Figure 6.8 further confirms this assumption.14 In addition,

a completely arbitrary model with the US, the UK, Germany, and the Pacific area

(cluster a), Japan (cluster b), and Switzerland (cluster c) was formed. These wrong

clusters illustrate a completely different picture in Figure 6.8. The tests have been

conducted for both flexible models and both samples sizes and have shown similar

results.

14The moment and correlation parameters of the two specifications have also turned out to be similar
and were therefore omitted.
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Figure 6.8: Smoothed regime process for the synchronization factor: Analysis
of alternative cluster specifications (extended sample).

Consequently, the results of flexible models are stable with regard to the clustering

of individual assets. Note, however, that assets have only been assigned to another

cluster if their switching dynamics also matched with that cluster. More obvious

misspecification clearly lead to severe changes in model dynamics.

6.3 Accuracy of the Synchronization Factor

Chapter 4 presented the synchronization dynamics for pairwise univariate regime

cycles. It showed that this synchronization analysis returns reliable numbers when

the processes are independent. However, Camacho and Perez-Quiros (2006) demon-

strated that analysis is ineffective when the regime processes underlie joint dynamics.

Similar to the specification of Camacho and Perez-Quiros (2006) (see Chapter 5), the

flexible regime-switching model should not underlie this restriction.

A simulation approach will therefore help to assess the ability of the flexible model to

detect perfectly synchronized cycles. Results will be compared to the simple analysis

of correlations between univariate regime processes.

This approach follows the remarks of Camacho and Perez-Quiros (2006) and consists

of three steps:

First, a regular bivariate regime-switching model for the US and the UK sample

is estimated. This model contains the moment parameters, correlations, transition
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probabilities, and regime probabilities for the two countries. It implies perfect de-

pendence between the two countries’ regime dynamics. Following Ang and Bekaert

(2002b), a second parameter set is estimated for a bivariate model with independent

cycles.

Second, these input parameters are used to simulate 100 pairs of return series

(Camacho & Perez-Quiros, 2006). In the dependent case, both simulated return se-

ries are based on the same regime process. In the independent case, the return series

rest on their individual regime processes.

Third, a univariate regime model is applied to both scenarios. For each return series,

two regime probability processes emerge (one for each asset). Following Harding

and Pagan (2006), the two regime processes are then tested with respect to their

pairwise correlation. Finally, the resulting 100 correlations for each scenario serve

as input for a kernel density estimation.

The same procedure is applied to the flexible model. However, the flexible model

estimates a synchronization process for each return series. This process returns a

time-varying dependence series. Hence, the median value of each process needs to

be calculated for the kernel density estimation. This assumption should not influence

the results, given that the underlying processes are either fully independent or per-

fectly synchronized over the entire sample. Consequently, the information content

of the synchronization factor is not biased by using its median.

Figure 6.9 illustrates the kernel density estimates for the two techniques. The results

for the independent case turn out relatively similar. This is in accordance with ex-

pectations, as independent cycles imply no further joint dynamics and can be easily

detected. In the dependent case, however, the flexible model better resembles the

correlation between regimes than the univariate model. These results are in line with

Camacho and Perez-Quiros (2006).

The flexible model is able to infer corresponding dynamics despite the serial cor-

relation of the underlying Markov chains. The correlation of univariate models, in

contrast, returns much lower values. These observations clearly confirm the power

of the flexible setup to appropriately detect the synchronization dynamics among

individual regime cycles. Similar observations are also expected for intermediate
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degrees of synchronization. Due to the dynamic structure of the model, it should

therefore also appropriately cover time-varying degrees of synchronization.
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Figure 6.9: Kernel density estimates for the correlations between individual
and synchronized regime cycles for UV_2 and FLEX_2C. a) Perfectly indepen-
dent Markov chain processes (ρ = 0); b) perfectly synchronized Markov chains
(ρ = 1).

6.4 Model Forecasting Power

To further evaluate the flexible regime-switching models, out-of-sample tests were

conducted. Two different tests were applied to the different regime-switching mod-

els: a forecast of standard deviations and a test for turning-point prediction. These

tests provide interesting insights about the forecasting power of the different models.

The one-period-ahead variance forecast is specified as

V art [yt+1] = σ2
t+1|t = σ2

1ξ1,t+1|t + σ2
2ξ2,t+1|t + ξ1,t+1|tξ2,t+1|t (µ1 − µ2)2

,

where σ2
k describes the variance in state k and where ξk,t+1|t = Pr

(
s2

t+1 = k|Ωt

)
.15

In the flexible models, the state probabilities are represented by the probabilities of

15Note that V art [yt+1] is calculated for each asset in the sample. This implies that each asset i is
defined by its corresponding mean and variance parameters µi,k and σ2

i,k . Due to the structure of the
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the corresponding cluster. The aggregation of these probabilities is illustrated in

formula 5-6.

Due to the regime-independent means, the one-period-ahead standard deviation sim-

plifies to

σt+1|t =
√

σ2
1ξ1,t+1|t + σ2

2ξ2,t+1|t.

In addition to the flexible models, this approach was also applied to the multivariate

benchmark model, where all assets share a common regime process. Figure 6.10

presents the observed 12-month rolling-window standard deviation (annualized) for

the three countries in the core sample (Observed). Furthermore, it shows the forecast-

ing results of each country for the multivariate (MV_2) and the two flexible models

(FLEX_2C and FLEX_3C).

Figure 6.10 illustrates the similarity between the two flexible approaches. Further,

it shows that the flexible models more closely resemble the true standard deviations

than the standard multivariate regime-switching model. The standard model tends to

underestimate market volatility. Due to its structure, the underlying regime process

is very stable and therefore adjusts its expectations only slowly. The flexible model,

in contrast, underlies a very flexible structure and can react swiftly to market move-

ments. This is also confirmed by its lower probabilities of staying in the prevailing

regime.

flexible regime-switching model, its assets are further conditioned on the corresponding regime process
ξi

k,t+1|t for i = a, b, ab, δ.
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Figure 6.10: Rolling-window forecasts of standard deviations for the US, the
UK, and Germany. Legend: All values describe annualized standard deviations.
Observed is the 24-month rolling-window observable standard deviation of the
sample. The period of analysis is from March 2004 to February 2014.

The test for turning-point prediction (TP) was specified as

TP = T −1
T∑

t=1

(
dt − d̂t

)2
,

where
dt = Iξ1,t|T ≥0.5 = IPr(st=1|ΩT ;θ)≥0.5

d̂t = ξ1,t|t−1 = Pr (st = 1|Ωt−1; θ) ,

and where I is the indicator function.16 TP measures the average difference between

binary smoothed regime probabilities estimated at date T (dt) and forecasted prob-

16This procedure follows Hamilton and Perez-Quiros (1996) and is slightly modified to match the
underlying model specification.
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abilities at time t (d̂t), where T ≥ t. To avoid the inclusion of future information

in d̂t, estimates were carried out on a rolling-window basis. Again, for the flexible

model, TP was carried out individually for each cluster following the aggregation

in formula 5-6.

Table 6.8: Turning-point prediction of different regime-switching models. The
period under study is from December 1976 to February 2014.

MV_2
FLEX_2C FLEX_3C

Cluster a Cluster b Cluster a Cluster b Cluster c

Core sample 0.148 0.080 0.103 0.049 0.070 0.048
Extended sample 0.558 0.502 0.205 0.023 0.036 0.053

Table 6.8 shows the results for the core and the extended sample. Values close to zero

indicate a good prediction of future regimes, whereas values close to unity describe

weak forecasting power. The multivariate model provides very weak turning-point

estimates in both samples. In contrast, FLEX_2C and FLEX_3C show comparably

good estimates. However, the results of FLEX_2C in the extended sample turned

out about as high as those of MV_2. This supports the previous claim that two clus-

ters insufficiently represent the extended sample. Finally, FLEX_3C reveals better

average results than FLEX_2C in both samples. The regime expectations of flexible

models prove to closely match future observations.

6.5 Summary

The empirical application of flexible regime-switching has demonstrated the quality

of this approach. Flexible regime-switching models clearly compete with standard

multivariate regime-switching setups. In a well-specified flexible model, individ-

ual clusters closely resemble the moment parameters of univariate regime-switching

models. In contrast to univariate models, however, flexible models also account

for correlations across assets and for regime cycle synchronization across clusters.

These features, in turn, more closely resemble the properties of multivariate regime-
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switching models. Flexible models therefore combine the features of both univariate

and multivariate regime-switching.

The analysis of flexible models has revealed two important model prerequisites: a

careful selection of the number of clusters, and the appropriate clustering of the

underlying assets. Thorough model analysis can easily ensure these requirements.

Analysis has shown that standard regime-switching models theoretically suffer from

the same problems. Due to their non-flexible structure, however, they cannot cir-

cumvent these problems as easily as the flexible model.

Analysis has further detected three typical problems of standard multivariate regime-

switching models: first, that parameter and regime estimates might change dramati-

cally over the sample period; second, that a sample with heterogeneously switching

assets might show only moderate parameter differences between regimes; and third,

that the probabilities of staying in the prevailing regime generally turn out very high,

as only changes in dynamics across a majority of assets lead to a joint regime switch.

Even a single asset with diverging switching dynamics might thereby bias the entire

parameter set of a multivariate regime-switching model.

Due to their dynamic structure, flexible models can easily deal with these problems

and can therefore avoid potentially biased estimates. Given an appropriate number of

clusters, the model can also handle samples with very distinct switching dynamics.

The forecasting results have further confirmed that these model properties lead to

very efficient and accurate volatility and turning-point predictions. Whether these

results also contribute to an investor’s asset allocation problem will be analyzed in the

next chapter. Analysis will also shed further light on the out-of-sample performance

and the optimal real-world application of the flexible strategies.
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Chapter 7

Asset Allocation under
Regime-Switching

The previous chapters have revealed the synchronization and switching dynamics of

flexible regime-switching models. These observations differ clearly from the multi-

variate benchmark results of Chapter 4. Therefore, a next step is to compare these

models with respect to their asset allocation. The analysis of an investor’s portfo-

lio choice problem will help to evaluate the portfolio stability and the out-of-sample

performance of these models.

This chapter first specifies the investor’s portfolio choice problem before applying

it to the regime-switching models. The specification starts with a simple buy-and-

hold strategy. Thereafter, portfolio rebalancing is introduced. Rebalancing allows

the investor to adjust his portfolio allocation with the arrival of new information.

This enhancement can be of particular value considering the time-varying investment

opportunity set of regime-switching models and, in particular, of the flexible setup.
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7.1 Asset Allocation Problem

The asset allocation problem can be stated as follows. An investor faces a T -month

investment horizon at time t and aims to maximize his expected utility over terminal

wealth U (Wt+T )

max
αt,...,αt+T −1

Et [U (Wt+T )] s.t. α′
i1 ≤ 1, (7-1)

where Wt+T is the end of period wealth, αt, ..., αt+T −1 are the portfolio weights for

the respective periods, and i = t, ..., t + T − 1. The investor’s preference is thereby

defined as (CRRA) power utility over terminal wealth

U (Wt+T ) =
W 1−γ

t+T

1 − γ
,

where γ is the coefficient of relative risk aversion and where γ > 1. CRRA util-

ity is chosen because of its widespread use and comparability to other findings

(Verhofen, 2006). At time t, the investor determines his allocation to the N risky

assets αt ≡
[
α1

t , ..., αN
t

]
, whereas 1 − (α′

t1N ) is allocated to the risk-free invest-

ment rf . This risk-free asset is described by the monthly T-bill yield.1

7.1.1 Buy-and-Hold Allocation Strategy

In case the investor follows a buy-and-hold strategy, portfolio weights depend only

on the single vector αt and the corresponding risk-free allocation. The investor

solves the asset allocation problem at time t and no rebalancing applies. Further,

transaction costs are ignored and short-selling is restricted. Consequently, the asset

1In line with Ang and Bekaert (2002a) and Guidolin and Timmermann (2005b, 2007), this thesis
implies a partial equilibrium framework where an asset’s return process is exogenous. The risk-free rate
is assumed to be both known and constant. It equals the average 1-month T-bill yield over the sample
period and amounts to annualized 2.5% (see also Guidolin & Timmermann, 2007).
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allocation problem in 7-1 is simplified to

max
αt

Et

[
W 1−γ

t+T

1 − γ

]
,

s.t.

Wt+T = Wt

{
(1 − (α′

t1N )) exp
(
rf T

)
+ α′

t exp

(
T∑

i=1
yt+i

)}
,

e′
jαt ∈ [0, 1] for j = 1, ..., N,

α′
t1N ≤ 1,

where Wt is set to unity, yt+1 is the (N × 1) vector of continuously compounded

returns2, and ej describes a (N × 1) vector of zeros with unity in row j. Finally, the

conditions in lines three and four restrict the short-selling of individual assets and of

the overall portfolio, respectively.

Because the Markov chain process is hidden, the investor does not know the regime

at time t, but is only provided with the corresponding state probabilities. In general,

he is confronted with uncertainty about both future regimes and the prevailing regime

(Morger, 2006).

In contrast, Ang and Bekaert (2002a) introduced an asset allocation problem in

which the investor knows the prevailing regime with certainty and in which only

future regimes remain uncertain. Assuming the current regime as known describes

the most extreme scenario. Uncertainty about the prevailing regime, in contrast,

causes asset allocation to deviate less from the regime-independent i.i.d. solution of

a myopic portfolio.3

The present study treats the current regime as latent. This assumption is more realis-

tic as the regimes are non-observable in reality. Further, this assumption requires an

investor to account for future revisions of state probabilities when initially defining

the portfolio weights.

2The returns are simulated based on the predictive distribution of the underlying regime-switching
model.

3At least this holds for a one-period horizon.
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Following Guidolin and Timmermann (2007), this thesis approximates the integral

of expected utility using Monte Carlo methods. For the simple case of a buy-and-

hold investor, Barberis (2000), Honda (2003), Guidolin and Timmermann (2007)

demonstrated that the expected utility can be approximated by

max
αt

H−1
H∑

h=1


[
(1 − (α′

t1N )) exp
(
rf T

)
+ α′

t exp
(∑T

i=1 yt+i,h

)]1−γ

1 − γ

 ,

where H defines the number of Monte Carlo simulations and where α′
t exp

(∑T
i=1

yt+i,h) is the return of the equity portfolio in simulation h. Each simulation path re-

lies on an individual draw from the predictive distribution of the underlying regime-

switching model. For further details on this simulation approach, see Guidolin and

Timmermann (2005b, 2007).

7.1.2 Asset Allocation with Rebalancing

If the investor allows for portfolio rebalancing, the weights α in 7-1 are adjusted

every φ = T/RB months (Guidolin & Timmermann, 2007). Hereby, RB defines

the number of equally spaced rebalancing points trb = t, t + φ, ...t + (RB − 1)φ.4

In order to simplify the notation in α and W , rebalancing points are subsequently

indicated by the index rb = 0, 1, ..., RB − 1.

The observations of the portfolio weights in 7-1 (αt, ..., αt+T −1) match these rebal-

ancing points. The same applies to the weights of the risk-free investment

1 − (α′
rb1N ). Similar to the buy-and-hold strategy, transaction costs are ignored

and short-selling is restricted. The asset allocation problem then follows a modified

version of 7-1

4Consequently, if the investor follows a buy-and-hold strategy, RB = 1 and φ = T .
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max
αt,...,αRB−1

Et

[
W 1−γ

t+T

1 − γ

]
,

s.t.

Wrb+1 = Wrb

{
(1 − (α′

rb1N )) exp
(
φrf

)
+ α′

rb exp

(
φ∑

k=1

ytrb+k

)}
, (7-2)

e′
jαrb ∈ [0, 1] for j = 1, ..., N,

α′
rb1N ≤ 1 ∀ rb.

Given this specification, the derived utility of wealth is defined by

J (Wrb, yrb, θrb, ξrb, trb) ≡ max
αrb,...,αRB−1

Etrb

[
W 1−γ

RB

1 − γ

]
,

where θrb is the vector of regime-switching parameters and where ξrb is the (K × 1)
vector of filtered state probabilities conditional on the available information at time

trb. Given the assumption of power utility, the Bellman equation is simplified to

J (Wrb, yrb, θrb, ξrb, trb) = Q (yrb, θrb, ξrb, trb)
W 1−γ

rb

1 − γ
,

where γ ̸= 1 (Guidolin & Timmermann, 2005b). Further, the updating equation

introduced in 2-12 can be adjusted to incorporate investors’ learning

ξrb+1|t =
P̂φ

t ξrb|t ⊙ ηrb

(
yrb+1; θ̂t

)
1′
(

P̂φ
t ξrb|t ⊙ ηrb

(
yrb+1; θ̂t

)) , (7-3)

where the hat operator describes an estimation and where P̂φ
t is the φ-period ahead

transition probability matrix. Moreover, ξrb|t is the filtered state probability at time

trb, given the parameter set θ̂t estimated at the initial period trb=0. Finally,

ηrb

(
yrb+1; θ̂t

)
is the K × 1 vector of the conditional densities of yrb+1 given the
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parameter set θ̂t. Guidolin and Timmermann (2007) showed that formula 7-3 helps

the investor to optimally revise his perception about the underlying state.

Because wealth at time trb is known, the recursion of Q(·) can be expressed as

Q (yrb, ξrb, trb) = max
αrb

Etrb

[(
Wrb+1

Wrb

)1−γ

Q (yrb+1, ξrb+1, trb+1)

]
. (7-4)

In contrast to the buy-and-hold strategy, the optimal weights reflect not only the

demand for hedging against stochastic shifts in the investment opportunity set, but

also for hedging against the revision of beliefs about future state probabilities ξrb+i|t,

where i = 1, ..., T (Guidolin & Timmermann, 2005b). For the implementation of

the rebalancing strategy, it is referred to Guidolin and Timmermann (2007).

The Bellman equation is solved numerically using backward induction methods.

Further, the interval [0, 1], which defines the domain of each regime probability

ξrb, is discretized on G points. Guidolin and Timmermann (2007) assumed that

Q (yrb+1, ξrb+1, trb+1) is known at the points ξrb+1 = ξj
rb+1, where j = 1, ..., GK−1.

To obtain Q (yrb, ξrb, trb) in 7-4,

Etrb

[{
(1 − (α′

rb1)) exp
(
φrf

)
+ α′

rb exp (Rrb+1,h (srb))
}1−γ

Q
(

ξj
rb+1, trb+1

)]
(7-5)

can be maximized with respect to αrb, where Rrb+1,h (srb) =
∑φ

k=1 ytrb+k,h (srb).

This multiple integral is again calculated using Monte Carlo methods. For each grid-

point, H draws of Rrb+1,h (srb) are generated by the regime-switching model.5 The

grid-points are thereby defined by ξrb = ξj
rb, where j = 1, ..., GK−1.

For a standard multivariate regime-switching model with two states, this discretiza-

tion grid has only a single dimension. For example, a model with six grid-points is

evaluated at ξ
(j)
1,rb = {0, 0.2, 0.4, 0.6, 0.8, 1.0} (regime 1) and consequently also at

ξ
(j)
2,rb = 1−ξ

(j)
1,rb (regime 2). In case of more than two regimes, the dimension of grid-

5Note that each of these draws consists of φ individual observations, which are separately simulated
by the regime-switching model.
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points GK−1 grows exponentially, and the probabilities need to be further restricted:∑K
i=1 ξ

(j)
i,rb = 1, ∀j. Fortunately, this restriction does not apply to the flexible model.

Given its cluster-wise specification, the individual Markov chains still follow only

two regimes ξ
(j,m)
rb for m = a, b, ab, and δ (two clusters) or m = a, b, c, abc, and δ

(three clusters). However, each underlying Markov chain is defined by its own dis-

cretization grid GK−1
m . In case of the two-cluster model, this implies a separate grid

for clusters a and b, for the joint process ab, and for the synchronization process

δ. The probabilities of these grids can be combined simply, just as for the speci-

fication of the joint probability in 5-6. This results in a discretization grid for the

higher-dimensional state s∗
t , which forms the basis of subsequent return simulations.

Finally, the expectation in 7-5 is approximated by

H−1
H∑

h=1

[{
(1 − (α′

rb1N )) exp
(
φrf

)
+ α′

rb exp (Rrb+1,h (srb))
}1−γ

Q
(

ξ
(j)
rb+1,h, trb+1

)]
, (7-6)

where ξ
(j,m)
rb+1,h for m = a, b, ab, δ equals the grid-element ξ

(j,m)
rb+1 , which is closest to

ξrb+1,h(θ̂t) =
P̂φ

t ξrb|t ⊙ ηrb

(
yrb+1,h; θ̂t

)
1′
(

P̂φ
t ξrb|t ⊙ ηrb

(
yrb+1,h; θ̂t

)) , (7-7)

measured by the distance function
∑K−1

i=1 |ξ(j,m)
rb+1 ei−ξrb+1,hei| (Guidolin & Timmer-

mann, 2005b). This algorithm is iterated backwards over all RB rebalancing points

and until αrb=0 is reached. Appendix B in Guidolin and Timmermann (2005b) and

Section 4.3.2 in Morger (2006) provide further details about this algorithm.
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7.2 Asset Allocation Results

In line with the empirical analysis of Chapter 6, this section focuses on two as-

pects of the flexible regime-switching model: first, it analyzes the impact of flexible

regime-switching on asset allocation; and second, it examines whether the proposed

composite correlation matrix influences model performance.

Analysis concentrates on four basic models: the linear non-switching model (LIN),

the multivariate benchmark regime-switching model (MV_2), the two-cluster flex-

ible model (FLEX_2C), and the three-cluster flexible model (FLEX_3C). In addi-

tion, a modified version of FLEX_2C and FLEX_3C will be analyzed. To evaluate

the power of the composite correlation matrix, this version restricts the correlation

matrix to follow cluster a’s regime. All models thereby underlie regime-independent

means.

The dataset remains the same as in Chapter 6. The estimation period for the pa-

rameter set θ ranges from December 1975 to January 2004. This allows for a non-

overlapping holding period of up to 120 months (until February 2014).

7.2.1 Portfolio Weights

The analysis of portfolio weights starts with a simple buy-and-hold investment prob-

lem. This allows one to evaluate the different models without considering any re-

vision in expectations. The current section concentrates on two dimensions of the

investment problem: the holding period T and the risk aversion γ. Asset weights

are initially compared with respect to these dimensions. The number of Monte Carlo

simulations H was set to 30’000.

For better visual inspection, portfolio weights are chiefly analyzed for the core sam-

ple, as results for the extended sample have revealed a similar allocation behavior.
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Investment Horizon

Analysis of the investment horizon is conducted for periods between 1 and 120

months. Further, a risk aversion of γ = 5 was assumed, as this corresponds to a

typically used value in financial literature. The comparison of portfolio weights with

respect to the investment horizon is thereby useful for determining initial model dif-

ferences.

For LIN, Figure 7.1 presents a very stable allocation along the investment horizon.

As shown by Samuelson (1969), if the returns yt are i.i.d. across time, the weights for

CRRA utility are constant. Consequently, the T -month investment problem delivers

the same weights as a myopic, one-period problem (see also Ang & Bekaert, 1999).

The linear model in Figure 7.1 confirms this observation.

Interestingly, a similar picture emerges for MV_2. Portfolio weights are also rel-

atively stable for different investment horizons. Moreover, a majority of funds is

allocated towards the US index. This trend even increases slightly over time. The

reason for this allocation is the relative strength of the US. Regime-switching results

in Chapter 4 have demonstrated that the US shows higher returns and lower volatil-

ities than the UK and Germany (in both regimes). Given also the relatively high

correlations between these countries, the potential of diversification is limited.

The flexible model reveals a different picture. Portfolio weights of FLEX_2C ap-

proximate those of LIN. The US/Germany cluster and the UK cluster can switch

regimes independently. Due to this temporary independence, the UK might reside

in a bull regime while the US and Germany reside in a bear regime. In this case,

the lower bull market volatility of the UK clearly competes with the risk-return pro-

file of the US. Moreover, due to the composite correlation matrix, intermediate states

s∗
t = 2 and s∗

t = 3 are described by low or even negative correlations. Consequently,

the diversification among assets is more pronounced compared to MV_2. These re-

sults highlight the power of flexible regime-switching and the significant influence

of the composite correlation matrices on portfolio allocation.

Visual inspection also shows that the US allocation in FLEX_2C even decreases

slightly along the investment horizon (in favor of the UK). This behavior is explained
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by the rather short durations of the underlying regime processes (a, b, ab, δ). Conse-

quently, joint events, where the US and the UK reside in different states, take some

time to occur. For longer investment horizons, however, the likelihood of such events

increases and leads to a change in portfolio exposure.
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Figure 7.1: Change of portfolio weights with increasing holding periods, cov-
ering the period from January 2004 to February 2014. Results are depicted for
the core sample. Risk aversion γ is set to 5. The x-axis depicts the length of the
holding period HP (in months).

Despite these good properties of flexible regime-switching models, portfolio diversi-

fication might not be optimally reached with a two-cluster model. Similar to LIN, no

funds are allocated to Germany. As both the US and Germany belong to cluster a,

they always follow the same regime process. Consequently, Germany does not pro-

vide any useful diversification, given its high correlation with the US and given its

comparably weak risk-return features. Separating the US and Germany might there-

fore improve results. The last graph in Figure 7.1 indeed shows an increase in the
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allocation to Germany and even to the risk-free asset. However, this exposure is low

and comes at the price of an overly reduced allocation towards the UK. The US,

in contrast, shows a high and stable exposure (mostly above 70%), which is due to

the setup of FLEX_3C. Synchronization in this model is jointly measured between

all three clusters. Hence, individual dynamics across two clusters cannot be deter-

mined as accurately. Consequently, the occurrence of intermediate states across two

clusters decreases, which leads to a closer approximation of the results in MV_2.
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Figure 7.2: Change of portfolio weights with increasing holding periods, cov-
ering the period from January 2004 to February 2014. Results are depicted for
the core sample. Risk aversion γ is set to 5. The x-axis depicts the length of
the holding period HP (in months). The investment in the risk-free assets is
restricted (equity-only portfolio).

Figure 7.2 further presents the results for FLEX_2C and FLEX_3C without alloca-

tion to the risk-free asset. As expected, allocation changed only marginally and most

weights remained unaffected. FLEX_3C presented the only exception, where the

weight of the risk-free asset was reallocated to the UK. This observation highlights

the favorable behavior of the UK in intermediate states. Due to the previously men-

tioned averaging of the synchronization factor, however, the dynamics of the UK are

less pronounced in FLEX_3C.
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Risk Aversion

The second dimension of portfolio allocation considers the risk aversion γ. Portfolio

weights were generated for values of risk aversion between 2 and 10. The holding

period was set to 60 months.

Figure 7.3 provides two main insights: First, portfolios become more equally weigh-

ted with increasing γ. FLEX_2C presents the only exception. Its allocation to the

US strongly increases with γ. Only at very high levels of risk aversion does the US

show slightly decreasing weights. This behavior can be explained by the correlation

dynamics in intermediate states. FLEX_2C accounts strongest for these effects and

therefore contributes influential information that leads to more distinct allocations

even at high levels of risk.
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Figure 7.3: Change of portfolio weights with increasing risk aversion, covering
the period from January 2004 to February 2014. Results are depicted for the
core sample. The holding period HP is set to 60 months. The x-axis depicts the
level of risk aversion γ.
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Second, as expected, risk-free allocation increases with γ. However, even at high

levels of risk aversion, MV_2 and FLEX_2C show comparably low exposures to the

risk-free asset. In contrast, LIN and FLEX_3C show very similar dynamics and end

up with risk-free exposures of almost 50% for γ = 10.

The initial buy-and-hold results have highlighted model dynamics with respect to

different holding periods and risk aversions. FLEX_2C has thereby revealed sim-

ilar allocations as the linear model. However, analysis has further shown that this

similarity strongly depends on the investor’s degree of risk aversion. In general,

FLEX_2C exhibits very good properties and is therefore expected to perform well in

the core sample.

FLEX_3C also presented appealing allocation results. However, the empirical anal-

ysis in Chapter 6 has demonstrated that the power of FLEX_3C is best observed in

larger samples. The analysis of the extended sample has thereby revealed similar

insights into allocation dynamics as the core sample. The next section will compare

these models in terms of out-of-sample performance.

7.2.2 Performance of the Strategies

This section compares the different models with regard to their out-of-sample perfor-

mance. As stated above, two particular features are thereby of interest: the relative

performance of the flexible regime-switching models and the impact of composite

correlation on portfolio returns.

To best capture the regime-switching dynamics in portfolio analysis, this section ac-

counts for the buy-and-hold as well as for the rebalancing strategy. The latter follows

the same dimensions as previously defined (holding period and risk aversion). More-

over, different rebalancing periods of 3, 6, and 12 months have been tested. Because

results across rebalancing periods have turned out similarly, for this analysis it was

set to 6 months.

As presented in Section 7.1, the model estimation relies on a Bayesian portfolio

choice problem. To estimate the rebalancing strategy, appropriate grid points there-

fore need to be defined. For MV_2, six equally-spaced grid points were set on the
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domain [0, 1]: ξj
1,rb = {0, 0.2, 0.4, 0.6, 0.8, 1.0}. Because of the multiple Markov

chains in the flexible models, their number of grid points was slightly reduced. In

FLEX_2C it was set to four: ξ
(j,m)
1,rb = {0, 0.33, 0.67, 1.0} for m = a, b, ab, δ. Like-

wise, in FLEX_3C it was set to three: ξ
(j,m)
1,rb = {0, 0.5, 1.0} for m = a, b, c, abc, δ.

Due to the multi-period focus of the rebalancing strategy, the number of Monte Carlo

simulations H was also reduced to 10’000.

Results are presented for both the core (Tables 7.1 and 7.2) and the extended sample

(Tables 7.3 and 7.4). The parallel analysis of the two samples will further clarify the

influence of sample size on the number of asset clusters. Moreover, it will present

the optimal area of application of the different models.

Buy-and-Hold Versus Rebalancing

Tables 7.1 and 7.2 display the results for the core sample. Table 7.1 depicts perfor-

mance figures for the buy-and-hold strategy, whereas Table 7.2 shows those for the

rebalancing strategy. Performance is measured in terms of annualized means, annu-

alized standard deviations, and Sharpe ratios of the corresponding portfolio returns.

The underlying models remain the same as in the previous section (LIN, MV_2,

FLEX_2C, and FLEX_3C).

Tables 7.1 and 7.2 point out three main findings for the core sample: First, the linear

model and FLEX_2C perform best in terms of average return and in terms of volatil-

ity. Thereby, FLEX_2C demonstrates comparably good return figures for all holding

periods. This outperformance is likely due to the fast implementation of the flexi-

ble regime dynamics in the asset allocation model. The previous section has shown

that FLEX_2C underlies shorter regime cycle durations. Consequently, its switching

dynamics should take effect in short- to medium-term investment periods (12 to 60

months). Table 7.1 illustrates this effect. However, the higher portfolio returns come

at the price of higher volatilities. As a result, FLEX_2C only moderately outper-

forms LIN in terms of Sharpe ratio. Nevertheless, FLEX_2C presents better results

than MV_2. This outperformance further confirms the power of flexible compared

to standard regime-switching models.
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Second, MV_2 and FLEX_3C present good risk-return-structures for very long-term

investment horizons. MV_2 shows comparably high returns and low volatilities for

this holding period. Due to the long duration of its underlying regime process, the

regime-switching dynamics only take effect when longer holding periods are as-

sumed. In this case, the optimization model appropriately accounts for possible

switches and reallocates the underlying funds. Despite the positive risk-return dy-

namics of MV_2, it is outperformed by FLEX_3C. The favorable return dynamics

of the FLEX_3C in longer periods are due to the structure of the synchronization

factor. The regime process becomes more stable (longer durations) as synchroniza-

tion is measured across all three clusters. Therefore it takes longer until the asset

allocation model can account for intermediate states. Nevertheless, the observations

clearly support the selection of flexible models at the account of standard multivari-

ate regime-switching models.

Third, rebalancing has only moderate effects on the risk-adjusted performance of

regime-switching models. The comparison of Tables 7.1 and 7.2 shows that the

results remain stable between the buy-and-hold and the rebalancing strategies. Only

MV_2 and FLEX_2C show slightly lower volatilities when rebalancing is accounted

for. This might be due to the revision of expectations in case of rebalancing. Overall,

however, the impact of rebalancing on risk-adjusted portfolio performance is limited

in the core sample.

Figure 7.4 displays the performance of the different models over the 10-year holding

period. It clearly establishes that rebalancing strategies generally outperform buy-

and-hold strategies in terms of risk-unadjusted return. Further, the flexible model

with rebalancing exhibits the best overall performance.
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Figure 7.4: Performance comparison of the switching and non-switching mod-
els using buy-and-hold and rebalancing investment strategies. Results are de-
picted for the core sample. The holding period HP is set to 120 months, the
risk aversion γ to 5, and the rebalancing period RB to 6 months. The period
under study is from January 2004 to February 2014.



7.2. ASSET ALLOCATION RESULTS 153
Ta

bl
e

7.
1:

Pe
rf

or
m

an
ce

of
th

e
di

ffe
re

nt
sw

itc
hi

ng
an

d
no

n-
sw

itc
hi

ng
m

od
el

s
us

in
g

a
bu

y-
an

d-
ho

ld
in

ve
st

m
en

ts
tr

at
eg

y
(c

or
e

sa
m

pl
e)

.
Th

e
pe

ri
od

of
an

al
ys

is
is

fr
om

Ja
nu

ar
y

20
04

to
Fe

br
ua

ry
20

14
.

L
IN

M
V

_2
FL

E
X

_2
C

FL
E

X
_3

C

Pa
ne

lA
-M

ea
n

po
rt

fo
lio

re
tu

rn

G
am

m
a

G
am

m
a

G
am

m
a

G
am

m
a

H
ol

di
ng

pe
r.

2
3

5
10

2
3

5
10

2
3

5
10

2
3

5
10

6
m

on
th

s
-6

.1
%

-6
.1

%
-6

.1
%

-3
.0

%
-6

.2
%

-7
.5

%
-8

.6
%

-5
.9

%
-6

.0
%

-6
.1

%
-6

.2
%

-5
.3

%
-6

.3
%

-7
.4

%
-8

.4
%

-6
.8

%
12

m
on

th
s

13
.5

%
12

.3
%

11
.3

%
6.

1%
7.

2%
8.

2%
9.

0%
6.

0%
14

.9
%

12
.4

%
10

.4
%

8.
3%

7.
0%

7.
8%

9.
0%

6.
5%

36
m

on
th

s
14

.0
%

13
.2

%
12

.5
%

7.
2%

10
.2

%
11

.1
%

12
.0

%
9.

3%
15

.6
%

13
.7

%
12

.2
%

9.
2%

9.
5%

10
.2

%
11

.7
%

6.
8%

60
m

on
th

s
-5

.4
%

-5
.6

%
-5

.6
%

-2
.8

%
-5

.9
%

-5
.4

%
-4

.8
%

-3
.2

%
-5

.2
%

-5
.5

%
-5

.7
%

-5
.0

%
-6

.1
%

-5
.9

%
-5

.5
%

-2
.5

%
12

0
m

on
th

s
7.

3%
7.

3%
7.

3%
4.

3%
7.

6%
7.

7%
8.

0%
8.

4%
7.

2%
7.

3%
7.

3%
7.

3%
7.

4%
7.

4%
7.

1%
4.

1%

Pa
ne

lB
-S

ta
nd

ar
d

de
vi

at
io

n
of

po
rt

fo
lio

re
tu

rn
s

G
am

m
a

G
am

m
a

G
am

m
a

G
am

m
a

H
ol

di
ng

pe
r.

2
3

5
10

2
3

5
10

2
3

5
10

2
3

5
10

6
m

on
th

s
5.

8%
6.

0%
6.

1%
3.

1%
7.

1%
7.

2%
7.

3%
4.

8%
5.

7%
6.

0%
6.

3%
5.

7%
7.

1%
7.

1%
7.

2%
5.

6%
12

m
on

th
s

8.
8%

8.
6%

8.
4%

4.
5%

8.
3%

9.
0%

9.
5%

6.
1%

9.
0%

8.
6%

8.
3%

7.
4%

8.
2%

8.
7%

9.
1%

6.
0%

36
m

on
th

s
7.

6%
7.

3%
7.

2%
4.

0%
7.

4%
7.

7%
8.

1%
5.

9%
8.

2%
7.

5%
7.

1%
5.

5%
7.

2%
7.

4%
7.

6%
4.

2%
60

m
on

th
s

16
.3

%
15

.9
%

15
.6

%
8.

9%
15

.1
%

15
.5

%
16

.1
%

13
.0

%
17

.1
%

16
.1

%
15

.5
%

14
.8

%
14

.9
%

15
.1

%
15

.5
%

8.
4%

12
0

m
on

th
s

17
.0

%
16

.5
%

16
.0

%
8.

8%
15

.5
%

16
.0

%
16

.9
%

18
.5

%
18

.0
%

16
.8

%
16

.1
%

16
.3

%
15

.1
%

15
.2

%
14

.7
%

7.
7%

Pa
ne

lC
-S

ha
rp

e
ra

tio

G
am

m
a

G
am

m
a

G
am

m
a

G
am

m
a

H
ol

di
ng

pe
r.

2
3

5
10

2
3

5
10

2
3

5
10

2
3

5
10

6
m

on
th

s
-1

.0
5

-1
.0

3
-1

.0
0

-0
.9

6
-0

.8
8

-1
.0

5
-1

.1
9

-1
.2

2
-1

.0
5

-1
.0

3
-0

.9
8

-0
.9

3
-0

.8
8

-1
.0

4
-1

.1
6

-1
.2

1
12

m
on

th
s

1.
54

1.
44

1.
34

1.
38

0.
87

0.
92

0.
95

0.
98

1.
65

1.
44

1.
24

1.
12

0.
85

0.
90

0.
99

1.
08

36
m

on
th

s
1.

85
1.

81
1.

75
1.

79
1.

37
1.

43
1.

49
1.

56
1.

89
1.

84
1.

71
1.

66
1.

31
1.

37
1.

55
1.

61
60

m
on

th
s

-0
.3

3
-0

.3
5

-0
.3

6
-0

.3
1

-0
.3

9
-0

.3
5

-0
.3

0
-0

.2
4

-0
.3

1
-0

.3
4

-0
.3

7
-0

.3
4

-0
.4

1
-0

.3
9

-0
.3

6
-0

.3
0

12
0

m
on

th
s

0.
43

0.
44

0.
45

0.
49

0.
49

0.
48

0.
47

0.
46

0.
40

0.
43

0.
45

0.
45

0.
49

0.
49

0.
48

0.
52



154 CHAPTER 7. ASSET ALLOCATION UNDER REGIME-SWITCHING
Ta

bl
e

7.
2:

Pe
rf

or
m

an
ce

of
th

e
di

ffe
re

nt
sw

itc
hi

ng
an

d
no

n-
sw

itc
hi

ng
m

od
el

s
us

in
g

an
in

ve
st

-
m

en
ts

tr
at

eg
y

w
ith

re
ba

la
nc

in
g

(c
or

e
sa

m
pl

e)
.T

he
pe

ri
od

of
an

al
ys

is
is

fr
om

Ja
nu

ar
y

20
04

to
Fe

br
ua

ry
20

14
.R

eb
al

an
ci

ng
fr

eq
ue

nc
y

R
B

is
se

tt
o

6
m

on
th

s.

M
V

_2
FL

E
X

_2
C

FL
E

X
_3

C

Pa
ne

lA
-M

ea
n

po
rt

fo
lio

re
tu

rn

G
am

m
a

G
am

m
a

G
am

m
a

H
ol

di
ng

pe
r.

2
3

5
10

2
3

5
10

2
3

5
10

6
m

on
th

s
-6

.2
%

-7
.5

%
-8

.6
%

-5
.9

%
-6

.0
%

-6
.1

%
-6

.2
%

-5
.3

%
-6

.3
%

-7
.4

%
-8

.4
%

-6
.8

%
12

m
on

th
s

7.
0%

7.
1%

9.
1%

7.
5%

10
.6

%
9.

0%
7.

7%
7.

0%
7.

0%
7.

0%
7.

0%
7.

0%
36

m
on

th
s

9.
5%

16
.7

%
13

.1
%

6.
5%

14
.4

%
14

.9
%

12
.3

%
13

.6
%

9.
5%

0.
4%

9.
5%

12
.1

%
60

m
on

th
s

-6
.1

%
-5

.3
%

-5
.0

%
-2

.2
%

-6
.0

%
-5

.1
%

-6
.0

%
-5

.2
%

-6
.1

%
0.

4%
-4

.5
%

-1
.2

%
12

0
m

on
th

s
7.

4%
7.

4%
7.

8%
6.

2%
7.

2%
7.

2%
7.

2%
7.

2%
8.

1%
0.

4%
8.

6%
8.

3%

Pa
ne

lB
-S

ta
nd

ar
d

de
vi

at
io

n
of

po
rt

fo
lio

re
tu

rn
s

G
am

m
a

G
am

m
a

G
am

m
a

H
ol

di
ng

pe
r.

2
3

5
10

2
3

5
10

2
3

5
10

6
m

on
th

s
7.

1%
7.

2%
7.

3%
4.

8%
5.

7%
6.

0%
6.

3%
5.

7%
7.

1%
7.

1%
7.

2%
5.

6%
12

m
on

th
s

8.
2%

8.
2%

9.
6%

7.
4%

8.
4%

8.
2%

8.
2%

8.
2%

8.
2%

8.
2%

8.
2%

8.
2%

36
m

on
th

s
7.

2%
8.

9%
8.

6%
4.

8%
7.

7%
7.

9%
7.

1%
7.

4%
7.

2%
0.

3%
7.

2%
7.

1%
60

m
on

th
s

14
.9

%
16

.6
%

15
.7

%
10

.3
%

15
.0

%
17

.8
%

15
.0

%
16

.6
%

14
.9

%
0.

3%
16

.2
%

20
.2

%
12

0
m

on
th

s
15

.1
%

15
.1

%
15

.9
%

10
.9

%
18

.8
%

18
.8

%
18

.8
%

18
.8

%
19

.7
%

0.
3%

19
.2

%
20

.0
%

Pa
ne

lC
-S

ha
rp

e
ra

tio

G
am

m
a

G
am

m
a

G
am

m
a

H
ol

di
ng

pe
r.

2
3

5
10

2
3

5
10

2
3

5
10

6
m

on
th

s
-0

.8
8

-1
.0

5
-1

.1
9

-1
.2

2
-1

.0
5

-1
.0

3
-0

.9
8

-0
.9

3
-0

.8
8

-1
.0

4
-1

.1
6

-1
.2

1
12

m
on

th
s

0.
85

0.
86

0.
95

1.
01

1.
26

1.
09

0.
94

0.
85

0.
85

0.
85

0.
85

0.
85

36
m

on
th

s
1.

31
1.

89
1.

53
1.

35
1.

87
1.

89
1.

72
1.

84
1.

31
1.

53
1.

31
1.

70
60

m
on

th
s

-0
.4

1
-0

.3
2

-0
.3

2
-0

.2
2

-0
.4

0
-0

.2
8

-0
.4

0
-0

.3
2

-0
.4

1
1.

54
-0

.2
8

-0
.0

6
12

0
m

on
th

s
0.

49
0.

49
0.

49
0.

57
0.

38
0.

38
0.

38
0.

38
0.

41
1.

54
0.

45
0.

41



7.2. ASSET ALLOCATION RESULTS 155

Tables 7.3 and 7.4 present the results for the extended sample. For the analysis of this

sample, only LIN, MV_2, and FLEX_3C were considered. The results in Chapter 6

have demonstrated that two clusters would insufficiently cover this sample.

Whereas FLEX_2C and LIN showed the best mean returns in the core sample, this

is no longer the case in the extended sample. FLEX_3C performs very strongly

for short-, medium, and long-term holding periods and shows a similar behavior

to FLEX_2C in the core sample. However, the good performance of FLEX_3C is

due to its riskier investment strategies. FLEX_3C shows a higher portfolio risk and

comparably low Sharpe ratios. LIN, in contrast, still presents very low portfolio risk

numbers. This also results in higher Sharpe ratios.

The analysis of the rebalancing strategy shows that the risk of FLEX_3C can be

reduced (see Table 7.4). However, this is mainly due to extreme allocations towards

the risk-free asset and might therefore not present a valuable solution in practice.

Tables 7.3 and 7.4 further confirm that the flexible model again performs best during

medium- and longer-term periods. In contrast, MV_2 performs comparably low in

terms of both risk and return. Only for very short periods does it present favorable

results due to extreme allocations to portfolios with high volatility exposures.

Figure 7.5 charts the performance of the different strategies over the 10-year hold-

ing period. Again, the flexible model with rebalancing performed best during that

time. The flexible model with the buy-and-hold investment strategy also performed

comparably well. In contrast, MV_2 shows the weakest performance and ranks even

behind LIN.

The previous analysis of the core and the extended sample presents two main find-

ings for flexible regime-switching models: First, the flexible models perform best

during mid- and long-term holding periods. This focus is easily explained by the

structure and durations of the underlying Markov chains. Second, for shorter holding

periods, the flexible models still show values comparable to MV_2. This observa-

tion demonstrates the comparative advantage of accounting for flexible instead of a

priori defined switching dynamics.
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Figure 7.5: Performance comparison of the switching and non-switching mod-
els using buy-and-hold and rebalancing investment strategies. Results are de-
picted for the extended sample. The holding period HP is set to 120 months,
the risk aversion γ to 5, and the rebalancing period RB to 6 months. The period
under study is from January 2004 to February 2014.
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Table 7.4: Performance of the different switching and non-switching models using an invest-
ment strategy with rebalancing (extended sample). The period of analysis is from January
2004 to February 2014. Rebalancing frequency RB is set to 6 months.

MV_2 FLEX_3C

Panel A - Mean portfolio return

Gamma Gamma

Holding per. 2 3 5 10 2 3 5 10

6 months 7.7% 6.6% 5.8% 3.3% -12.9% -12.9% -11.2% -6.9%
12 months 13.8% 13.9% 14.1% 13.6% 16.3% 16.3% 16.3% 16.3%
36 months 14.3% 14.9% 15.0% 14.6% 19.2% 0.4% 19.2% 19.2%
60 months -3.2% -2.7% -2.6% -2.7% 1.2% -0.2% 1.2% 1.2%
120 months 3.9% 4.7% 5.0% 5.8% 10.1% 0.4% 10.1% 10.1%

Panel B - Standard deviation of portfolio returns

Gamma Gamma

Holding per. 2 3 5 10 2 3 5 10

6 months 25.4% 23.8% 22.5% 18.7% 9.9% 9.9% 8.2% 4.8%
12 months 19.6% 18.3% 17.2% 15.1% 12.6% 12.6% 12.6% 12.4%
36 months 14.7% 13.4% 13.1% 11.3% 12.4% 0.3% 12.4% 12.4%
60 months 17.2% 16.6% 16.4% 15.5% 23.1% 21.7% 23.1% 23.1%
120 months 15.8% 15.3% 15.2% 14.5% 21.7% 0.3% 21.7% 21.7%

Panel C - Sharpe ratio

Gamma Gamma

Holding per. 2 3 5 10 2 3 5 10

6 months 0.30 0.28 0.26 0.18 -1.30 -1.30 -1.36 -1.44
12 months 0.70 0.76 0.82 0.90 1.29 1.29 1.29 1.32
36 months 0.98 1.11 1.15 1.29 1.54 1.53 1.54 1.54
60 months -0.19 -0.16 -0.16 -0.18 0.05 -0.01 0.05 0.05
120 months 0.25 0.31 0.33 0.40 0.47 1.54 0.47 0.47
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Composite Correlation

The previous results have highlighted the out-of-sample performance of the flexible

models and of their underlying investment strategies. However, these results have

not disclosed whether the composite correlation structure markedly contributes to

this performance.

Table 7.5 therefore presents the performance and risk figures for this restricted spec-

ification of the flexible model (core sample). Similar to the previous analysis, the

correlation matrix was conditioned on the regime of cluster a. Return and risk fig-

ures thereby reveal an underperformance of this restricted model. Figure 7.6 further

illustrates these observations and shows the comparative disadvantage of a restricted

correlation structure. The basic specification with composite correlation matrices

clearly outperforms the restricted strategies during the entire observation period.

This holds for the buy-and-hold (red lines) as well as for the rebalancing strategy

(blue lines). These results again highlight the content of information inherent in

composite correlation matrices and their significant contribution to flexible regime-

switching models.
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Figure 7.6: Performance comparison of the flexible regime-switching model
with composite correlation matrices and with matrices that are conditioned on
the regime of the US (cluster a). Results are depicted for the core sample. The
holding period HP is set to 120 months, the risk aversion γ to 5, and the
rebalancing period RB to 6 months. The period under study is from January
2004 to February 2014.
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Chapter 8

Conclusion

Multivariate regime-switching presents an efficient way of modeling the dynamics

of financial markets. In standard models, however, the relationship between these

dynamics is determined a priori and is usually assumed to be perfectly synchro-

nized or fully independent. This thesis has developed an alternative setup. The

flexible regime-switching model allows subgroups of assets to be driven by individ-

ual Markov chains. At the same time, these Markov chains underlie a dynamically

changing degree of synchronization, which is inferred from the data.

In a first step, the present study introduced different regime synchronization mea-

sures. Their analysis revealed two important findings: first, the regime dynamics of

individual assets show a time-varying degree of synchronization; and second, some

assets show very similar dynamics and might therefore be driven by a joint process.

These findings describe the key properties of the flexible regime-switching model

and were also jointly responsible for its initial specification.

The flexible model efficiently covers the regime dynamics of individual assets. Its

moment parameters, for example, more closely resemble the parameters of uni-

variate models than those of multivariate models. Similarly, Chapter 7 has shown

that the flexible setup provides more diversified portfolio allocations than standard

regime-switching models. These observations are due to the intermediate states of

the flexible model. In these states, the risk-return-structure of weakly performing

assets becomes more attractive, which in turn increases their exposure. Especially

medium-term performance was significantly influenced by the results of the flexible

model. This period matched the duration of the assets’ underlying regime processes.
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Throughout this study, the empirical results have revealed a strong dependence on

cluster definition. Both the number and the composition of each cluster can thereby

significantly influence the parameter set of the flexible model. The clustering proce-

dure has therefore proved to form an integral part of the model specification.

The observed dependence on cluster specification paves the way for future research.

The clustering process in this thesis is not part of the model algorithm. Instead, the

clusters are determined in an upstream process. The resulting cluster groups then

exogenously enter the parameter set of the flexible model.

Hamilton and Owyang (2012), for example, introduced an alternative approach. In

their dynamic regime-switching model, each asset is assigned to one or multiple

clusters, based on a logistic variable. Unfortunately, the employed algorithm requires

the covariance matrix to follow a diagonal structure. The results in the present study,

however, have shown the importance of fully specified, regime-dependent covariance

dynamics.

Implementing logistic variables in the flexible regime-switching model would there-

fore present a valuable resource for further analysis. Similarly, applying the correla-

tion factorization algorithm to existing regime-switching models with non-synchro-

nized regime processes also presents a promising field of future research.

Finally, given the stable dynamics of the individual clusters in the flexible model, this

approach could be applied to even larger samples in future research. First, rudimen-

tary clusters would be built, which replicate the most basic features of the extended

universe. The flexible model could then be applied to each of these rudimentary

clusters. These would be further divided into individual subclusters until the desired

granularity is reached. As the results of the individual clusters are only weakly inter-

related, additional segregation would allow one to define individual subprocesses for

the refined clusters, limiting potential biases from prior estimations of parent clus-

ters. At the same time, the whole spectrum of information in parent and subclusters

could be used for the analysis of financial markets.
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