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Summary

The first chapter introduces a new method to estimate the option-implied empirical

pricing kernel. Departing from an adequate and economically motivated initial pricing

kernel, we apply a customized functional gradient descent (FGD) algorithm based on

B-splines. We empirically illustrate the estimation properties of the method using S&P

500 option data and find that the algorithm yields accurate estimates. In addition, we

provide evidence of the superior predictive ability of our method in comparison with

other approaches recently introduced in the empirical pricing kernel literature.

The empirical pricing kernel is time-varying, which reflects changes in the relevant

pricing kernel state variables. However, little is known about these factors driving the

pricing kernel over time. Therefore, I present in the second chapter a time series model

for the evolution of the empirical pricing kernel using a boosting approach based on

regression trees. Given that trees have the ability to choose among a set of predictors

the most relevant ones, I develop a tool to answer the main question regarding the

principal pricing kernel driving factors. I show in the empirical part of the chapter that

the influence of relevant driving factors such as volatility, financial and macroeconomic

variables and sentiment measures substantially varies over time and I provide some

insights on how they affect the pricing kernel shape.

In the third chapter, we investigate how to estimate accurately the tails of the option-

implied risk-neutral density, which is known to be a challenging problem. We review

several methods and additionally introduce a new tail extension approach that com-

bines the idea of price matching with the assumption of tails drawn from a generalized

extreme value distribution. Based on a theoretical market model with known implied

risk-neutral density, we conduct a performance analysis. We find that the best re-

sults are obtained either with implied volatility extrapolation by means of Gatheral’s

stochastic volatility inspired SVI model, or with our new price matching method.

The last chapter of this thesis is about option data filtering. We discuss why filtering

(especially for the tails) might be sensible and present the most common approaches.

In addition, and more importantly, we introduce new tail filtering methods that rely on

proxies for market activity, which we derive from intraday option data. In the second

part of the chapter, we demonstrate that different filters yield to statistically different

strike/moneyness ranges and show that these differences can have a non-negligible

impact on tail sensitive applications such as moment estimation.
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Zusammenfassung

Im ersten Kapitel wird eine neue Methode präsentiert, um den aus Optionspreisen

implizierten empirischen Preiskern zu schätzen. Die Methode funktioniert so, dass

wir mit einem geeigneten und ökonomisch motivierten Anfangspreiskern starten und

dann einen “functional gradient descent “ (FGD) Algorithmus basierend auf B-Splines

verwenden, um einen guten Schätzer zu erhalten. Im empirischen Teil des Kapitels be-

nutzen wir S&P 500 Optionsdaten, um die Eigenschaften des Schätzers zu beschreiben.

Wir zeigen, dass unsere Methode akkurate Schätzungen liefert und stellen fest, dass

die Vorhersageresultate besser sind als mit anderen, vergleichbaren Schätzmethoden.

Der Preiskern ist eine zeitabhängige Grösse, was auf Veränderungen in den zugrun-

de liegenden Zustandsvariablen zurückzuführen ist. Leider ist wenig bekannt über die

Triebfaktoren dieser zeitlichen Dynamik. Daher präsentiere ich im zweiten Kapitel

ein Zeitreihenmodell, basierend auf einem Boosting Algorithmus mit Regressionsbäu-

men, um die zeitliche Entwicklung des Preiskerns zu verstehen. Da Regressionsbäume

es erlauben, aus einer Menge von potentiellen Zustandsvariablen die Relevanten aus-

zuwählen, kann unsere Kernfrage bezüglich der Triebkräfte beantwortet werden. Im

empirischen Teil zeige ich, dass der Einfluss der Zustandsvariablen stark variiert und

ich untersuche, wie die relevanten Variablen die Form des Preiskerns beeinflussen.

Im dritten Kapitel wird analysiert, wie man die Schwänze der aus Optionspreisen im-

plizierten risikoneutralen Dichte möglichst akkurat schätzen kann. Wir begutachten

einige kürzlich eingeführte Methoden und entwickeln eine eigene, indem wir die Idee

der Preisanpassung mit der Annahme einer generalisierten Extremwertverteilung kom-

binieren. In unserer Vergleichsstudie, welche auf einem theoretischen Marktmodell mit

bekannter risikoneutraler Dichte basiert, finden wir heraus, dass die besten Resultate

entweder durch Extrapolation der impliziten Volatilität mit Hilfe von Gatheral’s SVI

Modell oder mit unserer neuen Methode erzielt werden.

Das letzte Kapitel ist dem Thema Filtern von Optionsdaten gewidmet. Wir erläutern,

wieso das Filtern von Optionsdaten (insbesondere für extreme Strike-Preise) sinnvoll

ist und präsentieren die gängigsten Methoden. Zudem entwickeln wir einen neuen An-

satz, gestützt auf Angaben zur Marktaktivität, welche wir aus intraday Optionsdaten

erhalten. Wir stellen fest, dass verschiedene Filter zu statistisch signifikant unterschied-

lichen Strike/Moneyness Intervallen führen und zeigen, dass diese Unterschiede in der

Momentenschätzung einen entscheidenden Einfluss haben.
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Preface

This cumulative thesis contains four chapters/papers. The first two are concerned with

estimating and modeling the empirical pricing kernel and have been developed within

a SNF project entitled “Applying Recent Developments in Computational Statistics

to Behavioral Asset Pricing and Portfolio Selection”. Chapters 3 and 4 are about risk-

neutral density tail estimation and option data filtering and are both a joint work with

Anselm Ivanovas. Hereafter, I provide a short summary of all chapters and show how

they are related.

In financial asset pricing, the pricing kernel or stochastic discount factor has a pivotal

role, since it summarizes preferences of an investor about risk. Understanding its

behavior is therefore particularly important and, consequently, numerous approaches

have been developed in the last decade to infer this pricing kernel from observed asset

prices, especially options.

In the first chapter, Francesco Audrino and I propose a new method to estimate the

option-implied empirical pricing kernel and thus provide a methodological contribution

to the existing literature. Departing from an adequate and economically motivated

power pricing kernel, we apply a customized functional gradient descent (FGD) algo-

rithm based on B-splines. This approach allows us to locally modify the initial pricing

kernel by means of an additive expansion of some relevant B-Spline basis functions and

therefore produces an improved final estimate. We empirically illustrate the estima-

tion properties of the method using S&P 500 option data and find that the algorithm

yields accurate estimates. In addition, we provide evidence of the superior predictive

ability of our method in comparison with other approaches recently introduced in the

empirical pricing kernel literature.

In line with other studies, we observe that the empirical pricing kernel is time-varying,

which reflects changes in the relevant pricing kernel state variables. Surprisingly, only a

few attempts have been made in the recent past to model and understand the observed
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dynamics.

Therefore, I present in the second chapter a time series model for the evolution of the

empirical pricing kernel surface. More specifically, building on some initial estimates

of these dynamic surface, I propose a boosting approach based on regression trees.

Given that trees have the ability to choose among a set of predictors the most relevant

ones, I develop a tool to answer the main question regarding the principal pricing

kernel driving factors. In the empirical analysis, I show that the influence of relevant

driving factors such as volatility, financial and macroeconomic variables and sentiment

measures substantially varies over time. Moreover, I provide some insights on how

they affect the pricing kernel shape.

The option-implied risk-neutral density represents a forward-looking view of the under-

lying asset price distribution. Hence, it cannot only be employed to derive an empirical

pricing kernel, but is helpful for various other applications like managing risk or as-

set allocation. Numerous flexible nonparametric and semiparametric approaches have

been developed to recover this density from option prices. However, an important

issue often exists when applying such methods. Namely, the risk-neutral density can

only be obtained over the strike range of observable prices, which might not extend

very far into the tails. Interestingly, there is only a limited number of solutions for

that problem even though the tails are particularly important for risk management

applications or to estimate higher moments of the risk-neutral distribution.

That’s why I investigate together with Anselm Ivanovas in the third chapter how

to estimate accurately the risk-neutral density tails. To this end, we review several

existing methods to infer the tails from option data and additionally introduce a new

tail extension approach which combines the idea of price matching with the assumption

of tails drawn from a generalized extreme value distribution. Based on a theoretical

market model with known implied risk-neutral density, we conduct a performance

analysis. The final outcomes of our study indicate that the best results regarding

accuracy and stability are obtained either with implied volatility extrapolation by

means of Gatheral’s stochastic volatility inspired SVI model, or with our new price

matching method. Moreover, we provide evidence that the still very popular constant

implied volatility extrapolation approach often yields unsatisfactory results.

As can be seen for example in chapters one to three, option prices are helpful for various

applications other than option pricing itself, given that they contain information on

the risk factors driving the underlying price process. However, the quantity of option

2



prices available is typically huge, which calls for data selection/filtering. Interestingly,

this step of data preparation is often marginalized in the empirical literature.

In the last chapter of this thesis, Anselm Ivanovas and I contribute to this simple but

important topic in empirical research. Departing from the full set of intraday S&P

500 option data, we discuss why filtering (especially for the tails) might be sensible

and present the most common approaches. In addition, and more importantly, we

introduce new tail filtering methods that rely on proxies for market activity, which we

derive from intraday option data. In the second part of the chapter, we analyze the

effect of different filters. We provide evidence that they yield to statistically different

strike/moneyness ranges and show that these differences can have a non-negligible

impact on tail sensitive applications such as moment estimation.
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Chapter 1

Empirical pricing kernel estimation

using a functional gradient descent

algorithm based on splines

Francesco Audrino

Pirmin Meier
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Abstract

We propose a new methodology to estimate the empirical pricing kernel

implied from option data. In contrast to most of the studies in the

literature that use an indirect approach, i.e. first estimating the physical

and risk-neutral densities and obtaining the pricing kernel in a second

step, we follow a direct approach. Departing from an adequate para-

metric and economically motivated pricing kernel, we apply a functional

gradient descent (FGD) algorithm based on B-splines. This approach

allows us to locally modify the initial pricing kernel and hence to improve

the final estimate. We empirically illustrate the estimation properties

of the method and test its predictive power on S&P 500 option data,

comparing it as well with other recent approaches introduced in the

empirical pricing kernel literature.

Keywords: Empirical pricing kernel, function gradient descent, B-splines,

option pricing.
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1.1 Introduction

The pricing kernel or stochastic discount factor is a key component of any asset pricing

model. It summarizes investor preferences for payoffs over different states of the world

and represents an important link between economics and finance. Given its high

information content, it is not surprising that several attempts have been undertaken

in the past to infer such a kernel from observed (option) market prices.

Seminal papers in the empirical pricing kernel estimation literature include Jackwerth

(2000) and Aı̈t-Sahalia and Lo (2000). Both of them adopt a so-called indirect ap-

proach, i.e. they first estimate the physical and risk-neutral densities and then obtain

the pricing kernel in a second step. Alternatively, it is also possible to estimate the

pricing kernel directly using the fundamental asset pricing equation (see Rosenberg

and Engle (2002)).

According to classical finance models, one would expect to find a fitted pricing kernel

that is a decreasing function of aggregate resources. However, this is contrary to many

recent empirical studies (including those mentioned above). The empirical pricing

kernel does not seem to be a monotonically declining function, but exhibits instead an

upward-sloping region. This phenomenon is known as the pricing kernel puzzle.

In the last ten years, several other estimation methodologies have been proposed. A

majority of them rely on the indirect approach: see, among others, Barone-Adesi

et al. (2008), Grith et al. (2013a), Detlefsen et al. (2010) and Barone-Adesi and Dallo

(2010). In addition, Yang (2009) and Grith et al. (2011) also present some modified

versions of the direct method originally introduced in Rosenberg and Engle (2002).

The studies have produced mixed results. A large number of them confirm the pricing

kernel puzzle. However, Barone-Adesi et al. (2008) and Barone-Adesi and Dallo (2010)

find the overall shape of their estimates to be generally decreasing. Furthermore, there

are also recent contributions supporting U-shaped pricing kernels (e.g., Bakshi et al.

(2010) and Christoffersen et al. (2013)).

Besides the introduction of the above-mentioned estimation techniques, some researchers

have performed formal tests to verify the monotonicity of the pricing kernel (see for

example Golubev et al. (2011), Härdle et al. (2010) and Beare and Schmidt (2011)).

They provide evidence in their empirical applications that the null-hypothesis of non-

increasing kernels can typically be rejected. Consequently, several attempts have been

made to explain the puzzle. Chabi-Yo et al. (2008) and Grith et al. (2013b) for ex-
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ample consider state-dependent preferences as possible explanations, whereas others

such as Shefrin (2008), Ziegler (2007), De Giorgi and Post (2008), Polkovnichenko and

Zhao (2013) and Hens and Reichlin (2012) focus on results coming from the behavioral

finance literature to solve the puzzle.

In this paper, we propose a new direct estimation methodology. Departing from an

adequate and economically motivated power pricing kernel, we apply a customized

functional gradient descent (FGD) algorithm based on B-splines. This approach allows

us to locally modify the initial pricing kernel by means of an additive expansion of some

relevant B-Spline basis functions and therefore produces an improved final estimate.

The FGD algorithm (Friedman (2001)) belongs to the class of boosting procedures,

which are very popular in the area of machine learning. It can be interpreted as a

functional analog of the gradient method applied for parameter optimization. However,

our algorithm has some peculiarities not present in the generic FGD procedure. It

depends on a set of simulated future returns and must be combined with numerical

integration or Monte Carlo methods to compute an expectation, which makes our

approach particularly challenging. Recently, FGD or slightly modified versions of it

have already been successfully applied to financial function estimation. In particular,

Audrino and Bühlmann (2009) have shown that FGD in connection with B-splines

yields good results in volatility estimation and forecasting.

Our study contributes to the existing literature along two different lines. First, we

bring the idea of boosting into the field of pricing kernel estimation by suggesting a new

and rather flexible direct fitting approach that is able to provide accurate estimates.

Second, in contrast to almost all studies presented in the literature so far, we also

investigate the predictive power of our pricing kernel estimates. Having such accurate

forecasts is interesting. They contain helpful information regarding investors’ future

beliefs and risk behavior and can be used for example to improve option valuation or

the performance of option trading/hedging strategies.

In our empirical analysis, we consider S&P 500 option data from 2005 until 2010 to

empirically illustrate the estimation properties of our algorithm. Although departing

from an initial pricing kernel conforms to classical economic theory, we often observe

final estimates showing the puzzling behavior. In agreement with several previous

studies, we find that the increasing component is usually located in the area of zero

return and resembles a bump. However, the fitted kernel is time-varying and we

also get estimates conforming to some other recent contributions supporting the claim

that the pricing kernel looks U-shaped. In order to evaluate the accuracy of the

7



fitted kernels, we investigate the in-sample and out-of-sample pricing performance of

our methodology. Interestingly, we find that the FGD algorithm based on splines

consistently outperforms the parametric specifications introduced in Rosenberg and

Engle (2002), which are considered benchmark approaches.

The paper is organized as follows. Section 1.2 contains a review of basic asset pricing

theory (mainly to set up notations) and formally introduces the pricing kernel puzzle.

Section 1.3 provides a detailed description of our new estimation method using a FGD

algorithm based on B-splines. Section 1.4 presents the empirical results and Section

1.5 concludes the paper.

1.2 The role of the pricing kernel in asset pricing

theory and its puzzling behavior

1.2.1 Review of some asset pricing theory

Given some general non-arbitrage conditions (see Hansen and Richard (1987)), the

time t price πt(Xt+1) of an asset with payoff Xt+1 ∈ Xt+1 (the set of payoffs at time

t+ 1) can be written as

πt(Xt+1) = Et[Mt,t+1Xt+1], (1.1)

where Et[·] denotes the conditional expectation given investors’ information Jt at time t

and Mt,t+1 is the one-period stochastic discount factor (SDF) or pricing kernel. Hence,

the price of an asset equals the expected pricing-kernel weighted payoff.

The SDF is a state-dependent function that discounts payoffs using time and risk

preferences. Generally, it can depend on many (possibly unknown) state variables.

Since there is a considerable debate among researchers about the state variables that

enter into the pricing kernel, it is quite common to consider a projected pricing kernel.

More precisely, among the admissible SDFs in (1.1), there exists only one that is a

function of available payoffs. It is the orthogonal projection of any admissible SDF

on the set of payoffs. If we now consider as payoff space Xt+1 the set of all squared

integrable functions h(Jt, Xt+1) of some primitive payoff Xt+1, we obtain the projected

pricing kernel as

M∗
t,t+1 = Et[Mt,t+1|Xt+1]. (1.2)

Although this projected pricing kernel is not necessarily identical to the original one,
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it has exactly the same pricing implications for assets with payoffs that depend on

Xt+1 (see for example Cochrane (2005) for a discussion). Moreover, this projected

pricing kernel, which is a univariate function of Xt+1, can vary over time, reflecting

time variation in the pricing kernel state variables.

Hansen and Richard (1987) show that it is sufficient that there exists a particular

admissible SDF which is almost surely positive in order to deduce that there are no

arbitrage opportunities on Xt+1. Inversely, no arbitrage implies that the projected SDF

M∗
t,t+1 is positive with probability one. Therefore, without making any assumptions

about market completeness, the absence of arbitrage in the set of contingent claims

leads to the existence of a unique and positive projected SDF which is a function of

the primitive payoff Xt+1 (we also refer to Garcia et al. (2010) for a discussion about

this point). As a consequence, we can define a risk-neutral probability measure Q such

that the price of any contingent claim with payoff Ht+1 = h(Jt, Xt+1) is given by

πt(Ht+1) = Et[M
∗
t,t+1Ht+1] = Et[M

∗
t,t+1]E

Q
t [Ht+1]

with

EQ
t [Ht+1] = Et

[

M∗
t,t+1

Et[M∗
t,t+1]

Ht+1

]

.

Thus, pricing is reduced to a riskless discounting using the price at time t of a zero-

coupon bond which pays one dollar at time t + 1 and a distorted (risk-neutral) con-

ditional expectation of the asset payoff Ht+1. It is called risk-neutral pricing since it

determines prices as if agents were risk neutral. Furthermore, the pricing kernel M∗
t,t+1

can be seen as the transformation between the risk-neutral and historical measure,

that is

M∗
t,t+1 = Et[M

∗
t,t+1]

q

p
= e−rt,t+1

q

p
, (1.3)

where rt,t+1 is the (continuously compounded) yield on the zero-coupon bond and q

and p designate the risk-neutral or the historical density function. The density q is

often also referred to as state price density since it represents the continuous-state

counterpart of the so-called Arrow-Debreu securities.

1.2.2 The pricing kernel puzzle

In order to formally introduce the pricing kernel puzzle, let us now consider a repre-

sentative agent model in which the investor’s preferences satisfy the expected utility

theory of von Neumann and Morgenstern (1944). A famous example is Lucas’ (1978)

9



consumption-based asset pricing model. In this case, the pricing kernel corresponds

to the investor’s intertemporal marginal rate of substitution, i.e.

Mt,t+1 =
u′(Ct+1)

u′(Ct)
, (1.4)

where Ct and Ct+1 are consumption in period t and t + 1, respectively, and u′ is the

first derivative of the investor’s utility function. Based on assumptions present in many

classical finance models that investors satisfy the non-satiation property and are risk

averse, we obtain an increasing and concave utility function u. Consequently, the pric-

ing kernel in equation (1.4) should be a decreasing function of aggregate consumption

in period t+1. Similarly, one would also expect that the projected pricing kernelM∗
t,t+1

(which coincides with the projection of u′(Ct+1)
u′(Ct)

on the set of payoffs) is a decreasing

function. However, this is in contrast with empirical observations. Among others,

Jackwerth (2000) and Rosenberg and Engle (2002) find that the pricing kernel is not

an overall decreasing function. In other words, they observe a locally increasing pricing

kernel, implying a locally increasing marginal utility and convex utility function. We

refer to this as the pricing kernel puzzle.

Various attempts have been made to explain the puzzle. Chabi-Yo et al. (2008) and

Grith et al. (2013b) for example consider state-dependent preferences as possible expla-

nations whereas others like Shefrin (2008), Ziegler (2007), De Giorgi and Post (2008),

Polkovnichenko and Zhao (2013) and Hens and Reichlin (2012) focus on results coming

from the behavioral finance literature to try to understand this puzzling behavior of

the pricing kernel.

1.3 Empirical pricing kernel estimation

In this section, we will present our FGD method based on splines to estimate an em-

pirical pricing kernel. As opposed to most of the studies in the literature that use

an indirect approach, i.e. first estimating the physical and risk-neutral densities and

obtaining the pricing kernel in a second step, we follow a direct approach originally

introduced in Rosenberg and Engle (2002). Therefore, we start by presenting the gen-

eral idea of the direct estimation method before continuing with a detailed description

of the FGD estimation methodology.
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1.3.1 An introduction to the direct estimation approach

The goal is to estimate a projected pricing kernel onto the underlying asset returns

using S&P 500 option data and historical returns. Let us now briefly summarize this

approach.

Estimation technique

Using the fundamental pricing equation, one can write the price of a derivative with

a payoff that depends on the return of the underlying asset rt+1 as

Pi,t = Et[M
∗
t,t+1(rt+1)gi(rt+1)] =

∫

M∗
t,t+1(rt+1)gi(rt+1)ft(rt+1) drt+1,

where Pi,t is the price of the ith asset with payoff function gi(rt+1) and ft(rt+1) desig-

nates the probability density of one-period underlying asset returns.

We get the fitted model price P̂i,t using an estimate of the projected kernel M̂∗
t,t+1(rt+1)

together with an accurately estimated return density f̂t(rt+1) such that

P̂i,t = Et[M̂
∗
t,t+1(rt+1)gi(rt+1)] =

∫

M̂∗
t,t+1(rt+1)gi(rt+1)f̂t(rt+1) drt+1. (1.5)

Whereas the kernel M̂∗
t,t+1(rt+1) is the object of interest that we have in mind to

estimate, we need a model specification of the underlying return process in order to

get the density ft. This question will be addressed in Subsection 1.3.1 below.

The empirical pricing kernel is then defined as the function that makes fitted prices

closest to observed prices, using the estimated return density. This is basically a

function estimation/optimization problem. But it includes some additional complexity

since it must be combined with Monte Carlo methods or numerical integration to

calculate the expectation in each step of the optimization procedure. However, the

problem can be simplified by assuming a parametric representation M∗
t,t+1(rt+1; θt) of

the projected pricing kernel, where θt is an N -dimensional parameter vector.

This leads to a parameter optimization problem and we call empirical pricing kernel

the one that solves

min
θt

L
∑

i=1

(Pi,t − P̂i,t(θt))
2/V ega2i,t,

where L represents the number of asset prices, P̂i,t(θt) is the fitted model price as a
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function of the pricing kernel parameter vector and V egai,t is the BS-vega of the option

at the market implied level of volatility.

Such vega-weighted pricing errors are an approximation to implied volatility errors,

which have desirable statistical properties. In particular, implied volatility errors are

proportional to bid-ask spreads and yield a better scaling of the cost functional. Unlike

implied volatility errors, they do not require Black-Scholes inversion of model prices at

every step in the optimization algorithm, which is therefore favorable from a compu-

tational point of view. We refer to Cont and Tankov (2004) and Christoffersen et al.

(2013) among others for more details on applications of vega-weighted option valuation

errors.

Modeling the underlying return process and numerical approximation of

the conditional expectation

As suggested in Rosenberg and Engle (2002), we use an asymmetric GARCH model

with empirical innovations to approximate the physical density of S&P 500 returns.

More specifically, we model the underlying return process with a GJR-GARCH (Glosten

et al. (1993))1 including a linear autoregressive term for estimating a conditional mean,

i.e.,

rt = ln(St/St−1) = µrt−1 + ǫt, ǫt ∼ h(0, σ2
t ) (1.6)

and

σ2
t = ω + βσ2

t−1 + αǫ2t−1 + γmax(0,−ǫt−1)
2. (1.7)

This model specification allows it to capture the most important stylized facts of fi-

nancial return series. The conditional volatility is stochastic and mean-reverting and

when γ > 0 the model also accounts for the leverage effect.2 The empirical innovation

density h is separated into a time-varying component σt and the time-invariant distri-

bution of standardized innovations zt = ǫt/σt. This standardized innovation density

incorporates skewness and excess kurtosis that are not captured in a normal density.

We estimate the model using a pseudo maximum likelihood approach with a normal

innovation density. Bollerslev and Wooldridge (1992) show that consistent parameter

1Rosenberg and Engle (2002) fit a number of GARCH models to daily S&P 500 index returns
and find that the GJR-GARCH model describes the data best. Since then, this model or similar
asymmetric GARCH specifications have been widely used in the empirical pricing kernel literature
to model the underlying return process.

2The term leverage effect was introduced by Black (1976) and is used to describe the asymmetric
reaction of volatility in response to good and bad news (excess returns).
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estimates can be obtained under certain conditions even if the true innovation density

is not normal.

Using the estimated model parameters, the conditional variance and the standardized

innovations, we are able to simulate return paths. For a given time point t such

a path is obtained by randomly selecting an estimated standardized innovation z[1],

updating the conditional variance σ2
t+1, drawing a second innovation z[2], updating the

conditional variance σ2
t+2, and continuing up to the desired time horizon. Repeating

this procedure many times, we obtain a set of simulated returns and apply a kernel

density estimator to get an estimate of the future return density ft. This method, first

introduced in Barone-Adesi et al. (1998) to compute portfolio risk measures, is now

widely used and generally called filtered historical simulation (FHS) in the financial

econometrics literature (see, for example, Barone-Adesi et al. (2008)).

Finally, we obtain a fitted model price by using the classical midpoint numerical inte-

gration rule in order to calculate the integral in equation (1.5). We have

P̂i,t(θt) =
∆rt+1

n

n
∑

j=1

M̂∗
t,t+1(r̃j,t+1; θ)gi(r̃j,t+1)f̂t(r̃j,t+1), (1.8)

where r̃j,t+1 =
rj−1,t+1+rj,t+1

2
with j = 1, . . . , n are n equally spaced mid-points in

a partition {rj,t+1}nj=0 of the integration domain [r0,t+1, rn,t+1] with length ∆rt+1 =

rn,t+1 − r0,t+1. Alternatively, one could also use a Monte Carlo approximation of the

integral. We tried both in our empirical analysis. Since the pricing accuracy does not

seem to be very sensitive to the choice, we decided to rely on the simple numerical

approximation, as it needs less computational time.

Parametric pricing kernel specifications

We will now review the parametric pricing kernel specifications proposed in Rosenberg

and Engle (2002). The reason is twofold. First, they can serve as starting models

in our FGD algorithm and secondly we can take them as benchmark models when

analyzing the predictive power of our FGD approach based on splines in the empirical

analysis section.

In the first specification, the kernel is a power function of the underlying asset’s gross

return, i.e.

M∗
t,t+1(rt+1; θt) = θ0,t(rt+1)

−θ1,t . (1.9)
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The first parameter θ0,t is a scaling factor and the second parameter θ1,t determines

the slope of the kernel at date t. When θ1,t is positive, the price kernel is negatively

sloped, which implies that the value of a unit payoff increases as the underlying asset

return decreases.

In the second, more flexible specification, they consider a kernel of the form

M∗
t,t+1(rt+1; θt) = θ0,tT0(rt+1) exp(θ1,tT1(rt+1) + · · ·+ θN,tTN(rt+1)) (1.10)

with N +1 parameters (θ0,t, . . . θN,t) and where T0, . . . , TN are Chebyshev polynomials

with terms given by Tn(x) = cos(n arccos(x)) for x ∈ [−1, 1]. To obtain an approx-

imation over a closed interval [a, b], we consider generalized Chebyshev polynomials

with x = (2rt+1 − a− b)/(b− a).

Whereas the first parametric specification is rather restrictive but popular in financial

models,3 the second is rather flexible. More precisely, if there were an infinite number of

polynomial terms in our expansion, we could theoretically approximate any continuous

function accurately. However, the number of observed asset prices at time t provides

us with an upper bound for the number of polynomial terms. This is the motivation

behind using orthogonal polynomials such as Chebyshev polynomials, which provide

more precise approximations for lower order expansions. Other reasonable choices

could be Hermite or Laguerre polynomials (see for example Yang (2009) and Grith

et al. (2011)).

1.3.2 Pricing kernel estimation using a FGD algorithm based

on splines

Let us now describe our direct estimation approach that uses a functional gradient

descent (FGD) algorithm based on splines. The FGD algorithm (Friedman (2001))

belongs to the class of boosting procedures, which are very popular in the area of

machine learning. It can be interpreted as a functional analog of the gradient method

used for parameter optimization. The way FGD works is quite intuitive. It takes a

simple parametric or non-parametric model as a first approximation and then modifies

it in a non-parametric way to improve a pre-specified goodness-of-fit statistic. For

conceptual purposes, we start with a short introduction to FGD in a general regression

3Note that we would obtain this parametric form of the pricing kernel assuming that the stochastic
process of the underlying stock follows a Geometric Brownian Motion.
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framework and then proceed with a more detailed discussion on how to bring this idea

into the field of pricing kernel estimation.

A short introduction to FGD

Consider a sample (X1, Y1), . . . , (Xn, Yn), where Yi ∈ R is the response variable and

Xi represents a p-dimensional explanatory variable. Based on (Xi, Yi), we are looking

for a function F ∈ F = {f |f : Rp → R} which minimizes an expected loss of the form

E[λ(Y, F (X))] with an adequate loss function λ.

The FGD algorithm estimates F by minimizing the empirical risk defined as

Λ(F ) =
1

n

n
∑

i=1

λ(Yi, F (Xi)).

Starting from an initial function estimate F̂0 (step 1 of the algorithm), the algorithm

selects the steepest descent direction in the mth iteration which would be given by the

negative functional derivative −dΛ(F̂m−1). However, due to smoothness and regular-

ization constraints on the minimizer of Λ(F̂m−1), one must find a function f̂m which is

in the linear span of a class of simple base learners S and is close to −dΛ(F̂m−1) in the

sense of a functional metric. This is equivalent to fitting the base learner h(x, θ) ∈ S
to the negative gradients

Ui = − ∂λ(Yi, Z)

∂Z

∣

∣

∣

∣

Z=F̂m−1(Xi)

, i = 1, . . . , n.

This is often achieved with least squares fitting and we get f̂m = h(x, θ̂) with

θ̂ = min
θ, ω

n
∑

i=1

(Ui − ωh(Xi, θ))
2.

This is the second step of the algorithm. In a third step (line search), one finally has

to perform a one-dimensional optimization in order to find the best step length ω̂m for

updating F̂m−1 with f̂m. We obtain

ω̂m = min
ω

n
∑

i=1

λ(Yi, F̂m−1(Xi) + ωf̂m(Xi))

and get

F̂m = F̂m−1 + ω̂mf̂m.
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Iterating steps 2 and 3 until m = M produces the FGD estimate

F̂M = F̂0 +
M
∑

m=1

ω̂mf̂m.

Our approach using FGD based on splines

In order to successfully apply the above mentioned boosting technique to pricing kernel

estimation, we restrict our kernel to be an additive expansion of the form4

M∗(r) = M∗
0 (r) +

M
∑

m=1

βdmBdm(r). (1.11)

Here, M∗
0 denotes an appropriate starting model and each Bdm designs a B-spline basis

function with basis index dm and a corresponding multiplicative coefficient βdm .
5

We use B-spline basis functions since B-splines in connection with FGD have already

proven to yield good results in volatility forecasting (see Audrino and Bühlmann

(2009)). Moreover, B-splines are piecewise polynomial functions and can therefore

be used to approximate a general continuous function.6 Using B-splines will allow

for a large flexibility in the shape of the pricing kernel, depending on how we choose

the tuning parameters, i.e. the order and the number of breaks (also called knots) of

each B-spline basis function. We allow the pricing kernel to be a cubic function of

the returns and thus select a spline order of 4. The number of knots is a measure for

the approximation accuracy. The higher the number of breaks, the better the approx-

imation we obtain but with a higher variability due to a larger complexity. In our

application, we choose as break points empirical α-quantiles of the simulated returns

with α = i/mesh (i=1,. . . ,mesh-1) and mesh ∈ N.7

Remind that the projected pricing kernel is a function of future returns only. On the

other hand, we observe option prices. That’s why we apply the FGD algorithm to the

4For simplicity of notation, we remove all time subscripts and just write M∗(r) instead of
M∗

t,t+1(rt+1) for the projected pricing kernel. Where appropriate, we reuse this notational short-
cut in subsequent parts of this article as well.

5No-arbitrage conditions on the coefficients of the B-spline basis functions have been recently
derived by Fengler and Hin (2014).

6We refer to de Boor (2001) for an introduction to B-splines.
7Generally, one can also use another complexity parameter (the so-called knot’s multiplicity) to

control the smoothness of the approximation at each knot. So far, we impose our approximation to
be continuous and smooth at each break point. This means that we set the knot’s multiplicity to be
equal to 1 for all knots except the first and last one. For more details refer to de Boor (2001).
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price functional.

Recently, nice asymptotical properties have been shown for L2-boosting (we refer to

Bühlmann and van de Geer (2011) and references therein for a more detailed discus-

sion). Thus, we consider in our FGD procedure a (slightly modified) L2-loss function

λ given by the vega-weighted squared-error loss of observed and fitted option prices,

i.e.

λ(P, P̂ ) =
1

2

(

P − P̂

V ega

)2

.

We start our algorithm with an initial function estimate

P̂0 =
∆r

n

n
∑

j=1

M̂∗
0 (r̃j)g(r̃j)f̂(r̃j). (1.12)

This fitted initial price corresponds to the approximation that has been described in

equation (1.8) and obviously depends on the selected starting model for the pricing

kernel.

The choice of the starting model used in the FGD algorithm is important since FGD

aims at locally improving the empirical loss of an initial model estimate on the basis of

non-parametric additive expansions. Hence, one should start from a reasonable initial

estimate to obtain a satisfactory performance. In our application, we take the power

pricing kernel specification introduced in (1.9) as a starting model. We believe that

it represents a good trade-off between adequacy and complexity. Furthermore, this

pricing kernel contains a solid economic motivation and conforms to classical finance

models (i.e., it does not yield to the empirical pricing kernel puzzle).

After having completed the first step of the algorithm, we start an iterative procedure

that always leads to a new additive price component

β̂d̂m

∆r

n

n
∑

j=1

Bd̂m
(r̃j)g(r̃j)f̂(r̃j). (1.13)

According to the notation used in Subsection 1.3.2, equation (1.13) represents the

fitted weak learner multiplied with the estimated optimal step length β̂d̂m
. In gereral,

possible choices of the weak learner are restricted in the following way: it should belong

to a given class of statistical procedures that are weak in the sense that they avoid

overfitting by limiting the number of parameters involved in the estimation. We are

convinced to fulfill this condition using B-spline basis functions. Taking all the above
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considerations into account, we obtain the following estimation algorithm:

FGD algorithm with B-spline learners

Step 1 (initialization). Estimate the starting function M̂∗
0 using the estimated return

density f̂ and some return values {r̃j}nj=1. Set m = 1.

Step 2 (projection of the negative gradient to the weak learner). Compute the negative

gradients

Ui =
1

V ega2i

(

Pi −
∆r

n

n
∑

j=1

M̂∗
m−1(r̃j)gi(r̃j)f̂(r̃j)

)

, i = 1, . . . , L.

Then, project the negative gradients onto the weak learner. More precisely, we solve

d̂m = min
1≤d≤k

L
∑

i=1

(

Ui −
∆r

n

n
∑

j=1

β̂dBd(r̃j)gi(r̃j)f̂(r̃j)

)2

,

where d is a basis index, β̂d denotes the least-squares estimated coefficient when re-

gressing the residuals Ui versus
∆r
n

∑n
j=1 Bd(r̃j)gi(r̃j)f̂(r̃j) (the weak learner) and k is

the degree of freedom (number of B-spline basis functions). It is k = (mesh− 1) + 4.

Step 3 (line search). Perform a one-dimensional optimization for the step-length βd̂m

when updating M̂∗
m−1

β̂d̂m
= min

ω

L
∑

i=1

λ(Pi, P̂i)

with

P̂i =
∆r

n

n
∑

j=1

(

M̂∗
m−1(r̃j) + ωBd̂m

(r̃j)
)

gi(r̃j)f̂(r̃j).

Update the current pricing kernel estimate

M̂∗
m(r) = M̂∗

m−1(r) + β̂d̂m
Bd̂m

(r).

Step 4 (iteration). Increasem by one and iterate steps 2 and 3, stopping whenm = M .

This produces the estimate

M̂∗
M(r) = M̂∗

0 (r) +
M
∑

m=1

β̂d̂m
Bd̂m

(r).

The choice of the stopping value M is important and it should be carefully selected

to avoid overfitting. Usually, it is estimated by minimizing approximations of the
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expected prediction error. In our empirical application, we will apply a sample-splitting

technique. One part of the data is used to estimate the model (estimation sample) and

another part serves to do model evaluation (validation sample). The optimal value M

is chosen such that it minimizes the empirical risk in the validation sample.

Furthermore, it is often desirable to make a base learner sufficiently weak (having low

complexity). A simple but effective solution to achieve this is via shrinkage toward

zero. Hence, the update in Step 3 of the algorithm is replaced by

νβ̂d̂m
Bd̂m

(·), 0 ≤ ν ≤ 1.

Obviously, this reduces the variance (a complexity measure) by the factor ν2. In our

empirical analysis, we take a learning rate ν = 0.25 which yields good results.

Finally, we would like to emphasize that our FGD-algorithm, although by nature the

same as the classical ones, possesses some additional peculiarities. More precisely, it

depends on a set of simulated future returns (and their empirical distribution) and it

must be connected to numerical integration or Monte Carlo methods to calculate the

expectation in each step of the optimization procedure. Thus an adequate specifica-

tion of the underlying return process and a correct evaluation of the expectation are

important in order to ensure the accuracy of the final pricing kernel estimate. These

features are not present in the generic FGD method and their necessity here makes

our approach particularly challenging.

1.4 Empirical analysis

1.4.1 Data

In our empirical analysis, we use S&P 500 index option data to derive an empirical

pricing kernel. The market for SPX options is one of the most active index options

markets in the world. Consequently, it has been the focus of many applications in the

empirical pricing kernel literature as for example in Jackwerth (2000), Aı̈t-Sahalia and

Lo (2000), Rosenberg and Engle (2002) and many others.

We consider closing prices of SPX European options from January 2005 to October

2010. Option data and all the other necessary data including interest rates and divi-

dend yields are downloaded from OptionMetrics. The averages of bid and ask prices
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Table 1.1: Summary of our option data sample used for pricing kernel estimation. The
dataset contains 70 cross-sections of SPX European options from 2005 to 2010 with ap-
proximately one month until expiration and is obtained after applying the filtering criteria
described in the text. We report mean and standard deviation for prices, implied volatilities
and number of observations per cross-section according to different moneyness categories.
Moneyness is the strike price divided by the spot price minus one, K/S − 1.

Moneyness # Obs. per CS Price ($) IV (%)
(K/S − 1) Mean Std. dev. Mean Std. dev. Mean Std. dev.

Less than -0.1 3.2 6.2 5.8 3.6 42.1 12.4
-0.1 to 0 22.4 4.9 10.7 9.9 21.7 9.7
0 to 0.1 20.9 4.1 8.7 10.5 17.0 10.1
More than 0.1 4.9 10.8 3.2 5.0 33.3 13.6
All 51.5 14.5 8.9 9.8 22.2 12.5

are taken as option prices and in order to retain only liquid options in our data sample,

we apply the following standard filtering criteria: We merely consider out-of-the money

put and call options and discard options with implied volatilities larger than 70%, av-

erage price lower than $0.05 or volume equal to 0. Finally, we exclude observations

that violate simple non-arbitrage bounds.

Like Rosenberg and Engle (2002), we have in mind to estimate a pricing kernel on

a monthly basis. Thus we extract for each month a cross-section of options with

approximately one month (20 trading days) until expiration. This procedure yields a

sample of 70 cross-sections with a total of 3500 option prices.

Table 1.1 describes some characteristics of the one-month option contracts that we use

for pricing kernel estimation. The mean number of options per cross-section is 51.1

with a standard deviation of 14.5. The majority of options have moneyness (defined

as K/S − 1) from −0.1 to 0.1. This particular moneyness range corresponds to the

default setting and coincides with the return domain usually taken into account in our

application when estimating an empirical pricing kernel. Outside of this domain, the

pricing kernel is equal to its estimated value at −0.1 or 0.1.8 However, it happens in

our sample period (especially during the recent financial crisis) that some considerable

mass of the future one-month return distribution lies outside the interval [−0.1, 0.1].

In such cases, we consider a larger return domain [−a, a] with a > 0.1 such that

it contains at least 95% of the future returns. Consequently, we also enlarge the

moneyness range in these situations and set it equal to the return domain. Thus we

observe cross-sections with options having moneyness outside ±10%, which is reported

in the table.

8This corresponds to the procedure suggested in Rosenberg and Engle (2002) using one month
option contracts covering the period 1991 to 1995.
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Figure 1.1: The figure shows daily log-returns of the S&P 500 index from January 4, 1980
until November 23, 2010 (top), the estimated conditional volatility σt using the AR-GJR-
GARCH model (middle) and the corresponding standardized innovations zt (bottom). We
fit the model using pseudo maximum likelihood based on a normal innovation density.

The mean option price is $8.9 and the price for puts seems to be somewhat higher

than the one for calls. Finally, the table also shows average implied volatilities that

exhibit the well-known volatility smile pattern.

1.4.2 Empirical results

A first step towards estimating an empirical pricing kernel is to fit the underlying re-

turn process. We use S&P 500 daily returns from January 4, 1980 until November 23,

2010 to estimate the AR-GJR-GARCH model introduced above using a pseudo max-

imum likelihood approach with a normal innovation density. Note that a sufficiently

long historical time series is important in order to ensure that the empirical innovation

density is accurately estimated. Figure 1.1 shows the S&P 500 daily log-returns, the

estimated volatility σt and the corresponding standardized innovations zt. Table 1.2
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Table 1.2: Panel A shows the parameter estimates obtained when fitting the AR-GJR-
GARCH model using a long historical time series of S&P 500 daily log-returns from January
4, 1980 until November 23, 2010. Panel B reports some characteristics of the standardized
innovations zt. The normality test p-values are obtained using the Anderson-Darling test
for normality and the Ljung-Box test with ten lagged values is applied to test for serial
correlation.

Panel A: Parameter estimates for AR-GJR-GARCH model

µ× 102 ω × 106 β α× 102 γ

Coefficient 2.40 1.74 0.92 1.87 0.11

Std. Error 1.38 0.23 0.01 0.43 0.01

Panel B: Properties of standardized innovations

Mean St. dev. Skewness
Excess Normality Serial correlation
Kurtosis test p-value test p-value

0.032 1 -0.47 3.50 < 0.001 0.46

summarizes the parameter estimates and provides some characteristics of the stan-

dardized empirical innovation density. This density incorporates skewness and excess

kurtosis and is highly non-normal.

With the fitted model in hand, we can make use of a filtered historical simulation ap-

proach (FHS) to obtain a set of simulated returns and apply a kernel density estimator

to get an estimate of the future one-month return density ft.

After that, we are able to estimate empirical pricing kernels. We use a rolling-window

procedure and always consider two consecutive cross-sections of options for our es-

timation. The first one is used to fit the model whereas the second one serves for

doing model evaluation and to choose the optimal complexity parameter M . All other

tuning parameters of our algorithm are fixed. We take cubic B-spline basis functions,

mesh = 11 (10 inner knots), a shrinkage factor ν = 0.25 and use n = 5000 mid-

points to calculate the integral. Finally, we employ a third cross-section to analyze the

predictive power.

The goal is to investigate pricing kernel estimates and to examine the pricing perfor-

mance of our approach in comparison with the parametric specifications suggested in

Rosenberg and Engle (2002). We believe that these are two fair competitors. The

power pricing kernel is quite simple but economically motivated. In addition, it is

used as a starting model and therefore helps to answer the question whether our FGD

algorithm can substantially improve the final estimate. As a second benchmark, we

consider the flexible Chebyshev pricing kernel specification. We allow up to 6 parame-
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Figure 1.2: The figure shows a selection of estimated pricing kernels using April/May
option data each year from 2005 to 2010. We apply the first option cross-section to fit the
model whereas the second one is used to do model evaluation and to determine the optimal
model complexity. The left part shows results for the B-spline FGD approach and the right
part for the Chebyshev model.

ters and determine the optimal complexity using the same sample-splitting technique

as in our FGD procedure.

Estimated pricing kernels

Let us start with an inspection of the pricing kernel shape. Figure 1.2 shows a selection

of empirical pricing kernels obtained with our FGD methodology as well as with the

Chebyshev model. Although we depart from an overall decreasing power pricing kernel

in our FGD algorithm, we observe final estimates that contain increasing parts. This

feature is present in estimates found with the Chebyshev method too. It is known

as the pricing kernel puzzle and has been noticed several times before (see Jackwerth

(2000) and Rosenberg and Engle (2002) among others). The increasing component is

usually located in the area of zero return and resembles a bump. However, we also
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Figure 1.3: The figure shows a series of four consecutively estimated pricing kernels starting
with June/July option data from 2006. We apply a rolling-window procedure and always con-
sider two consecutive cross-sections for estimation. The first is used to fit the model whereas
the second one serves as a validation sample to determine the optimal model complexity.
Left: Spline FGD approach. Right: Chebyshev specification.

get fitted kernels that are rather consistent with another finding recently described in

the literature claiming that the pricing kernel looks U-shaped (see for example Bakshi

et al. (2010) and Christoffersen et al. (2013)).

An additional point visible in Figure 1.2 is the time-varying pattern of the fitted

kernels, reflecting time variation in the pricing kernel state variables. We further

investigate this point via Figure 1.3. There we show a series of consecutively estimated

pricing kernels, and regardless of the chosen method, we again find time-dependent

estimates. Obviously, the observed differences are smaller compared to Figure 1.2

given the higher time frequency.

Furthermore, it might be interesting to see how sensitive these fitted kernels are with

respect to the number of inner knots used in our algorithm and their placement. In a

small robustness check, we decided to compare three different numbers of break points

(i.e. mesh ∈ {7, 11, 15}) and two distinct placement strategies to determine their

position. The corresponding results are illustrated in Figure 1.4. The left plots show

estimates obtained when taking empirical quantiles of the simulated returns as break

points whereas we considered equally spaced inner knots to get the figures on the right.

Obviously, the pricing kernel shape is more flexible when the number of inner knots is

large. Comparing the knot placement strategies, we find somewhat narrower kernels

with a higher peak when considering empirical quantiles as break points.

In another robustness check, we look at the sensitivity of the estimated pricing ker-

nels with respect to specification of the underlying return process. Besides the GJR-
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Figure 1.4: Results of a small robustness check concerning the number of inner knots used
in our algorithm and their placement. The left plots are obtained using empirical quantiles
of the simulated returns as break points whereas in the right figures we considered equally
spaced inner knots. The figures show fitted kernels using June/July option data from 2006
(top) and April/May option data from 2007 (bottom).

GARCH model introduced above, we also consider the standard GARCH specification

without asymmetry term and the EGARCH model (Nelson (1991)). Results for the

EGARCH model are qualitatively similar to those shown for the GJR-GARCH and

therefore for the sake of brevity not reported. A comparison of the resulting pricing

kernels is illustrated in Figure 1.5. The overall shape is the same in both cases. How-

ever, the estimated kernels obtained with the symmetric GARCH model are somewhat

bumpier and we observe some differences mainly for large absolute return values.

Pricing performance

Next, we would like to see whether our flexible FGD algorithm based on splines

yields better pricing results in comparison with the chosen benchmarks. We take

the 70 cross-sections of one-month option contracts from 2005 until 2010 and apply
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Figure 1.5: Robustness check to explore the sensitivity of the fitted kernels with respect to
the specification of the underlying return process. The plots show estimated pricing kernels
using June/July option data from 2006 (left) and April/May option data from 2007 (right).

the rolling-window estimation procedure that has been described above. The corre-

sponding results are summarized in Table 1.3.

Table 1.3: Performance results of the different estimation methods using 70 cross-sections
of one-month SPX option contracts from 2005 until 2010. We present in-sample (IS) and
out-of-sample (OS) errors considering the root mean squared error loss function for implied
volatilities (IV RMSE) and prices (Price RMSE). Averages are taken over the 68 observations
obtained by applying the rolling-window procedure explained in the text. The table also
contains the average optimal stopping value M̂ in our FGD algorithm and the average
number of parameters for the different estimation methods. Panel A reports the results
using the GJR-GARCH model to describe the underlying return process, whereas Panel B
indicates the outcomes of a robustness check in which we take a classical GARCH model
without asymmetry term.

Model M̂opt # par Averaged IS- Averaged OS-
IV RMSE Price RMSE IV RMSE Price RMSE
Panel A: AR-GJR-GARCH model

Power kernel 2 2.14 1.96 2.75 2.59
Spline FGD 60.82 123.64 1.52 1.24 2.64 2.37
Chebyshev kernel 3.89 1.55 1.28 2.74 2.47

Panel B: AR-GARCH model
Power kernel 2 3.04 2.85 3.72 3.58
Spline FGD 81.15 164.30 1.96 1.61 3.48 3.23
Chebyshev kernel 4.18 2.00 1.69 3.68 3.38

We present in-sample and out-of-sample pricing errors using the root mean squared

error loss function for implied volatilities (IV RMSE) and prices (Price RMSE). Our

new estimation methodology consistently outperforms both competitors. In particular,

we observe predictive gains over the power pricing kernel specification and the Cheby-

shev model that range from 4% to 9%, depending on the performance measure. In

a robustness test, we consider again the classical GARCH model without asymmetry
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Figure 1.6: The plots show relative forecasting gains of our new method over the power
pricing kernel specification (left) and the Chebyshev model (right) using the IV RMSE loss.
The upper part of the figure contains the time-series of such gains whereas the lower part
plots these gains versus the observed loss.

term. Interestingly, our novel method still performs best and consistently outperforms

the chosen benchmarks. However, the observed losses are higher than in the setting

with a GJR-GARCH model. Hence, we conclude that the presence of the asymmetry

term is necessary in order to improve the pricing accuracy of the method.

We provide further insights into the pricing performance by means of Figure 1.6. The

plots show relative forecasting gains of our new method over the power pricing kernel

specification and the Chebyshev model using the IV RMSE loss. The upper part of

the figure contains the time-series of such gains whereas the lower part plots these

gains versus the observed loss. Again, the better forecasting accuracy of the Spline

FGD approach is evident. Note that qualitatively equivalent results could be plotted

by taking the other performance measure too.

Finally, there is the issue of whether these gains are statistically relevant. To ex-

plore this, we implement some Diebold and Mariano (1995) type tests to measure the

superior predictive ability. We consider a t-type test comparing the observed losses
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Table 1.4: The table shows results of Diebold and Mariano (1995) type tests to measure
the superior predictive ability of our approach over the chosen benchmarks. We consider
a t-type test comparing the observed losses (IVRMSE and Price RMSE) of the different
models and a sign-type test based on a series of Bernoulli random variables indicating the
model with the better forecasting performance. Positive values of the sign-type statistic and
negative values of the t-type statistic are in favor of the Spline FGD approach. p-values are
reported in parentheses with *, **, *** denoting significance at the 10%, 5% and 1% level,
respectively.

Model IVRMSE Price RMSE
t-type sign-type t-type sign-type

Power vs. FGD -1.280 6.478 -2.217 4.263
(0.100) (≈ 0***) (0.013**) (≈ 0***)

Chebyshev vs. FGD -1.622 5.297 -1.283 2.695
(0.052*) (≈ 0***) (0.100*) (0.004***)

Power vs. Chebyshev -0.059 3.325 -1.069 2.566
(0.477) (≈ 0***) (0.142) (0.005***)

(IVRMSE and Price RMSE) of the different models and a sign-type test based on a

series of Bernoulli random variables indicating the model with the better forecasting

performance. The corresponding outcomes are summarized in Table 1.4. Positive val-

ues of the sign-type statistic and negative values of the t-type statistic are in favor

of our Spline FGD approach. Table 1.4 confirms the higher predictive ability of our

method in comparison with the chosen benchmarks. One might critically argue that

the superior performance of the FGD approach in comparison to the method with a

Chebyshev kernel is due to the relative performance of the power and Chebyshev ker-

nels and not a consequence of the FGD method. In order to disprove this assumption,

we also compare these two benchmarks in Table 1.4. In particular for the sign-type

test, we find strong evidence for the superiority of the Chebyshev kernel over the power

kernel specification. Hence, it is an interesting result that our Spline FGD approach

with a power kernel as starting model performs significantly better than the method

with a flexible Chebyshev kernel specification.

1.5 Conclusion

In this study, we proposed the use of a customized functional gradient descent (FGD)

algorithm based on B-splines to estimate the empirical pricing kernel. Our model

is flexible and computationally feasible, although it involves many parameters. The

estimation properties of our methodology are illustrated empirically using S&P 500

index option data. We show that the algorithm yields accurate estimates and we also
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provide evidence of the superior predictive ability of our method in comparison with

the parametric specifications suggested in Rosenberg and Engle (2002).

Having accurate pricing kernel forecasts is interesting from an economic point of view.

They contain useful information regarding the investors’ future beliefs and risk behav-

ior and one can try to use them to improve option valuation or the performance of

option trading/hedging strategies.

Our modeling and computational framework could also be extended in order to fit the

complete pricing kernel surface. In this case, a bivariate B-spline basis (i.e. a product

of two univariate B-spline basis functions) should be considered. One univariate B-

spline basis would be a function of future returns as in our algorithm whereas the other

B-spline basis function would depend on the time to maturity, representing the second

dimension. Moreover, this generalization may be extended further in a straightforward

way to allow the dynamics of the pricing kernel to depend on some additional relevant

(endogenous or exogenous) explanatory factors, similarly to what has been done in

Audrino and Colangelo (2010).

Surprisingly, the surface modeling perspective has only been considered in the most

recent literature. In fact, it is quite common in most approaches to estimate the

pricing kernel for each time to maturity separately (so-called slice by slice). Some

exceptions to be mentioned are the studies by Giacomini and Härdle (2008) and Fengler

and Hin (2014) that consider a two-dimensional modeling approach for the pricing

kernel. Given the high estimation and forecasting accuracy shown by the proposed

methodology, its extension in a multivariate setting will be the focus of future research.
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Chapter 2

Modeling the pricing kernel surface

dynamics with a boosting approach

based on regression trees

Pirmin Meier
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Abstract

The pricing kernel is a key component of any asset pricing model.

It represent the link between the physical and risk-neutral density

and contains information regarding investor preferences. Important

empirical studies show that the option-implied empirical pricing kernel is

time-varying, which reflects changes in the relevant pricing kernel state

variables. However, little is known about these factors driving the pricing

kernel over time. In this paper, we introduce a time series model for

the evolution of the empirical pricing kernel surface. More specifically,

building on some initial estimates of this dynamic surface, we propose

a boosting approach based on regression trees. Given that trees have

the ability to choose among a set of predictors the most relevant ones,

we develop a tool to answer our main question regarding the principal

pricing kernel driving factors. In our empirical analysis, we illustrate the

method with European options and return values of the S&P 500 index.

Keywords: Pricing kernel dynamics, driving factors, boosting, regression

trees, options.
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2.1 Introduction

An equation of fundamental importance in asset pricing states that the price of an

asset equals the pricing kernel weighted payoff. Hence, the pricing kernel (also called

stochastic discount factor) is a key component of any asset pricing model, and it further

contains important information regarding investor risk preferences.

Over the years, starting with Jackwerth (2000), Aı̈t-Sahalia and Lo (2000) and Rosen-

berg and Engle (2002), many approaches have been developed to infer this kernel from

observed asset prices, in particular options. It is a common finding that the resulting

function estimate, referred to as empirical pricing kernel, has a non-monotone shape.

More specifically, the option-implied pricing kernel features usually either a U-shape

or a hump-shape, which is both not conform to classical finance models, where one

would expect to find a fitted pricing kernel that is a decreasing function of aggregate

resources.

This empirical phenomena is known as “pricing kernel puzzle” (a term ascribed to

Brown and Jackwerth (2012) and originally introduced in an earlier version of the

paper circulating in 2000). It has evoked a number of research papers trying to solve

the puzzle. As mentioned in Barone-Adesi et al. (2014), there are up to date at least

half a dozen different explanations. These include: heterogeneous beliefs of agents

about the physical return distribution; misspecification of the underlying state space

(for example by neglecting to condition on market volatility); preference issues such as

ambiguity aversion and rank-dependent utility; and incomplete markets. In addition,

the puzzle might be just a statistical artefact, meaning that the monotonicity cannot

be rejected when tested statistically. And finally, the pricing kernel puzzle may be

simply a consequence of how the conditional physical return density is modeled (see

Linn et al. (2014)).

Although there does not seem to exist a consensus regarding the solution of the puz-

zle, it is commonly accepted that the pricing kernel is time-varying, reflecting changes

in the relevant pricing kernel state variables (see for example Rosenberg and Engle

(2002)). However, surprisingly few attempts have been made in the recent past to

model and understand the observed dynamics. Some exceptions to be mentioned are

the studies by Grith et al. (2013a), Polkovnichenko and Zhao (2013), Metaxoglou and

Smith (2014) and Barone-Adesi et al. (2014). However, despite these recent advance-

ments, little is still known about the relevant pricing kernel driving factors.
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Therefore, we develop in this paper a time series model for the option-implied empirical

pricing kernel that allows understanding its variation over time. Contrary to most

techniques that model the pricing kernel for each time to maturity separately (so-

called slice by slice), we adopt a surface modeling approach. More precisely, we first

derive initial estimates of the pricing kernel surface (using separate estimates for both

the risk-neutral and historical density surface of the underlying asset return at expiry)

and then model the observed time-varying surface with a boosting approach based

on regression trees. The aim of boosting procedures, which are very popular in the

area of computational statistics and machine learning, is to combine a series of weak

learners in order to obtain a powerful model at the end. Recently, boosting approaches

have already been successfully applied to financial function estimation. In particular,

Audrino and Colangelo (2010) have shown that boosting based on regression trees can

be used to model the dynamics of the implied volatility surface. Taking trees as base

learner is particularly helpful in our context, given that they automatically select the

most relevant predictors among a set of possible candidates. Therefore, we obtain a

suitable tool to answer our main question regarding the principal driving factors of

the pricing kernel dynamics. In addition, trees model nonlinearity in a parsimonious

and interpretable way, which is an advantage over other variable selection techniques.

In our empirical analysis, we illustrate the model with European options and return

values of the S&P 500 index and show that our modeling approach can capture the

various shapes of the option-implied pricing kernel observed during the sample period,

covering January 2002 to December 2010. Further, we provide evidence that the

observed dynamics can indeed be explained with variables related to the state of the

economy, which is in line with findings presented in Rosenberg and Engle (2002),

Grith et al. (2013a) and Metaxoglou and Smith (2014), for example. However, with

our modeling approach we are able to quantify the impact of all possible driving

factors building on the relative influence measure introduced in Friedman (2001). We

find that the relative influence of the single predictors substantially varies over time

and we provide some additional insights on how they affect the pricing kernel shape.

Finally, we also investigate the predictive performance of our model and provide some

evidence that the forecasts are reasonable. However, it is difficult to beat the random

walk forecast.

The paper is organized as follows. Section 2.2 reviews the role of the pricing kernel

in option pricing. Section 2.3 presents the estimation technique used to infer the

option-implied empirical pricing kernel surface. Section 2.4 introduces our time series
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modeling approach based on a boosting algorithm with regression trees. Section 2.5

presents the empirical results and Section 2.6 concludes the paper.

2.2 The role of the pricing kernel in option pricing

We consider a financial market and assume that a riskless bond with constant interest

rate r > 0 and a risky stock with price process {St}t≥0 (defined on some probability

space (Ω,F ,P)) are traded. By the fundamental theorem of asset pricing, the as-

sumption of non-arbitrage implies the existence of a risk-neutral probability measure

Q equivalent to P under which the discounted stock price process is a martingale (see

Delbean and Schachermeyer (1994)). Therefore, we can calculate the price Ct at time

t of an European call option with underlying S, strike K and time-to-maturity τ using

the risk-neutral valuation principle, i.e.,

Ct = e−rτEQ[Ψ(ST )|Ft] = e−rτ

∫ ∞

0

Ψ(ST )qt,T (ST )dST , (2.1)

where Ψ(ST ) = max(ST −K, 0) is the option payoff at expiry T and qt,T denotes the

conditional risk-neutral probability density of the underlying at time T .

This risk-neutral pricing density is often also referred to as state price density since it

represents the continuous-state counterpart of the so-called Arrow-Debreu securities.

It inherently differs from the historical density of the underlying price process as it does

not only contain information about the market participants’ expectations regarding the

evolution of the underlying price process, but also depends on their perceptions of risk

and ambiguity.

Alternatively, the option price can be equivalently expressed using the probability

density pt,T of ST under the historical measure P. We have

Ct = EP[Ψ(ST )|Ft] =

∫ ∞

0

Ψ(ST )Mt,T (ST )pt,T (ST )dST (2.2)

with Mt,T denoting the pricing kernel or stochastic discount factor (SDF). Strictly

speaking, Mt,T represents a projected version of a general SDF, which may depend

on multiple state variables. Since there is considerable debate among researchers

about the relevant pricing kernel state variables, it is quite common to consider the

projectionMt,T (ST ) or equivalently the projection onto returnsMt,T (ST/St). Although

this projected pricing kernel is not necessarily identical to the original one, it has
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exactly the same pricing implications for assets with payoffs depending on ST such

as European put and call options considered in this paper (see Cochrane (2005) for a

discussion).

Combining equations (2.1) and (2.2), we can obtain the following relationship:

Mt,T (ST ) = e−rτ qt,T (ST )

pt,T (ST )
. (2.3)

Hence, the pricing kernel is equal to the discounted ratio of the risk-neutral and the

physical probability density and therefore characterizes the change of measure between

P and Q.

Building on this important result, several approaches have been developed to derive

empirical pricing kernels using separate estimates of pt,T and qt,T . It is a common

finding that the resulting kernel is time-varying, which reflects variation in the rele-

vant state variables. The principal goal of this paper is to understand the economic

content and to build a model for this time-variation. In addition, we consider a surface

modeling perspective and describe the complete pricing kernel surface as a function of

both future return and time-to-maturity.

2.3 Initial pricing kernel surface estimation

In the next section, we will show how to model the time-varying empirical pricing

kernel surface with a flexible boosting approach. For this purpose, we need initial

estimates of this dynamic surface. As is common practice in the literature, we recover

empirical kernels building on a so-called indirect estimation approach, i.e. using sepa-

rate estimates of the risk-neutral and historical density of the future underlying asset

return (see equation (2.3)). The following two subsections contain a description of how

we estimate both of these density surfaces.

2.3.1 Risk-neutral density surface estimation

To estimate the option-implied risk-neutral density, one can build on the famous result

originally presented in Breeden and Litzenberger (1978). It states that the discounted

risk-neutral probability density of the underlying asset at expiry is equal to the second

derivative of the European call price function with respect to the strike.
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However, fitting the price curve or surface directly is numerically challenging as ex-

plained for instance in Brunner and Hafner (2003). Consequently, it is quite common

to transform option prices using the famous Black-Scholes formula in order to get

the corresponding implied volatilities. Interpolation and smoothing is then performed

in this implied volatility space, which has desirable statistical properties. After all,

the resulting continuous implied volatility function is mapped back to the original

price space where one can rely on numerical differentiation techniques to derive the

risk-neutral density.1

In our application, we employ the stochastic volatility inspired (SVI) model introduced

in Gatheral (2004) to describe the implied volatility smile. Although being a para-

metric model, it is rather flexible and particularly popular among practitioners. It

depends on five parameters θ = (a, b, ρ,m, σ) and describes the total implied variance

ω(k; θ) for a fixed time to maturity τ as a function of log-moneyness k. We have

ω(k; θ) = a+ b
[

ρ(k −m) +
√

(k −m)2 + σ2
]

,

with a ∈ R, b ≥ 0, |ρ| < 1, m ∈ R, σ > 0 and the obvious condition a+bσ
√

1− ρ2 ≥ 0

to ensure that ω(k; θ) ≥ 0 for all k ∈ R.

The model parameters have the following impact on the total variance function: a

determines the general level of total variance, b gives the angle between the left and

right asymptotes, increasing ρ induces a counter-clockwise rotation of the smile, σ

describes the at-the-money curvature and changingm translates the smile horizontally.

For an illustration we refer to Figure 2.1.

An interesting property of the SVI parametrization is its consistency with arbitrage

bounds for extreme strikes. More precisely, for a fixed time to expiry τ , the implied

Black-Scholes variance σ2
BS(k) = ω(k)/τ is linear in the log-moneyness k as |k| → ∞

which is consistent with Roger Lee’s moment formula (see Lee (2004)).

Our application requires not only single density slices but the whole surface. Thus

we rely on the results recently presented in Gatheral and Jacquier (2014). In this

paper, they show how to extend the SVI model to get an implied volatility surface free

of static arbitrage. Following the ideas mentioned therein, we fit the SVI model for

each maturity slice using observed market option prices and thereby ensure that no

1Note that it is not necessary to assume that the Black and Scholes (1973) model correctly specifies
the underlying asset dynamics. It simply serves as computational device to transform data into a
measurement space more conductive to apply curve-fitting techniques.
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Figure 2.1: Illustration of how the SVI model parameters affect the total variance function.

butterfly arbitrage exists (i.e. the resulting density is positive). In addition, one can

avoid calendar spread arbitrage by introducing a big penalty in the objective function

if there are crossed lines in the total variance plot.2

After having obtained the SVI parametrization for a discrete set of expiries, we apply

the interpolation algorithm suggested in Gatheral and Jacquier (2014). More precisely,

given two total variance functions ω(k, τ1) and ω(k, τ2) with τ1 < τ2, we use the Black-

Scholes formula to calculate undiscounted call prices Ci = C(Fi, Ki, τi) with strike

price Ki = Fie
k and forward Fi (i = 1, 2). The price Cτ = C(Fτ , Kτ , τ) of a call with

maturity τ1 < τ < τ2 and strike Kτ = Fτe
k is then defined through the equation

Cτ

Kτ

= ατ
C1

K1

+ (1− ατ )
C2

K2

with

ατ =

√

θτ2 −
√
θτ

√

θτ2 −
√

θτ1
∈ [0, 1]

and where θτ represents any monotonic interpolation of the at-the-money implied total

variance ω(0, τ). Gatheral and Jacquier (2014) show that the resulting call respectively

implied volatility surface is arbitrage-free if both smiles ω(k, τ1) and ω(k, τ2) are free

of butterfly arbitrage and ω(k, τ2) ≥ ω(k, τ1) for all k ∈ R.

The question remains how to extrapolate the surface beyond the range of observed

maturities 0 < τ1 < · · · < τn with n ≥ 1. For expiries τ < τ1, one may interpolate

with the procedure described above and using the fact that for τ = 0 the value of

2Note that a volatility surface is free of calendar spread arbitrage if and only if ∂τω(k, τ) ≥ 0 for
all k ∈ R and τ > 0.
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Figure 2.2: The figure illustrates the SVI model fit using option data on July 9, 2003. The
left panel shows the total variance functions for all available maturities and the right panel
presents the corresponding risk-neutral densities. Densities with dashed lines are obtained
using the interpolation algorithm mentioned in the text.

a call is just its intrinsic value. For extrapolation beyond τn, Gatheral and Jacquier

(2014) suggest to use a monotonic increasing extrapolation of θτ (asymptotically linear

in time seems to be reasonable) and then to define for τ > τn

ω(k, τ) = ω(k, τn) + θτ − θτn .

We provide an illustration of this estimation procedure in Figure 2.2. The left panel

shows the fit of the total variance function for all option maturities available on the

arbitrarily selected day July 9, 2003. The right panel presents the risk-neutral den-

sities obtained using the estimated SVI parameters and the interpolation algorithm

mentioned above. According to our experience does this approach yield very reason-

able risk-neutral density surface estimates. Only when performing the extrapolation

for expiries below τ1, we had some problems to obtain accurate and smooth densities.

For this reason, we will not consider this extrapolation in our empirical application.

For robustness purposes and to further check the accuracy, we compared the estimated

density surfaces with those obtained using the semi-nonparametric estimator of the

call-option price surface presented in Fengler and Hin (2014), which takes into account

strike and time-to-expiry no-arbitrage constraints. We usually get very similar results.

However, we sometimes find bimodal shapes (in particular for larger maturities) when

using the call price surface estimator of Fengler and Hin (2014). As stated in Fengler

and Hin (2014), bimodality is possibly an artefact from the sparse data distribution.

Therefore, we prefer the SVI approach and will use it in the empirical application later
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on.

2.3.2 Historical density surface estimation

The historical density p is typically estimated using past return observations of the

underlying index. For example, Grith et al. (2013a) employ a nonparametric ker-

nel density estimator similar to Aı̈t-Sahalia and Lo (2000) based on historical return

realizations. Alternatively, it is also popular to make additional modeling assump-

tions regarding the evolution of the underlying stock price process and then to use a

simulation-based approach to recover an estimate of p.

Similar to Polkovnichenko and Zhao (2013), Barone-Adesi et al. (2014) and others, we

favor the latter approach and thus model the daily log-returns of the underlying S&P

500 index with an asymmetric GJR-GARCH (Glosten et al. (1993)).3 It is

rt = ln(St/St−1) = µ+ ǫt, ǫt ∼ h(0, σ2
t ) (2.4)

and

σ2
t = ω + βσ2

t−1 + αǫ2t−1 + γmax(0,−ǫt−1)
2. (2.5)

This model specification captures the most important stylized facts of financial re-

turn series. That is, the conditional volatility is stochastic and mean-reverting and

when γ > 0 the model also accounts for the leverage effect.4 The empirical innovation

density h is separated into a time-varying component σt and the time-invariant distri-

bution of standardized innovations zt = ǫt/σt. This standardized innovation density

incorporates skewness and excess kurtosis and other extreme return behaviors which

are not captured in a normal density.

To estimate the model parameters, we apply a pseudo maximum likelihood approach

under the assumption of normal innovations. Bollerslev and Wooldridge (1992) show

that this technique yields consistent parameter estimates even if the true innovation

distribution is not normal.

Using the estimated model parameters, the conditional variance and the standardized

3Rosenberg and Engle (2002) fit a number of GARCH models to daily S&P 500 index returns
and find that the GJR-GARCH model describes the data best. Since then, this model or similar
asymmetric GARCH specifications have been widely used in the empirical pricing kernel literature
to model the underlying return process.

4The term leverage effect was introduced by Black (1976) and is used to describe the asymmetric
reaction of volatility in response to good and bad news (excess returns).
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innovations, we can simulate return paths. For a given time point t such a path is

obtained by randomly selecting an estimated standardized innovation z[1], updating the

conditional variance σ2
t+1, drawing a second innovation z[2], updating the conditional

variance σ2
t+2, and continuing up to the desired time horizon. Repeating this procedure

a sufficient number of times, we obtain a set of simulated returns and apply a kernel

density estimator to get an estimate of the future return density p. This method, first

introduced in Barone-Adesi et al. (1998) to compute portfolio risk measures, is now

widely used and generally called filtered historical simulation (FHS) in the financial

econometrics literature (see, for example, Barone-Adesi et al. (2008)).

2.4 Modeling the time-varying pricing kernel sur-

face

In this section, we introduce our approach to model the time-varying pricing kernel

surface. We start with the model formulation and then show how to estimate it in a

second part. Finally, we present the exogenous factors used to explain the dynamics

of the modeled surface.

2.4.1 Model formulation

Our goal is to describe the time-series of the projected pricing kernel surface Mt(r, τ)

which is a function of both future gross return r and time-to-maturity τ . For this

purpose, we consider the following model:

Mt(r, τ) = K(r, τ,Φt−1) + ǫ(r, τ), (2.6)

where K(·) represents a flexible functional specification able to capture the shapes

of the observed surfaces and ǫt is an error term. We make the assumption that the

surface dynamics can be explained using a set of time-dependent exogenous factors

Φt−1. Time-lagged factors are used since we also have in mind to investigate the

predictive performance of the fitted kernels in our empirical application.

Note that this model formulation should be considered as an approximation because,

strictly speaking, there is no realization of the pricing kernel surface available. How-

ever, we can use the estimates of this surface introduced in the previous section similar
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to what has been done in Grith et al. (2013a).5

Our model (2.6) with possibly many explanatory variables will be estimated using a

classical boosting algorithm. Thus, we restrict the function K(·) to be an additive

expansion of the form

K(r, τ,Φt−1) = K0(r, τ) +
J
∑

j=1

Bj(r, τ,Φt−1),

where K0 denotes an appropriate starting model (assumed to be time-invariant and

further explained in the next section) and each Bj represents a pre-specified statistical

procedure also known as base learner in the machine-learning literature. Common

examples of such base learners are regression trees or splines. However, one has to

ensure that the chosen base learner is “weak” (i.e. it does not involve a too large

number of parameters to be estimated) in order to avoid an immediate overfit within

the first iterations of the algorithm.

In this study, we take simple regression trees as base learners. A regression tree creates

a binary partition of the predictor space using a sequence of logical if/then conditions

and then models the dependent variable in each partition cell with a constant. Hence

we get

Bj(r, τ,Φt−1) =
L
∑

l=1

a
(l)
j I[

Ψt∈R
(l)
j

], Ψt = {r, τ,Φt−1}

with L denoting the number of end nodes and R(l)
j the partition cells of the regression

trees and where a
(l)
j design some constant location parameters.

Since the influential work of Breiman et al. (1984), trees became very popular in com-

putational statistics and in the machine-learning community mainly because of their

simplicity and interpretability. A feature particularly appealing for our application

is the trees ability to choose the most relevant predictors among a set of candidates.

Therefore, we will be able to answer our main question regarding the driving factors

of the pricing kernel surface. Additionally, trees model nonlinearity in a parsimonious

and interpretable way, which is an advantage over other variable selection techniques.

5Or expressed differently, we model the empirical pricing kernel which serves as an approximation
for the true stochastic discount factor.
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2.4.2 Model estimation

We estimate the model with a classical boosting algorithm, which aims at combining

weak predictors in order to obtain a powerful model at the end. Thereby we exploit the

functional gradient descent (FGD) representation of boosting as described in Friedman

(2001).6 More specifically, we apply the FGD technique with a squared error loss

function which yields a simple boosting approach typically referred to as L2-boosting.

The idea behind L2-boosting is rather intuitive. Having estimated an appropriate

starting model, the algorithm performs a stage-wise residual fitting using the base

learners (simple regression trees in our case). Recently, Audrino and Colangelo (2010)

have successfully applied boosting based on regression trees to model the dynamics

of the implied volatility surface. In addition, nice asymptotical properties have been

shown for L2-boosting and we refer to Bühlmann and van de Geer (2011) and references

therein for a more detailed discussion.

For a formal description of the algorithm, let us consider time-varying estimates of

the pricing kernel surface obtained using the methods given in Section 2.3. We write

(rti, τti,mti) to denote the return, time-to-maturity and pricing kernel observations at

day t with t ∈ {1, . . . , T} and i ∈ {1, . . . , N}. Hence we assume a constant number

of daily observations N . In addition, we suppose to have a time-series of exogenous

factors Φt.

In a first step, we fit the starting model K0. Choosing K0 appropriately is important

and it must obey two restrictions. On the one hand, it should be not too complex in

order to avoid an immediate overfit. On the other hand, it must be reasonable since the

boosting algorithm is going to improve it locally using regression trees as base learners.

As in Chapter 1 we use a power pricing kernel parametrization for K0 conform with a

neoclassical framework featuring constant relative risk aversion (CRRA), i.e.

K0(r, τ) = θ0r
−θ1 , (2.7)

where θ0 is a discount factor measuring the degree of impatience and θ1 designs the

coefficient of relative risk aversion.

Our starting kernel is time-invariant and thus may be best interpreted as an “average”

pricing kernel over time. The time-variability will be taken into account in the second

step using the regression trees. Moreover, we assume K0 to be constant for different

6For a short introduction to FGD we refer the reader to the appendix.
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maturities. Obviously, this is a simplification. But again, such differences (if existent)

will be modeled in the second step of the algorithm.

To obtain estimates of θ0 and θ1, we consider the logarithmic version of equation (2.7)

log(K0(r, τ)) = log(θ0)− θ1 log(r)

and thus regress the logarithm of the empirical pricing kernel log(mti) on a constant

and the log-return log(rti). The fitted intercept and slope parameters can then be

employed to get estimates θ̂0 and θ̂1.

In a second step of the algorithm, we perform a stage-wise residual fitting using simple

regression trees. The set of predictors thereby includes r, τ and the exogenous factors

Φ. Hence we are able to capture arbitrary shapes and also time-variability by means

of the time-dependent exogenous factors.

The estimation procedure as described previously can be summarized in the following

algorithm:

L2-boosting with tree learners

Step 1 (initialization). Estimate the initial pricing kernel K̂0 using the realizations

(rti, τti,mti) for t ∈ {1, . . . , T} and i ∈ {1, . . . , N}. Set j = 1.

Step 2 (residual fitting). Compute the residuals

uti = mti − K̂j−1(rti, τti,Φt−1), t ∈ {1, . . . , T}, i ∈ {1, . . . , N}.

Then, fit the regression tree Bj to the current residuals by least squares, i.e. determine

the best partition R̂(l)
j and the best coefficients â

(l)
j (for 1 ≤ l ≤ L) in order to get B̂j.

Update the current pricing kernel estimate

K̂j(r, τ,Φt−1) = K̂j−1(r, τ,Φt−1) + B̂j(r, τ,Φt−1).

Step 3 (iteration). Increase j by one and iterate step 2 until j = J . This produces the

estimate

M̂t(r, τ) = K̂(r, τ,Φt−1) = K̂0(r, τ) +
J
∑

j=1

B̂j(r, τ,Φt−1).

The number of iterations J is a complexity parameter of the estimator. It must

be carefully selected to avoid overfitting. Typically, it is estimated by minimizing
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approximations of the expected prediction error. In our empirical application, we will

use standard cross-validation to determine an optimal value for J .

In addition, it is often desirable to make a base learner sufficiently weak (having low

complexity). A simple but effective solution to achieve this is via shrinkage toward

zero. Hence, the update in Step 2 of the algorithm is replaced by

νB̂j(r, τ,Φt−1), 0 ≤ ν ≤ 1,

which reduces the variance (a complexity measure) of the base learner by the factor

ν2.

2.4.3 Pricing kernel driving factor candidates

Principally, one could include an arbitrary and even big number of possible pricing

kernel driving factors, since our boosting algorithm based on trees has the ability to

automatically select the most relevant ones. Given previous empirical evidence, see for

example Rosenberg and Engle (2002), Grith et al. (2013a) and Metaxoglou and Smith

(2014), we will try to relate the shape of the pricing kernel to measures of volatility,

financial and macroeconomic variables, sentiment indicators and past returns of the

underlying S&P 500 index. Specifically, we include in the pool of possible explanatory

variables Φ the following measures:

Volatility: Following the arguments in Chabi-Yo (2012) and Christoffersen et al.

(2013), volatility is a particularly relevant pricing kernel state variable. Thus, we take

the CBOE Volatility Index (VIX) as a proxy and use it as a potential pricing kernel

driving factor in our study.

Financial and macroeconomic variables: Similar to Rosenberg and Engle (2002)

and Grith et al. (2013a), we include several variables known to be related to the state

of the economy: the level of the short-term interest rate (ShortRate) using Federal

Reserve’s tree-month constant maturity Treasury yield; the credit spread (CredSpread)

defined as the difference between Moody’s long-term Baa corporate bond yield and

the Federal Reserve’s 30-year constant maturity Treasury yield; the yield curve slope

(YCSlope) referring to the 30-year constant maturity Treasury yield minus the short-

term interest rate; and the logarithm of the S&P 500 index as a proxy for consumption.

Furthermore, we use the seasonally adjusted Consumer Price Index (CPI) for all urban

consumers and the unemployment rate (UNEMPL) and then compute year-on-year log
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differences to construct a measure for inflation and the unemployment growth rate,

respectively.

Sentiment factors: According to Shefrin (2008), the logarithm of the pricing kernel

can be decomposed into a sum of a fundamental component and a behavioral com-

ponent, which reflects investor sentiment. Consequently, we also employ sentiment

factors to explain the pricing kernel dynamics. We consider three different measures:

the Baker-Wurgler sentiment index (BWSent), the Yale/Shiller crash confidence index

(CrashConfInd) and the Michigan Consumer Confidence Index (CSent).

Past returns: Finally, we add S&P 500 log-returns over different time horizons (one

month (M1Ret), half a year (M6Ret), one year (Y1Ret) and two years (Y2Ret)) as

possible explanatory variables in our algorithm.

Figure 2.3 shows the weekly time series of our explanatory variables Φ, covering the

period January 2002 to December 2010. We take observations each Wednesday and

consider an adjacent day when no data is available. Some variables like the sentiment

factors, CPI and UNEMPL are only monthly updated. In this case, we assume the

series to be constant within one month, i.e. no interpolation is performed. We find

a significant variation over time for all variables. Based on this time-variation, our

boosting approach with trees will determine different regimes, which allows modeling

the pricing kernel dynamics.

2.5 Empirical analysis

In this section, we present the outcomes of our empirical analysis. We start by in-

troducing the S&P 500 option data used to infer the conditional risk-neutral density

surfaces. In a second step, we show estimates of the empirical pricing kernel surface

obtained with the estimation procedure presented in Section 2.3. The principal results

of this study are then contained in Section 2.5.3. There, we illustrate our dynamic

model for the pricing kernel, determine the main driving factors and show their impact

on the pricing kernel shape. Finally, we close this section with a short investigation

regarding the predictive performance of our model.
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Figure 2.3: The figure shows the weekly time series of our explanatory variables employed
to describe the dynamics of the empirical pricing kernel surface. The considered time period
is January 2002 to December 2010 and the variables are defined as mentioned in the text.

2.5.1 Option Data

We use European options written on the S&P 500 index (SPX) to calibrate the SVI

implied volatility surfaces introduced in Section 2.3.1. The market for SPX options is

one of the most active index options markets in the world. At any time, expiry dates

of traded options are the three near-term months and three additional months from

the March, June, September, December, quarterly cycle. Strike price intervals are 5

points and 25 points for far months.

In our analysis, we use option cross-sections for each Wednesday from January 2002 to

December 2010 downloaded from OptionMetrics. In case a particular Wednesday was

a holiday, we take data from an adjacent trading day. The closing mid quote, defined

as the average of best bid and ask quote at market closing, is taken as option price.

For liquidity reasons, we discard in-the-money (ITM) options, options with expiries
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less than 10 or more than 365 calendar days and options with bids below 0.5 dollar.

We use interest rates as obtained from OptionMetrics and then apply the procedure

suggested in Aı̈t-Sahalia and Lo (1998) to address the problems of non-synchronous

prices between the option and underlying asset and the unobserved dividend process.

The idea is to use the put-call parity

C +Ke−rτ = P + Fe−rτ ,

which holds independently of any option pricing model. In this equation, C and P

denote prices of a call and put with strike K and time to maturity τ , r is the risk-free

interest rate and F the forward. We derive implied forwards for all dates and expiries

separately using a put-call pair closest to at-the-money. Finally, one can back out the

unobserved dividend yield δ via the spot-forward parity

F = Se(r−δ)τ .

Table 2.1 summarizes the characteristics of our option data set for different forward-

moneyness (K/F ) and time to maturity categories. In total, we observe 102’114 OTM

option prices thereof 62% puts and 38% calls. We further report the mean and standard

deviation for prices and implied volatilities. In particular for higher maturities, puts

are somewhat more expensive than calls. In addition, we observe the well-known

volatility smile pattern and its corresponding term structure (i.e. the smiles tend to

become flatter for larger expiries).

2.5.2 Empirical pricing kernel estimation

As mentioned previously, we derive estimates of the empirical pricing kernel surface

M̂t(r, τ) using separate estimates of the risk-neutral and historical density surfaces of

the future underlying asset return denoted q̂t(r, τ) and p̂t(r, τ), respectively. Whereas

τ designs the time to maturity, r represents the forward gross return. We take forward

gross returns instead of spot returns because Polkovnichenko and Zhao (2013) argue

that these are better proxies for the returns on the total wealth process in case of

stochastic dividend processes.

Using the option cross-sections described above, we calibrate each week SVI volatility

smiles for all available maturities and then derive an estimate of the complete risk-
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Table 2.1: Summary of our option data sample used to infer the risk-neutral density sur-
faces. The data set contains 470 weekly cross-sections of SPX European options from January
2002 to December 2010 with expiries between 10 and 365 days and is obtained after applying
the filtering criteria described in the text. We report mean and standard deviation for prices
and implied volatilities and the number of observations according to different categories
regarding forward moneyness and option maturity.

Moneyness Maturity (days)

Less than 60 60 to 160 More than 160

K/F Mean Std. dev. Mean Std. dev. Mean Std. dev.

<0.85 Put Price ($) 3.04 3.55 5.29 5.56 11.52 11.40
IV (%) 45.03 15.68 37.18 11.46 31.27 10.21
Observations 5552 9321 11019

0.85-1.0 Put Price ($) 10.83 10.51 24.49 15.90 46.36 22.80
IV (%) 24.62 10.36 23.68 8.22 22.08 6.80
Observations 17481 11433 8400

1.0-1.15 Call Price ($) 10.89 10.80 20.38 16.72 40.42 25.08
IV (%) 19.27 9.53 19.15 7.59 18.27 6.45
Observations 11847 10430 7555

>1.15 Call Price ($) 3.87 3.95 4.93 5.78 9.37 10.34
IV (%) 36.68 9.33 25.16 8.13 20.28 6.25
Observations 867 2440 5769

neutral density surface based on the algorithm presented in Section 2.3.1. The accuracy

of these densities is obviously strictly related to the fitting quality of the SVI model. To

assess its quality, we show in Table 2.2 root mean squared errors for implied volatilities

and prices (averaged over the whole sample period) for the same moneyness/maturity

categories as in Table 2.1. We find that the fit is very good independently of moneyness

and time to maturity. Hence, we conclude that our estimates q̂t(r, τ) are sufficiently

accurate. Additionally, it is worth to be mentioned that we only consider time to

maturities in the interval [30, 240] (in calendar days) for our application. The lower

bound is chosen since we had some difficulties to get accurate densities when applying

the extrapolation for maturities below the lowest observed expiry, whereas the upper

bound is somewhat arbitrary (i.e. other upper bounds could be used too).

The second input, needed to derive the empirical pricing surface, is an estimate of

the conditional historical return density pt. For this purpose, we calibrate the GJR-

GARCH model presented in (2.4)-(2.5) every week using observed daily returns within

a rolling window of length 3500 trading days, similarly to what has been done in

Barone-Adesi et al. (2008). The mean and standard deviation of the estimated model

parameters over the period January 2002 and December 2010 are shown in Table 2.3.

They are in line with values obtained in Barone-Adesi et al. (2014), which consider
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Table 2.2: This table illustrates the performance of the SVI model fit. We report root
mean squared errors for implied volatilities (IV RMSE, in percent) and prices (Price RMSE,
in dollars) using SPX option cross-sections each Wednesday from January 2002 to December
2010. Errors are shown for the same moneyness/maturity categories as in Table 2.1.

Moneyness Maturity (days)

Less 60 60 to 160 More than 160

K/F Price RMSE IV RMSE Price RMSE IV RMSE Price RMSE IV RMSE

<0.85 0.01 0.18 0.03 0.09 0.12 0.07
0.85-1.0 0.03 0.04 0.08 0.02 0.23 0.02
1.0-1.15 0.08 0.09 0.37 0.06 0.34 0.02
>1.15 0.12 0.73 0.04 0.09 0.12 0.04

Table 2.3: This table shows parameter estimates of the GJR-GARCH model estimated on
each Wednesday from January 2002 to December 2010 using a pseudo maximum likelihood
approach with normal innovations and 3500 historical return observations.

GJR-GARCH model parameter estimates

µ× 104 ω × 106 β α× 103 γ

Mean 2.70 1.26 0.93 2.71 0.12
Std. dev. 0.80 0.27 0.01 3.23 0.02

a time period close to ours. Note that we do not report here means and standard

deviations of the standardized empirical innovations, but they are close to 0 and 1,

respectively. This means that the GJR-GARCH models are correctly identified. Addi-

tionally, we observe that the empirical innovation densities incorporate skewness and

excess kurtosis and are highly non-normal. We omit further details for brevity but

descriptive statistics are available from the author upon request.

Based on the obtained parameter values and the empirical innovations, we then employ

the filtered historical simulation approach explained in Section 2.3.2 to generate returns

for any desired time-horizon τ . The corresponding density is finally obtained via an

application of a kernel density estimator.

Given estimates q̂t and p̂t for both density surfaces and every week t, estimates of

the pricing kernel surface can be determined by calculating their discounted ratio.

Consequently, we show in Figure 2.4 the time series of the empirical pricing kernel

obtained over the period January 2002 to December 2010 for three different maturities

(50 days, 100 days and 200 days). Note that for clarity of presentation, we do not plot

the kernel for every week, but only once per month.

Interestingly, the shape of the pricing kernel is rather consistent between different

maturities, meaning that investors’ preferences do not change a lot with respect to their
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Figure 2.4: This figure shows empirical pricing kernel estimates for three different matu-
rities: 30 days (left), 100 days (middle) and 200 days (right). They were obtained with the
techniques mentioned in the text and cover the whole sample period ranging from January
2002 to December 2010. For clarity of presentation, we do not plot the kernel for every week,
but only once per month.

investment horizon. In contrast, there is a substantial time variation, i.e. investors

change their risk attitude over time. In line with findings presented in Polkovnichenko

and Zhao (2013), we observe declining functions at the beginning of 2002 and then U-

shaped kernels until early 2004. During 2005 and 2007 we find another typical shape.

Namely, pricing kernel curves having a bump at around one on the gross return scale

in nearly all cases. Finally, towards the end of the sample period, the kernel features

again an U-shape. Furthermore, one can also see the effect of the recent financial crisis,

which is reflected by very particular pricing kernel shapes (see for example the inverted

U-shaped curves with very large support at the end of 2008 or beginning 2009).
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2.5.3 Fitting the time-series model

Given the estimates of the empirical pricing kernel surface presented above, we can

now model the observed dynamics with our boosting approach based on trees. For

that purpose, we construct a set of observations (rti, τti,mti) with i ∈ {1, . . . , N} and

mti = M̂t(rti, τti) for every week t in our sample.7 Specifically, we extract each week

pricing kernel slices for 8 different maturities to represent the whole surface, which

is preferred over sampling uniformly the two-dimensional domain of definition simply

for computational reasons. To get the specific maturities, we divide the considered

maturity interval [30, 240] (in calendar days) into 8 subintervals of equal length and

then randomly select an expiry in each of them. In comparison with arbitrarily taking

expiries in [30, 240], this procedure has the advantage that there are never “clustered”

maturities. Consequently, we obtain a picture over the whole maturity range every

week, while still having some randomness in the procedure ensures that the whole

time interval will be covered when aggregating observations over time. For each of

the resulting 8 expiries, the corresponding empirical pricing kernel is evaluated in

30 equally spaced return values with bounds determined by quantiles of the return

distribution for this particular time horizon. We take the 1%- and 99%-quantile under

the historical distribution to avoid unwanted numerical effects in the tails. Using this

procedure, we finally get N = 240 pricing kernel evaluations per week and repeating

these calculations for all 470 weeks in our sample period yields a total of 112’800

observations.

With these pricing kernel realizations at hand, it is possible to fit our dynamic model.

Since we have in mind to investigate whether and how the impact of the relevant

driving factors changes over time, we employ a rolling window estimation approach.

More precisely, we take a window length of one year. For robustness reasons, we repeat

the estimation with other widow sizes too. Some additional results for two years are

thereby contained in the appendix.

In a first step, the algorithm always fits the initial kernel K0 as specified in equation

(2.7). This kernel does not depend on time t and expiry τ (inside the rolling window)

and thus may be best interpreted as an average power pricing kernel over all weeks

and time to maturities. Afterward, the algorithm continues with a stage-wise residual

7Here, M̂t refers to the empirically derived option-implied pricing kernel obtained in Section 2.5.2.
However, from now on, we consider mti to be observations of the true pricing kernel Mt and use
M̂t to denote its approximation obtained with our boosting algorithm, which is consistent with the
notation in Section 2.4.

51



fitting using simple regression trees. In our application, we take trees with L = 6 end

nodes and use a shrinkage value ν = 0.1 to further reduce the complexity of the base

learner.8 Given that the regression tree employ beside r and τ also the time-varying

exogenous factors Φ as predictors, we can capture the dynamics of the observed kernels.

As mentioned previously, determining an optimal value for the complexity parameter

J (the number of boosting iterations) is important in order to avoid overfitting. We use

4-fold cross-validation to obtain an optimal value Ĵ . To be precise, it is a sort of blocked

cross-validation given that we arbitrarily allocate the block of weekly observations to

one of the 4 complementary subsamples used for cross-validation.

In order to see how the algorithm works and to describe the performance, we have

estimated our model separately for each year from 2002 to 2010. The corresponding

outcomes are presented in Figure 2.5 by means of an arbitrarily selected day per year.

More precisely, the observed pricing kernel and its fitted counterpart are shown for

three different maturities. These are the expiries randomly selected in the first, forth

and seventh subinterval (see explanation above) and thus differ from week to week. We

find that although departing from a rather simple starting kernel, our model is able

to capture the various shapes observed over the period January 2002 to December

2010. Additionally, we check for a fixed time to maturity τ = 100 days whether the

algorithm can account for the dynamics observed within a year. The results presented

in Figure 2.6 provide evidence that this is indeed possible. Certainly, these figures

only allow getting a qualitative picture of the fit. However, quantifying the error by

means of pricing kernel differences is difficult to interpret. Therefore, we will analyze

implied option price differences in our forecasting application later on.

However, for the moment, let us put the focus on our main question regarding the

relevant driving factors of the pricing kernel surface. For that purpose, we estimate

the model week by week from January 2003 to December 2010 using a rolling window

of length one year (i.e. 52 weeks). The relative influence of each predictor variable is

then determined by using the measure introduced in Friedman (2001). That is, the

importance Ii of predictor i for J boosted trees Bj (1 ≤ j ≤ J) is defined as

Ii =

(

1

J

J
∑

j=1

I2
i (Bj)

)0.5

,

8These values are conform to the requirements mentioned earlier and close to those employed in
similar studies (see for instance Audrino and Colangelo (2010)). It would also be possible to determine
optimal values using for example cross-validation. Because of computational reasons and since we do
not expect large improvements, we do not do that.
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Figure 2.5: The figure presents the fitting quality obtained with our tree-based boosting
algorithm. Estimation has been done for each year separately. For some randomly selected
dates, we plot the estimated initial pricing kernel (solid) and its fitted counterpart (dashed)
for three different maturities whose values are resumed in the legend. The black dotted line
indicates the starting power pricing kernel.

where Ii(B) designs the measure of relevance proposed by Breiman et al. (1984). It is

I2
i (B) =

L−1
∑

k=1

ι̂kI[vk=i],

where the summation goes over the nonterminal nodes k of the tree B with L leaves,

vk is the splitting variable associated with node k and ι̂k denotes the corresponding

empirical improvement in squared error as a result of the split.

Figure 2.7 shows the obtained variable importance measures over time. Note that the

values are scaled such that they sum up to 100 over all considered predictors. As

expected, we observe that the relative influence of the single predictors substantially

varies over time. Of course, the return is always the most important variable, which

is a consequence of the fact that we start from a rather simple starting model. Its

influence ranges from about 40% at the beginning of our considered time period (with

decreasing kernels relatively close to the starting model) and goes up to 85% during

the crisis 2008. Interestingly, apart from 2004, the time to maturity has a relatively
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Figure 2.6: The figure shows how the tree-based boosting algorithm can capture the pricing
kernel dynamics. For each year and a fixed time to maturity 100 days, we plot the estimated
initial pricing kernel (solid) and its fitted counterpart (dashed) for three different weeks of
a year: first week (red), 26th week (green) and 50th week (blue). The black dotted line
indicates the starting power pricing kernel.

low influence, which conforms with the findings presented in Figure 2.4.

If we now turn towards the time-dependent predictor variables, we can identify the

relevant driving factors. Not surprisingly, past returns seem to explain a part of the

pricing kernel variation. The figure shows that the return over the last six months

is particularly important at the beginning and towards the end of the sample period,

whereas the one month return has an influence peak during the crisis. As stated in

Shefrin (2008), the pricing kernel can be decomposed into a fundamental part and

sentiment part. Thus we may expect that sentiment factors are also relevant drivers.

The figure indicates that they have indeed an influence, however, not all the time.

The Yale/Shiller crash confidence index is particularly relevant before the recent crisis

starts, which is understandable given that it measures the probability of a market

crash.9 In contrast, the Baker-Wurgler sentiment series seems to explain some time-

variability on the empirical pricing kernel at the beginning of the considered time

period. Referring to Figure 2.3, we observe a decreasing series at that time, meaning

9A detailed description of the index can be found on the Yale School of Management web page
under the rubric data.
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Figure 2.7: This figure shows the relative influence (measured as explained in the text) of
the different explanatory variables obtained from our boosting algorithm based on trees. To
estimate the model, we use a rolling window of length one year and the time axis indicates
the endpoint of this period.

that excessive optimism for stocks diminishes (see Barone-Adesi et al. (2014) for an

empirical justification of this result). Moreover, we find that financial and macroeco-

nomic variables also play a pivotal role in shaping/driving the pricing kernel’s dynamics

(i.e. forming investor’s preferences) over time. At the beginning of the sample period

(2003-2006), for example, it seems that investors used the negative correlation between

bonds (short rate + yields) and stocks (S&P 500) to constantly rebalance their port-

folios toward less risky and more liquid securities. The recent financial crisis and the

(almost) zero interest rates during the last years forced investors to seek alternative
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sources of assessing uncertainty. Indeed, Figure 2.7 clearly indicates that since late

2008, investors started to pay more attention to macroeconomic fundamentals such as

inflation (CPI) and unemployment (UNEMPL) (see, for example, David and Veronesi

(2013) for a discussion on that topic). Interestingly, we observe that the relative im-

portance of the VIX has grown significantly after the financial crisis, revealing that

investors became more protective/risk averse in the last years.

As a robustness check, we repeat the same analysis with a rolling window size of two

years. The respective results are shown in Figure 2.12, contained in the appendix.

The outcomes are rather similar, but obviously, the resulting influence series are more

persistent.

In order to analyze the effect of the different predictors on the pricing kernel shape, we

present so-called partial dependency plots (see Friedman (2001)). These plots show

the effect of a variable on the response (pricing kernel in our case) after accounting

for the average effects of all other variables in the model. We select some of the most

influential variables and calculate their marginal effects for that time window where

they had the highest relative influence (according to Figure 2.7). The resulting partial

dependencies are summarized in Figure 2.8. Again, we do the same analysis for a two

year estimation window too. These results are presented in Figure 2.13, which can be

found in Appendix 2.B.

We show the effects for the left (r < 0.9), central (0.9 ≤ r ≤ 1.05) and right part

(r > 1.05) of the pricing kernel, separately. Not surprisingly, the effects of all predictors

are particularly pronounced at the left tail. Further, we observe that the impact of

the predictors is typically quite similar in the tails and differs for the central part.

Moreover, we find that the response of the pricing kernel to the various explanatory

variables is often non-linear and can therefore not be captured by a simple linear

model.

2.5.4 Out-of-sample performance

Contrary to other approaches recently introduced in the literature to explain the pric-

ing kernel dynamics (see Grith et al. (2013a) and Polkovnichenko and Zhao (2013)),

we are able to forecast the kernel. Hence, we continue with a short analysis how

accurate these predictions are. As already mentioned previously, differences between

the observed and modeled pricing kernel are difficult to interpret. Therefore, we use
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Figure 2.8: The figure shows partial dependency plots for some selected explanatory vari-
ables. The rolling window size for estimation is one year and the corresponding endpoint
of the time period is indicated in the figure title. It is the period where the predictor had
its highest influence. Marginal effects on the pricing kernel are shown for the left (r < 0.9),
central (0.9 ≤ r ≤ 1.05) and right part (r > 1.05) of the pricing kernel, separately.

implied price differences to quantify the accuracy of pricing kernel forecasts.

To be precise, we calculate at time t the “true price” of a call option with strike K and
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time to maturity τ = T − t (similarly for puts) as

Ct(K, τ) = e−rt,T τ

∫ ∞

K
Ft,T

Mt(r, τ)(rFt,T −K)p̂t(r, τ)dr,

where Ft,T is the forward price, r = ST/Ft,T the forward gross return, p̂t the estimated

conditional historical density and Mt the initially derived empirical pricing kernel (see

Section 2.5.2). Strictly speaking, Mt is also an estimate but we do not use the hat

notation in order to avoid confusion with the fitted pricing kernel obtained with our

boosting approach. Namely, the corresponding price implied by the predicted kernel

M̂t|t−1 obtained from our estimated time series model is

Ĉt(K, τ) = e−rt,T τ

∫ ∞

K
Ft,T

M̂t|t−1(r, τ)(rFt,T −K)p̂t(r, τ)dr,

with M̂t|t−1(r, τ) = K̂(r, τ,Φt−1) and where K̂ is calculated using an estimation window

of length one year ending at time t− 1.

The forecast error at time t is finally defined as the price root mean squared error

RMSEt =

√

√

√

√

1

nm

[

n
∑

i=1

(Ct(Ki, τi)− Ĉt(Ki, τi))2 +
m
∑

j=1

(Pt(Kj, τj)− P̂t(Kj, τj))2

]

,

for n calls and m puts with expiries τi, τj ∈ [30, 240] (in calendar days) available at

time t.

Given that we consider an estimation window of size one year, we repeat this forecast

exercise every Wednesday from January 2003 to December 2010. The corresponding

outcomes (pricing errors) are presented in Figure 2.9. Note that we do neither price

options with relatively low time to maturities (less than 30 calendar days) nor options

with observed bid prices below 0.5 dollar. Thus we conclude that the obtained pricing

performance from 2003 to the beginning of 2007 is rather good (mean error of 0.91

dollar), meaning that also the pricing kernel forecasts are accurate. However, during

the crisis we typically get quite high errors.

Additionally, we present in Figure 2.10 the option pricing performance for November

30, 2005. On that day, we get a price RMSE of 0.78 dollar, which is close to the

median error observed during the period January 2003 to January 2007. In general,

the performance is rather satisfactory. Only for options with higher time to maturities,

and in particular for OTM call options, we observe some substantial price differences.
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Figure 2.9: This figure shows the performance of our predicted kernel for every week
(Wednesday) between January 2003 and December 2010. The pricing errors are calculated
as explained in the text.

Figure 2.10: This figure shows the pricing performance for November 30, 2005. The “true
prices” are obtained with the observed empirical pricing kernel on that date and the model
prices are calculated using the kernel forecast of our model. The price RMSE for that day
is 0.78 dollar.

Since, at least to our best knowledge, there is no comparable model available yet,

we decide to benchmark our forecasting performance against a simple random walk

prediction of the pricing kernel, which we expect to be a tough benchmark. That is,
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Figure 2.11: This figure presents absolute RMSE differences between the two forecast
methods. Red points indicate cases where the tree-boosting algorithm performs better and
the blue-green points those where the random walk forecast performs better.

we do the same calculations but take M̂t|t−1 = Mt−1. Here again, Mt−1 refers to the

initially estimated empirical pricing kernel, which has been presented in Section 2.5.2.

Figure 2.11 presents the differences between the two forecasting methods and indicates

that the random walk performs better compared to the predictions obtained with our

model. This is confirmed statistically in Table 2.4, where we show the outcomes of

Diebold and Mariano (1995) type tests to measure the equal predictive ability. We

identify two reasons for this result. First, the recent crisis. It seems that one can

hardly do better than a simple random walk strategy during that period. Second, we

find that the inferior performance is mainly due to higher pricing errors for options

with longer time to maturity. In contrast, if we only consider the pre-crisis period and

options with time to maturities no longer than 100 days, we find that predictions from

our model are even slightly better, but not statistically different. We conclude that

our predicted kernels are reasonable, however, it is difficult to beat the random walk

forecast.
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Table 2.4: The table shows the mean difference in RMSE between both kernel forecasting
methods (negative values are in favor of our model) together with p-values (reported in
parentheses) of Diebold and Mariano (1995) type tests to measure the equal predictive ability,
i.e. the null hypothesis is that the models have equal predictive ability.

Time period Maturity range (in days)

30 to 100 30 to 240

Jan 2003 to Dec 2006 -0.004 0.095
(0.45) (≈ 0)

Jan 2003 to Dec 2010 0.069 0.186
(0.07) (≈ 0)

2.6 Conclusion

It is commonly accepted that the asset pricing kernel is time-varying, which reflects

variation in the relevant pricing kernel state variables. However, despite recent ad-

vancements in the literature, little is still known about these driving factors. As a

consequence, we develop in this paper a time series model for the option-implied em-

pirical pricing kernel that allows to understand its variation over time. Contrary to

most techniques that model the pricing kernel for each time to maturity separately (so-

called slice by slice), we adopt a surface modeling approach. More precisely, we derive

first initial estimates of the empirical pricing kernel surface (using separate estimates

for both the risk-neutral and historical density surface of the underlying asset return

at expiry) and then model the observed time-varying surface with a boosting approach

based on regression trees. Taking trees as base learner is particularly helpful in our

context, given that they automatically select the most relevant predictors among a

set of possible candidates. Therefore, we obtain a suitable tool to answer our main

question regarding the principal driving factors of the pricing kernel dynamics.

In our empirical analysis, we illustrate the model with European options and return

values of the S&P 500 index and show that our modeling approach can capture the

various shapes of the option-implied pricing kernel observed during the sample period,

covering January 2002 to December 2010. Further, we provide evidence that the

observed dynamics can indeed be explained with variables related to the state of the

economy, which is in line with findings presented for example in Rosenberg and Engle

(2002), Grith et al. (2013a) and Metaxoglou and Smith (2014). However, with our

modeling approach we are able to quantify the impact of all possible driving factors

building on the relative influence measure introduced in Friedman (2001). We find
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that the relative influence of the single predictors substantially varies over time and we

provide some additional insights on how they affect the pricing kernel shape. Finally,

we also investigate the predictive performance of our model and provide some evidence

that the forecasts are reasonable. However, it is difficult to beat the random walk

forecast.

2.A A short introduction to FGD

We present here the main idea of functional gradient descent (FGD) in the framework

of general regression. Hence we consider a sample (X1, Y1), . . . , (Xn, Yn), where Yi ∈ R

is the response variable and Xi represents a p-dimensional explanatory variable. Based

on (Xi, Yi), we are looking for a function F ∈ F = {f |f : Rp → R} which minimizes

an expected loss of the form E[λ(Y, F (X))] with an adequate loss function λ.

The FGD algorithm estimates F by minimizing the empirical risk defined as

Λ(F ) =
1

n

n
∑

i=1

λ(Yi, F (Xi)).

Starting from an initial function estimate F̂0 (step 1 of the algorithm), the algorithm

selects the steepest descent direction in the mth iteration which would be given by the

negative functional derivative −dΛ(F̂m−1). However, due to smoothness and regular-

ization constraints on the minimizer of Λ(F̂m−1), one must find a function f̂m which is

in the linear span of a class of simple base learners S and is close to −dΛ(F̂m−1) in the

sense of a functional metric. This is equivalent to fitting the base learner h(x, θ) ∈ S
to the negative gradients

Ui = − ∂λ(Yi, Z)

∂Z

∣

∣

∣

∣

Z=F̂m−1(Xi)

, i = 1, . . . , n.

This is often achieved with least squares fitting and we get f̂m = h(x, θ̂) with

θ̂ = min
θ, ω

n
∑

i=1

(Ui − ωh(Xi, θ))
2.

This is the second step of the algorithm. In a third step (line search), one finally has

to perform a one-dimensional optimization in order to find the best step length ω̂m for
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updating F̂m−1 with f̂m. We obtain

ω̂m = min
ω

n
∑

i=1

λ(Yi, F̂m−1(Xi) + ωf̂m(Xi))

and get

F̂m = F̂m−1 + ω̂mf̂m.

Iterating steps 2 and 3 until m = M produces the FGD estimate

F̂M = F̂0 +
M
∑

m=1

ω̂mf̂m.

2.B Additional plots
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Figure 2.12: This figure shows the relative influence (measured as explained in the text) of
the different explanatory variables obtained from our boosting algorithm based on trees. To
estimate the model, we use a rolling window of length two years and the time axis indicates
the endpoint of this period.
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Figure 2.13: The figure shows partial dependency plots for some selected explanatory
variables. The rolling window size for estimation is two years and the corresponding endpoint
of the time period is indicated in the figure title. It is the period where the predictor had
its highest influence. Marginal effects on the pricing kernel are shown for the left (r < 0.9),
central (0.9 ≤ r ≤ 1.05) and right part (r > 1.05) of the pricing kernel, separately.
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Chapter 3

Estimating risk-neutral density
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Abstract

In this paper, we review several methods to estimate risk-neutral density

tails from option data. In addition, we introduce a new tail extension

approach that combines the idea of price matching with the assumption

of tails drawn from a generalized extreme value distribution. Based on

a theoretical market model with known implied risk-neutral density, we

conduct a performance analysis. The final outcomes of our study indicate

that the best results regarding accuracy and stability are obtained either

with implied volatility extrapolation by means of Gatheral’s stochastic

volatility inspired SVI model, or with our new price matching method.

Moreover, we provide evidence that the still very popular constant

implied volatility extrapolation approach often yields unsatisfactory

results.

Keywords: Risk-neutral density, tail estimation, IV extrapolation,

density matching, price fitting.
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3.1 Introduction

The risk-neutral density (RND) of asset prices is an essential tool for the valuation of

financial derivatives. It represents a forward-looking view of the asset price distribution

and thus is particularly helpful for various other applications too. Examples include

estimating investors risk preferences (Jackwerth, 2000; Rosenberg and Engle, 2002),

managing risk (Aı̈t-Sahalia and Lo, 2000) and asset allocation (Kostakis et al., 2011).

Furthermore, it enables the study of how market participants react to new information

and how risk perceptions evolve over time (Birru and Figlewski, 2012).

Numerous flexible nonparametric and semiparametric approaches have been developed

to recover the RND from option prices.1 However, an important issue often exists when

applying such methods. Namely, the risk-neutral density can only be obtained over

the strike range of observable prices, which might not extend very far into the tails.

In particular the left tail of the RND is important for any risk management application.

An example is the calculation of an economic value at risk (Aı̈t-Sahalia and Lo, 2000;

Markose and Alentorn, 2008). Further, both RND tails are important to estimate

higher RND moments. Such moments (in particular skewness and kurtosis) have

gained popularity among researchers in the recent past. For instance, Han (2008) and

Conrad et al. (2013) show that they play an important role in portfolio choice and the

pricing of assets. Other applications include density estimation by moment matching

(Rompolis and Tzavalis, 2008; Eriksson et al., 2009).

In this paper we review several methods to estimate such risk-neutral density tails

from option data. They can be categorized into three groups: the first two use tails

drawn from a suitable parametric distribution and apply density-matching or price-

fitting respectively, whereas approaches in the third category extrapolate the implied

volatility smile.

From the first two categories we specifically review the density-matching method of

Figlewski (2010) and Birru and Figlewski (2012) (using generalized extreme value, gen-

eralized Pareto and normal distribution tails) and the price-fitting method of Hamidieh

(2013), which assumes generalized Pareto tails.

From the third category we consider the popular method of constant implied volatility

extrapolation (Bliss and Panigirtzoglou, 2004; Jiang and Tian, 2005; Polkovnichenko

1See Aı̈t-Sahalia and Lo (1998), Bliss and Panigirtzoglou (2002), Fan and Mancini (2009), Fengler
and Hin (2014) and Ludwig (2014) among many others.
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and Zhao, 2013; Shimko, 1993), linear implied volatility extrapolation as shown in

(Jiang and Tian, 2007), and extrapolation by means of the parametric “stochastic

volatility inspired” model introduced in (Gatheral, 2004).

We further present a new tail extension approach that combines the distributional

assumption of Figlewski (2010) and the idea of price fitting used in Hamidieh (2013).

For this purpose, we employ the closed-form option pricing model developed in Markose

and Alentorn (2011) under the assumption of a generalized extreme value RND. In

addition, we use a modified version of the estimation approach of Figlewski (2010),

which puts more emphasis on the shape of the RND on the observed part of the tail.

The principal goal of this paper is to analyze the numerical performance of the different

methods. Based on a known data-generating process for the underlying asset, we

compute option prices and the corresponding risk-neutral density. Subsequently, we

analyze how accurately the different methods can recover the tail of this density when

option prices are only used up to a certain maximum or minimum strike price.

There are some studies similar to ours. For instance, Bondarenko (2003), Bu and Hadri

(2007) and Lai (2011) all rely on a comparable experimental setting to assess the per-

formance of different RND estimation methods. However, to the best of our knowledge,

this is the first study investigating the performance of tail estimation methods.2

The final outcomes of our survey show that the best performance regarding accuracy

and stability is achieved either with price matching and tails drawn from a general-

ized extreme value distribution, or implied volatility extrapolation by means of the

stochastic volatility inspired model of Gatheral (2004). Moreover, we provide evidence

that parametric tails fitted based on price-matching approaches generally outerperform

those using density-matching, independently of the chosen parametric specification. In

addition, we observe that the still very popular constant implied volatility extrapola-

tion approach often leads to unsatisfactory results.

We believe that the results of this study and the included robustness discussion pro-

vide helpful insights for researchers who depend on accurate tail estimates for their

application.

The remainder of this paper is organized as follows. Section 3.2 shows how to derive

the implied RND from observed option prices and discusses data limitation problems

2Birru and Figlewski (2012) provide in their appendix a short comparison of Figlewski (2010)’s
tail extension method under three different distributional assumptions. But they use market data for
which the true RND is unknown.
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that appear in practice. Section 3.3 contains a summary of the different RND tail

estimation techniques. Section 3.4 explains the experimental setting to compare the

performance of these methods. Section 3.5 presents the outcomes of this comparison

study. Section 3.6 discusses robustness issues and Section 3.7 concludes the paper.

3.2 Option prices and risk-neutral densities

Ross (1976) and Cox and Ross (1976) show that in a dynamically complete, arbitrage-

free market and when using the risk-neutral valuation principle, the price of an option

is given by the expected present value of the payoff computed under the risk-neutral

density (RND). Formally, we obtain for the price at time t of an European call option

Ct(K)

Ct(K) = e−rtτ

∫ ∞

0

max(ST −K, 0)qt(ST )dST , (3.1)

where qt denotes the conditional risk-neutral probability density of the underlying price

S at time T , K the strike price, T the expiry date, τ = T − t the time to maturity

and rt the instantaneous risk-free interest rate for that maturity.

Differentiating equation (3.1) with respect to the strike price K yields

∂Ct

∂K
= −e−rtτ (1−Qt(K)).

Here, Qt denotes the conditional risk-neutral probability distribution function of ST .

Calculating the second derivative with respect to K, we finally obtain

∂2Ct

∂K2

∣

∣

∣

∣

K=ST

= e−rtτqt(ST ). (3.2)

This is the famous result originally presented in (Breeden and Litzenberger, 1978) and

(Banz and Miller, 1978). It states that the second derivative of the European call price

function with respect to the strike is equal to the discounted risk-neutral probability

density of ST .
3

This option implied density (which is often also referred to as state price density,

since it represents the continuous-state counterpart of the so-called Arrow-Debreu

securities) inherently differs from the historical density of the underlying price. It not

only contains information about the market participants’ expectations regarding the

3A similar expression can also be derived for European put options.
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evolution of the underlying price, but also depends on their perceptions of risk.

Departing from the aforementioned theoretical concepts, numerous methods have been

developed to extract the implied RND from option prices observed on the market. Bliss

and Panigirtzoglou (2002), Jackwerth (2004) and Figlewski (2010) for instance provide

comprehensive reviews of this literature. As mentioned in Ludwig (2014), it is possible

to make a distinction between approaches that model the implied density directly (for

example by means of mixture methods or assuming generalized distributions) and

those which first estimate the implied volatility or price function and then rely on

equation (3.2) to derive the state price density.

In particular for the methods in the second group, a successful estimation of the

RND has to address the following data limitation problems which normally appear in

practice (see (Bondarenko, 2003)):

1. Using equation (3.2) to calculate the risk-neutral density requires options with a

continuum of exercise prices. However, in reality, options are only available for

a discrete set of strikes.

2. Observed option prices contain microstructure noise from various sources such

as nonsynchronous trading, price discreteness and bid-ask bounce.

3. Strikes of available options do not cover the entire support of ST . Due to the

rules that an exchange uses to introduce new option contracts, very low and high

strikes are often unavailable.

It is common in the literature to address the first two issues by using a combination

of interpolation and smoothing techniques, while there is only a limited number of

solutions for the third point. We present several such approaches in the next section.

3.3 Methods to estimate the risk-neutral density

tails

In this section we provide a detailed description of the tail estimation methods that

we subsequently benchmark. Some of them rely on results in extreme value theory,

which we briefly summarize in the appendix.
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3.3.1 Figlewski’s tail extension approach and some variants

thereof

Figlewski (2010) introduces a new approach to extract a well-behaved risk-neutral

density from observed option prices and thereby addresses all three data limitation

problems mentioned in Section 3.2. As it is common practice, he suggest applying

a curve-fitting approach for implied volatilities (IVs). More precisely, the usage of a

4th degree spline with a single knot placed at-the-money to model IV as a function

of strike. He argues that at least a polynomial of degree 4 is needed to ensure that

the resulting RND has no kink. Furthermore, a single inner knot at-the-money seems

to provide enough flexibility to capture the shapes of IV curves typically observed

in practice. By transforming implied volatilities back to prices and applying formula

(3.2), one can finally infer the middle portion of the RND.

Addressing the third data limitation issue, Figlewski (2010) suggests a way to extend

and complete the empirical RND beyond the range of available strikes, using a suitable

parametric distribution. This can be considered the main contribution of the paper.

The idea is to determine the parameters of the selected probability distribution such as

to match the shape of the estimated RND over the observed portion of the tail region.

We now summarize the approach for the right end of the density with tails drawn

from a generalized extreme value (GEV) distribution and thus following Figlewski’s

recommendation.

After having obtained the middle portion of the RND by means of observed out-of-

the-money (OTM) put and call options (see Figure 3.1), two points Kc,i and Kc,c must

be selected. The first designs the connection point to the GEV distribution, whereas

the second point serves to match the GEV tail shape to that of the observed RND. In

order to identify the three GEV parameters by optimization, Figlewski (2010) imposes

the following conditions:

QGEV (Kc,i; θ) = Q̂(Kc,i)

qGEV (Kc,i; θ) = q̂(Kc,i)

qGEV (Kc,c; θ) = q̂(Kc,c)

The first condition requires that the right tail probability at the connection point is

equal for both the empirical distribution Q̂ and the approximating GEV distribution

QGEV . The other two equations serve to fit the shape of the observed RND q̂ in the
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Figure 3.1: Schematic illustration of the typical data situation when fitting parametric
tails.

observed tail area.

We implement several modifications with respect to the initial suggestion by Figlewski

(2010). On the one hand, we connect the parametric density at the point Kc,c instead

of Kc,i since we believe that the maximum possible part of the initially estimated

RND should be used. Thus, any potential parametric misspecification of the density

is restricted to the strike range where no data is available. On the other hand, we

suggest the following “overidentified” optimization problem

argmin
θ

n
∑

j=1

[w1(xj)(qGEV (xj; θ)− q̂(xj))]
2 + [w2(xj)(QGEV (xj; θ)− Q̂(xj))]

2

with Kc,i = x1 < x2 < · · · < xn−1 < xn = Kc,c and two functions w1 and w2 specified

such that the impact on the optimization objective function is of the same magnitude
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for every point xj as well as both losses (PDF and CDF).

With this approach we match the curvature of the fitted RND on the whole interval

[Kc,i, Kc,c] and reduce the dependence of the method on the (relatively arbitrary) choice

of the inner point Kc,i.
4 This increases the robustness of the method since the original

version can be sensitive to the data quality around the single inner point.

An important issue is the selection of an appropriate parametric distribution for the

tail extension. The GEV distribution suggested in (Figlewski, 2010) is rather flexible

and thus can handle various tail behaviors. However, from a theoretical point of

view the generalized Pareto distribution would be a correct specification under the

assumption that the points Kc,c and Kc,i are far enough out in the tails (see Theorem

2 in the appendix). Hence, we also consider tails drawn from this distribution later

on in our performance comparison, and determine the parameters similarly as for the

GEV distribution. Additionally, distributions with two parameters can be used as well.

In this case, no interior point Kc,i is required. The two parameters can be determined

merely relying on the PDF and CDF conditions at the connection point Kc,c. We

employ both the normal and lognormal distribution in our subsequent comparison

study.

3.3.2 Hamidieh’s GPD approach

Another method to infer the RND tail has recently been introduced in Hamidieh

(2013). He makes a parametric generalized Pareto distribution (GPD) assumption

about the tail. In contrast to Figlewski’s idea, the method directly depends on ob-

served (deep) out-of-the-money call and put option prices and does not need any prior

estimate of the RND. We present the approach for the right tail using OTM calls, and

refer to Appendix 3.A for a short summary of relevant extreme value theory results.

Departing from the fundamental pricing equation (3.1), we obtain

C = e−rτE[max(ST −K, 0)] = e−rτE[ST −K|ST > K]P (ST > K),

where the expectation is taken under the risk-neutral measure Q.5

If the distribution of ST is in the maximum domain of attraction (MDA) of a distri-

bution G, we can consider a high strike price K0 such that the Pickands-Balkema-de

4See Section 3.6 for a discussion on the choice of the point Kc,i.
5We omit the time dependence t for simplicity of notation.
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Haan theorem holds (see Theorem 2 in Appendix 3.A). It follows that the excess

ST −K0|ST > K0 has an approximate generalized Pareto distribution with parameters

σ(K0) and ξ. Hence, we obtain

C0 = e−rτE[ST −K0|ST > K0]P (ST > K0) ≈ e−rτ σ(K0)

1− ξ
P (ST > K0) = C∗

0 .

The above approximation (emphasized through the notation *) uses the expected value

of a generalized Pareto distribution Hσ,ξ. Therefore, we have to assume that ξ < 1 in

order to avoid an infinite option value.6

Making use of the closure property of GPD (see Lemma 1 in Appendix 3.A), we can

get a similar approximation for all calls with strike prices Ki > K0. It is

C∗
i = e−rτ σ(Ki)

1− ξ
P (ST > Ki),

where the new scale parameter is given by

σ(Ki) = σ(K0) + ξ(Ki −K0). (3.3)

Using equation (3.3) and

P (ST > Ki) ≈ P (ST > K0)

[

ξ

σ(K0)
(Ki −K0) + 1

]−1/ξ

it is possible to express C∗
i in terms of C∗

0 . Indeed

C∗
i = C∗

0

[

ξ

σ(K0)
(Ki −K0) + 1

]1−1/ξ

.

Obviously, one can obtain a similar expression for put options under the assumption

that the distribution of −ST is in the MDA of G. For brevity, we omit the derivation

here and just state the final formula. For puts Pi and P0 with strike prices K ′
0 > K ′

i,

we obtain

P ∗
i = P ∗

0

[

ξ′

σ(K ′
0)
(K ′

0 −K ′
i) + 1

]1−1/ξ′

.

Hamidieh (2013) demonstrates that the absolute relative error of the GPD approxi-

mation tends to zero for high strikes (calls) and low strikes (puts). Therefore, one can

get the approximated GPD tails through the solution of the following optimization

6A random variable X with distribution Hσ,ξ has an expected value E(X) = σ
1−ξ

for ξ < 1. For
ξ ≥ 1 the first moment is infinite.
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problems

min
σ(K0),ξ

n
∑

i=0

∣

∣

∣

∣

Ci − C∗
i

Ci

∣

∣

∣

∣

and min
σ(K′

0),ξ
′

m
∑

j=0

∣

∣

∣

∣

Pj − P ∗
j

Pj

∣

∣

∣

∣

,

where Ci (i = 0, . . . , n) and Pj (j = 0, . . . ,m) denote OTM call and put options with

strikes Ki < Ki+1 and K ′
j > K ′

j+1.

Note that Hamidieh (2013) assumes C0 = C∗
0 and P0 = P ∗

0 such that he does not need

estimates of the risk-free rate r and the probabilities P (ST > K0) and P (ST < K ′
0).

3.3.3 Price fitting with closed-form GEV prices

In addition to the two previously mentioned approaches, we propose a further method

that combines the distributional assumption of Figlewski (2010) and the idea of price

fitting used in Hamidieh (2013).

We build on the closed-form option pricing model introduced by Markose and Alen-

torn (2011), which is based on the GEV distribution. They model simple losses, i.e.

−ST−St

St
= 1 − ST

St
to be GEV distributed. Therefore, the left tail of the RND cor-

responds to the right GEV tail, with the economic argument that the probability of

extreme losses is higher than the one of extreme gains (under the Fréchet type distri-

bution i.e. ξ > 0).

Note that only ξ = 0 implies infinite support of the density on both sides. Bounded

support (for ξ 6= 0) is theoretically not admissible for a RND. The authors argue that

the GEV is still a sufficient approximation, given the empirical distribution limits of

past years.

They derive the following option pricing formulas for the case ξ 6= 0:7

C(K) = e−rτ

{

S

[

(1− µ+ σ/ξ)e−H−1/ξ − σ

ξ
Γ
(

1− ξ,H−1/ξ
)

]

−Ke−H−1/ξ

}

(3.4)

7They also derive the exact case for ξ = 0, but with numerical optimization in mind, we only use
the results for ξ 6= 0 and consider ξ → 0 as a limiting case. We numerically confirmed that we can
come sufficiently close to the exact case of ξ = 0.
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and

P (K) = e−rτ

{

K
(

e−h−1/ξ − e−H−1/ξ
)

− S
[

(1− µ+ σ/ξ)
(

e−H−1/ξ − e−h−1/ξ
)

− σ

ξ
Γ
(

1− ξ, h−1/ξ, H−1/ξ
)

]

}

(3.5)

with H = 1 + ξ
σ

(

1− K
S
− µ

)

, h = 1 + ξ(1−µ)
σ

, Γ(a, b) =
∫∞

b
ya−1e−ydy the incomplete

Gamma function and Γ(a, b, c) = Γ(a, b) − Γ(a, c) =
∫ c

b
ya−1e−ydy the generalized

Gamma function.

To fit a GEV tail to observed option data, we consider the following optimization

problem for calls (the put case is analogous)

θ̂ = argmin
θ

∑

K

f(C(K), Ĉ(K, θ)), (3.6)

with f(·, ·) some loss function8 and Ĉ(K, θ) the model prices. Note that compared

to other methods described in this section, the fitted tail types for calls and puts

are actually different (since they are priced using the left and right tail of a GEV

distribution respectively).

One could now directly optimize over all three GEV parameters, i.e. θ = (µ, σ, ξ), but

there are two issues with this optimization problem and the resulting parameters:

1. The probability mass under the tail might not be equal to the CDF at the cut-off

point. Thus, the combined object might not integrate to unity.

2. The three parameter optimization is numerically rather unstable and does often

result in unrealistic fits.

By imposing a further condition, we can overcome both issues. Specifically, we impose

that the empirical and model CDF coincide in one point, i.e. Q(K∗) = Q̂(K∗, θ) for

some strike K∗. While K∗ could in principle be chosen arbitrarily from the range

of available data, we always choose the outermost available strike for this condition

8In our implementation of (3.6) we use the loss function f(C(K), Ĉ(K, θ)) =
∣

∣

∣
1− Ĉ(K,θ)

C(K)

∣

∣

∣
, as in

Hamidieh (2013).
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(i.e. Kp,c or Kc,c, as shown in Figure 3.1). This implies that by construction the

probability mass under the estimated tail and the empirical CDF match at the cut-off

point. Further, by rearranging the condition

Q(K∗) = Q̂(K∗, θ) = exp

{

−
[

1 + ξ

(

K∗ − µ

σ

)]−1/ξ
}

,

we obtain

µ = K∗ − σ
(

(− ln(Q(K∗)))−ξ − 1
)

ξ
.

The value of the empirical CDF Q(K∗) is known from the data (computed as the first

numerical derivative of the observed prices with respect to their strike). This way,

we have internalized one GEV parameter and we obtain µ
(

Q(K∗), K∗, θ̃
)

with a new

parameter vector θ̃ = (σ, ξ). This reduces (3.6) to a two-parameter problem.

For simplicity, the GEV above is stated in terms of strikes directly, while we perform

the optimization in simple returns. The density transformation is trivial and simply

requires S as additional parameter.

3.3.4 Implied volatility fitting and extrapolation

Fitting the price curve directly and building on equation (3.2) to derive the corre-

sponding RND is difficult. This is due to the non-linearity of this function as explained

for instance in (Brunner and Hafner, 2003). Moreover, the second derivative of the

price function with respect to strikes reacts sensitively to small data perturbations

present in observed market prices and coming from various sources such as for exam-

ple nonsynchronous trading and price discreteness. This fact is known as “curse of

differentiation”.

To overcome this issue, alternative approaches have been developed. One possibility

is to transform option prices using the famous Black-Scholes formula in order to get

the corresponding implied volatilities. Interpolation and smoothing is then performed

in this implied volatility space, which has desirable statistical properties. Finally, the

resulting continuous IV function is mapped back to the original price space where one

can rely on numerical differentiation techniques to derive the RND.9

9Note that it is not necessary to assume that the Black and Scholes (1973) model correctly specifies
the underlying asset dynamics. It simply serves as computational device to transform data into a

78



Since the implied volatility function is also unknown beyond the range of available

strike prices, there remains the question of how to extend and complete the estimated

RND. While Figlewski (2010) advises to consider tails drawn from a parametric dis-

tribution, it is also very common to extrapolate the implied volatility smile.

By far the most popular way to address this issue is constant implied volatility ex-

trapolation. The procedure was first presented in (Shimko, 1993) and is still applied

frequently in the literature (see (Bliss and Panigirtzoglou, 2004), (Jiang and Tian,

2005) and (Polkovnichenko and Zhao, 2013) among others). It is equivalent to the as-

sumption of lognormally distributed tails (for prices) and does therefore not conform

with features of typically observed asset distributions.

Another possibility is to linearly extrapolate the implied volatility function as shown

in (Jiang and Tian, 2007). However, in this case it matters whether the IV function is

expressed in terms of moneyness or log-moneyness. Thus we will consider both linear

extrapolation schemes in our numerical analysis.

Finally, implied volatility extrapolation can be achieved with a parametric specification

too. A popular and rather flexible parametric approach is the stochastic volatility

inspired (SVI) model introduced in (Gatheral, 2004). It depends on five parameters

θ = (a, b, ρ,m, σ) and describes the total implied variance (which is implied variance

times time to maturity) ω(k; θ) as a function of log-moneyness k. We have

ω(k; θ) = a+ b
[

ρ(k −m) +
√

(k −m)2 + σ2
]

,

with a ∈ R, b ≥ 0, |ρ| < 1, m ∈ R, σ > 0 and the obvious condition a+bσ
√

1− ρ2 ≥ 0

to ensure that ω(k; θ) ≥ 0 for all k ∈ R.

The model parameters have the following impact on the total variance function: a

determines the general level of total variance, b gives the angle between the left and

right asymptotes, increasing ρ induces a counter-clockwise rotation of the smile, σ

describes the at-the-money curvature and changingm translates the smile horizontally.

For an illustration we refer to Figure 3.2.

An interesting property of the SVI parameterization is its consistency with arbitrage

bounds for extreme strikes. More precisely, for a fixed time to expiry τ , the implied

Black-Scholes variance σ2
BS(k) = ω(k)/τ is linear in the log-moneyness k as |k| → ∞

which is consistent with Roger Lee’s moment formula (see (Lee, 2004)). We therefore

measurement space more conductive to apply curve-fitting techniques.
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Figure 3.2: Illustration of how the SVI model parameters affect the total variance function.

consider it as an additional extrapolation method.

3.4 Experimental Setting

The main contribution of this paper is a comparison of the above-mentioned estimation

techniques. More specifically, we analyze and contrast the performance (accuracy and

stability) of the different methods in recovering the missing RND tail. As schematically

illustrated in Figure 3.3, we depart from a theoretical market model with a known

data-generating process. With this model specification at hand, we calculate option

prices and derive the corresponding true risk-neutral density. The computed prices are

then used as necessary input for the different methods to obtain an estimate of the

unavailable tail. We finally evaluate the performance by comparing the fitted tails with

the theoretical one. Note that this would not be possible relying on traded options

where the true RND is unknown.

We continue now with a more detailed description of the selected market model and the

loss functions employed to measure the performance of the competing tail estimation

approaches.

3.4.1 Market model and implied densities

To mimic different market scenarios, we use several densities for which we examine the

performance of the different methods. Instead of assuming some arbitrary densities,
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Market model
dSt
St

= (r − d − λk̄)dt +
√
VtdW

(1)
t

+ dZt

dVt = κ(θ − Vt)dt + σ
√
VtdW

(2)
t

prices density

Tail fitting methods:

- Price fitting

- PDF fitting

- IV extraploation (estimated tails)

loss

Figure 3.3: Schematic illustration of the experimental setting.

we consider cases that were generated by a flexible model for the underlying asset

dynamics. Specifically, we employ the stochastic volatility with jumps (SVJ) model

suggested by Bates (1996).

This data-generating process is frequently used in the literature in order to obtain

an empirically relevant price process of the underlying asset (see among others (Jiang

and Tian, 2005), (Rompolis, 2010), (Lai, 2011) and (Fengler and Hin, 2014)). The

characteristic function of this model is known in closed form, which is convenient in

our experimental setting.

We employ it as a tool to generate risk-neutral densities with features typically ob-

served in practice, such as negative skewness and excess kurtosis. In this spirit, we

believe that our model choice represents a good trade-off between complexity and

tractability.10

The SVJ model assumes that the risk-neutralized stochastic process of the underlying

10We also refer to (Bu and Hadri, 2007). They provide a similar line of argument in order to
motivate the use of a Heston (1993) model specification (which is actually nested by the SVJ) for the
underlying asset, when comparing the performance of two common methods to estimate the RND.
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stock price St and its variance Vt are defined by

dSt/St = (r − d− λk̄)dt+
√

VtdW
(1)
t + dZt (3.7)

dVt = κ(θ − Vt)dt+ σ
√

VtdW
(2)
t , (3.8)

where W
(1)
t and W

(2)
t design two Brownian motions with correlation coefficient ρ, Zt is

a compound Poisson process with jump intensity λ and percentage jump size J with

ln(1 + J) ∼ N

(

ln(1 + k̄)− 1

2
δ2, δ2

)

and κ, θ and σ denote, respectively, the rate of reversion, the long-run mean and the

coefficient of variation (also known as “volatility of volatility”) of Vt.

Model-implied densities The characteristic function of this model can be used

for option pricing as well as for the computation of the corresponding PDF and CDF

by Fourier inversion. For our specific purpose it is important to know the densities

sufficiently far in the tails. Since it is a known issue of (numerical) Fourier inversion

techniques that the results can become unstable for events far out in the tails, we

specifically check the resulting densities and option prices for such effects.

We get the numerically most stable results with the following setup (technical details

can be found in the appendix):

Option prices Pricing by fast Fourier transform (FFT), following Carr and

Madan (1999). Interpolation to a finer strike grid in IV-strike

space

CDF Numerical first derivative of option prices

PDF Direct FFT of the characteristic function

Calculating the CDF using direct FFT needs an integral of the form
∫∞

0
ℜ
[

e−izxΦ(z)
z

]

dz

to be (numerically) computed. The z in the denominator increases the oscillating effect

in the resulting CDF for z → 0. We find that the CDF obtained as the numerical first

derivative of option prices behaves better in the left tail.

We consider parameter values for which the model generates empirically plausible

risk-neutral densities (see Table 3.1).
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Table 3.1: Different SVJ parameter sets used for the numerical analysis.

Set κ θ ρ r σ k̄ δ λ

1 1 0.034 0.000 0.020 0.250 -0.075 0.000 0.500
2 4 0.170 -0.550 0.020 1.390 -0.030 0.000 0.130
3 4 0.040 -0.600 0.020 1.500 -0.075 0.000 0.500

Scenario 1 is borrowed from (Bakshi et al., 1997) and represents a situation with

almost no skewness and excess kurtosis. The second scenario with parameter values

taken from (Borak et al., 2005) is in line with features usually observed in reality. The

implied density is negatively skewed and shows moderate excess kurtosis. Finally, the

third parameter set is selected such that it yields skewed densities with rather extreme

excess kurtosis. Nevertheless, this specification is not unrealistic at all. Similar or

even more extreme cases can be obtained when fitting the model of (Bates, 1996) to

observed market data during the recent crises or shortly after (i.e. between 2007 and

2010).

Figure 3.4 shows the implied risk-neutral densities of log-returns log(ST/St) with three

different maturities (30 days, 180 days and 360 days) whereas Table 3.2 contains a

summary of the corresponding moments.

Table 3.2: The table shows the volatility σIV , skewness κ3 and excess kurtosis κ4 of log-
returns for different maturities and genrated by the SVJ model with parameter sets as in
Table 3.1.

σIV κ3 κ4 τ

Set 1

0.06 -0.12 0.28 30
0.14 -0.08 0.56 180
0.19 -0.11 0.79 360

σIV κ3 κ4 τ

Set 3

0.06 -1.69 5.76 30
0.16 -2.59 14.10 180
0.22 -2.44 12.72 360

Set 2

0.12 -0.74 1.24 30
0.31 -1.22 3.18 180
0.44 -1.17 2.93 360

All in all we conclude that with these scenarios and all three maturities, we obtain

a wide range of different shapes for the RND reflecting various empirical features of

asset distributions. Consequently, a fair comparison of the different tail estimation

methods should be possible.
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Figure 3.4: The figure shows the implied densities of log-returns for three different param-
eter specifications of the SVJ model. For each set we consider three maturities: 1 month
(solid, orange), 6 months (dotted, green) and 12 months (dashed, blue).

3.4.2 Loss functions

In order to measure the performance of the considered estimation techniques, we use

the following three loss functions:

1) PDF loss: Mean absolute error of the fitted and model RND in the correspond-

ing tail area. That is in the region above (below) the cut-off point for the right

(left) tail respectively.

2) Higher moment loss: The ratio of the estimated non-central 4th moment

under consideration of the fitted tail, over the true 4th moment of the density
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(computed analytically, see Appendix 3.B). Values larger than one therefore

indicate an estimated tail heavier than the true one. For each call and put loss

we assume the respective other tail to be completely observable.

3) Price loss: Mean absolute price error between prices fitted and model prices.

Similar as for the PDF loss only options in the tails (i.e. with strikes above Kc,c

(right tail) or below Kp,c (left tail)) are taken into account.

The first loss specification represents a standard choice since we have in mind to fit

the missing RND tail. In addition, the two other loss functions help to quantify the

impact of a possibly inaccurate tail fit regarding higher moment and price estimates.

Higher moments are known to be particularly tail sensitive. Thus it is interesting to see

whether the true moments can be recovered with the inferred tail. Moreover, pricing

options by means of a given or estimated RND is an obvious application. The accuracy

of such RND induced prices can be analyzed through the third loss specification.

We are convinced that all three loss functions together provide a detailed view about

the quality of the estimated RND tail. Furthermore, a good fitting technique should

be able to deliver satisfactory results for all considered losses.

3.5 Results

3.5.1 Numerical performance under perfect conditions

In this section we present the results of the performance analysis under “perfect con-

ditions”. Specifically, we use the exact option prices as generated by the SVJ model,

with strike increments of one, i.e. ∆K = 1.11 This sufficiently reduces any error due to

discretely observable option prices and completely eliminates the issue of microstruc-

ture noise. The goal is to compare the performance of the different methods, assuming

that the only source of error is the limited available tail data.

For a comparison of the tail estimation methods, we truncate available call and put

option prices at varying Kp,c and Kc,c, repeating the fitting for all methods in each

point. We chooseKp,i andKc,i such that Q̂(Kc,c)−Q̂(Kc,i) = Q̂(Kp,i)−Q̂(Kp,c) = 7.5%

with Q̂ being the empirical CDF function. In other words our in-sample data for the

11As in all other settings in this paper we use S = 1300, so ∆K = 1 can be compared to the
magnitude of one S&P 500 index point.

85



fittings always covers 7.5% probability mass of the available tail on each side (see also

Section 3.6).12

We show the results in terms of all three introduced loss functions in Figures 3.5 and

3.6 (for puts and calls respectively), with the cut-off points reported as quantiles of the

respective densities. The results shown are for options with τ = 180 days to maturity

and all three SVJ parameter sets. Note that the maturity has only influence on the

shape of RND generated by the model and no further impact on the actual methods.

In both figures we separately plot the results for IV extrapolation methods (solid

lines) and methods that perform price- or density matching (solid lines and dashed

lines respectively, but same color for the tail type).

Figures 3.5 and 3.6 report a rich set of results. We summarize the most important

stylized facts and some specifics below. The full details can best be viewed in the

figures. We specifically want to point out that some of the tail fitting methods do not

appear in each of the panels in Figure 3.5. This is because of extremely high values

of the loss function, with the implication that these methods should not be considered

in such cases.

Generally, we find that the results vary along three main dimensions:

1. Assumed parametric tail

2. Fitting approach

3. Kurtosis of the density at hand (increasing from set 1 to set 3, see Table 3.2)

The effects are generally slightly different, depending on the considered loss function.

Further, due to negative skewness the effects on the left tail are much larger than on

the right (with the exception of set 1, which features an almost symmetrical density).

Results for the left tail Not surprisingly, the assumption of normal (or constant

implied volatility extrapolation respectively) or log-normal tails works best for little

excess kurtosis, but has the worst relative performance with heavier tails. We also

want to point out that density matching of a normal tail performs better or at least

equally good compared to constant IV extrapolation.

12No inner points are required for implied volatility extrapolation methods.
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On the contrary, we find that the assumption of GEV or GPD tails works well when

departing from the “close to normal” case. Only in the case of little kurtosis (set

1), the assumption of a GEV with price matching actually overestimates the tail-

heaviness (this is only true for the put side, as on the call side the less heavier tail

of the GEV is used). With the same exception, the results show that price matching

is always superior to density matching, both in terms of performance (level of losses)

and stability (smoothness of the curves). In most cases this is even true for the PDF

loss, which is the loss function actually minimized by density-matching methods.

A further important finding is that the GPD assumption cannot be applied for densities

with high kurtosis. In such cases, the fitted tails are extremely heavy and the resulting

E[X4] can be several hundred times higher than the true moment (note the missing

results for e.g. set 3).13 For density matching, this effect does even occur with GEV

tails, if the kurtosis is too high.

Among the methods that extrapolate IV, we find that the SVI model performs best

in all situations. It slightly outperforms also the best candidate of the price matching

methods (GEV). We see the largest difference for set 3 and the fourth moment loss

if the tail is truncated at larger quantiles. Also, we want to point out that linear

extrapolation in log-moneyness implies exponential extrapolation in regular money-

ness. This effect can be observed in the E[X4]-loss. For set 2, linear extrapolation in

log-moneyness already overestimates the fourth moment (the effect is even stronger

for set 3, results not reported due to very high losses). We thus recommend linear

IV extrapolation in simple moneyness or strikes on the put side. Finally, the results

indicate that the popular choice of constant IV extrapolation is inferior to almost all

other considered methods.

13In some cases the fourth moment will actually not be defined. We only obtain finite results since
we perform numerical integration on a finite interval.
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Figure 3.5: Loss comparison for the left tail with 180 days time to maturity including all
sets and methods. In the right panels, solid lines represent fits in price dimension, dashed
lines in PDF dimension. Details about the loss functions can be found in the text.
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Figure 3.6: Loss comparison for the right tail with 180 days time to maturity including all
sets and methods. In the right panels, solid lines represent fits in price dimension, dashed
lines in PDF dimension. Details about the loss functions can be found in the text.
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Results for the right tail Similar results can be obtained for tail-fits using call

data (Figure 3.6). In general, the ranking of methods remains the same. At the same

time, the magnitude of losses is significantly smaller on the right side of the density

compared to the left side. This means that the correct choice of a tail fitting method

for calls is not as crucial, especially if the total error from puts and calls is important.

Due to negative skewness, methods that do not imply heavy tails perform noticeably

better (this includes GEV with price matching on the call side). Although constant

IV extrapolation also falls in this category, it still performs worst in most cases.

Finally, on the call side we can observe a further issue of density matching methods.

With very thin tails (high kurtosis and negative skewness), obtaining a good fit be-

comes more difficult. As a result, the fits are numerically very unstable and sometimes

deliver spurious results. This leads to noisy loss functions for high quantiles (best

observed for set 3 in Figure 3.6). We comment further on this effect in Section 3.6.

Deviating effects for shorter time to maturity As already mentioned above, the

time to maturity per-se has no impact on the numerical experiments in this paper. Still,

the SVJ model produces different densities for different values of τ . For a comparison,

the corresponding loss plots with τ = 30 days can be found in the appendix. We omit

results for τ = 360 days, since they are almost identical to the ones presented in this

section.

An interesting observation between the results in this section and the appendix is that

GPD price matching still works well for an excess kurtosis of 3.18 (set 2 and τ = 180

days), but already results in too heavy tails for an excess kurtosis of 5.76 (set 3 and

τ = 30 days). We can therefore provide a rough limit (in terms of expected kurtosis)

up to which this method can still be used.

We conclude that it is possible to compensate missing data up to 15% probability

mass in the tails, by fitting a parametric tail or by IV extrapolation. However, the tail

assumption in combination with an appropriate estimation method is important.

1. For densities with low kurtosis, price matching and a GPD assumption, or linear

and SVI IV extrapolation work well.
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2. For high kurtosis, price matching and a GEV assumption, or IV extrapolation

with the SVI work well.

In all considered cases, the SVI method is the best choice (slightly outperforming the

GEV with price matching). On the other hand, it has the drawback that in theory the

resulting combination of tails and any other density estimation in the center, might

not deliver a valid density object (that integrates to unity). In any case, the choice of

a suitable method is much more important for the put tail, since the fitting errors are

much larger than for the call tail. The common practice of constant IV extrapolation

is clearly inferior to all other methods.

The previous discussion is based on the performance under all three loss functions.

Depending on the requirements of the application for which the fitted tails are subse-

quently used, a different ranking of the methods might be possible, especially if other

factors such as computational simplicity play a role.

3.5.2 Numerical performance under realistic market condi-

tions

In the previous section, we investigate the performance of the different methods under

the assumption that option prices are observed without noise and with fine strike

increments of ∆K = 1. However, such a scenario is rather unlikely in reality.

Consequently, we provide a supplementary analysis. The aim is to check the perfor-

mance of the tail estimation methods using “realistic” put and call option slices. For

this purpose, we consider maturity-dependent strike price intervals and cut-off points

Kc,c and Kc,p. Further, we randomly remove some options and disturb a part of the

remaining true option prices in order to mimic microstructure noise.

Table 3.3 shows the corresponding values used in our experiment. They reflect char-

acteristics of observed market data. That is to say, more data is available for the left

tail (OTM puts) compared to the right tail (OTM calls) and the quantile range of

observed strikes decreases with increasing maturity. The strike price intervals vary

between 5 and 25 (roughly corresponding to S&P 500 index points) and are larger for

longer time to maturity. Further we add noise to a fraction of option prices, where the
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magnitude of noise is distributed as

ǫ ∼ N
(

0,
s(P )P

7

)

.

The term s(P )P
7

denotes the standard deviation of the price error and depends on

the option price itself. The function s(P ) denotes the relative bid-ask spread of an

option (option spread divided by its price). We estimate s(P ) from empirical option

data. More precisely, we pool options with different expiries during a period of ten

years (2000 until 2010) and then fit a cubic smoothing spline through the observed

(Pi, (Ai − Bi)/Pi) pairs with Ai and Bi denoting the bid and ask price of single options

respectively. We use 1/7 as scaling factor for the standard deviation, such that less

than 0.1% of the noisy prices lie outside the empirical bid-ask spread.

Table 3.3: Description of the realistic experiment: τ gives the expiry in days, Q̂(Kc,p) and
Q̂(Kc,c) are the quantiles of the cut-off strikes, and ∆K denotes the strike price interval. The
term remove indicates the fraction of options that are removed and noise the percentage of
remaining options with an added noise component.

τ Q̂(Kc,p) Q̂(Kc,c) ∆K noise remove

30 0.02 0.95 5 35% 15%
180 0.05 0.90 20 35% 15%
360 0.10 0.85 25 35% 15%

We use this procedure to construct a set of put and call option prices, and then apply

the different methods to get estimates of the risk-neutral density tails. In addition,

we repeat the whole exercise (i.e. data generation and tail estimation) 500 times to

obtain an indication about the distribution of the different losses.

The corresponding outcomes for expiries 30 days and 180 days are presented in Figures

3.7 and 3.8 respectively.14 They summarize the accuracy and stability for all methods

in both the right and left tail, and all parameter sets respectively.

The accuracy is measured through the median loss and shown with points in the plot.

As expected, the results are conform with the outcomes presented in the previous

analysis for the corresponding cut-off points. That is, the most accurate results overall

are obtained using either price fitting methods with tails drawn from a GPD or GEV

14Results for expiry 360 days are again qualitatively similar to those shown for time to maturity
180 days and therefore not reported for the sake of brevity.
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Figure 3.7: Accuracy and stability results for all methods and time to maturity 30 days.
Parameter sets 1 − 3 arranged vertically, each with put and call tail results on the left
and right side respectively (note the different y-scales!). Points are median losses whereas
bars indicate the median absolute deviation (over 500 repetitions). The suffix “-P” indicates
price-fitting.

distribution or implied volatility extrapolation by means of the SVI model of Gatheral

(2004).
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Figure 3.8: Accuracy and stability results for all methods and time to maturity 180 days.
Parameter sets 1 − 3 arranged vertically, each with put and call tail results on the left
and right side respectively (note the different y-scales!). Points are median losses whereas
bars indicate the median absolute deviation (over 500 repetitions). The suffix “-P” indicates
price-fitting.

An advantage of this second and more realistic experiment is its capacity to express

the robustness/stability of the tail estimation methods. It is measured using the
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median absolute deviation of the losses, and indicated with bars in the plot. We find

that the density-matching approaches usually show the highest variance. This is not

surprising since these methods rely on a prior estimate of the RND in order to fit the

corresponding tails. In contrast, the other methods merely depend on observed put

and call prices or their Black-Scholes implied volatilities. The stability of the best

approaches with respect to accuracy is rather similar. However, fitting prices with a

GEV assumption seems to be slightly more robust than modelling prices with a GPD.

Finally, we notice that constant implied volatility extrapolation is very stable. Yet,

the median loss is typically so high that it still performs weakly overall.

3.6 Robustness

In this section we present our findings regarding the actual implementation of the

methods presented in Section 3.3, in particular the ones that match parametric tails

(i.e. IV extrapolation is not considered here). This includes issues that we encountered

with the data and optimization routines, but do not appear in the final results (since

properly taken care of) in Section 3.5.

The contents of this section should be considered a practical guideline for researchers

who are interested in using the methods examined in this paper.

3.6.1 How much data to use

For all methods, the cut-off point (Kp,c or Kc,c) is typically either dictated by the data

or is fixed by construction. On the other hand, the “inner” point (Kp,i or Kc,i), which

limits the in-sample data, can in principle be chosen arbitrarily. Hamidieh (2013) uses

10% of the available data in the tails, while Figlewski (2010) chooses Kp,i such that

Q̂(Kp,i) − Q̂(Kp,c) = c (for calls analogously), with c some probability mass (in the

case of the specific paper c = 3%). Another alternative would be a specific difference

in strike, return, etc.

In this paper we also use the method suggested by Figlewski (2010), because it is ap-

plicable rather independently of the market conditions (while e.g. strike or moneyness

ranges can change). The actual amount of used data will of course still depend on the

density and position of Kp,c and Kp,i. See Figure 3.1 for an illustration of this effect

(difference between call and put side).
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Similar to a bandwidth parameter in non-parametric regressions, the choice of the

parameter c allows for a bias-variance tradeoff for the tail fittings. With an increasing

c there is more in-sample data available for the estimation. On the other hand, this

additional data comes (by construction) from the more central part of the distribution

and is therefore less relevant for the tail.

In our analysis c ∈ [5%, 10%] delivered good results, specifically in terms of reduced

variance, with moderately increased bias. The figures reported in Section 3.5 are all

obtained with c = 7.5%.

As with the losses reported in Section 3.5, we observe that effects vary depending on

the method, and more importantly for put and call tails. In general, due to the steep

right tail (i.e. for calls) in the case of negatively skewed densities, smaller values for

c are more appropriate on the right side, while for the longer left tail (i.e. for puts) a

higher c should be used.

We illustrate this bias-variance tradeoff in Figure 3.9, for SVJ set 2 and τ = 180 days.

This figure shows the same experiment as in Section 3.5.2, but repeated for different

values of c (we only report the methods that actually require the choice of a c). The

main observations are:

• Bias and variance increase with c if we use density matching under GEV or GPD

assumption.

• GEV and GPD with price matching exhibit the classical bias/variance tradeoff.

For the latter, bias first decreases and increases slowly for c > 15%.

• The effects slightly differ, depending on the loss function.

We report the corresponding plot for the right tail in the appendix for completeness.

In this case, all methods exhibit the expected behavior with increasing c (decreasing

variance, increasing bias). Again, the effect on the call side of the data is significantly

smaller.

3.6.2 Fat tails

When working with GPD or GEV tails, it is by construction possible to obtain densities

with “fat tails”. For ξ ≥ 1
n
, n ∈ N, the nth order moment of both distributions is not
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Figure 3.9: Mean/Variance comparison of all tail fitting methods that require a choice
of c = Q̂(Kp,i) − Q̂(Kp,c), for different values of c. The results are shown for puts, set
2 and 180 days to maturity. The error bars represent the median and median absolute
deviation of losses from 500 Monte Carlo fits including noise. Results are shown for c ∈
{0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25}, from left to right, colored according to their size. The
suffix “-P” indicates price-fitting.

finite. This property is transferable to constructed densities which only use these

parametric specifications in the tails.15

In practice, this leads to cases in which we significantly overestimate the fourth moment

when using fitted GEV or GPD tails.16

We want to point out that for applications that do not require the (higher) moments

to be finite (or that numerically only evaluate the density on a bounded interval), the

fit in such cases can still be reasonably good. We can observe this by comparing the

15For the GEV, this is only true if one uses the right GEV tail, since the left GEV tail has bounded
support for ξ > 0.

16As mentioned in Section 3.3, we often obtain moments that are several hundred times higher
than the true one. In fact, they might even not defined at all.
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different loss types in Section 3.5.

More importantly, we want to stress that in all cases in which we observed such fits,

this was due to unsuitable parametric assumptions or issues with the data. More

specifically

1. When fitting GPD tails to densities with high kurtosis, the necessary in-sample

data covers far more than what could be considered the “tail” of the distribution

(see also (Ivanovas, 2014) for further results with actual market data).17

2. When option prices are observed with noise (in practice or as generated in Section

3.5.2) and the tail is fitted far OTM, spurious results are possible due to local

optima in the optimization (see also the following subsections).

Therefore, results of GEV or GPD fits with ξ > 0 and especially with ξ > 0.1 should

always be checked carefully.

3.6.3 Less can be more

Depending on the density at hand, the cut-off points Kp,c, Kc,c and the chosen amount

of data (determined by c as introduced above), it is possible to run into another

numerical difficulty, namely “weak identification”.

Too far out in the tails, either the density or OTM option prices are almost zero. The

resulting effect can be loosely compared to a “flat likelihood surface”, i.e. there is (too)

little information to distinguish an optimum in the loss function. This can lead to

spurious results in the fitted parameters and therefore densities. Besides the discussed

point of fat tails (i.e. the tail decay can not be recovered correctly from the data) we

have also observed cases with even increasing tails, leading to multi-modal densities.

Further, with lower prices in the tails there is a worse “signal-to-noise ratio”, i.e. the

relative size of noise compared to the prices becomes large. With far OTM options, it

can e.g. happen that the spread is as large as the price itself. This effect is even am-

plified for the second derivative of the prices (i.e. the density). This means that fitting

tails becomes increasingly sensitive to (microstructure) noise in the data (see Sections

17As a validation mechanism of a GPD choice, one can compare the fitted tail shape parameter ξ
to the one of a GEV fit to the same data. These should be similar (say ±0.05) in cases where the
GPD assumption is still valid.
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3.2 and 3.5.2), if the cut-off point is chosen too far out in the tail. Or in other words,

if the rest of the in-sample data is relatively flat, optimization might deliver results

that simply represent the “best fit to the noise”. This result can also be observed in

Figures 3.5 and 3.6, in the ends of the tails.

Thus, it can be strongly beneficial to discard some portion of the data in the tails, up

to a point where microstructure noise can be ignored (at least for most of the in-sample

data).

It is already common practice in empirical option pricing literature to discard some

data in the tails by some rule (e.g. minimum price, or a pre-defined interval in mon-

eyness). This is known as “data filtering” (see Chapter 4 for a review of typical data

filters and further arguments in favor of this practice).

Following our results from Section 3.5, we can recommend cut-off points such that the

fitted tails cover probability mass in the range of 1% to 5% (sometimes even up 10%

or 15% is possible). The bias increase due to less data in the tails is small, compared

to the variance improvement.

Finally we would like to add that IV extrapolation methods are relatively robust with

respect to these data issues, since the fitting is done in a transformed space with better

properties in the tails.

3.6.4 Optimization issues

When optimizing the loss function of methods that perform price or density matching,

the global minimum can be difficult to achieve. Often, several parameter combinations

are locally optimal and provide a challenge to the optimization algorithm.

In our applications we tried two optimization routines, namely Nelder-Mead Simplex

and Differential evolution (a stochastic, global optimizer).

The second can still be fooled into local minima. To achieve robust results, one needs

to increase search parameters (e.g. number of population members) to a point where

it becomes relatively slow. The Simplex algorithm on the other hand is fast, but often

converges into non-optimal solutions unless good starting parameters are provided.

This is especially true for methods using the GEV density, followed by GPD. We

achieve the best results (in terms of speed and reliability) by using the Simplex with

preceding grid search for starting parameters.
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Grid values of the tail shape parameter ξ are the most critical. Parameter σ depends

on the particular space in which the optimization is performed (log-returns, simple-

returns, strikes). For ξ we find values between −0.6 and −0.05 for puts and between

−1.6 and −0.2 for calls to work best. We always include some points with ξ > 0,

although they rarely turn out to be optimal (see Section 3.6.2). The grid values of

σ should be chosen in the range of typical market volatility. Additionally, a very

small value for σ (say 0.03 for log-returns) should also be included. The typical grid

size in our optimizations was in the range of 20 - 30 points. We finally use the 3-4

best parameter combinations of the grid search as starting parameters for the Simplex

algorithm.

3.7 Conclusion

In this paper, we summarize and review several methods to estimate risk-neutral den-

sity tails from option data. They can be categorized into three groups: methods that

apply density-matching, price-fitting approaches and methods that extrapolate the

implied volatility smile. Moreover, we introduce a new tail extension approach that

combines the idea of price matching used in (Hamidieh, 2013) with the distributional

assumption of Figlewski (2010) (i.e. generalized extreme value tails).

To compare the different estimation techniques, we conduct a performance analysis.

By imposing a data-generating process for the underlying asset, we compute option

prices and the corresponding risk-neutral density. We then analyze how accurately the

different methods can recover the tail of this density, when the computed option prices

are only used up to a certain maximum or minimum strike price.

Overall, we find that the best performance regarding accuracy and stability is achieved

either with price matching and tails drawn from a generalized extreme value (GEV)

distribution, or implied volatility extrapolation by means of the stochastic volatility

implied (SVI) model of Gatheral (2004). In addition, we provide evidence that the

employed loss function plays an important role. More specifically, parametric tails

fitted based on price-matching approaches generally outerperform those using density-

matching, independently of the chosen parametric specification.

The assumption of a GEV tail is only inappropriate when the true density is close

to a normal with small standard deviation. In such cases, we observe that the fitted
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GEV distribution implies a too heavy tail, and the assumption of another parametric

distribution such as the normal or log-normal provide good performance instead.

The generalized pareto distribution (GPD) is best justified from a theoretical stand-

point and typically yields results very similar to the GEV. But for densities with high

kurtosis, we often observe that GPD tails substantially overestimate the tail-heaviness

of the true distribution, which particularly affects the corresponding higher moment

estimates.

Implied volatility extrapolation using the SVI model (slightly) outperforms even the

best choice of parametric tails. However, this method does not impose any explicit

condition on the cumulative distribution function, and therefore the resulting density

might not integrate to unity when the SVI is only used to obtain the tails of the

distribution.

Finally, the commonly applied method of constant implied volatility extrapolation

performs rather badly in almost all considered cases. While its results have very small

variance (i.e. it is robust to noise in the data), it strongly underestimates the tails of

the distribution and consequently the (higher) moments.

3.A Univariate extreme value theory

The Fisher-Tippett-Gnedenko theorem is a fundamental result in extreme value theory

(EVT), as it provides a description of the limiting behavior of appropriately normalized

sample maxima.

Let us assume to have a sequence {Xi}i≥1 of independent and identically distributed

random variables with distribution function F and define Mn = max(X1, . . . , Xn). If

there exist sequences of normalizing constants an > 0 and bn ∈ R such that

P ((Mn − bn)/an ≤ x) → G(x), for n → ∞, (3.9)

where G(x) is a non-degenerate distribution function, we say that the distribution F

is in the maximum domain of attraction of G and we write F ∈ MDA (G).

Fischer and Tippett (1928) and Gnedenko (1943) have shown the following theorem:

Theorem 1 (Fisher-Tippett-Gnedenko). If F ∈ MDA (G), then G must be of the

same type as one of the following distributions:18

18Two distributions G1 and G2 are said to be of the same type if there exist constants a > 0 and
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Type I (Gumbel):

Λ(x) = exp [− exp(−x)] , x ∈ R,

Type II (Fréchet):

Φα(x) =

{

0, x ≤ 0,

exp(−x−α), x > 0,

Type III (Reversed Weibull):

Ψα(x) =

{

exp [−(−x)α] , x < 0,

1, x ≥ 0,

for some parameter α > 0.

It is possible to summarize the three types mentioned in Theorem 1 above in a single

parametric family known as the generalized extreme value distribution (GEV). The

corresponding distribution function is

Gµ,σ,ξ(x) =

{

exp
{

−[1 + ξ(x− µ)/σ]−1/ξ
}

, if ξ 6= 0,

exp {− exp[−(x− µ)/σ]} , if ξ = 0,

for all x such that 1+ξ(x−µ)/σ > 0. There are three parameters: a location parameter

µ ∈ R, a scale parameter σ > 0 and a shape parameter ξ ∈ R. The parameter ξ is

important since it determines the distribution type. If ξ < 0, the support of G is

bounded from above at x = µ − σ/ξ and we recover a reversed Weibull distribution

with α = −ξ−1. For ξ = 0, G corresponds to a Gumbel distribution with unbounded

support and whose upper tail shows an exponential decay. Finally, for ξ > 0, the

support of the distribution has a lower bound at x = µ − σ/ξ and we get a Fréchet

distribution with α = ξ−1. In this case, the shape parameter also controls the decay

of the upper tail and thus the potential severity of extreme events. In particular, the

rth moment of the GEV distribution is only finite if rξ < 1.

Remember that Theorem 1 only makes a statement about the limiting behavior of

appropriately normalized maxima but does not provide conditions when such a limit

law exists. However, it can be shown that just about any continuous distribution used

in statistics and finance is in the MDA of G.19

A further important family of probability laws in EVT is the so-called generalized

b ∈ R such that G1(ax+ b) = G2(x) for all x ∈ R.
19For a more detailed theoretical discussion about that point and some proofs, we refer to Resnick

(1987).
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Pareto distribution (GPD). The GPD is usually expressed as a two-parameter distri-

bution of the form

Hσ,ξ(x) =

{

1− (1 + ξx/σ)−1/ξ, if ξ 6= 0,

1− exp(−x/σ), if ξ = 0,

with σ > 0. The support is x ≥ 0 when ξ ≥ 0 and 0 ≤ x ≤ −σ/ξ when ξ < 0. The

GPD subsumes some other distributions under its parameterization. For ξ > 0 we

obtain a reparameterized version of the usual Pareto distribution, if ξ < 0, a Pareto

type II distribution is recovered and the case ξ = 0 corresponds to the exponential

distribution.

We can extend the two parameter family by adding a location parameter µ. We get

Hµ,σ,ξ(x) which is defined as Hσ,ξ(x− µ).

The next theorem (see Balkema and De Haan (1974) and Pickands (1975)) is often

referred to as the second theorem in EVT. It highlights the importance of GPD when

modeling extreme events as values above a high threshold.

Theorem 2 (Pickands-Balkema-De Haan). Assume that X is a random variable with

distribution function F ∈ MDA (G) and let x∗ = sup{x ∈ R : F (x) < 1} be the finite

or infinite upper endpoint of the distribution F . Then, we have

lim
x→x∗

sup
0≤x≤x∗−u

∣

∣P (X − u ≤ x|X > u)−Hσ(u),ξ(x)
∣

∣ = 0,

for a positive measurable function σ(u) and a fixed shape parameter ξ.

We conclude that for a large class of distributions, i.e. F ∈ MDA (G), GDP can

accurately approximate the probability of an excess above a sufficiently high threshold.

If GPD is an appropriate choice to model the conditional distribution of the excesses

above some high threshold u, we may use the same distributional assumption for the

tail above this high threshold too. Let us demonstrate that this is indeed true. We

have for x ≥ u

F (x) = P (X ≤ x) = (1− P (X ≤ u))P (X − u ≤ x|X > u) + P (X ≤ u)

and we know that P (X−u ≤ x|X > u) can be approximated with Hµ,σ,ξ(x) for u large.

In addition, an estimate of P (X ≤ u) can be obtained using the empirical distribution
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function Fn. Hence, we get the following approximation of F (x):

F̂ (x) = (1− Fn(u))Hµ,σ,ξ(x) + Fn(u).

It is relatively easy to show that F̂ (x) is also generalized Pareto distributed with

identical shape parameter ξ but with a different scale parameter σ̃ = σ(1 − Fn(u))
ξ

and new location parameter µ̃ = µ− σ̃((1− Fn(u))
−ξ − 1)/ξ.

We close this short introduction of EVT with a result known as closure property of

GPD. The following lemma formalizes this:

Lemma 1. Let X be a random variable with distribution function F ∈ MDA (G) and

further define x∗ = sup{x ∈ R : F (x) < 1}. If it is true that for some high threshold

u0 and 0 ≤ x ≤ x∗ − u0, we have

P (X − u0 ≤ x|X > u0) = Hσ(u0),ξ(x)

with ξ ∈ R and σ(u0) > 0. Then we obtain for any higher threshold u1 > u0

P (X − u1 ≤ x|X > u1) = Hσ(u1),ξ(x)

with

σ(u1) = σ(u0) + ξ(u1 − u0).

3.B Characteristic function of the Bates model

The characteristic function of the SVJ model of Bates (1996) can be found in the

original paper itself, or with slightly different notations in e.g. Bakshi et al. (1997) or

Borak et al. (2005). The latter provides the most concise notation as follows (for the

log-price xt under the risk-neutral measure):

Φxt(z) = ΦD
xt
(z)ΦJ

xt
(z) (3.10)

where
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ΦD
xt
(z) =

exp
{

κθt(κ−iρσz)
σ2 + izt(r − λk̄) + izx0

}

(

cosh γt
2
+ κ−iρσz

γ
sinh γt

2

)
2κθ
σ2

· (3.11)

exp

{

− (z2 + iz)v0

γ coth γt
2
+ κ− iρσz

}

, (3.12)

and

ΦJ
xt
(z) = exp

{

tλ

[

exp

(−δ2z2

2
+ i(ln(1 + k̄)− 1

2
δ2)z

)

− 1

]}

(3.13)

give the diffusion and jump part respectively. The parameters are as described in

Section 3.4.1. x0 denotes the initial log-price, v0 the initial variance and i the imaginary

number.

For an extensive review of characteristic functions and their applications in option

pricing we refer to Schmelzle (2010). We briefly list some properties that are needed

in our application.

The characteristic function of a real random variable X is defined as

ΦX(z) = E
[

eizX
]

=

∫ ∞

−∞

eizxgX(x)dx, (3.14)

where gX(x) is the density function of the variable and the integral above is the Fourier

transform F [gX(x)] of the density function. We therefore obtain the density function

by Fourier inversion of the characteristic function

gX(x) = F−1[ΦX(z)] =
1

2π

∫ ∞

−∞

e−izxΦX(z)dz. (3.15)

For the CDF we have (following Schmelzle (2010) and Gil-Pelaez (1951) respectively)

GX(x) =
1

2
− 1

2π

∫ ∞

−∞

e−izxΦX(z)

iz
dz. (3.16)

Since PDF and CDF are real-valued and due to symmetry in the real part of ΦX(z),
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we can simplify to

gX(x) =
1

π

∫ ∞

0

ℜ[e−izxΦX(z)]dz. (3.17)

and

GX(x) =
1

2
− 1

π

∫ ∞

0

ℜ
[

e−izxΦX(z)

iz

]

dz. (3.18)

To actually compute the PDF, we use the fast fourier transform (FFT) algorithm,

which is an efficient means to compute sums of the type (discrete fourier transform)

wu =
N−1
∑

j=0

e−i 2π
N

juxj (3.19)

for u = 0, . . . , N − 1. This can be used to compute a discretized version of (3.17).

The approach for the CDF is similar. But as pointed out in Section 3.4.1, the results of

the FFT applied to (3.18) start oscillating (albeit on a very small scale) for negative log-

returns far in the tail of the density. This is most likely due to z in the denominator in

(3.18). We obtain a numerically better behaved CDF function in this range, by taking

the first numerical derivative from computed option prices (see below) with respect to

their strikes. We therefore omit the expression for the CDF for brevity.

Moments For our higher moment loss function we need the fourth, non-centralized

moment of the respective densities. As discussed in Schmelzle (2010), we can obtain

the nth non-central moment as

E[Xn] =
1

in
dnΦX(z)

dzn

∣

∣

∣

∣

z=0

,

which we compute analytically in Mathematica.

Option prices As shown by Carr and Madan (1999), the FFT algorithm for the

discrete fourier transform in equation (3.19) can also be used to obtain option prices.

106



Additionally to the fourier inversion, the pricing method requires the use of a “damp-

ening factor” α, since the call price function in terms of log-returns is not square

integrable (for details we refer to the original paper or the review in (Borak et al.,

2005)). For our application we choose α = 1.2, N = 211 discretization points, and

discretization intervals of η = 0.2 in the frequency domain. We compute call prices by

application of FFT and put prices by using the put-call parity.

3.C Additional plots
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Figure 3.10: Loss comparison for the left tail with 30 days time to maturity including all
sets and methods. In the right panels, solid lines represent fits in price dimension, dashed
lines in PDF dimension.
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Figure 3.11: Loss comparison for the right tail with 30 days time to maturity including all
sets and methods. In the right panels, solid lines represent fits in price dimension, dashed
lines in PDF dimension.
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Abstract

Option prices are helpful for various applications other than option

pricing itself, given that they contain information on the risk factors

driving the underlying price process. Interestingly, the step of data

preparation is often marginalized in the empirical literature. This paper

aims to close this gap. We discuss why filtering option prices might be

sensible and present the most common approaches. In addition, and

more importantly, we introduce new filtering methods based on the idea

of “market activity”. Using a large data set of intra-day S&P 500 option

prices, we analyze the effect of the different filters. We provide evidence

that they yield to statistically different strike/moneyness ranges and

show that these differences can have a non-negligible impact on tail

sensitive applications such as moment estimation.

Keywords: Option data, filtering, market activity, moment estimation.
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4.1 Introduction

Exchange traded option data is a valuable tool in the financial literature, and its usage

extends beyond the already wide field of option pricing itself. Option prices, especially

when considered over a range of strikes, contain information about investors’ risk

attitudes and their expectations regarding the future evolution of the underlying. Thus

they are helpful for various applications such as for example estimating the implied

risk-neutral density (see (Figlewski, 2010) for a review of methods), managing risk

(Aı̈t-Sahalia and Lo, 2000), or studying the empirical pricing kernel and investors’ risk

preferences (Jackwerth, 2000; Rosenberg and Engle, 2002).

A very popular data choice for such research topics are options written on the S&P

500. This index is considered a good indicator of the real economy (because of its

diverse constituents), and the corresponding options are therefore expected to contain

information regarding investors’ expectations on this economy. However, with up to

2300 - 2400 different liquid options available at a time for trading on the Chicago

Board of options exchange, there is an enormous possible data set that researchers can

exploit for their specific applications. It is therefore well-accepted practice to focus

on some subset of this full data set for empirical work. While there exist some basic

conventions in the literature as to which subset to choose, there does not seem to

exist a final consensus on this topic. Moreover, the main focus of research papers is

usually on the theoretical contribution and the final results, whereas the step of data

preparation, known as “filtering” of option prices, is often marginalized.

In this paper, however, we focus specifically on data choice and cover in more detail

this simple but important topic in empirical research. Departing from the full set of

intraday S&P 500 option data, we discuss the reasoning to consider specific subsets

and show how to specify them. To this end, we list and discuss a list of popular

data filters (especially for the tails) and suggest a further tail filtering concept. Our

approach builds on the idea that the resulting data should be recent and economically

representative. More precisely, we develop three methods that rely on proxies for

market activity, based on intraday data. For ease of application, we condense the

resulting filter to a simple linear model that defines the data cut-off points as a function

of time to maturity. We find that our new filter is generally more restrictive in the

tails than other common filters applied in the literature.

In a second part of the paper, we compare the effect of different tail filters and provide
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evidence that they yield statistically different data ranges. In addition, we investigate

whether these differences can have an impact on the outcomes of empirical applications.

More precisely, we calculate option-implied moments of the risk-neutral distribution

using the method of Bakshi et al. (2003). Not surprisingly, we find that in particular

estimates for higher moments like skewness and kurtosis show a substantial dependence

on the used filter for option data in the tails. However, we do not find that other (non

tail-sensitive) applications depend as crucially on the filter.

Given that many applications are not particularly tail-sensitive, and that there exist

appropriate extrapolation tools for those that are (see Chapter 3), we believe that

our new activity-based filters offer an interesting alternative to the existing filtering

techniques, because of their economic justification.

The rest of this paper is organized as follows: Section 4.2 contains a description of the

option terminology used in this paper and introduces the data that is subsequently

employed for our analysis. In Section, 4.3 we discuss why filtering might be sensible

and provide a summary of the most common techniques. Further, we introduce new

filtering methods that are based on the idea of market activity. In Section 4.4, we

compare whether different filters yield to statistically different data sets and investigate

the impact of these differences on empirical applications. Section 4.5 concludes the

paper.

4.2 Terminology and data description

In this section we introduce the option data terminology used in this paper. We also

provide a description of our data set, since it is needed to subsequently describe the

filtering techniques.

Option data terminology

Some of the terms related to option data are used ambiguously in the literature.

Therefore we summarize the most important ones and how they are defined in this

paper. While we aim to provide a filter that can be applied to end-of-day data, we will

primarily use intraday data to define our filters. Consequently, this list also contains

terms related to intraday/tick data.
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Trade (tick) An actual transaction of a specific option recorded by the exchange.

Consists of a trading price and a trading volume.

Trade price The (unique) price recorded in a transaction of an option. Also known

as “transaction price”. Trade prices have the advantage that they are consensus

prices since two market participants actually agreed to a transaction at this price.

Quote (tick) We understand quotes as “level I quotes”, i.e. the combination of best

bid and best ask offer in the order book at a given time. A quote therefore

consists of a bid price (price at which the buyer offers to buy), a corresponding

bid volume (number of contracts the buyer wants to buy), and analogously ask

price and volume for the seller. A new level I quote is recorded whenever any of

these four elements changes.

Quote price A quote has the disadvantage that it consists of two price indications

and therefore no actual consensus price. When referring to a quote price we

use the mid-price as an estimate for the latent true price, which is a common

convention in the literature.

Closing price The closing price generally refers to the last price of an option observed

at or before market closing. But the term is used somewhat ambiguously in

the literature. On the one hand, it does not answer whether this last price is

taken from quote prices only, trade prices only or even both (depending on what

occurred more recently). On the other hand, it is not clear whether a closing

price is necessarily the actual market price. This is because data providers might

apply some sort of filtering or smoothing/fitting to obtain the finally reported

price. We use themid-price of the last available quote tick at or before 15:15 CST,

which is the closing time of the market for S&P 500 options on the Chicago Board

of Options Exchange (CBOE).

Option data

We use data from market data express, a subsidiary of CBOE. Specifically, their MDR-

SPX product, which covers intraday level I quotes and trades of all (regular) S&P 500

options.

The market for SPX options is one of the most active index options markets in the

world and it operates every trading day between 08:30 and 15:15 CST. At any time,

115



option contracts with up to 12 times to maturity are traded, with the exact expira-

tion date being the Saturday following the third Friday of the month. The exercise-

settlement value is equal to the opening value of the index on the last business day

(typically a Friday) before the expiry date, and trading usually ends one day earlier

(typically a Thursday). Options on the S&P 500 are European options, exercise takes

place on the last business day before expiration, which results in a delivery of cash on

the next trading day after expiration.1

Our data period covers all trading days from 2008 to 2011. For our analysis, we

exclude “quarterlies” and “weeklies”2 and focus on the regular March, June, September

and December expiries, plus three “near month” expiries. We further exclude options

with expiries longer than one year or shorter than ten calendar days (see also next

section about maturity filtering). Unless stated differently, all prices correspond to

closing prices as defined in the previous section. We further assume that the risk-free

interest rate r is deterministic and does not change intraday. We further consider

dividends in the form of a dividend yield δ, for which we make the same assumptions.

We obtain both on a daily basis by linear regression of several (at least 4) at-the-money

(ATM) put-call option pairs, separately for each maturity as follows:

Ci − Pi = α + βKi,

with Ci and Pi the prices of a call and a put respectively, with common strike Ki. We

then obtain estimates of annualized r and δ through the put-call parity, i.e. r = log(−β)
−τ

and δ = log(α/S)
−τ

, where S denotes the underlying price and τ the time to maturity in

fractional years.

4.3 Option data filters

When data filters are applied in empirical research, the discussion and motivation is

often limited. We therefore review some reasoning why filtering might be sensible.

Bluntly speaking, the core idea in empirical economic research is to infer results or

1The S&P 500 index option specifications can be found at
http://www.cboe.com/products/indexopts/spx_spec.aspx

2Next to the regular option class (with expiry on Saturdays), the CBOE also has special one with
expiries at the end of each quarter (end of March, June, September and December respectively) and
one with very short contract duration of one week, expiring each Friday.

116



to make statements about a (theoretical) representative agent. By using financial

market data, one tries to observe and use consensus prices between several market

participants. Through the argument of price formation, information in such data can

then be interpreted as “average attitude” of several market participants.

While there might be reasons to investigate specific parts of markets or single agents,

the argument in favor of S&P 500 options in asset pricing is almost exclusively to

make a statement about a “broad market”. While rarely mentioned explicitly, we

further make the assumption (and impose it for this paper) that this intention also

implies the aforementioned idea of observing a consensus or equilibrium state between

a broad variety of market participants.

Additionally to this economic representativeness of the data, the concern arises whether

the data itself is technically accurate, i.e. if the exchange-recorded prices are actually

a good measure for the economic information content. Specifically for option prices,

this includes the issue of microstructure noise (minimum tick sizes, bid-ask bounce,

non-synchronicity) of the option prices themselves and potentially the corresponding

underlying asset.

We understand data filtering as a tool to ensure or at least improve these two main

features (representativeness and accuracy) of the filtered data.

A note on liquidity A notion that often appears in the context of data filtering is

liquidity. For example, data is filtered because some portion of the data has “higher

liquidity” or to remove “illiquid options”. Having the two aforementioned goals in

mind, we briefly discuss the role and meaning of market liquidity.

Strictly speaking, liquidity describes the (sufficient) availability of securities or con-

tracts for trading by a market participant, i.e. that there is enough volume offered by

one or several counterparties to trade at a specific price without large changes in the

price. While there are several possible measures for liquidity, the typical one for option

contracts in the literature is the ex post trading volume. However, if one uses closing

prices, a desired property is that the option prices are recent (and fairly synchronous).

Both cannot necessarily be judged by aggregated daily trading volume. Consequently,

we consider a different measure and focus on price update frequency rather than trad-

ing volume as measure of liquidity. We believe that the frequency is a better proxy to

judge how recent prices are (e.g. at market closing).3 We specifically use the number

3This is of course only possible with intraday data. With classical end-of-day prices, the aggregated
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of quote or trade ticks during the day.
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Figure 4.1: Typical distribution of trade (top panel) and quote ticks (bottom panel),
depending on log-moneyness and time to maturity τ (in fractional years). The plot shows
the average number of quotes and trades per day for the first 200 days of 2010. Data is
truncated to the log-moneyness range [−1, 0.6], to focus on the most active part of the
market.

Figure 4.1 shows the typical distribution of ticks for both trades (top panel) and quotes

(bottom panel), for the first 200 days of 2010. We observe that generally quotes occur

volume would be still the best available proxy for frequent pricing activity.
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on a larger moneyness domain than trades. And obviously, there are more quotes

over the day than actual transactions. If we compare where most of the ticks occur,

we see that quotes are more frequent in-the-money (ITM) (independently of time to

maturity) while trades are most frequent ATM and for short times to maturity. Put

trades occur more out-of-the-money (OTM), while for calls the picture is relatively

symmetric with a slight tendency towards ITM options for short expiries. We will

come back to these patterns in the following section.

4.3.1 Common filters

Often applied option pricing filters can be categorized into two groups: moneyness/strike

and maturity filters. In this section we provide a description of the most frequently

used techniques and their reasoning.

Moneyness/strike filters The most common filter in this category is to remove

ITM options. The argument for this filter is the higher liquidity (and therefore typically

the number of transactions) for OTM options. This is also what we observe in our data

for trades. But interestingly, this argument is typically used for end of day data, i.e.

closing prices, which are very likely to be constituted of quotes. However, as illustrated

in Figure 4.1, one could expect to get, on average, more recent prices (because of an

overall higher number of ticks over the day) using ITM data.

But there is an option pricing argument, which still comes in favor of OTM data,

even with the goal of having recent prices. Option prices consist of two components:

the so called “intrinsic value” (max(S − K, 0) for calls and max(K − S, 0) for puts)

which is deterministic, and the “time value”, representing the risk premium that a

rational investor is willing to pay for a potential upside (option payoff higher than

the intrinsic value). Out of these two components, only the latter carries information

about investor’s expectations. For ITM options, this portion becomes smaller the

further it is ITM (as opposed to the intrinsic value). On the other hand, OTM are

purely valued by their time value. Therefore, OTM options are considered to have a

better “information ratio”.

Having excluded ITM data, other filters typically restrict data in the OTM tails, i.e.

they specify some moneyness/strike interval, and data outside this interval is discarded.

It is common to use one or multiple of the following criteria to specify this interval (by
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means of options to exclude):

• zero bid price (assumes quote prices, e.g. (Bakshi et al., 2003))

• (mid) prices < 3/8 (Jiang and Tian, 2005; Polkovnichenko and Zhao, 2013),

there also exist other “threshold values”

• zero trade volume (while it is typically not specified whether this is daily or

overall volume, e.g (Markose and Alentorn, 2011), (Christoffersen et al., 2013))

• moneyness outside some fixed interval, e.g. [0.8, 1.1] (Alexander and Nogueira,

2007; Rosenberg and Engle, 2002)

With a few possible exceptions (e.g. an ATM option that was not traded during the

day), all of these rules exclude options that are far OTM. Two reasons can be brought

forward for this practice, relating back to the two desired data characteristics for

filtered data. On the one hand, liquidity (in terms of the number or volume of trades

but at some point also the number of quotes) decreases for far OTM options. This

means that observed prices might be stale and therefore not completely representative

of the current market. On the other hand, far OTM options have very low prices.

Hence, the relative impact of (microstructure) noise is larger than for more expensive

ATM options. The most extreme example are options with zero bid price, where the

bid-ask spread (and therefore the bounds for the unobserved true price of interest) is

as large or even larger than the price itself.

Maturity filters There exists a relatively common practice which filters to use

regarding time to maturity τ . Typically, options with expiry τ > 1 years are excluded.

One argument in favor of this filter is again less liquidity for longer time horizons,

but also reduced economic interest. Further, most researchers discard options with

very short times to maturity. Such lower limits range from one week up to 20 days.

Besides again reduced economic interest for such short maturities, we have made the

experience that there can also arise unwanted technical effects.4

4For example negative implied dividend yields or unrealistically large implied risk-free interest
rates.
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4.3.2 Activity-based filters

To consolidate the filtering techniques, we propose a new approach to filter data in

the tails on the basis of economic reasoning and empirical observations. While we

finally aim to condense the results to a recommendation that can easily be applied to

end-of-day data, our approach is based on intraday data.

Our filtering approach primarily addresses the goal of representative data. But as we

will see later, it is also more conservative than any of the filters typically used in the

tails. Therefore, the sensitivity to noise is also smaller for the resulting data set. All

three methods presented below employ the idea of “market activity”. More precisely,

by identifying options for which sufficient pricing/trading activity took place during

the day, we want to ensure that prices can actually be considered as a consensus of

multiple parties. Further, with higher trading activity also the probability increases

that a quote was observed fairly recently (e.g. at market closing).

We use the notation Ki with i ∈ {c, p} for call and put “limit strikes” respectively,

i.e. calls with K > Kc and puts with K < Kp are discarded. Unless differently

specified, all the following methods are applied for each trading day separately and

always expiry by expiry. Therefore, we drop indices for date and expiry for notational

simplicity. Further, CK and PK denote call and put options with strike K.

Method based on trading activity The first approach is almost identical to the

rule “exclude options with zero trading volume”. But we specifically consider the trad-

ing volume for each day separately and only discard data outside the limits, identified

by the maximum/minimum traded strike. We do not exclude any further options with

strikes within these limits, even if they have zero trading volume. This choice makes

this filter a pure “tail filter”. Formally, we have

Kc = max({K : T (CK) > 0})

for calls and

Kp = min({K : T (PK) > 0})

for puts, where T (·) counts the number of trade ticks on a specific day for one option.
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Method based on intraday quoting frequency Our second filtering method

builds on the idea to include only options for which new quotes are observed sufficiently

often. Recall that a new level I quote represents an update of either best bid or best ask

price (or their corresponding volumes). We assume that frequent updates are needed

to ensure accurate prices and to exclude arbitrage opportunities. As a consequence,

we use pricing frequency as a proxy for the quality of prices and therefore choose a

strike range in which a certain quoting activity can be observed intraday.

Here again we do not consider every option separately, but are only interested in a

maximum/minimum strike for each expiry. To determine these limits, we split each

trading day in regular time intervals I1, I2, . . . , In (n ≥ 1) and take the minimum (for

OTM puts) and maximum (for OTM calls) strike quoted during each interval, i.e.

Kj
c = max({K : QIj(CK) > 0})

for calls and

Kj
p = min({K : QIj(PK) > 0})

for puts, where QIj(·) counts the number of quote ticks for a specific option in the

interval Ij (1 ≤ j ≤ n). To obtain a daily activity limit we then take the median of

these n maximum/minimum strikes. In other words, we choose our limit strikes such

that at least during half of the intraday intervals some prices for options up to this

strike were quoted. For the empirical application in Section 4.4 we specifically use

n = 81, which corresponds to 5 minute intervals.

Method based on market maker activity To motivate our last method, we

present two stylized facts observed for intraday option data. One concerns the update

frequency of option prices and the other the volumes that are quoted.

First we consider ticks per second, a rather simple measure representing the number

of all ticks recorded by the CBOE every second of a trading day. Using this measure,

we perform a frequency analysis by means of a Fourier transform.

Figure 4.2 shows a plot of the resulting frequencies and their amplitudes for Septem-

ber 27, 2010 (separately for quotes/trades and calls/puts). We truncate the plot for
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scaling purposes at 0.05 Hz (i.e. periods longer than 20 seconds) to remove the large

amplitudes for very small frequencies (indicating almost constant values). We observe

a distinct peak for quotes at 0.33 Hz, which indicates a regular effect in the number

of ticks every three seconds. Interestingly, the peak does not appear with trade ticks.

Furthermore, when repeating this analysis for all days in our data set, such peaks are

not always observable, but clustered in time periods before or between certain expiry

dates (see Figure 4.10 in the appendix).
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Figure 4.2: Frequency decomposition and corresponding amplitudes for different types of
ticks for September 27, 2010. We do not show frequencies lower than 0.05 (20-second periods
and longer) for better scaling.

This clustered observation of frequency peaks is clearly too systematic to be a random

observation. Consequently, we assume that they are due to one or multiple market

makers for this specific option class, based on the market maker’s obligation to up-

date market quotations intraday in combination with the “market maker rotation”

(see Chicago Board of Options Exchange (2014), Rule 8.15d).5

The second stylized fact in the data, which we also assume to be a consequence of

market maker activity, is summarized in Figure 4.3. It shows a histogram of the

volumes quoted on a single trading day (September 27, 2010). We observe distinct

spikes for certain volumes (typically round numbers such as 10, 50, 100). While the

exact volumes can differ, such peaks are observable on any trading day. Hence, we

5According to information from the CBOE, there are four “Lead Market Makers” assigned to the
SPX class, traded on the “Hybrid 3.0” platform, for which rule 8.15 is applicable.
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assume that these are standard volumes offered by market makers to provide liquidity.6

quote volume

n
u
m
b
er

of
q
u
ot
es

0 50 100 150 200 250

0e+00

2e+04

4e+04

6e+04

8e+04

bid

ask

Figure 4.3: Count of quotes (over all options) with specific bid and ask volumes for Septem-
ber 27, 2010. Volumes larger than 250 are not shown, but there are no further peaks observ-
able.

From both stylized facts, we want to identify the part of the market where the market

makers are active. Because of their obligation to provide liquidity to other market

participants, this region can in consequence be regarded as one where also sufficient

other market activity takes place. By arbitrage arguments, this should further imply

that the prices can be considered a consensus between the market maker and other

market participants.

In order define a filter based on these stylized facts, we decide to rely only on quote

volumes, because frequency peaks cannot be observed every day. However, we provide

a qualitative argument that both could be used to determine a similar activity range.

Since the two stylized facts are also observable for single options, we compare the

number of “market maker quotes” to the intensity of the frequency peak for each

option. We define market maker quotes (MMQ) as follows:

1. Each trading day, we determine volume peaks separately for all calls and puts

and their respective bid and ask prices, using the following iterative procedure:

6The CBOE does to our best knowledge not publish any specific information on the volumes that
market makers are obligated to quote. However, the European EUREX for example publishes this
information and typically offers 50 or 200 contracts of any option that does not receive other (or
better) quotes from other market participants.
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in each step we identify a peak if the number of quotes with this volume exceeds

10% of total quotes, and then remove quotes with the identified volumes before

starting the next iteration (i.e. in the next step the 10% are a percentage of the

remaining number of quotes). We stop the procedure if there is either no more

peak or if no further peak makes up at least 2% of the total daily quotes.

2. We refer to a quote as a MMQ when both bid and ask volume are among the

previously identified volume peaks. We count the number of such quotes for each

single option.

Figure 4.4 shows in the bottom panel the number of counted MMQ for all options on

the example day September 27, 2010, and the top panel a standardized amplitude of

the 0.33Hz frequency peak for the same options.7 We show this for multiple expiries,

indicated by the color of the dots.
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Figure 4.4: Illustration of market maker quotes and frequency peak amplitudes for Septem-
ber 27, 2010. Time to maturity τ in fractional years.

In both panels we observe the same picture. The two measures are high for ITM and

ATM options, and decrease OTM. We verified that the decreasing pattern for MMQ

remains after standardization (i.e. MMQ divided by total quotes per option). But since

the range of the standardized MMQ differs from day to day and with time to maturity,

we consider the absolute number of MMQ to be the better measure for the definition

7We use the amplitude of the 0.33Hz peak minus the median amplitude of all considered frequen-
cies, standardized by the standard deviation of the amplitudes of all considered frequencies.
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of a filter. Defining a strict (OTM) market maker activity limit is difficult for either

measure, as there is no clear point beyond which the magnitude could be considered

sufficiently small. Therefore, we define the limits by means of an appropriate quantile.

In fact, the use of a quantile is more sensible for the MMQ measure, given that the

number of quotes can actually be aggregated for all OTM options as opposed to the

standardized frequency amplitudes. This further justifies our choice to use only volume

peaks for the definition of a filter.

Therefore, we finally specify the filter for each expiry, such that 99% of the MMQ

counted OTM are within the strike limits (for each calls and puts). We qualitatively

checked that the limits defined in this manner also provide reasonable cut-off points

for the measure based on frequency peaks.

4.4 Comparison and implication in practice

In this section we compare the different moneyness/strike filters, as introduced in

the previous section. On the one hand, we investigate whether the filtered option

data differs, depending the applied filter. On the other hand, we analyze whether

the differences in the final data can have an impact on the results of an empirical

application.

We compare five of the filters described in Section 4.3. The first two are popular choices

in the literature, namely, “non-zero bid price” (NZB) and “price > 3/8” (GTE). The

other three are the activity-based filters proposed in this paper, i.e. “limits defined

by trades” (T), “limits defined by intraday activity” (ITD) and “limits defined by

market maker quotes” (MM). Recall that our method based on trade ticks also roughly

corresponds to the rule to exclude options with zero trading volume. In all cases we,

only use OTM options, given that it is the most widely accepted and an economically

reasonable filter.

We apply all filters on each trading day in our data set, expiry by expiry, and pool the

obtained limits with time to maturity and log-moneyness as shared variable. Figure

4.5 presents an example plot of these limits for the different methods, including all

trading days in 2009. Generally, the limits increase in log-moneyness with increasing

time to maturity, and exhibit some variation in the moneyness dimension when pooled

over time. Therefore, choosing data in a fixed moneyness range (e.g. [0.8, 1.1] or

respectively [−0.22, 0.1] in log-moneyness) seems relatively arbitrary (for any time to
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maturity). Additionally, we observe that the limits obtained from the five filters cluster

in different log-moneyness ranges, which is a first indication that the resulting data

sets are in fact different.
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Figure 4.5: Example distribution of data limits (expressed in log-moneyness) for the dif-
ferent filtering methods, for all trading days of 2009. Time to maturity τ in fractional years.

By expressing the limits in log-moneyness instead of strikes, it is possible to compare

them independently of the underlying price. However, log-moneyness still depends

on the range of market activity, and is therefore not necessarily comparable under

different market conditions. Therefore, we perform the following analysis also with

limits expressed in quantiles, which are better comparable even under different market

conditions. To obtain the quantiles, we compute the cumulative distribution function

(CDF) implied by OTM options for each expiry, using the well-known result of Breeden

and Litzenberger (1978). More precisely, we calculate implied volatilities of closing

prices and fit a spline of fourth degree with one inner knot ATM to the resulting implied

volatility smile (as suggested by Figlewski (2010)). Using the interpolated implied

volatilities, we compute option prices at a fine strike interval (we use ∆K = 1 index

points) and finally obtain the CDF as the (discounted) numerical first derivative of the

pricing function with respect to the strike. A plot in quantile dimension corresponding

to Figure 4.5 can be found in the appendix. We observe that the clustering of different

filters does also exist in quantile dimension. In the next section, we will test whether

these clusters are actually statistically different.
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4.4.1 Do different filters lead to different data sets?

To check whether the considered filters lead to different data sets, we compare the

averages of the pooled limit strikes, obtained with the different methods. Given that

especially the log-moneyness range depends on the time to maturity, we divide the

strike limits into several groups, according to their time to expiry. We group the

limits for short expiries (the first three months) into periods of 30 days each. After

90 days, we increase the grouping interval to 90 days each. Hence, we obtain a total

of 6 groups, with expiries between 10 and 365 days.8 Using the limits in each group

(in moneyness/quantile respectively), we perform pairwise one-sided t-tests to analyze

whether the different methods lead to statistically different average strike limits. As

mentioned earlier, we do this in log-moneyness dimension as well as for quantiles.
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Figure 4.6: Example of pairwise t-tests for the different filters in 2009. The left panel
displays the p-values of the t-tests (alternative hypothesis: means are different) for the
different time intervals. The right panel displays these means with the time to maturity
indicated in fractional years and the reference point set in the middle of each interval. All
limits are expressed and tested in log-moneyness.

In Figure 4.6, we present the outcomes of these tests, using all log-moneyness limits

from 2009. The corresponding results for quantile limits are shown in Figure 4.7.

We observe that in most cases, the limits are in fact statistically different. This holds

true either for any of the four years separately, or all four years grouped together (see

8Note that the last period contains 95 days.
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Figure 4.7: Example of pairwise t-tests for the different filters in 2009. The left panel
displays the p-values of the t-tests (alternative hypothesis: means are different) for the
different time intervals. The right panel displays these means with the time to maturity
indicated in fractional years and the reference point set in the middle of each interval. All
limits are expressed and tested in log-moneyness.

Figures 4.15 and 4.16 in the appendix). However, the specific test results are some-

what different, depending on whether we perform the tests in moneyness or quantile

dimension. This is very likely due to the non-linear mapping of log-moneyness into

quantiles.

Qualitatively, we can roughly distinguish two groups of filters in the right panel of

Figures 4.6 and 4.7: on the one hand, the filters NZB and GTE and on the other

hand, the filters MM and ITD appear to be similar with respect to the limits they

define. This is also partially supported by the statistical tests, which are most often

insignificant between filters of each group, respectively. We find that filters in the first

group are somewhat more “generous” (i.e. they remove less data in the tails), while

the filters in the second group are more restrictive. Additionally, the filter T leads

to a relatively wide data range for small expiries and is rather restrictive (similar to

filters in the second group) for higher maturities. Unexpectedly, for short expiries we

observe wider limits for trades than for NZB. One possible explanation for this is, that

market participants can buy options with zero bid price at the ask price, and because

we derive the trade limit from the highest/lowest traded strike, even a single extreme

trade of this type then constitutes the limit of the day. On the other hand, this can

also be due to pooling (over 30 days) and the fact that the T measure is based on
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intraday data, while NZB only on closing prices.

Building on the observation that the relation between average strike limits per group

and time to maturity is close to linear, we decide to represent the filters by linear

functions. This is particularly helpful for the activity-based filters proposed in this

paper since it condenses them to a form that can be applied to daily data. We estimate

these functions by filter-wise regression of all daily limits (as shown e.g. in Figures 4.5

and 4.12). More precisely, we regress the quantile or moneyness limits on the time to

maturity τ (in years), separately for calls and puts.

The results for the data aggregated over 2008-2011 can be found in Table 4.1. We

observe again similarities for the two previously described groups of filters. For trades,

we obtain quantiles < 0% or > 100% as constant parameters. This is due to the special

data ranges given by trades, as described above, and a consequence of performing

unconstrained linear regressions. The full results (including the coefficients for every

year and every filter separately) can be found in Table 4.2, contained in the appendix.

Table 4.1: Limits of different data filtering methods, by means of a linear model. Data
taken over all four years (2008 - 2011). Note that quantiles smaller than 0% or larger than
100% are a pure numerical artifact due to unconstrained linear regressions.

type log-moneyness Quantile (%)

const slope const slope

Calls

NZB 0.18 0.29 99.79 -0.84
ITD 0.13 0.23 98.42 -3.65
GTE 0.22 0.37 99.75 -0.49
T 0.24 0.03 101.42 -18.15
MM 0.11 0.31 95.93 2.88

Puts

NZB -0.59 -1.06 -0.06 1.62
ITD -0.41 -0.61 0.13 3.24
GTE -0.62 -1.00 0.01 1.53
T -0.67 -0.24 -1.26 10.04
MM -0.27 -0.95 0.99 0.83

As an intermediary conclusion from this section, we can state that the different ana-

lyzed filters deliver statistically different data cut-off points in a large number of cases.

Further, we can distinguish two groups of filters. One the one hand, some of the typi-

cal filters used in the literature that only remove little data in the tails. On the other

hand, our activity-based filters, which are more restrictive with respect to the usage
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of (deep) OTM option data.

Before continuing with a practical application, we want to point out that the observed

differences within each of these two groups are rather small (even if significantly differ-

ent) for typical empirical studies. We therefore only focus on the differences between

these two groups in the next section. Since the activity-based filters cannot be applied

directly to end-of-day data, we continue using them by means of a linear specification.

And for the most general applicability, we use the results in terms of quantiles. To

avoid pseudo-accuracy (given the range of single filtering limits as seen e.g. in Fig-

ure 4.5), we round the coefficients for the linear filter specification in quantiles for calls

and puts as follows:

• For calls: 98.5% quantile for τ = 0 and 92% quantile for τ = 1

• For puts: 0.5% quantile for τ = 0 and 5% quantile for τ = 1

We choose this specification as a balancing solution between the three activity filters,

not only based on the results over all four years but also taking into account the

variability between different years. It would also be possible to choose a more or less

restrictive “summary filter” depending on the application.

4.4.2 Does different data lead to different results?

In the previous, section we show that purely in terms of data, different filters result

in different data sets when applied to raw end-of-day data. In this section, we address

the question whether these differences in the data have an impact on the outcomes of

an empirical application. We have previously pointed out that the two filter groups

deliver data sets that differ only in the tails. Hence, we consider an application that is

tail-dependent, namely, the estimation of moments of the risk-neutral density (RND)

implied by option data. Specifically, we use the “model-free” method introduced by

Bakshi et al. (2003) to avoid any issues due to model misspecification. This method

allows the estimation of moments up to fourth order, in particular skewness and excess

kurtosis. Especially for these higher moments, we expect differences due to more or

less data in the tails.

Note that because of data truncation in the tails, several researchers use an extrapo-

lation technique to correct for this effect (see Chapter 3 for a review). The most pop-

ular correction is to extrapolate option prices by assuming constant implied volatility
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beyond the observable option prices. Consequently, we compare the option-implied

moments (after having applied the different filters) with and without this correction.

As representative of the more generous group of filters, we use the rule“exclude options

with zero bid price” (NZB) since it is easily applicable in practice. On the other hand,

we apply the activity-based filter by means of the linear model specified at the end of

the previous section.

Figure 4.8 shows the moments estimated from both filtered data sets which we obtained

from closing prices on June 27th, 2010, as an example day.
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Figure 4.8: Estimated moments for differently filtered data sets on June 27, 2010, using
the Bakshi et al. (2003) estimators. Estimates are shown with and without constant IV
extrapolation in the tails. Time to maturity τ is shown in fractional years.

We observe substantial differences for skewness and kurtosis, not only between the

corrected and un-corrected moments, but more importantly also between the two filter

types. The latter can even be larger than what is compensated by the extrapolation

technique (i.e. the extrapolation often just shifts results and maintains the difference).9

Further, the differences increase with higher moments, confirming that more data in

the tail is needed for an accurate estimate. One could in fact consider the differences in

mean and volatility negligible, but not for skewness and excess kurtosis. Additionally,

the differences seem to vary with respect to time to expiry.

9The effects due to extrapolation can actually differ, depending on the used technique, see also
Chapter 3 and Ivanovas (2014).
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It remains to be examined whether these differences are generally observable or only

depend on the data situation on this specific day. We therefore compute the differences

for all trading days in our data set and only report the results for skewness and kurtosis

given the small observed differences for the first two moments. All pairwise differences

and their conditional medians (depending on time to maturity, obtained via quantile

regression) are shown in Figure 4.9 for the corrected and un-corrected case.
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Figure 4.9: Differences of estimated skewness and kurtosis, for all trading days from 2008 -
2011, computed as moment with NZB filter minus the moment with the activity-based filter.
Lines show the conditional median (depending on time to maturity). Red dots indicate cases
in which both filters lead to the same limit. The top panel displays differences obtained with
implied volatility extrapolation, the bottom panel without. Skewness and kurtosis differences
are truncated at -2 and 20 respectively for scaling purposes.

Figure 4.9 confirms that these differences are systematic and in the median too large

to be ignored. We do not further analyze these differences, since our goal is only to

demonstrate that they exist systematically. To verify that these results are not only

due to the selected linear specification of the activity-based filter, we repeated the

exercise with more generous specifications for this filter (within the range covered by
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the three original filters). The resulting differences are smaller (as one should expect)

but still not negligible.

Next to the results for this method per-se, we want to point out that these observed

differences in higher order moment estimates can have further implications, given

various applications that build on such estimates. For instance, there are several

methods to derive the option-implied RND based on its moments (see Rompolis and

Tzavalis (2008), Eriksson et al. (2009) and Polkovnichenko and Zhao (2013), among

others).

It is true that the activity-based filter results in less data in the tails, and therefore

leads to a larger bias in the estimated moments. However, as shown in Chapter 3

and (Ivanovas, 2014), this bias can be corrected for this specific and other applica-

tions, using an appropriate extrapolation technique (especially for the quantile limits

considered in this study).

With this correction tool available, researchers have the possibility to choose a filter

not based on data quantity alone, but also on economic reasoning. This way one can

use the actual data where economically sensible, while imposing own (e.g. parametric)

assumptions on the tail. This might be more desirable than relying on data with

potentially unclear information content, which we consider as an advantage of our

proposed filter.

Other applications We can classify other considered applications into roughly two

categories. First, parametric models (for option prices, underlying dynamics, im-

plied volatilities, etc.), which are generally not as sensitive to small differences in the

data, compared to the non-parametric moment estimator used previously. Second,

other semi-and non-parametric applications. From the first category, we calibrated

the model of (Bates, 1996) to the different filtered data sets, but did not obtain signifi-

cantly different parameters. For the second category (e.g. option-implied asset pricing

kernels), the filters considered in this paper only lead to a slightly different support.

Specifically in the tails, missing support is often addressed by extrapolation, which

can have a bigger impact on final results than the data filter (a topic which we address

separately in Chapter 3). We can therefore not confirm that other applications are

sensitive to the exact data filter used for option data in the tails.10 This in turn implies

10Note that we did not consider any fixed moneyness filters, which remove significantly more data
than just the tails, and might therefore have an impact even on these less sensitive applications.
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that for such applications a more restrictive, but economically meaningful filter (such

as the one suggested in this paper), is a reasonable option.

4.5 Conclusion

In this paper we consolidate the approach of data filtering for option data in empirical

applications. We provide a summary why filtering (especially in the tails) is meaningful

and review some popular filters. Interestingly, although having the same purpose,

many of these filters seem relatively arbitrary. As a consequence, we suggest a new

tail filtering approach based on the idea that the resulting data should be recent

and representative. More precisely, we present three methods that rely on proxies for

market activity, which we derive from intraday data. For ease of application, we finally

condense the resulting filter to a simple linear model that defines the data cut-off points

as a function of time to maturity and provide these linear model specifications in terms

of moneyness and quantiles. Our new filter is generally more restrictive than other

typical filters applied in the literature, i.e. it removes more data in the tails.

In an empirical analysis, we compare the effect of several filters and show that the

filtered data sets are statistically different. In addition, and more importantly, we

demonstrate that different filters can have an impact on the outcomes of a tail-sensitive

application, using the model-free moment estimators introduced in (Bakshi et al.,

2003). For other, but not particularly tail sensitive applications (for example calibra-

tion of a parametric model for the underlying asset or estimation of the option-implied

risk-neutral density), we do not find noticeable differences depending on the applied

filter.

Given that many applications are not particularly tail-sensitive and for the others

there exist appropriate extrapolations tools (see Chapter 3), we believe that our new

activity-based and economically justified filter represents an interesting alternative to

existing (and somewhat arbitrary) filtering techniques.

4.A Additional figures
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Figure 4.10: The plot shows days on which frequency peaks in quotes/second can be
observed, together with the corresponding frequency. Blue dots are for frequency peaks
observed in put quotes, orange for call quotes. Black vertical lines show major expiry dates,
grey lines the minor expiry dates. Note that the top frequency peak is always observed ad
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Figure 4.11: Volume peaks identified for all trading days from 2008-2011, pooled for
call/put and bid/ask. Black vertical lines show major expiry dates, grey lines the minor
expiry dates. Peak sizes (indicated by the dot color) given as percentage of the total quote
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Figure 4.12: Example distribution of data limits (expressed in quantiles) for the different
filtering methods, all trading days of 2009. Time to maturity τ in fractional years. Because
of the logarithmic x-axis and due to the possible inaccuracies with very small or high CDF
values, we truncate the few points with quantile < 10−5 or quantile > 1 − 10−5 for scaling
reasons.
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Figure 4.13: Distribution of data limits (expressed in log-moneyness) for the different
filtering methods, all trading days between 2008 and 2011. Time to maturity τ in fractional
years.
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Figure 4.14: Distribution of data limits (expressed in quantiles) for the different filtering
methods, all trading days between 2008 and 2011. Time to maturity τ in fractional years.
Because of the logarithmic x-axis and due to the possible inaccuracies with very small or
high CDF values, we truncate the few points with quantile < 10−5 or quantile > 1 − 10−5

for scaling reasons.
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Figure 4.15: Example of pairwise t-tests for the different filters and all trading days from
2008-2011. The left panel displays the p-values of the t-tests (alternative hypothesis: means
are different) for the different time intervals. The right panel displays these means with
the maturity indicated in fractional years and the reference point set in the middle of each
interval. All limits are expressed and tested in log-moneyness.
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Figure 4.16: Example of pairwise t-tests for the different filters and all trading days from
2008-2011. The left panel displays the p-values of the t-tests (alternative hypothesis: means
are different) for the different time intervals. The right panels actually display these means.
The reference point of each interval is set in the middle. All limits expressed and tested in
quantiles
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4.B Additional tables

Table 4.2: Linear model parameters (filtering limit depending on time to maturity) for all
filtering methods as considered in Section 4.4.1

calls

year log-moneyness Quantile (%)

const slope const slope

type: NZB

2008 0.19 0.28 99.48 -0.44
2009 0.21 0.35 99.90 -0.95
2010 0.15 0.28 99.80 -0.69
2011 0.16 0.26 99.98 -1.28
all 0.18 0.29 99.79 -0.84

type: ITD

2008 0.17 0.21 98.43 -2.73
2009 0.16 0.31 98.77 -3.03
2010 0.11 0.22 98.29 -3.62
2011 0.10 0.19 98.20 -5.25
all 0.13 0.23 98.42 -3.65

type: GTE

2008 0.30 0.18 99.50 -0.10
2009 0.25 0.40 99.87 -0.78
2010 0.15 0.41 99.70 -0.11
2011 0.17 0.51 99.94 -0.99
all 0.22 0.37 99.75 -0.49

type: T

2008 0.24 0.04 100.51 -14.49
2009 0.28 0.01 101.71 -19.79
2010 0.19 0.03 101.81 -20.02
2011 0.22 0.04 101.68 -18.37
all 0.24 0.03 101.42 -18.15

type: MM

2008 0.15 0.28 97.04 1.75
2009 0.12 0.35 96.63 1.64
2010 0.08 0.32 95.27 4.17
2011 0.07 0.28 94.40 4.34
all 0.11 0.31 95.93 2.88

puts

log-moneyness Quantile (%)

const slope const slope

type: NZB

-0.60 -0.22 -0.22 4.77
-0.74 -0.94 -0.05 0.93
-0.46 -1.57 0.04 0.39
-0.54 -1.53 0.02 0.35
-0.59 -1.06 -0.06 1.62

type: ITD

-0.39 -0.33 0.25 6.26
-0.47 -0.56 0.03 3.57
-0.35 -0.84 0.25 1.36
-0.43 -0.70 0.01 1.72
-0.41 -0.61 0.13 3.24

type: GTE

-0.58 -0.24 -0.12 4.64
-0.73 -1.03 0.03 0.76
-0.46 -1.43 0.08 0.39
-0.70 -1.31 0.05 0.29
-0.62 -1.00 0.01 1.53

type: T

-0.56 0.05 -1.15 14.28
-0.78 -0.09 -1.45 11.13
-0.61 -0.51 -1.26 7.94
-0.72 -0.40 -1.18 6.89
-0.67 -0.24 -1.26 10.04

type: MM

-0.31 -0.64 1.53 1.12
-0.32 -0.88 0.96 1.70
-0.22 -1.19 0.72 0.24
-0.24 -1.02 0.70 0.40
-0.27 -0.95 0.99 0.83
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